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Abstract

The ability to accurately compute the similarity between two
pieces of binary code plays an important role in a wide range
of different problems. Several research communities such as
security, programming language analysis, and machine learn-
ing, have been working on this topic for more than five years,
with hundreds of papers published on the subject. One would
expect that, by now, it would be possible to answer a number of
research questions that go beyond very specific techniques pre-
sented in papers, but that generalize to the entire research field.
Unfortunately, this topic is affected by a number of challenges,
ranging from reproducibility issues to opaqueness of research
results, which hinders meaningful and effective progress.

In this paper, we set out to perform the first measurement
study on the state of the art of this research area. We begin by
systematizing the existing body of research. We then identify
a number of relevant approaches, which are representative of a
wide range of solutions recently proposed by three different
research communities. We re-implemented these approaches
and created a new dataset (with binaries compiled with differ-
ent compilers, optimizations settings, and for three different
architectures), which enabled us to perform a fair and mean-
ingful comparison. This effort allowed us to answer a number
of research questions that go beyond what could be inferred
by reading the individual research papers. By releasing our
entire modular framework and our datasets (with associated
documentation), we also hope to inspire future work in this
interesting research area.

1 Introduction

Binary function similarity is the problem of taking as input
the binary representation of a pair of functions, and producing
as output a numeric value that captures the “similarity”
between them. This problem is very challenging to solve in the
general case. In fact, software is often compiled with different
toolchains, different compiler optimizations and flags, and,
in some scenarios like IoT devices, software is compiled
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to different architectures, making trivial binary similarity
approaches ineffective.

Binary function similarity plays a crucial role in different
systems security research fields, as a number of research
problems require measuring function similarity as a core
building block. For example, reverse engineers often deal
with stripped binaries that have been statically linked (thus
without symbols), and binary code similarity approaches can
be used to match an unknown function to (labeled) functions
in a previously generated database, saving numerous hours
of reverse engineering effort. Binary similarity is also crucial
to effectively detect and patch vulnerabilities in third-party
libraries. In this case, given a vulnerable function, similarity
techniques help finding occurrences of that same function in
one or more binaries, allowing for a much quicker identifica-
tion and patching of problematic bugs. As additional examples,
this problem is also relevant for binary diffing and patch
analysis, in which two binaries with multiple functions must be
compared against each other, and in software lineage analysis
or malware clustering, in which the analysts is interested in pin-
pointing common functions across different malware samples
and to group them together according to their similarity.

The importance and relevance of this problem is reflected
by the available literature: researchers in many different dis-
ciplines, including systems security, programming languages,
and machine learning, have published an astonishing number
of papers (often in their respective top venues) to propose new
approaches for binary similarity. This competition has resulted
in a very rapid evolution of the existing techniques, and in the
progressive development and refinement of multiple solutions.

One would expect that this significant body of work would
be sufficient to answer a number of important research
questions. For example: How do different approaches compare
when evaluated with the same dataset and by using the
same metrics? Which are the main contributions of the
novel machine-learning solutions compared to simpler fuzzy
hashing approaches? Which is the role of different sets of
features? Do different approaches work better at different
tasks? Is the cross-architecture comparison more difficult



to solve than working on a single architecture? Is there any
specific line of research that looks more promising as a future
direction for designing new techniques? Unfortunately, we
found that the current body of published research is unable to
answer these questions, due to a number of major challenges.

Challenges. The first challenge is the current inability to nei-
ther reproduce nor replicate previous results. While this is
sadly a common problem in the security field, the area of bi-
nary similarity is a particularly good example of this issue.
Only 12 out of the 61 solutions reported in the survey by Haq
et al. [27] released their tool to other researchers. And even
when the artifacts are available, they are often incorrect (i.e.,
they do not implement the exact same solution described in the
paper), incomplete (i.e., important components, for instance
for features extraction, are missing), or the code might not even
run on datasets different from the one used by its authors. Since
re-implementing previous techniques is very complex and ex-
tremely time consuming, each solution is typically compared
with only a couple of previous techniques that may sometimes
not even be designed to solve the same problem (e.g., code
search vs. binary diffing), and in some extreme cases the com-
parison is done only against a previous paper from the same
authors. The lack of reproducibility is even more relevant for
machine-learning approaches, where implementation choices,
hyperparameters, and training and testing methodologies
strongly influence the results. It is also often unclear whether
the released models should be used as-is or whether retraining
is necessary to reproduce similar results on different datasets.

