
Hybrid Beamforming Techniques for
Massive MIMO Full Duplex Radio Systems

Dissertation

submitted to

Sorbonne Université
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Abstract

Full Duplex (FD) radio has emerged as a promising solution to increase the data rates by
up to a factor of two via simultaneous transmission and reception in the same frequency
band. Self-interference (SI) is a significant challenge to deal with to achieve an ideal
FD operation, which could be 90 − 100 dB higher than the received signal of interest.
SI cancellation (SIC) techniques can mitigate the SI signal in the propagation domain
or perform active cancellation by subtracting a copy of the transmitted signal on the
receive side. Beamforming is also a potent tool for FD systems, which can mitigate
the SI signal while meeting the data traffic requirements. It can be distinguished into
two main categories: fully digital beamforming or hybrid beamforming (HYBF). The
former is helpful for the traditional multiple-input-multiple-output (MIMO) FD systems
with a limited number of antennas, typically deployed in sub-6 GHz. The latter can be
used for the massive MIMO (mMIMO) systems in millimeter wave (mmWave) band,
such that they can be built cost-efficiently with a fewer number of radio-frequency (RF)
chains. This thesis aims to present several digital and HYBF designs for FD systems,
starting from very simple and then covering the most challenging scenarios for FD
systems. Moreover, a novel and scalable SI architecture is also presented, promising for
the mMIMO FD systems. One of the major drawbacks of the literature on multi-user
FD communication systems is that it does not contain any distributed solution. As the
FD paradigm shifts towards the mmWave band, several new challenges arise, which can
make the implementation of the centralized HYBF designs infeasible, especially in a large
or/and dense multi-cell network, for which a mathematical analysis is also presented.
To make FD feasible in large or/and dense networks, we present the concept of per-link
parallel and distributed (P&D) HYBF by introducing the first-ever P&D algorithm for
mmWave, which enables parallel optimization of the beamformers at the multi-processor
FD base stations and has very low complexity. Intelligent reflecting surfaces (IRSs) are
prominent for the next generation of wireless communication systems. In the final part
of this thesis, the concept of near-field IRSs for the mmWave FD systems is introduced
to leverage the full potential of FD operation while drastically reducing the hardware
cost and minimizing power consumption. The multi-cell dynamic time division duplexing
(DTDD) systems are a particular case of the multi-cell FD systems. This thesis concludes
with a novel contribution to DTDD by proposing a fully distributed and low complexity
solution for the joint scheduling and power allocation problem, which in practice results
in being NP-hard.
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La radio Full Duplex (FD) est apparue comme une solution prometteuse pour augmenter
les débits de données jusqu’à un facteur de deux via une transmission et une réception
simultanées dans la même bande de fréquences. L’auto-interférence (SI) est un défi
important à relever pour obtenir un fonctionnement FD idéal, qui pourrait être supérieur
de 90 à 100 dB au signal d’intérêt reçu. Les techniques d’annulation SI atténuent le signal
SI dans le domaine de propagation ou le soustraient du côté réception en utilisant une
copie du signal transmis. Beamforming est également un outil puissant pour les systèmes
FD, qui peut atténuer le signal SI tout en répondant aux exigences du trafic de données. Il
peut être distingué en beamforming entièrement digitale ou beamforming hybride (HYBF).
Le premier est utile pour les systèmes FD traditionnels à entrées multiples et sorties
multiples (MIMO) avec un nombre limité d’antennes, généralement déployées à moins
de 6 GHz. Ce dernier peut être utilisé pour les systèmes MIMO massifs (mMIMO) dans
la bande des ondes millimétriques (mmWave), de sorte qu’ils peuvent être construits de
manière rentable avec un nombre réduit de châınes radiofréquence (RF). Cette thèse vise à
présenter plusieurs conceptions numériques et HYBF pour les systèmes FD, en partant de
très simples et en couvrant ensuite les scénarios les plus difficiles pour les systèmes FD. De
plus, une nouvelle architecture SI évolutive est également présentée, prometteuse pour les
systèmes mMIMO FD. L’un des inconvénients majeurs de la littérature sur les systèmes
de communication FD multi-utilisateurs est qu’elle ne contient aucune solution distribuée.
Alors que le paradigme FD évolue vers la bande mmWave, plusieurs nouveaux défis se
posent, ce qui peut rendre impossible la mise en œuvre des conceptions HYBF centralisées,
en particulier dans un réseau multicellulaire large ou/et dense, pour lequel une analyse
mathématique est également présentée. Pour rendre la FD réalisable dans les réseaux
étendus ou/et denses, nous présentons le concept de HYBF parallèle et distribué par
lien (P&D) en introduisant le tout premier algorithme P&D pour mmWave, qui permet
optimisation parallèle des formateurs de faisceaux au niveau des stations de base FD
multiprocesseurs et a une très faible complexité. Les surfaces réfléchissantes intelligentes
(IRS) sont importantes pour la prochaine génération de systèmes de communication
sans fil. Dans la dernière partie de cette thèse, le concept d’IRS en champ proche pour
les systèmes MIMO FD est introduit, ce qui permet d’exploiter au maximum le plein
potentiel des systèmes FD tout en réduisant considérablement le coût du matériel et en
minimisant la consommation d’énergie. Les systèmes multicellulaires à dynamic time
division duplexing (DTDD) sont un cas particulier des systèmes FD multicellulaires.
Cette thèse se termine par une nouvelle contribution à DTDD en proposant une solution
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entièrement distribuée et de faible complexité pour le problème conjoint d’ordonnancement
et d’allocation de puissance, qui se traduit en pratique par être NP-difficile.
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Chapter 1

Introduction

The rapid and radical evolution in information and communication technology in the
last decades has changed completely the way we communicate and live. From the
first communication devices to the latest cellular networks, the complexity, number of
users/devices, and amount of data traffic sent and received have experienced exponential
growth. The exponentially growing data demands show no sign of slowing down, which
urge the requirement for engineers and researchers to prepare innovative technologies to
cope with the forthcoming challenges. This thesis aims to present novel contributions to
evolve one of the most promising wireless transmission technology, which will be discussed
next.

1.1 Cellular Networks

Base Station

User

Figure 1.1: A basic cellular network with each base station serving its users.

The wireless networks follow a cellular paradigm by dividing the geographical area into
cells as shown in Fig. 1.1. The users inside each cell are served by its base station (BS).
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Intra-cell and Inter-cell interference are the critical challenges for serving multiple users
in different cells simultaneously. However, significant advances in signal processing for the
multi-antenna BSs is leading to a remarkable evolution in the interference management
techniques [1].

1.1.1 Half Duplex Systems

Contemporary wireless communication systems are based on the half duplex (HD)
technology, which allows the BSs to serve its users by splitting the transmission and
reception operation. They can operate either by using time division duplexing (TDD) [2],
or frequency division duplexing (FDD) [3, 4].

FDD

The FDD systems divide the resources by allocating different frequency bands for uplink
(UL) and downlink (DL) transmissions [5]. The UL and DL scheduling modes are
separated into two adjacent bands separated by a guard band, which results in minimal
interference contributions. However, since the UL and DL are on different frequency bands
that are far apart, the channels are generally uncorrelated and have different frequency
responses. Moreover, the UL and DL separation requires a guard band, clearly a waste
of the available resources. To isolate the UL and DL modes in the radio frequency (RF)
circuitry, each link requires a separate oscillator of different carrier frequencies, whereas
each terminal requires an expensive duplexer and a sharp RF filter [3]. Consequently, a
very high hardware cost is associated with the FDD systems.

