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Autoencoders

• An autoencoder (AE) is a neural network used for unsupervised learning

• Encoder : transforms an unlabelled dataset, x := {xn}N
n , into latent codes, z := {zn}N

n

• Decoder : transforms latent codes into reconstructions, x̂ := {x̂n}N
n

• Typical AE solution: a point estimate of the network’s parameters w := {wenc,wdec}
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Bayesian Autoencoders

• A Bayesian neural network for unsupervised learning
• Place a prior p(w) over the network’s parameters w := {wenc,wdec}
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Functional Priors for Bayesian Autoencoders

7 Difficulty of choosing a sensible prior
• Assume a prior distribution, pψ(w), on the

parameters
• ψ is the prior hyper-parameters to be chosen

• This prior induces a non-trivial effect on the output
(functional) prior

pψ(x̂) =
∫

f (x; w)pψ(w)dw,

where x̂ = f (x; w)

Ouput with
Input N (0, 1) Prior

MNIST

OOD

CELEBA

OOD

Figure: Realizations sampled from the
N (0, 1) prior given an input image. OOD
stands for out-of-distribution.
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Model Selection for Bayesian Autoencoders

7 Difficulty of choosing a sensible prior
→ Estimating prior hyper-parameters, ψ, based on the empirical Bayes approach

• Marginal likelihood
pψ(x) =

∫
p(x | x̂)pψ(x̂)d x̂,

where p(x | x̂) is the likelihood, and x̂ = f (x; w)
• Equivalence between maximum likelihood estimation and KL-divergence minimization

arg max
ψ

∫
π(x) log pψ(x)dx = arg min

ψ
KL[π(x)||pψ(x)],

where π(x) is the data-generating distribution
• Matching these two distributions is non-trivial!
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3 DSW distance addresses two major constraints
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• Curse of dimensionality
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We propose to use the distributional sliced 2-Wasserstein distance (Nguyen et al., 2020)

ψ? = arg min
ψ

[
DSW2(pψ(x), π(x))

]
3 The objective is fully sampled-based and can be optimized with gradient descent algorithms
−→ Not necessary to know the closed-form of either pψ(x) or π(x)
−→ Only requirement is that we can draw samples from these two distributions

To sample from pψ(x)
→ Sample w from prior pψ(w)
→ Compute the output x̂ = f (x; w)
→ Sample from likelihood p(x | x̂)
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Experiments on MNIST
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Inductive Bias of the Optimized Priors

Ouput with Output with
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Figure: Realizations sampled from different priors
given an input image. OOD stands for
out-of-distribution.
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Figure: Visualization in 2D of samples from
priors and posteriors of BAE parameters.

The hypothesis space of the optimized prior is reduced to regions close to the true posterior
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Experiments on CelebA Dataset
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Experiments on CelebA Dataset
VAE (FID: 299.73± 5.21)

VAE + Sylvester Flows (FID: 238.95± 16.95)

VAE + VampPrior (FID: 127.05± 6.18)

2-Stage VAE (FID: 97.77± 1.01)

BAE withN (0, 1) Prior (FID: 84.11± 4.09)

BAE with Optim. Prior (FID: 62.75± 3.61)

Figure: Qualitative and quantitative evaluation of generated samples with the truncated Gaussian likelihood.
Here, we use 500 CelebA samples for inference.



Conclusions

• Revisited the Bayesian treatment of autoencoders

• Proposed a novel approach of choosing priors for Bayesian autoencoders

• Inspired by the empirical Bayes approach

• Showed state-of-the-art results, outperforming multiple competitive baselines

• Ongoing work: extend to other types of data such as text, graph and heterogeneous data
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Check the full paper at bit.ly/bae prior