The second challenge is that the evaluation results are
often opaque. Different solutions are typically customized for
slightly different objectives (e.g., searching for a vulnerability
vs. finding similar malware samples), in different settings (e.g.,
cross-compiler vs. cross-architecture), by using a different
concept of similarity (same code vs. same semantic), and op-
erating at different granularities (e.g., code snippets vs. entire
functions). The experiments are also performed on datasets
of different size and nature (e.g., firmwares vs. command-line
utilities), and the results are reported by using different metrics
(e.g., ROC curves vs. top-n vs. MRR10). Therefore, even the
most basic figures reported in each paper are not directly com-
parable. Thus, when results outperform previous works, it is
unclear whether it happens only in the selected scenario or also
in other use cases. To make things worse, papers often omit
details on how functions are filtered out and how positive and
negative pairs are selected for training, making it difficult to
reproduce the pipeline faithfully even with the same binaries.

Note also that these works are often built on top of non-trivial
pipelines, e.g., toolchains to determine function boundaries,
disassemble the code, and extract the control-flow graph. The
few available approaches use different toolchains and they
are built on different pipelines. It is thus very challenging to
determine how much the reliability of the initial “non-relevant”
stages of the pipeline actually affects the reliability of the
overall approach. In other words, it is often unclear whether the

superior results of a given approach are related to the contribu-
tions presented as novel or are instead related to other factors.

The combined effect of the first two challenges resulted in
a field that is extremely fragmented, where dozens of tech-
niques exist but without a clear understanding of what works
(or does not) in which settings. This brings us to the last chal-
lenge: the difficulty of understanding which direction binary
similarity research is heading, and why. Each new solution
adopts a more complex technique, or a new combination of
multiple techniques, and it is difficult to tell whether this is
driven by actual limitations of the simpler approaches or by
the need to convince the reviewers about the novelty of each
work. This fragmentation has often led to parallel and dis-
Jjoint lines of research, where everyone is claiming to have the
best solution. This fragmentation has also led to papers with
sub-optimal evaluations and approaches. For example, papers
that are strong on the program analysis aspect may lack the
application of state-of-the-art machine-learning techniques.
Solutions based on machine learning are the current trend, but
they often blindly apply techniques from other fields, making it
harder to judge the overall progress and innovation in the area.

Contributions. In this paper, we perform the first systematic
measurement in this area of research. We first explore existing
research and group each solution based on the adopted ap-
proach, with a particular focus on recent successful techniques
based on machine learning. We then select, compare, and imple-
ment the ten most representative approaches and their possible
variants. These approaches are representative of a wide range
of trends and span across three different research communities:
the computer security, the programming language analysis, and
the machine-learning communities. To make our comparisons
meaningful, our implementations are built on top of a common
framework (e.g., we extract the raw features using the same un-
derlying implementation, while previous works rely on differ-
ent toolchains). If the original implementation is available, we
include the core model implementation in a common codebase
for training and testing and we extend the support for missing
architectures and bitnesses. Finally, we leverage parallel pro-
gramming and efficient data encoding techniques to avoid bot-
tlenecks that could negatively affect the model performances.

By re-implementing various approaches—and not nec-
essarily the “papers”— we isolate existing “primitives” and
evaluate them when used independently or combined with
each other, to gain insights and pinpoint important factors that
are hidden in the complexity of previous works, and to answer
various open research questions. To make this evaluation
effort more comparable, we also propose a new dataset that
we use as a common benchmark with varying aspects such
as compiler family, optimizations, and architectures.

Note that our research focuses on evaluating the main
techniques proposed to date without trying to reproduce the
exact results reported in the corresponding papers. While some
of our implementations are derived from the code released by
the authors when available, others have been developed from



scratch with the goal of having a single codebase and pipeline
that can isolate the technique from the rest of factors that can
influence the result.

Our evaluation highlights several interesting insights. For
example, we found that while simple approaches (e.g., fuzzy
hashing) work well for simple settings, they fail when dealing
with more complex scenarios (such as cross-architecture
datasets, or datasets for which multiple variables change at
the same time). Among the machine-learning models, those
based on Graph Neural Network achieved the best results in
almost all the tasks, and are among the fastest when comparing
the inference time. Another interesting finding is that many
recently published papers all have very similar accuracy
when tested on the same dataset, despite several claims of
improvement over the state of the art.