TDD

In TDD systems, the BSs divide the time into frames, and the UL and DL mode is
scheduled in a synchronized manner for the whole network, depending on the global
data traffic demand [1]. As the UL and DL transmission occurs in the same frequency
band, more flexibility is available for spectrum utilization by simply deciding the time
dedicated to UL and DL. Moreover, TDD systems also benefit from channel reciprocity.
Namely, by estimating the channels based on the received signal, the same channels can
be used as the channel state information (CSI) at the transmit side. Also, they offer
simpler transmit parameter optimization for resource allocation and beamforming for
multiple-input-multiple-output (MIMO) BSs. In contrast to the FDD systems, TDD
systems require less hardware cost as a single oscillator can be shared in UL and DL at
the BSs. Moreover, a duplexer is not required as the signal for both links do not appear
simultaneously at the terminals.

Traditional TDD systems suffer from the drawback that all the BSs can operate
only in a synchronized manner based on the global traffic demands. However, due to
highly dynamically variable data demands arising from cell-to-cell due to newly emerging
technologies, it is desirable that each BS could choose its scheduling mode, i.e., UL or DL,
to satisfy its local traffic demand. Dynamic TDD (DTDD) has emerged as a promising
solution for the next generation of wireless cellular networks, which enables each BS to
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select its scheduling mode independently [6, 7]. In the final part of this thesis, we will
present a novel contribution also for the DTDD systems and discuss how they are closely
related to the FD systems.

1.1.2 Full Duplex Systems

The revolution in wireless communications has resulted in ever-increasing data demands
and services on our limited wireless spectrum, which urge the demand for spectrally
efficient communication systems to accommodate the forthcoming data growth. Full
duplex (FD) is a promising technology that can change wireless communications radically
and is the main topic of this thesis. It can enable simultaneous transmission and reception
in the same frequency band, theoretically doubling the spectral efficiency. In contrast
to the TDD and FDD, it avoids using two independent channels for bi-directional
communication by providing more flexibility in spectrum utilization, improving data
security, reducing the air interface latency/delay issues [8, 9, 10, 11, 12] and can also
enable advanced joint communications and sensing [13].

Self-Interference (SI) is a major challenge to deal with to achieve an ideal FD operation,
which can be 90-100 dB higher than the received signal of interest [14, 15]. Several SI
cancellation (SIC) techniques have been developed in the literature to mitigate SI. They
can be divided into two main categories: passive suppression, and active cancellation.
In passive suppression, the SI signal is suppressed in the propagation domain before
the receiver circuitry processes it. Types of passive suppression strategies are: 1) Cross-
polarization, 2) Antenna separation, 3) Directional antenna, and 4) Shielding. The
SI signal is mitigated in active cancellation by subtracting a processed copy of the
transmitted signal from the received signal. Active cancellation techniques could be
divided into digital and analog techniques based on the signal domain (digital domain or
analog domain) where the SI signal is subtracted. In digital active cancellation, SIC is
performed in the baseband by using the information about the transmitted signal. It
can be performed without requiring additional hardware. In analog active cancellation,
SIC is performed in the analog domain at the antenna level to suppress the SI signal
sufficiently, such that it does not overwhelm the analog-to-digital-converters (ADCs). In
contrast to digital cancellation, analog cancellation schemes require additional hardware.
The amount of hardware required depends on the domain from which the information
about the transmitted signal is used, which could be the digital or analog domain in the
transmit chains.

A major challenge for the FD systems is to build efficient SIC architecture to suppress
the SI in the analog domain as it requires additional hardware. Several SI architectures are
available in the literature for sub-6 GHz for the classical single-input-single-output (SISO)
and MIMO FD system, see e.g. [16, 17, 18, 19, 20, 21, 22, 23]. In [16], experimental
data-driven characterization of the SISO FD systems is studied by proposing a novel
SI architecture. In [17], a novel SIC architecture for the SISO OFDM FD systems is
presented, in which auxiliary chains are built to accommodate an OFDM signal. Moreover,
the feasibility of the proposed design is also shown for a real-time 64 sub-carriers 10 MHz
FD SISO OFDM system. In [18], the first WiFi-based MIMO FD radio SIC architecture
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is presented. The complexity of the proposed design scales almost linearly with the
number of antennas. Further, a novel digital estimation and cancellation algorithms that
eliminate almost all interference and achieve the same performance as a single antenna
FD SISO system is also presented. A prototype for the proposed design is also presented
with personalized analog circuit boards and integrated with a WiFi compatible standard
WARP software radio implementation. In [19], we presented a novel SIC architecture
which exploits the information of the transmitted signal from the baseband and uses it to
cancel the SI in the analog domain. For complexity reduction, the non-linear cancellation
burden is moved to the digital domain. The complexity of the proposed architecture
scales only linearly as a function of the number of receive antennas. In [20], a novel SIC
architecture for the analog canceller consisting of the reduced number of taps and simple
multiplexers is presented. The values of each tap and configurations of the multiplexers
are jointly designed with the digital beamforming filters. In [21], a novel SIC architecture
which comprises auxiliary transmit chains and novel use of the demultiplexers, which
allows flexible routing of the signal, is presented. The flexible signal routing mechanism
reduces the number of auxiliary transmit chains, resulting in significant cost reduction. In
[23], a novel joint analog and digital SIC architecture for an OFDM MIMO FD system is
studied. Research towards the deployment of FD systems in the mmWave (mmWave) has
recently started, and having efficient SIC architecture is still one of the major challenges
for the mmWave FD systems. Due to the massive number of antennas in the mmWave
FD systems, existing SIC architectures in the literature cannot be adopted due to their
dependency on the number of antennas. However, the conditions for the SI signal in
the mmWave FD systems are much more favourable than the traditional MIMO FD
systems in sub-6 GHz. Namely, the SI signal is subject to much more path loss due to
propagation challenges. Moreover, as the number of transmit antennas become massive,
the total power per antenna reduces significantly, which can result in a reduced burden
for the analog SIC stage. Two exiting SIC architectures for the mmWave MIMO FD
systems are available in [24, 25], in which the analog SIC stage is designed between the
transmit and receive RF chains, which results in significant hardware cost reduction.

Once the SI is sufficiently mitigated with the aid of the SIC techniques, beamforming
can result to be a very powerful tool for the MIMO FD systems with separate transmit and
receive antenna arrays. It can perform joint mitigation of the residual SI and interference
while serving multiple users in an FD network. It can be divided into two main categories:
1) Digital beamforming and 2) Hybrid beamforming (HYBF). Digital beamforming is
feasible for the traditional MIMO FD systems. It becomes infeasible for the massive
MIMO (mMIMO) FD systems due to the high hardware cost associated with the required
number of RF chains. HYBF is a promising and cost-efficient solution for the mMIMO
FD systems as it enables designing the FD transceivers with fewer RF chains than the
number of antennas. This thesis will mainly focus on novel HYBF techniques for the
mmWave mMIMO FD systems. We remark that the FD operation can also be enabled
for communication systems with only one transmit antenna array used simultaneously for
transmission and reception. However, such systems are outside the scope of this thesis.
Herein, only the case of FD systems with separate transmit and receive arrays will be
considered.
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1.2 Contributions and Thesis Outline

This thesis aims to considerably evolve the state-of-the-art of FD systems from the signal
processing perspective. To this end, we first present several novel contributions for the
classical SISO and MIMO FD systems in sub-6 GHz and then novel approaches for HYBF
in mMIMO FD systems.

The contributions for the sub-6GHz FD systems are presented in Chapter 2. We first
tackle the quantization noise in the FD systems, which is its most dominant noise. To
reduce it, we propose to upscale the total signal by letting it saturate and reconstruct
the missing sample using estimation theory. Then a novel digital beamforming design
for the MIMO FD system taking into account the joint sum-power and the practical
per-antenna power constraints, is presented. The chapter concludes with a novel SIC
architecture for a single-carrier MIMO FD system, and a novel RF calibration algorithm
and experimental measurements for the MIMO OFDM FD system.

The contributions for HYBF in mmWave mMIMO FD systems are presented in
Chapter 3, Chapter 4 and Chapter 5. Chapter 3 firstly presents a novel HYBF design
for the mmWave FD integrated access and backhaul (IAB) with multi-antenna users.
Then, a novel HYBF/multi-stage beamforming design for a mmWave point-to-point
OFDM mMIMO FD system is presented. It concludes with another novel HYBF design
which generalizes the point-to-point mmWave FD system to the K-pairs links. Chapter
4 consists in developing a novel centralized HYBF (C-HYBF) algorithm for a single-
cell mmWave mMIMO FD system to serve multiple multi-antenna users with multiple
streams. The proposed algorithm considers many practical aspects and relies on the
optimization method minorization-maximization (MM) [26]. Chapter 5 first studies a
novel C-HYBF design for a multi-cell mmWave mMIMO FD system by extending the
work for a single-cell presented in Chapter 4. However, as well-explained later, C-HYBF is
not feasible in a multi-cell FD network for several reasons not discussed in the literature so
far. To overcome the drawbacks of centralized implementation, we introduce the concept
of per-link parallel and distributed (P&D) HYBF for mmWave by proposing a novel
P&D-HYBF algorithm for a multi-cell mmWave FD system. The proposed P&D-HYBF
design exhibits similar performance as the C-HYBF but has very low complexity, scaling
only linearly as the network size grows, and can be implemented in a fully distributed
fashion in parallel by the multi-processors FD BSs.

HYBF, even though very desirable due to less hardware cost, has many drawbacks.
To replace it, Chapter 6 introduces the concept of near-field (NF) intelligent reflecting
surfaces (IRSs) for MIMO FD systems. Such an idea allows removing the analog stage
of the mmWave (or THz) FD systems as it has many drawbacks, assists in shaping the
SI channel, reduces the power consumption and significantly improves the performance.
This thesis concludes with Chapter 7, which is dedicated to the DTDD systems which
suffer from cross-interference (CI) as the multi-cell FD systems. In such systems, a
special case of the FD systems, CI can be mitigated with intelligent scheduling of different
cells. However, the CI contribution is strictly dictated by the power allocation of the
neighbouring cells and the joint scheduling and power allocation optimization problem
results in being NP-hard. We map this problem into a game-theoretic framework of
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static games and solve it with the concept of mixed/probabilistic Nash equilibrium in a
fully distributed fashion. Apart from the aforementioned research contributions, three
patent applications are under preparation, which will lead to mass deployment of the FD
systems with significantly lower hardware costs.

In summary, the contributions of thesis are the following:

• A novel approach for reconstructing the saturated signals in the FD systems while
reducing the quantization noise, which is the most dominant noise.

• A novel digital beamforming design, SIC architecture, RF calibration algorithm
for MIMO FD system and experimental measurements for the MIMO OFDM FD
system in sub-6 GHz.

• Novel HYBF designs for mmWave IAB, point-to-point OFDM, and generalization
of the point-to-point mMIMO FD systems to K-pair links in mmWave.

• A novel HYBF design for mmWave mMIMO FD system to serve multi-antenna
users under several practical aspects.

• A novel C-HYBF scheme for the multi-cell mMIMO mmWave FD system and
identification of the fact that any C-HYBF is infeasible for a real-time multi-cell
mmWave FD network.

• A novel P&D-HYBF design for the multi-cell mMIMO mmWave FD systems.

• Introduction to the concept of NF-IRSs for FD systems, leading to very less power
consumption and hardware cost.

• A fully distributed and very low-complexity solution for the joint scheduling and
power allocation problem for DTDD, which in practice is NP-hard.

The content of this thesis is part of the publications listed below.

1.2.1 Journals

[J1] Chandan Kumar Sheemar, Leonardo Badia and Stefano Tomasin, ”Game-Theoretic
Mode Scheduling for Dynamic TDD in 5G Systems”, in IEEE Communications
Letters, Vol. 25, no. 7, pp. 2425 - 2429, Jul. 2021.

[J2] Chandan Kumar Sheemar, Christo Kurisummoottil Thomas and Dirk Slock, ”Prac-
tical Hybrid Beamforming for Millimeter Wave Massive MIMO Full Duplex with
Limited Dynamic Range”, in IEEE Open Journal of the Communications Society,
vol. 3, p. 127-143, Jan. 2022.

[J3] Chandan Kumar Sheemar and Dirk Slock, ”Per-Link Parallel and Distributed
Hybrid Beamforming for Multi-Cell Massive MIMO Millimeter Wave Full Duplex”,
submitted to IEEE Transactions on Wireless Communications. [Online]. Available:
https://arxiv.org/abs/2112.02335.
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[J4] Chandan Kumar Sheemar and Dirk Slock, ”Near-Field Intelligent Reflecting Surfaces
for MIMO Full Duplex with Channel Modelling and Beamforming for Millimeter
Wave”, to be submitted to IEEE Transactions on Wireless Communications.

1.2.2 Conferences

[C1] Chandan Kumar Sheemar and Dirk Slock, ”Hybrid Beamforming and Combining
for Millimeter Wave Full Duplex Massive MIMO Interference Channel”, in IEEE
Globecom, Dec. 2021. [Online]. Available: https://arxiv.org/abs/2108.00465.

[C2] Chandan Kumar Sheemar and Dirk Slock, ”Hybrid Beamforming for Bidirectional
Massive MIMO Full Duplex Under Practical Considerations,” in IEEE 93rd Vehicu-
lar Technology Conference (VTC2021-Spring), Apr. 2021, pp. 1-5.

[C3] Chandan Kumar Sheemar and Dirk Slock, ”Massive MIMO mmWave Full Duplex
Relay for IAB with Limited Dynamic Range,” in the IEEE 11-th IFIP International
Conference on New Technologies, Mobility and Security (NTMS), Apr. 2021, pp.
1-5.

[C4] Chandan Kumar Sheemar and Dirk Slock, ”Beamforming for Bidirectional MIMO
Full Duplex Under the Joint Sum Power and Per Antenna Power Constraints,”
in IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Jun. 2021, pp. 4800-4804.

[C5] Chandan Kumar Sheemar and Dirk Slock,”Receiver Design and AGC optimization
with Self Interference Induced Saturation,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), May 2020, pp. 5595-5599.

[C6] Patrick Rosson, Chandan Kumar Sheemar, Neharika Valecha and Dirk Slock,”Towards
Massive MIMO In-Band Full Duplex Radio,” in IEEE 16th International Symposium
on Wireless Communication Systems (ISWCS), Aug. 2019, pp. 69-74.