While we do not claim that our code or dataset is better
or more representative than previous works, we release our
modular framework, the re-implementation of all the selected
approaches, the full dataset, and detailed instructions on how
to recreate it and tweak it.' By allowing the community to
experiment with the individual components and to directly
compare one against each other, we hope to encourage and
ease the effort of future researchers that are interested in
approaching this active research area.

2 The Binary Function Similarity Problem

In its simplest form, binary function similarity aims at
computing a numeric value that captures the “similarity”
between a pair of functions in their binary representation,
raw bytes (i.e., machine code) constituting the body of the
function, as produced by a compiler. Note that, while in this
paper we focus on approaches that use functions as units of
code, researchers have also studied techniques that focus on
lower-level abstractions (e.g., basic blocks) or higher-level
ones (e.g., whole programs). The term similarity has instead
various interpretations, depending on the context. For this
paper, we consider two functions as “similar” if they have been
compiled from the same source code, independently from the
compiler, its version, its compilation flags, or even the archi-
tecture the function has been compiled to (e.g., x86, ARM).
Thus, according to our definition, two “similar” functions may
have vastly different binary representations — and this is what
makes this research problem interesting and challenging.
Binary function similarity has been studied in more than
a hundred papers. To complicate the landscape, most of the
existing approaches cannot be mapped to a single category
of techniques, as they are often built on top of different com-
ponents. Therefore, in this section we focus on the different
building blocks that these approaches are composed of, by

TAll our artifacts and additional technical information are available at
https://github.com/Cisco-Talos/binary_function_similarity,
referred throughout the paper as [47].

looking first at the techniques to compute similarity, and then
at the types of input data that these approaches can make use of.

2.1 Measuring Function Similarity

Direct vs. indirect comparison. We can group the techniques
to measure function similarity in two main categories. The
first class of solutions implement a direct comparison of pairs
of functions, either by considering raw input data or by imple-
menting some sort of feature extraction. These solutions often
need to learn that two seemingly-unrelated values can repre-
sent similar functions, or vice-versa that close values do not
necessarily represent something similar. This is the case when
the features extracted from binary functions cannot be directly
compared by using basic similarity metrics as they may not
be represented in a linear space, or may not have an equivalent
weight on the similarity score. Therefore, researchers have
proposed to use machine-learning models in order to determine
if two functions are similar given a set of extracted features as
input. There are several approaches that implement this type of
similarity by leveraging Bayesian networks [2], convolutional
neural networks [44], Graph Matching Networks (GMN) [40],
regular feed-forward neural networks [67], or combinations
of them [37]. In these cases, the model is used to output a
similarity score between a pair of functions.

To find similar functions, these approaches need to search
over the entire dataset and compare the features of the queried
function against every entry in the dataset, which is not a
scalable solution. For this reason, many approaches implement
indexing strategies to pre-filter potentially similar candidates
with techniques such as tree-based data structures [55, 68], lo-
cality sensitive hashing [15,22,32,56,61] (approximate nearest
neighbor search), bloom filters [35], custom pre-filters based
on more simple numeric data [6,20], clustering techniques [81],
or even distributed search approaches such as map-reduce [15].

The second class of solutions implement indirect compar-
ison techniques. These approaches map the input features to
a “condensed” lower-dimensional representation that can be
easily compared to one another using a distance measure, like
the euclidean or the cosine distance. These solutions allow
efficient one-to-many comparisons. For instance, if a new
function needs to be compared against an entire dataset, one
can first map each function in the repository to its respective
low-dimension representation (this is a one-off operation),
then perform the same operation on the new function, and
finally compare these representations by using efficient
techniques such as approximate nearest-neighbors.

Fuzzy hashes and embeddings. A popular example of
low-dimensional representation is a fuzzy hash. Fuzzy hashes
are produced by algorithms that differ from traditional
cryptographic hashes because they are intentionally designed
to map similar input values to similar hashes. Pagani et al. [58]
studied the limitations of conventional fuzzy/locality sensitive
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hashes computed over raw executables, concluding that small
variations in the raw bytes of the input can significantly affect
the generated hash. However, even if vanilla fuzzy hashes may
not be suitable for function similarity, some approaches (like
FunctionSimSearch [18]) have proposed more specialized
hashing techniques to compare two functions.

Another popular form of low-dimensional representation re-
lies on embeddings. The term, popular in the machine-learning
community, refers to a low-dimensional space where semanti-
cally similar inputs are mapped to points that are close to each
other, regardless of how different the inputs looked in their
original representation. The goal of the machine-learning mod-
els is to learn how to produce embeddings that maximize the
similarity among similar functions and minimize it for differ-
ent functions. In the literature we can identify two main types
of embeddings: those that try to summarize the code of each
function and those that try to summarize their graph structure.

Code embeddings. Numerous researchers tried to adapt exist-
ing Natural Language Processing (NLP) techniques to tackle
the binary function similarity problem by treating assembly
code as text. These solutions process streams of tokens (e.g., in-
struction, mnemonic, operand, normalized instruction) and out-
put one embedding per code block, one embedding per instruc-
tion, or both. A first class of approaches (e.g., Asm2Vec [14]
and [64]) are based on word2vec [52,53], a well-known tech-
nique in the NLP field. Although these models are not de-
signed for cross-architecture embedding generation, they can
be trained on different instruction sets at the same time, learn-
ing the syntax of different languages (but without being able
to map the semantics across languages) or they can be applied
on top of an intermediate language. A second line of solu-
tions is based on seq2seq encoder-decoder models [69], which
allows to map the semantics from different architectures to
the same embedding space, thus learning cross-architecture
similarity [49, 80, 82]. A third type of models builds on top
of BERT [12], the state-of-the-art pre-training model in NLP
based on the transformer [71]. For instance, OrderMatters [78]
uses the BERT model pre-trained on four tasks to generate ba-
sic block embeddings, while Trex [60] uses a hierarchical trans-
former and the Masked-Language-Modeling task to learn ap-
proximate program execution semantics and then transfer the
learned knowledge to identify semantically similar functions.
Assembly code embeddings are usually affected by the num-
ber of different instructions they can deal with (the so-called
out-of-vocabulary problem (OOV)), and by the maximum num-
ber of instructions that can be provided as input to the model.
As aresult, certain approaches compute instruction-level em-
beddings [14, 16, 64], basic block embeddings [16, 78, 80, 82],
or function-level embeddings [14, 49, 60]. Instruction or
basic block embeddings are sometimes leveraged to compute
function similarity by using other algorithms such as Longest
Common Subsequence [82], or they are used as part of more
complex models as detailed in the following category.

Graph embeddings. Another line of research builds on
machine-learning approaches that compute embeddings
for graphs. These are very suitable to capture features
based on the function control-flow graphs, which are
cross-architecture by nature. These embeddings can be
generated by custom algorithms [24, 44] or by more complex
machine-learning techniques, such as Graph Neural Network
(GNN) [25, 40, 45, 76, 78, 79]. Some recent approaches
from the machine-learning community propose variations of
GNN, such as the GMN. These variations are able to produce
embeddings comparable in a vector space [40, 43], with the
particularity that these embeddings encode information from
the two graphs provided as input to the model.

Graph embedding approaches also often encode informa-
tion from each basic block in their corresponding node of
the graph to add more expressiveness. For instance, some
solutions compute a set of attributes for each node, thus leading
to Attributed Control-Flow Graphs (ACFG), which can either
be manually engineered [24, 76] or automatically learned
in an unsupervised way [45]. Other authors leverage other
embedding computation layers using some of the techniques
discussed earlier (e.g., at basic block level [45,78,79]).

2.2 Function Representations

Binary functions are essentially streams of bytes correspond-
ing to architecture-specific machine code and data. Starting
from this raw input, researchers have used a number of ways
to extract higher-level information that could be used to tell
whether two functions originate from the same source code.
The list, ordered by increasing level of abstraction, includes
the following pieces of information.

Raw bytes. Some solutions directly use the raw binary
information as a starting point for a similarity measure (e.g.,
Catalog1 [74]) or combine raw bytes with other information
obtained from the control-flow graph (CFG) or the call graph
(CG) [44].

Assembly. Assembly instructions, as obtained by a disassem-
bler, can be useful when operations can be encoded in many
different ways depending on the instruction size or its operands
(e.g., in x86/64 architecture, a mov instruction can be encoded
by using a number of different opcode bytes [33]). Approaches
such as Asm2Vec [14] and Trex [60] benefit from this level of
abstraction by using disassembled instructions as input, while
others compute additional metrics such as “the number of arith-
metic assembly instructions in a given function” [24,25,76].