[C7] Christo Kurisummoottil Thomas, Chandan Kumar Sheemar and Dirk Slock, ”Multi-
Stage/Hybrid BF under Limited Dynamic Range for OFDM FD Backhaul with
MIMO SI Nulling,” in IEEE 16th International Symposium on Wireless Communi-
cation Systems (ISWCS), Aug. 2019, pp. 96-101.

1.2.3 Patents

Three patent applications about the MIMO FD systems are currently under preparation
and will be submitted for approval.
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Chapter 2

On the SISO and MIMO Full Duplex
Systems in Sub-6 GHz

This chapter presents novel contributions for the single antenna and multi-antenna FD
systems in sub-6 GHz. We present a novel transceiver design for the SISO FD systems by
introducing the idea of reconstructing the received signal saturated at the ADCs due to
high amount of SI power. Then a novel beamforming design under the joint sum-power
and the practical per-antenna power constraints is also presented for a point-to-point
MIMO FD system. The final part of this chapter presents a novel SIC architecture for
mMIMO FD, a novel RF calibration algorithm for MIMO FD and some experiment
results which motivate how should be the transmit and receive arrays at the FD node
must be placed to achieve a low rank SI channel. The experimental measurements were
taken at EURECOM, using the software-defined radio (SDR) USRP N310. The content
of this chapter is available in the researh papers [C4]-[C6].

2.1 Signal Reconstruction of Saturated Signals in SISO FD

2.1.1 State-of-the-Art and Motivation

To achieve FD operation, SI signal needs to be subtracted from the total receive signal
to allow proper reception. SI signal power is around 110 dB higher compared to the
receive signal of interest and its cancellation is not an easy task. This is mainly due to
the nonlinearities present in the transmit and receive chains, which lead to inaccurate SI
channel estimate and hence limit the SIC capabilities. Besides the nonlinearities, also the
limited dynamic range (LDR) of the ADCs can significantly limit the performance of the
FD system. Saturation of the converters can limit correct adaption of digital SIC (DSIC)
stage to mimic the SI signal with opposite sign. Moreover, we also loose the receive signal
of interest for the duration of saturation. In [27, 28], the authors claim that saturation of
the ADCs is a major bottleneck for FD systems, which is preventing us to benefit from
their full potential. The first analysis of the residual SI for a FD MIMO-OFDM system
which took into account the LDR model was presented in[29].
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Though all the other critical challenges to achieve FD operation have been well tackled
by the researchers, the possibility to reconstruct saturated/missing samples has not been
yet taken into account. So the work we present here considers for the first time ever
this possibility to achieve higher gains with the FD system. To avoid saturation, one
existing solution is the automatic gain control (AGC) which scales down the total signal
to fit it into the LDR of converters. But, this solution preserves only few quantization
levels for the Rx signal of interest and hence increases the quantization noise (QN).
Recently, an alternative FD transceiver structure to discard the saturated samples based
on non uniform sampling and zero crossing of the SI signal for an OFDM system has
been proposed [30]. In contrast to the approach [30], the approach presented herein is
much more appealing as it doesn’t require additional hardware as in [30] and applicable
to FD systems equipped with classical ADCs having uniform samplers.

We propose to deliberately scaling up the total Rx signal before the ADC, which of
course leads to have more saturated samples but reduces QN on the available samples as
well. Missing samples are then reconstructed according to their linear minimum mean
square error (LMMSE) estimate by fixed lag Kalman smoothing. For the state of the art
on the LMMSE estimation of missing samples, we refer to [31]. In this work, we deal
only with the case of real signals but in principle our approach should be applied to both
I and Q branches. Here we assume that the available samples are SI free, but ideally
the joint optimization of DSIC stage and reconstructing of missing samples should be
considered. Classical LMMSE estimation techniques requiring matrix inversions, may
not be feasible when the dimensions increase. Our fixed lag Kalman smoothing approach
to reconstruct missing samples in a FD system is more appealing, being computationally
very efficient, as it is a recursive approach.

2.1.2 System Model

We consider a simple scenario consisting of a SISO FD system with only one single-
antenna user. Let x and y denote the signal transmitted from the user and the received
signal, respectively. We assume that x is generated according to an autoregressive (AR)
process of order M . Therefore, its sample at time k can be written as

xk = −a1xk−1 − a2xk−2 − ........− aMxk−M + z. (2.1)

The scalar z ∼ CN (0, σ2z) is an independent noise term driving the AR process. We
further assume that x is a bandlimited signal with a known low pass specturm Sx,x(f)
and it is upsampled of factor 1/α, where α is a rational number. We assume perfect SIC
for the fraction of available samples β. At the receiver side, the measurement equation
for non saturated sample of signal x, at time k, can be written as

yk = xk + vk. (2.2)

The scalar vk denotes the granular QN, which is uniformly distributed in [−δ/2, δ/2] with
variance σ2v . Let δ and b denote the quantization step size, and the number of bits of the
ADC deployed in the receive chain. Let ±∆ denote the saturation points of the ADC.
The quantity δ is connected to ∆ as δ = ∆/2(b−1), where b denotes the number of bits
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used for quantization of the received signal at the ADCs. Missing samples are denoted
with y′k, and their measurement equation can be written as

y′k = xk + vk + sk, (2.3)

where sk denotes saturation noise. For y′k, sk dominates and has variance σ2sk >> σ2vk .
It is easy to identify the positions of missing samples as y′k = ±∆. As these positions are
well-known, we consider discarding the signal amplitudes in these positions and replace
it with zeros. Our received signal obeys the AR model (2.1), and the coefficients of this
AR process can be estimated by using the following equation

rx,x(0) rx,x(1) . . . rx,x(M)

rx,x(1)
. . . . . .

...
...

. . . . . . rx,x(1)
rx,x(M) . . . . . . rx,x(0)




1
a1
...
aM

 =


σ2z
0
...
0

 , (2.4)

where rx,x(·) is the correlation sequence of x obtained by inverse discrete Fourier transform
(DFT) of the low pass spectrum Sxx(f), which is assumed to be known at the receive
side. The system of equations (2.4) is known as Yule-Walker equations and by scaling all
the elements by σ2z , it can be rewritten as

RM+1 a = e1. (2.5)

The matrix RM+1 denotes the matrix of correlation sequence and the vectors a and
e1 denote the AR coefficients and first standard basis vector, respectively. The vector a
and noise σ2z can be also estimated with the well-known Levinson’s algorithm by solving
(2.4), which is a recursive approach and has complexity O(M2).

Kalman’s filter equations are very appealing to the case in which unknown parameters
that we wish to estimate follow a state space model. These unknowns can be estimated
by minimizing the mean squared error (MSE). The complete procedure consists in
following a series of steps at each time instant to predict the future state by performing
LMMSE prediction, based on the so-called Gauss-Markov model. The Kalman gain is
then evaluated based on the estimation error and measurement covariance matrices and
its objective is to correct the priori estimate. Correction of the state estimate at time
k consists in summing to the priori estimate, a factor consisting of the Kalman gain
multiplying innovation, which is a difference between the measured value and the priori
estimate. Kalman gain varies from [0, 1] and it is 0 when the measurements are very noisy
and innovation is not taken into account at all. It assumes value 1 when the measurement
can provide perfect information to update the priori estimate and it summed directly
the innovation. Finally, LMMSE is achieved with minimum prediction MSE multiplying
(1 − kk), where kk denotes Kalman gain for one scalar measurement. For theoretical
background on Kalman Filtering and the state space models, we refer the reader to [32].