Normalized assembly. Assembly code often encodes
constant values (e.g., immediate operands and absolute or
relative addresses), which result in a very high number of
potential combinations of operations and operands. Assembly
normalization is used in [22, 45, 49, 64, 80, 82] to abstract
away some of this variability, reduce the vocabulary size, and



converge all the possible variations of the same operation into
a single representation.

Intermediate representations. Some approaches work on an
even higher abstraction level by lifting the binary represen-
tation to an intermediate representation (IR). The use of an IR
brings several advantages: (i) it can unify the representation of
semantically equivalent but syntactically different instructions,
(ii) it potentially abstracts away non-relevant artifacts of
different architectures, and (iii) it allows to apply program
analysis techniques to simplify (and converge) certain code
constructs. Existing works have employed a number of
different IRs, such as LLVM [10, 23,25], VEX [6, 10, 30, 67],
and IDA microcode [78,79].

Structure. Numerous approaches try to capture the internal
structure of a given function, or the role that a function
plays within the overall program. To capture a function’s
internal structure, many approaches [3, 18, 32, 56] extract
the (intra-procedural) Control-Flow Graph (CFG). Some
enrich the CFG with data obtained from the basic blocks, i.e.,
Attributed Control-Flow Graph (ACFG) [18, 20, 24, 25, 40,
51,76,78,79, 81], or other types of graphs or information
obtained from the function (e.g., register flow graph [1]) or its
context within the binary (call graph [44, 68]). Finally, some
techniques just benefit from the structure provided by the CFG
to compute alternative features — such as tracelets (sequences
of consecutive basic blocks in the CFG [11, 56]).

Data flow analysis. The implementation of an arithmetic
expression at the assembly level may employ different forms
to implement the same semantics. To deal with these scenarios,
previous works proposed to first compute program slices
based on data-flow dependencies, and to then normalize and
use them as features to capture a function’s behavior [9, 67].
Other papers, such as Vulseeker [25], employ data flow edges
between blocks as an additional feature.

Dynamic analysis. Some approaches rely on dynamic analy-
sis [19], e.g., by executing pairs of functions and extracting fea-
tures from the relationship between the inputs and outputs [30,
62]. Other approaches simply extract semantic features derived
from full or partial execution traces [29, 34,39, 54, 72], while
other leverage emulation [77] or hybrid [31, 60] techniques.

Symbolic execution and analysis. As opposed to concrete
dynamic execution, some approaches rely on symbolic
execution to fully capture the behavior of the function under
analysis and to determine the relationship between its inputs
and its outputs, under all possible paths [6,46,55].

3 Selected Approaches

One of the main contributions of our work is to provide a
reference implementation for a number of key approaches and
to compare them by performing experiments on a common

and comprehensive dataset. Ideally, one would evaluate as
many approaches as possible, but clearly it is not feasible
to re-implement them all. It is also important to understand
that, while there are hundreds of papers on the topic, many
of them present small variations of the same techniques and
the number of novel solutions is significantly lower.

In this section we first discuss our selection criteria, and
we then introduce the set of techniques we implemented and
evaluated.

3.1 Selection Criteria

Scalability and real-world applicability. We are interested
in approaches that have the potential to scale to large datasets
and that can be applicable to real-world use cases. Thus,
we do not evaluate approaches that are inherently slow and
only focus on direct comparisons, such as the ones based on
dynamic analysis, symbolic execution, or high-complexity
graph-related algorithms.

Focus on representative approaches and not on specific
papers. There are many research works that propose just small
variations of the same approach — for example by reusing
previous techniques while slightly changing which features
are used. This often results in a similar overall accuracy, which
makes them less interesting for our comparison.

Cover different communities. The research contributions
on the problem of binary function similarity come from
different research communities and from both academia
and industry. Unfortunately, it is often the case that research
papers in a given community are only evaluated against
proposals from the same community or, at times, only
against previous works from the same authors. Thus, for our
evaluation, we wanted to include representative research from
the systems security, the programming language analysis, and
the machine-learning communities. For completeness, we also
considered approaches proposed by industry as well.

Prioritize latest trends. While the first contributions in this
research field date back to more than a decade ago, there has
been a recent surge in interest. Moreover, the majority of these
recent publications employ, in one way or another, techniques
based on machine learning. These techniques, in turn, have
been reported to outperform all previous approaches. Some
researchers have suggested that basic approaches work as well
as machine-learning techniques, but our evaluation shows that
this is the case only when considering simple evaluation scenar-
ios. Thus, while we do consider various types of approaches,
we do prioritize these latest, more promising, research trends.

3.2 Selected Approaches

In Section 2 we have presented the types of input data that
researchers have extracted over the years as well as the
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Figure 1: Function Similarity Systematization

possible methods to compute function similarity. However,
only a subset of the many papers published over the last decade
meet the criteria described above. Based on our analysis, we
identified 30 techniques, represented in Figure 1, out of which
we then selected ten representative solutions for our study.

The graph on the left of Figure | displays the approaches
clustered according to their respective research group. These
groups come from both academia and industry — with both
Google and Tencent being very active in this area. The edges
represent the other solutions to which each paper compares
its results with. For instance, the arrow between Gemini and
Genius means that the results of Gemini were compared by
the authors with the results previously obtained by Genius
(both from the same group). The right portion of Figure |
shows instead the timeline of publication on the Y axis, and
the different types of input data on the X axis. The approaches
are then clustered in three main groups based on the different
ways of computing the similarity, i.e., fuzzy hashes, graph
embeddings, and code embeddings.

Both figures make use of tags (in brackets) to identify the
community ( [S] security, [PL] programming languages, [ML]
machine learning, and [SE] software engineering). We also use
the [Mono] and [Cross] tags to represent whether the proposed
approaches focus on, respectively, mono- or cross-architecture
scenarios.

Even if the graph in Figure | is not comprehensive and
only shows the papers we selected, it depicts once again how
several papers compare only against a limited set of previous
approaches. There are also other interesting messages we can
extract from these plots. First, the binary diffing tools grouped
in the middle box [13,16,83] have all been designed for a direct
comparison of two binaries (e.g., they use the call graph) and
they are all mono-architecture. Nevertheless, several papers
that proposed cross-architecture and function similarity solu-
tions compare their results against these tools. This is clearly an
issue that can lead to wrong conclusions and shows some flaws

in the experiments and inappropriate evaluation strategies.

Second, the graph shows that the different communities
are often quite hermetic and they rarely compare with papers
from other fields. This is a clear limitation for advancing
function similarity research and we hope this paper can foster
collaboration among the different fields. Last, we can identify
seminal papers such as Gemini [76] and discovRE [20] that
have been re-implemented and tested extensively in other
studies. These works have clearly inspired other researchers
to improve the state of the art.

The timeline picture on the right shows a clear trend: the
complexity of the solutions and the use of machine learning
grew over time. We used this information and the relationships
depicted in the picture to select fen state-of-the-art solutions
that are scalable, representative, and recent. At the same
time, we tried to maximize the variance between the research
communities.

For instance, we selected Gemini [76] but not Genius and
discovRE because Gemini outperformed Genius [24] in all its
experiments and Genius outperformed discovRE [20]. There-
fore, we are confident that Gemini also outperforms discovRE.
Based on similar considerations we selected Asm2Vec [14],
which demonstrated a better accuracy than Bingo [6]. We also
retained some works that at first sight may seem outdated (e.g.,
Catalog1 [74]) because we believe they are representative to
study the evolution of this field, have interesting results, and
reflect our selection criteria. Finally, in some cases we may
have selected more than one work in a given category. This can
happen when there are concurrent works and it is not clear from
the literature which one performs better. In the remaining part
of this section we briefly describe the ten selected solutions.

Bytes fuzzy hashing: Catalogl. Catalogl [74] is a fuzzy
hashing approach based on the MinHash Locality Sensitive
Hashing [4]. The algorithm takes as input the function bytes
and produces a fixed length signature, which is a promising
way to compare functions from the same architecture.



This work is from a non-academic community, and it is
implemented in an IDA plugin.

CFG fuzzy hashing: FunctionSimSearch. FunctionSim-
Search [18] uses the SimHash algorithm [7] to compute a
fuzzy hash that combines graphlets (i.e., small connected,
non-isomorphic, induced subgraphs) extracted from the CFG,
mnemonics, and immediate values from the assembly code.
The approach is potentially cross-architecture because of the
CFG-based features. This tool is developed by a researcher
from the industry.

Attributed CFG and GNN: Gemini. Gemini [76] uses a
GNN (Structure2vec [8]) to compute a function embedding
starting from the function ACFG (i.e., a control-flow graph with
basic-block level attributes). This approach marks a milestone,
because it is the first to leverage GNN with a Siamese architec-
ture [5] to learn function similarity. This is clearly an evolution
compared to basic ACFG-based solutions (Genius [24]) and it
is more efficient than other approaches that leverage CFG data
such as Bingo [6], Binsign [56], Kam1no [15], or Tracy [11].