Once we have the estimates of the missing samples, we also wish to smooth these
estimates based on the information of the neighbouring samples. To do so, we leverage
fixed lag Kalman smoothing with lag L << N , where N is the total number of samples
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and to estimate the sample at time k, measurements up to time k + L are taken into
account. The state space model for the fixed lag Kalman smoothing can be written as

xk = Hxk−1 + e1z, (2.6)

yk = A(xk + vk + sk), (2.7)

where xk is the L× 1 state vector at time k, vk is the granular quantization noise
state vector, A is the L× L state observation matrix, yk is the observed state at time
k, e1z is noise of the AR process, sk is the saturation noise state vector with non zero
elements only for saturated samples, H is the L× L state space matrix with its first row
equal to [−a1, ..,−aM 0]. The left lower block of H is an identity matrix of size L− 1
denoted with IL−1 and its L-th column is made of all zeros. We denote with x̂−

k and
x̂+
k the priori and posteriori estimate of the state xk. The a priori and posteriori error

covariance matrices are denoted with Rk−
x̃x̃ and Rk+

x̃x̃ , respectively, and Qk denotes the
measurement covariance matrix. The Kalman gain for the state space model at time k is
denoted with Kk.

Let N denote the total samples of the received signal x. By adapting the well-
established fixed lag Kalman smoothing technique to the case of saturated samples in
FD system, the LMMSE estimates of the missing samples can be obtained by iterating
Algorithm 1. The smoothed LMMSE estimate of sample xk can be found in the L−th

Algorithm 1 Fixed lag Kalman smoothing

Initialize x+
0 = E[x0] and R0+

x̃x̃ = E[(x0 − x̂+
0 )(x0 − x̂+

0 )
T ]

for k = 1, ....., N

1. Rk−
x̃x̃ = HRk−1+

x̃x̃ HT +Qk−1e
T
1

2. Kk = Rk−
x̃x̃A

T (ARk−
x̃x̃A

T +Rk)

3. x̂−
k = Hx̂−

k−1

4. x̂+
k = x̂−

k +Kk(yk −Ax̂−
k )

5. Rk+
x̃x̃ = (IL −KkA)Rk−

x̃x̃

end

element of the state vector xk+L and the minimum MSE (MMSE) is contained in

R
(k+L)+
x̃x̃ (L,L). Tuning of the AGC and the trade-off between the saturated samples and

QN is discussed in the following.

2.1.3 Simulation Results

In this section, we present simulation results to evaluate the performance of fixed lag
Kalman smoothing to reconstruct missing/saturated samples and investigate the trade-off
between the saturated samples and QN. For evaluation purpose, we consider ADCs in
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the receive chain of the SISO FD system with resolution of 8, 10 or 12 bits. We assume
that the SI signal has the same characteristics of x, except the power. We assume also
that after the analog SIC stage a residual SI of 50 dB is left, to be taken care of in the
baseband. At the input of the ADC, we deliberately scale up the signal consisting of
residual SI and x, by letting it saturate with an AGC which dictates the fraction of
available samples β. The fraction β is assumed to be varying as a function of the scalar n,
control parameter of the AGC, which is linked to the saturation point as ∆ = 2nσx. We
also assume perfect SIC for the non saturated samples. We further assume that received
signal is upsampled of factor 1/α = 4 and its spectrum Sx,x(f) at the receiver side to be
known.

The fixed lag Kalman smoothing is initialized at time instant L + 1 with L = 20,
and we assume that xL is known in a noisy form (only QN). We generate the receive
signal of length N = 1000 with variance σ2x = 1 according to an AR process of order
M = 10, which has a perfect lowpass spectrum Sx,x(f). At the receiver side, as Sx,x(f)
is known, its inverse DFT is calculated to get the correlation sequence of size M + 1,
which appears in (2.4). Then, the AR coefficients a and noise variance σ2z driving the
process are estimated by using the Levinson’s algorithm. For the SI signal, we assume
that it has the same spectrum, same length and generated using the same AR coefficients
of x, but with different variance σ2s .

Fig. 2.1 shows the variation in the fraction of available samples β as a function of
the control parameter of the AGC n, varying with step size 0.5. We define the signal-
to-noise-ratio (SNR) for the SISO FD system as SNR= σ2x/σ

2
v , where σ

2
v is the granular

QN variance. To evaluate the reconstruction performance, we define the reconstruction
SNR (RSNR) as RSNR= σ2x/MSE. For fixed lag Kalman smoothing with lag L, the
MSE for each sample at time k is obtained by averaging over the (L,L)-th element

of the posteriori error covariance matrix R
(k+L)+
x̃x̃ . Fig. 2.2 shows the reconstruction

performance of the missing samples with different bit resolutions. For n > 6, when more
than 25% (upsampling of factor 4) becomes available, more and more innovations are
taken into account to improve the performance. However, by increasing the fraction of
available samples, the QN, different for ADCs with different resolution, starts becoming
non-negligible. Such an increase has a direct impact on the reconstruction performance.
It may be worth mentioning that because of the initialization condition, state at time L
to be perfectly known, the LMMSE estimates of missing samples with very small β tends
still to give a positive RSNR (in dB). This is due to the fact that the saturated samples
from time L+1 onwards are estimated according to the AR model (2.1), and for n ∈ [1, 6],
only very few innovations are taken into account to update the a priori estimates. This
leads to having almost the same reconstruction performance for n ∈ [1, 6], even with
ADCs with different resolution as the available samples occupy the whole dynamic range,
and the effect of QN is negligible. We also remark that the initial condition for which we
suppose the state at time L to be known represents the case in which saturation may occur
due to instantaneous SI power increase, but before that, we still had some non-saturated
samples available, which we can be used to reconstruct the saturated samples without
taking into account the innovation, i.e., solely based on the priori estimate. Initializing
the estimation process with no knowledge of available samples can degrade the RSNR for
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Figure 2.1: Fraction of available samples as a function of n.

the three ADCs considered when n ∈ [1, 6], i.e., when the fraction of available samples is
less that 1/4, and results to be the same for n > 6.

It is clearly visible from Fig. 2.2 for the case of 8 bit ADC that RSNR is equal to
SNR when only 25% (1/α = 4) of the non saturated samples are available. For each ADC
considered, there exits a different optimum point leading to the optimium RSNR∗. This
point represents the optimum compromise between β and QN, which allows to achieve
higher gains for FD systems. It is evident from Fig. 2.2 that, as the resolution increases,
the QN variance decreases and therefore to achieve RSNR∗ (higher than SNR) more and
more fraction of available samples are needed. The tuning of AGC should be done to
make sure that we receive the optimum fraction of available samples β∗ at the receiver
side to reconstruct the missing samples.

2.1.4 Large System Analysis of the MSE

In this section, we derive analytically the approximate resulting MSE as a function of
the fraction of available samples β. Our derivation is based on the properties of trace
operator, random matrix theory, cyclic permutation, circulant matrix approximation and
partially on the expressions derived in [33]. At the end, we also establish the link between
β and saturation point ∆ of an ADC.

The error correlation matrix for the LMMSE estimation can be written as

Rx̃x̃ = Rxx −RxxA
H(ARyyAH)−1ARxx, (2.8)

where A now becomes a K ×N matrix which selects K non saturated samples from
the total of N received samples to achieve β = K/N , Ryy = Rxx + σ2vI and Rxx are the
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Figure 2.2: Reconstruction SNR for 8, 10 and 12 bit ADCs as a function of n.

correlation matrix of the received and transmitted signal. Rxx is a Toepliz matrix and
can be approximated as a circulant matrix Rc

xx, which can be written as

Rc
xx =

1

N
FHDF, (2.9)

where D is the DFT of the finite correlation sequence of (2.4), F denotes the DFT of
size N and also F−1 = FH is true. We assume that A performs random sub-selection of
the samples to achieve β and approximate AFH ∼ S, a K ×N matrix with elements
si,j ∼ N (0, 1). This approximation can be introduced because A performs random subset
selection of samples to achieve β. This fraction is strictly related to the commulative
distribution of A as the DFT matrix has unit magnitude and different phase terms.
A selects its K rows randomly and therefore AFT can be seen as a random set of
orthonormal columns. By taking the elements pairwise, the average norm of S (if divided
by N) as N → ∞ goes to one, the inner product between two rows goes to zero and the
inner product between two elements goes to 0 as it has independent variables. By taking
into account the aforementioned approximations, we can rewrite (2.8) as follows

Rx̃x̃ = F−1DF− F−1DSH(SDSH +Nσ2vI)
−1SDF. (2.10)

By applying the trace operator and dividing everything by N , we get

Tr(Rx̃x̃)

N
= Tr

(F−1DF

N
− F−1DSH

N
(SDSH +Nσ2vI)

−1SDF
)
. (2.11)

By using the property of trace operator, which allows cyclic permutation, FF−1

becomes identity in both of the terms of the MSE expression. Hence, (2.11) can be
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further simplified as

Tr(Rx̃x̃)

N
= Tr

(D
N

− DSH

N
(SDSH +Nσ2vI)

−1SD
)
. (2.12)

By applying the matrix inversion lemma, we can simplify the ()−1 term in (2.12) as

SH(Nσ2vI+ SDSH)−1 = D−1(
1

Nσ2v
SHS+D−1)

SH

Nσ2v
, (2.13)

which allows us to rewrite (2.12) as

MSE

N
=

1

N
Tr(D)− 1

N
Tr((SHS+Nσ2vD

−1)−1SHSD)

= σ2vTr((S
HS+Nσ2vD

−1)−1).
(2.14)

By using (8)-(14) from [33], for si,j being iid, (2.14) can be written as

MSE

N
= e σ2v =

1

N
Tr((

K

N

1

1 + e
IN + σ2vD

−1)−1), (2.15)

which yields

e σ2v =
1

N

N∑
i

1
K
N

1
1+e +

σ2
v
di

. (2.16)

For the ideal low pass bandlimited spectrum case, fraction α of the N di values are di = d.
By taking the inverse DFT of the spectrum of x, we get

σ2x =
1

N
αNd, (2.17)

and for exact bandlimited spectrum it equals fraction α of the (over)sampling frequency.
Therefore, 1

α denotes the oversampling factor, which implies d = σ2x/α and ρ = σ2x/σ
2
v is

the SNR. By using the previous results, we can rewrite (2.16) as

e σ2v = α
1

K
N

1
1+e +

α
ρ

. (2.18)

It implies
K

N

e

1 + e
+
α

ρ
e =

α

σ2v
, (2.19)

which can be rearranged as

βe+
α

ρ
(e+ e2)− α

σ2v
(1 + e) = 0. (2.20)

By multiplying with ρ and dividing by α we get

ρβ

α
e+ e+ e2 − ρ

σ2v
(1 + e) = 0, (2.21)
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which leads to the following expression

e2 + (1 +
ρβ

α
− ρ

σ2v
)e− ρ

σ2v
= 0, (2.22)

and finally by solving for e we get

e =
1

2

[
−(1 +

ρβ

α
− ρ

σ2v
) +

√
(1 +

ρβ

α
− ρ

σ2v
)2 +

4ρ

σ2v

]
. (2.23)

Under the assumptions that xk, vk and the SI signal follow Gaussian distribution and sk
has the dominant contribution, the fraction of available samples β can be linked to ∆ as

β = P (|y′k| < ∆) = 1− P (|y′k| ≥ ∆) = 1− 2P (y′k ≥ ∆)

=1−2(1−P (y′k ≤ ∆)) = 2P (y′k ≤ ∆)− 1=2F ′
y(∆)− 1

(2.24)

where F ′
y(·) is the cumulative distribution function (CDF) of y′k. Now Fy′(.) = Fs+x+v(.) ≈

Fs+x(.) ≈ Fs(.) where Fs(.) is the CDF of a Gaussian random variable with zero mean
and variance σ2s . So under the assumption that sk is Gaussian, we can finally conclude
that β = 2Fs(∆)− 1.

2.1.5 Conclusions

In this work, for the first time ever, we considered the possibility to reconstruct saturated
samples according to their LMMSE estimates by using fixed lag Kalman smoothing. To
leverage our approach, we assumed that the signal to be reconstructed follows an AR
model, it is upsampled, and its spectrum to be known at the receiver side. We proposed
to deliberately provoke saturation of the ADCs, leading to fewer available samples but
with less quantization noise. Simulation results show that saturated samples can be
reconstructed well if the assumptions mentioned above are met. Also, the optimum
compromise between the fraction of available samples and QN is studied, which depends
on the resolution of the ADCs.

2.2 Beamforming for MIMO Full Duplex Under the Joint Sum-

Power and Per-Antenna Power Constraints

This section presents a novel digital beamforming design for MIMO FD to maximize the
weighted sum rate (WSR) under the joint sum-power and per-antenna power constraints.
The regulations impose the sum-power constraints at each terminal, limiting the total
transmit power. In practice, each transmit antenna is equipped with its power amplifier
(PA) [34] and the per-antenna power constraints arise due to the power consumption
limits imposed on the physical PAs [35]. The joint sum-power and per-antenna power
constraints imposed on each terminal consider both the regulations and physical limits of
the PA to optimize the systems’ performance.

The joint constraints for FD systems have much more to offer compared to the HD
systems. If there is no saturation noise, the most dominant noise contribution comes for
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the PAs [36], which introduce additional non-linearities when operating in the non-linear
region. Consequently, the residual SI power increases, limiting the maximum achievable
gain for an FD system. With the per-antenna power constraints, we can limit the
non-linear behaviour of PAs and improve the SI channel estimation while complying with
the sum-power constraints naturally imposed by the regulations by equally distributing
the transmit power at each antenna. Moreover, the transmit antennas nearest the receive
array contribute the most to the SI signal’s line-of-sight (LoS) component. As the
analog SIC stage has very high energy consumption, we can reduce it by restricting the
per-antenna constraints on the transmit antennas nearest to the receive array. Note that
restricting the per-antenna power constraints improves the UL rate but can degrade the
DL rate. Ideally, an optimal trade-off between the UL and DL rate must be investigated
in practice.