Attributed CFG, GNN, and GMN: Li et al. 2019. The
approach presented in [40] is proposed by researchers from the
industry (DeepMind and Google) from the machine-learning
community and it presents a novel graph matching model to
compute the similarity between pairs of graphs. The authors
explored function similarity as one of the practical use cases.
This approach proposes two cutting-edge models from the
machine-learning community that had not yet been studied
by system security researchers. Moreover, the paper shows
promising results.

IR, data flow analysis and neural network: Zeek. Zeck [67]
performs dataflow analysis (slicing) on the lifted code (VEX
IR) at the basic-block level and computes strands. Then,
a two-layer fully-connected neural network is trained to
learn the cross-architecture similarity task. This approach
is the most advanced proposal combining intermediate
representations, data flow analysis, and machine learning. This
work outperforms previous research from the same authors.

Assembly code embedding: Asm2Vec. The Asm2Vec [14]
NLP model derives from the PV-DM variant of para-
graph2vec [38], an extension of the original word2vec [53]
model. Asm2Vec introduces a finer instruction-level splitting
and embedding construction in order to overcome the limita-
tions of the out-of-vocabulary (OOV) problem with assembly
instructions. This approach is fully unsupervised, and achieves
state-of-the-art results in the mono-architecture experiments.

Assembly code embedding and self-attentive encoder:
SAFE. SAFE [49] uses the self-attentive sentence encoder
from Lin et al. [42] to learn cross-architecture function em-
beddings. This approach is representative of the NLP encoders
from the seq2seq model, and, in contrast to Asm2Vec, it was
specifically designed to learn cross-architecture similarity.

Assembly code embedding, CFG and GNN: Massarelli et
al., 2019. Massarelli et al. [45] uses the same Structure2vec
GNN of Gemini [76], but it changes the block-level features,
switching from manually engineered features to unsupervised
ones. This approach is interesting because it is an evolution
of Gemini and it combines the advantages of instruction-level
embeddings, basic-block encoder, and GNN.

CodeCMR/BinaryAl. The model presented in [79] powers
the BinaryAl framework [70] for the binary source code
matching at function-level. We only focus on the part that
handles the function in binary format. The model combines
intermediate representation with an NLP encoder to get
basic-block embeddings and a GNN to obtain the graph
embedding. Two LSTMs encode strings and integer data from
the function. The function embedding is the concatenation
of the three, and the binary model is trained end-to-end. We
note that this work from Tencent is a follow-up of an authors’
previous work [78] and the authors, when contacted, explained
how the new model is more accurate.

Trex. Trex [60] is a recent work based on a hierarchical
transformer and micro-traces. This paper brings a dynamic
component that extracts function traces and that is fundamental
to learn the semantics of the functions. The authors pretrain the
ML model on these traces and transfer the learned knowledge
to match semantically similar functions. The matching phase
is based exclusively on static features while the emulation
to generate the micro-traces is required only during the pre-
training. This cross-architecture solution is built on top of the
transformer, the state-of-the-art deep learning model in NLP.

4 Evaluation

4.1 Implementation

One of the goals of this study is to perform a fair compar-
ison among the different approaches. For this reason, we
implemented each phase of the evaluation in an uniform way,
including the binary analysis, the feature extraction, and the
machine-learning implementations. In this way, it is possible
to create a common ground to perform a meaningful and fair
comparison of the different methodologies.

For the binary analysis phase we used IDA Pro 7.3 [28],
while for the feature extraction we relied on a set of Python
scripts using the IDA Pro APIs, Capstone [63], and Net-
workX [26]. We implemented all the neural network models
in Tensorflow 1.14, with the only exception of Trex [60],
which was built on top of Fairseq [57], a sequence modeling
toolkit for PyTorch. Finally, we used Gensim 3.8 [65]
to implement Asm2Vec [14] and to run the instruction
embedding models [45,49].

In several cases we were able to obtain at least a portion of
the original code base of the underlying research works [17,21,
48,50,59,74,75]. Unfortunately, even when part of the code



was available, it was often tailored to the dataset the authors
used in their paper, and we had to put a substantial implementa-
tion effort to make it execute correctly on a different set of test
cases. During this process, we adopted a uniform implemen-
tation to minimize evaluation differences and we introduced
several code optimizations. When the code was not available,
we contacted the authors, but we received either no answer or
limited support. Two approaches, Zeek [67] and Asm2Vec [14],
have been fully reimplemented, while CodeCMR was tested
by the authors due to the high complexity of the model and
several “hidden” variables not discussed in the paper.