2.2.1 System Model

We consider a MIMO FD communication system consisting of two MIMO FD nodes
communicating with each other. Let F = {1, 2} contain the indices of the two nodes. Let
Nl and Ml denote the number of transmit and receive antennas, respectively, at the FD
node l ∈ F . We consider a multi-stream approach and let sl ∈ Cdl×1 denote the dl white
and unitary variance data streams transmitted from node l ∈ F . Let Vl ∈ CNl×dl denote
the digital beamformer at the node l ∈ F . The channel between transmit array of node
m ∈ F and receive array of node l ∈ F , with m ̸= l, is denoted with Hl,m ∈ CMl×Nm and
the SI channel at node l is denoted with Hl,l ∈ CMl×Nl ,∀l ∈ F . Let nl ∼ CN (0, σ2l IMl

)
denote the thermal noise vectors at the FD node l. The signal received at the FD node l
can be written as

yl = Hl,m(Vmsm + cm) + el + nl +Hl,l(Vlsl + cl), (2.25)

with l,m ∈ F and l ̸= m. Let Tl = VlV
H
l denote the transmit covariance matrix of node

l ∈ F . The terms cl and cm are the transmitter and el and em are the receiver noise
distortions due to LDR noise at the node l and m, respectively, with l ̸= m, and can be
modelled as [37]

cl ∼ CN
(
0Nl×1, kl diag(Tl)

)
, ∀ l ∈ F , (2.26)

el ∼ CN
(
0Ml×1, βl diag(Φl)

)
, ∀ l ∈ F , (2.27)

where kl ≪ 1, βl ≪ 1 and Φl = Cov(Xl), where Xl denotes the undistorted received
vector at node l, such that Xl = yl−el, ∀l ∈ F . Let Xl be the received covariance matrix
of the undistorted received signal at node l given by

Xl = Hl,mTmH
H
l,m +Hl,mkmdiag(Tm)H

H
l,m + σ2l I+Hl,l(Tl + kldiag(Tl))H

H
l,l.
(2.28)

Let Kl ≜ Hl,mTmH
H
l,m denote the useful received signal covariance part. The received

(signal plus) interference and noise covariance matrices received at the FD node l ∈ F ,
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denoted with (Rl) Rl, can be written as

Rl ≈ (Xl + βldiag(Xl)), Rl ≈ Rl −Kl. (2.29)

The WSR maximization problem for the bidirectional MIMO FD system, under the joint
sum-power and per-antenna power constraints can be formally stated as

max
V

∑
m∈F

wmlndet
(
R−1
m Rm

)
(2.30a)

s.t. diag(VlV
H
l ) ⪯ Pl, ∀l ∈ F , (2.30b)

Tr(VlV
H
l ) ≤ pl, ∀l ∈ F . (2.30c)

where wm denote the rate weight for node m and pl and Pl (a diagonal matrix) denote
the sum-power and per-antenna power constraints for node l, respectively. The collection
of digital beamformers is denoted with V.

Problem (2.30) is non-concave in Tl due to SI terms at both the FD nodes which leads
to finding the global optimum solution very challenging. To find a feasible solution, we
construct its minorizer using the MM approach [38] and then optimize the beamformers
at each iteration by adopting an alternating optimization process.

The WSR shown in (2.30) can be written as a sum of weighted rate (WR) of nodes
l and m ∈ F ,m ̸= l, i.e., WSR =WRl +WRm. Note that WRl is concave in Tm and
non-concave in Tl due to SI and WRm is concave in Tl and non-concave in Tm due to
SI. Since a linear function is simultaneously convex and concave, difference of convex
(DC) programming [38] introduces the first order Taylor series expansion of WRm in Tl

and WRl in Tm around T̂, i.e., all Ti, as

WRl(Tm, T̂) =WRl(Tm, T̂)− Tr((Tm − T̂)Gm), (2.31a)

WRm(Tl, T̂) =WRm(Tl, T̂)− Tr((Tl − T̂)Gl), (2.31b)

where Gm and Gl are the gradients of WRm and WRl with respect to T̂l and T̂m,
respectively. By using the matrix differentiation properties [39], they can be easily
derived and result to be

Gl =wl
(
HH
l,l(R

−1
l

−R−1
l + βmdiag(R

−1
l

−R−1
l ))Hl,l

+ kldiag(H
1
l,l(R

−1
l

−R−1
l )Hl,l),

(2.32)

Gm =wm
(
HH
m,m(R

−1
m −R−1

m + βldiag(R
−1
m −R−1

m ))Hm,m

+ kmdiag(H
1
m,m(R

−1
m −R−1

m )Hm,m).
(2.33)

Note that, the tangent expressions constitutes a touching lower bound for (2.30), hence
the DC programming is also a minorization approach, regardless of the reparameterization
of the transmit covariance matrices as a function of the beamformers.

Let λl and Ψl = diag(ψl1, ..., ψ
l
Nl
) be the Lagrange multipliers associated with the

sum-power and per-antenna power constraint at node l ∈ F , respectively. Dropping the
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constant terms, reparameterizing Tl as a function of the beamformers, performing this
linearization ∀l ∈ F , augmenting the WSR cost function with the per-antenna and sum
power constraints, yield the following Lagrangian

L =
∑
m∈F

(
ψmpm +Tr(ΨmPm) + lndet(I+VH

mHH
l,mR

−1
l̄

Hl,mVm)

− Tr(VH
m(Gm + λmI+Ψm)Vm)

)
.

(2.34)

2.2.2 Digital Beamforming

To optimize the digital beamformer, we take the derivative of (2.34) with respect to
Vm,∀m ∈ F and l ̸= m, which yields the following Karush–Kuhn–Tucker (KKT)
condition

HH
l,mR

−1
l̄

Hl,mVm(I+VH
mHH

l,mR
−1
l̄

Hl,mVm)
−1 − (Gm + λmI+Ψm)Vm = 0. (2.35)

Theorem 1. The digital beamformer Vm, fixed Vl, can be optimized as the generalized
dominant eigenvector solution of the pair of the following matrices

Vm → Ddl

(
HH
l,mR

−1
l̄

Hl,m,Gm + λmI+Ψm

)
. (2.36)

Proof. The results follow directly by applying the proof available in [38] for Proposition 1,
by substituting HH

i,iR
−1
i Hi,i appearing in [38] with HH

l,mR
−1
l̄

Hl,m and Ai+µiI appearing
in [38] with Gm + λmI+Ψm.

The generalized dominant eigenvector solution provides the optimized beamforming
directions but not the power. Therefore, we consider scaling the columns of the digital
beamformers to unit-norm and design a novel power allocation scheme. Solution (2.36)
diagonalize the following matrices

VH
mHH

l,mR
−1
l̄

Hl,mVm = Σm
(1), (2.37a)

VH
m(Gm + λmI+Ψm)Vm = Σm

(2), (2.37b)

at each iteration to maximize the WSR. Once the beamformers are computed, the optimal
power allocation can be included while searching for the multipliers, satisfying the joint
constraints. Formally, the power optimization problem for a MIMO system can be written
as

max
Pm

∑
l∈F

wl lndet(I+Σ(1)
m Pm)− Tr(Σ(2)

m Pm), ∀m ∈ F . (2.38)

Let P denote the collection of powers. Note that as Vm is a generalized dominant

eigenvector solution for (2.34), it diagonalize Σ
(2)
m and Σ

(2)
m . Multiplying it by a diagonal

power matrix, it still yields a generalized dominant eigenvector and therefore the validity
of Theorem 1 is preserved. The optimal power allocation, ∀m ∈ F , can be obtained by
solving (2.38), which yields the following optimal power allocation scheme

Pm =
(
wl(V

H
m(Gm + λmI+Ψm)Vm)

−1 −
(
VH
mHH

l,mR
−1
l̄

Hl,mVm

)−1)+
, (2.39)
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where (X)+ = max{0,X}. To satisfy the per-antenna and sum power constraints, we
consider the following Lagrange dual function

min
λl,Ψl

L(λl,Ψl). (2.40)

The dual function L(λl,Ψl) is the pointwise supremum of a family of functions of λl,Ψl,
it is convex [40], and the globally optimal value λl,Ψl and can be found by using any
of the numerous convex optimization techniques. In this work, we adopt the Bisection
algorithm for the search of multipliers. Let Ll = {λl, ψl, .., ψNl

} denote the set containing
the Lagrange multipliers associated with the joint constraints at the node l ∈ F . Let
µi, and µi denote the upper and lower bounds for the Lagrange multiplier µi ∈ Ll. The
complete procedure to solve (2.30) to the local optimum based on alternating optimization
is formally stated in Algorithm 1.