Additional technical details of all our implementations,
together with information regarding our effort to contact the
respective authors and the considerations regarding the use
of pre-trained models, are available in [47].

We run all the experiments on a workstation equipped with
Ubuntu 18.04, Intel Xeon Gold 6230 (80 virtual cores @2.10
GHz), 128GB DDR4 RAM, and one Nvidia RTX2080 Ti GPU
(1350MHz, 11GB GDDR6, 13.45 TFLOPS FP32).

4.2 Dataset

We created two new datasets, Dataset-1 and Dataset-2,
which aim at capturing the complexity and variability of
real-world software, while covering the different challenges of
binary function similarity: (i) multiple compiler families and
versions, (ii) multiple compiler optimizations, (iii) multiple
architectures and bitnesses, and (iv) software of different
nature (command line utilities vs. GUI applications). We
use Dataset-1 to train the machine-learning models and both
datasets to test the evaluated approaches.

Dataset-1. Dataset-1 is composed of seven popular open-
source projects: ClamAV, Curl, Nmap, OpenSSL, Unrar, Z3,
and Z1ib. Once compiled, they produce 24 distinct libraries.
Each library is compiled using two compiler families, GCC
and Clang, with four different versions each, covering major
releases from 2015 to 2021 (additional details on the open-
source projects and compiler versions are provided in [47].)
Each library is compiled for three different architectures,
x86-64, ARM, and MIPS, in 32 and 64 bit versions (with a
total of 6 architecture combinations), and 5 optimization levels
00, 01,02, 03, and Os.

Following our definition of function similarity, we disabled
function inlining to compare functions originating from exactly
the same source code: function inlining is in fact an addition
of code into the original source code, and it could potentially
pollute our results and lead to misleading conclusions.

In total, this dataset consists of 5,489 binaries, with an
average of 228 combinations per binary project, and a total
of 26.8M functions. Following the criteria applied by several
seminal papers [20, 24], we filtered out the functions that
had less than five basic blocks (18.2M). 80% of the filtered
functions correspond to functions with two basic blocks,
and 93% of these have less than 30 assembly instructions.

The remaining 8.6M functions are the starting point for the
construction of the training, validation and testing dataset. The
Appendix includes additional information about the number
of basic blocks and instructions for the selected functions.

Dataset-2. Dataset-2 is built on top of the binaries released by
the authors of Trex [60], a very recent paper. In particular, we
selected 10 libraries out of 13 to avoid any intersection with
Dataset-1: Binutils, Coreutils, Diffutils, Findutils,
GMP, ImageMagick, Libmicrohttpd, LibTomCrypt, PuITy,
and SQLite. The dataset contains binaries already compiled
for x86, x64, ARM 32 bit and MIPS 32 bit, 4 optimization
levels (00, 01, 02, 03) and GCC-7. 5. Dataset-2 complements
our Dataset-1 with the purpose of i) validating the results of
the models of Dataset-1 on a diverse and large collection of
binaries, and ii) including the comparison with the recent Trex
approach. Indeed, Trex could not be pre-trained and fine-tuned
on Dataset- 1, because the emulator released by the authors [59]
only supports a subset of the architecture and bitness combi-
nations. Moreover, as detailed in our online material in [47],
Trex is extremely expensive to retrain, and we opted to use the
same model as the authors in their experiments on the same
set of binaries. We acknowledge the potential advantage of
Trex in this evaluation compared to the other models trained
on Dataset-1 (thus on a larger set of architectures), and we
keep this into consideration in our discussion.

Dataset availability. To the benefit of the community and to
ease future works in the area, we are releasing the full dataset
to the public, available in [47]. We also release the scripts and
patches we used to compile them so that future researchers
can re-create the dataset and build on top of our work.

4.3 Experimental Settings

We performed extensive experiments to evaluate the accuracy
of the selected approaches and several of their variants. To this
end, we identify six different tasks to evaluate: (1) XO: the func-
tion pairs have different optimizations, but the same compiler,
compiler version, and architecture. (2) XC: the function pairs
have different compiler, compiler versions, and optimizations,
but same architecture and