Algorithm 2 Beamforming for BD-FD

Given: The CSI and rate weights.
Initialize:Vl,∀ ∈ F .
Repeat until convergence
for:∀m ∈ F .

Compute Ĝm with (2.33).
Compute Vm with (2.36) and normalize it.
Set µi = 0 and µi = µimax ∀i ∈ Lm.
for: ∀µi ∈ Lm
Repeat until convergence

set µi = (µi + µi)/2.
Compute Pm with (2.39),
If constraint for µi is violated,
set µi = µi, else µi = µi,

Set Tm = VmPmV
H
m

Next m.

2.2.3 Convergence Proof

To prove the convergence of Algorithm 2, the ingredients required are minorization [26],
Lagrange duality, saddle point and KKT conditions [40]. Let WSR(T) denote the cost
function (2.30) as a function of transmit covariance marices, and let WSR(T, T̂) denote
its minorized version, given as

WSR(T) ≥WSR(T, T̂) =
∑
l∈F

wllndet
(
I+VH

mHH
l,mR

−1
l̄

Hl,mVm

)
− Tr

(
(Tm − T̂)Gm

)
.

(2.41)
The minorizer, which becomes concave in T, has the same gradient of (2.30). Hence, the
KKT conditions are not affected. Reparametrizing the transmit covariance matrices T
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as a function of the powers P and digital beamformers V, then adding the sum-power
and per-antenna power constraints yield the Lagrangian (2.34). During the alternating
optimization process, every alternating update of (2.34) leads to an increase in the
WSR, ensuring convergence for both the parameters. For the KKT conditions, at the
convergence point, the gradients of (2.34) for the digital beamformers yield the same
gradients of the original cost function (2.30). For fixed digital beamformers, (2.34) is
concave in P, therefore we have strong duality for the saddle point maxP minλ,Ψ L.
Moreover, at the convergence point the solution to minλ,Ψ L satisfies the complementary
slackness condition i.e.,

λl(pl − Tr(VlV
H
l )) = 0, ∀l ∈ F , (2.42a)

Tr(ΨlPl − diag(VlV
H
l )) = 0,∀l ∈ F . (2.43a)

2.2.4 Simulation Results

This section presents simulation results for the proposed digital beamforming design for
MIMO FD under the joint sum-power and per-antenna power constraints. For comparison,
we define the following benchmark schemes: 1) We define an ideal FD (I-FD) system for
which there is no LDR noise, i.e. k, β = 0, and 2) We define an ideal half-duplex (I-HD)
system for which is also not affected by the LDR noise, i.e. k, β = 0, and the split equally
the resources in time to serve in uplink and downlink mode. We also compare our design
with the weighted minimum MSE (WMMSE) design proposed in [41].

The SNR for the FD node l is defined as SNR = pl/σ
2
l , where pl and σ2l are the

total transmit power and noise variance, respectively. The SI channel is modelled with a
Rician fading channel model. We assume a highly dominant LoS component for the SI
channel modelled with a Rician factor 105 dB [16]. The direct channels are modelled as
CN ∼ (0, 1) and the per-antenna power constraints at each node are set as the total
sum-power divided by the number of transmit antennas. We assume the same LDR noise
level for both the MIMO FD nodes in transmission and reception, i.e., k = kl = km and
β = βl = βm. Both the nodes are assumed to have 10 transmit and 5 receive antennas.
The proposed design is labelled as the practical beamforming (P-BF) design and the
results are reported by averaging over 100 channel realizations.

Fig. 2.3 shows the performance as a function of the SNR with k = β = −40 dB.
We can observe the impact of LDR noise and how it affects the maximum achievable
gain, which tends to deviate from the gain of an I-FD. We can also see that both the
communication links, i.e., H2,1 and H1,2, achieve the same WSR on average. The most
important result can be seen by comparing our design with the WMMSE design [42],
which considers only the sum power constraints. It is visible that when the transmit power
is low, then the system with only sum-power constraints performs better as the LDR
results to be below the noise level and the beamforming design in less constrained. The
LDR noise per-antenna tend to increase as the total transmit power increases. However,
setting the per-antenna power constraint equal to sum-power divided by the number of
antennas equally distributes the total transmit power on each antenna. Consequently,
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Figure 2.3: Average WSR as a function of SNR with k = β = −40 dB, N1 = N2 = 10 and M1 = M2 = 5.

equally distributing the total transmit power on each antenna results in minimum transmit
LDR noise level per antenna, which allows to achieve higher gains at high transmit power.

2.2.5 Conclusions

We studied the problem of WSR maximization for a point-to-point MIMO FD system
under the joint-sum power and per-antenna power constraints and under the LDR
noise model. A novel alternating optimization based algorithm, which relies on the
MM optimization method, is proposed. Results show that when there is LDR noise,
it is desirable to design the FD systems under the joint sum-power and per-antenna
power constraints, which minimize the transmit LDR noise variance per-antenna, being
proportional to its transmit power.

2.3 Towards Massive MIMO In-Band Full Duplex Radio

In this section, we present several contributions to pave the path towards massive MIMO
FD systems. We present a novel hybrid SIC (HSIC) architecture, which exploits the
information of transmitted signal from baseband and uses it to cancel SI in the analog
domain before the ADCs. The complexity of the proposed digital-to-RF (D2RF) HSIC
architecture scales only linearly as the number of receive antennas, which is very desirable
for massive MIMO FD systems. Correct analysis of the SI channel from the measured data
is crucial to investigate the FD systems. However, when measuring the SI channel based
on the transmitted signal, the actual channel results to be affected by the RF components
available in the transmit and receive chains. We present a novel RF calibration algorithm
for MIMO FD systems, such that correct conclusions on the SI channel from the measured
data could be drawn. Moreover, we present a novel reduced complexity analog SI nulling
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(SIN) algorithm, motivated by the Vandermonde vector structure of the uniform linear
array (ULA) response. This section concludes with some experiment results taken at
EURECOM, France, which shows how the transmit and receive antenna arrays at the
FD node must be arranged to achieve a low-rank SI channel.

2.3.1 MIMO D2RF HSIC Architecture

We propose a novel SI architecture based on the solution proposed by Rice University
[16], appropriate for MIMO FD transceivers. Our architecture can regenerate all the
SI generated in a MIMO configuration and mitigate it very efficiently. In the MIMO
context, SI originates from the interactions between all the transmit and receive antennas,
with each antenna having its RF chain. The proposed solution can also be applied
to the multi-antenna case in which antennas are shared between the transmitter and
receiver via circulators. However, for the exposition here, we shall focus on the case of
separate transmit and receive antenna arrays, which is the topic of this thesis. For a
Ntx ×Nrx MIMO configuration, each receiver is affected by Ntx SI contributions coming
from the Ntx transmit antenna. Therefore, the FD transceiver must mitigate NtxNrx SI
components. A pure analog solution would need NtxNrx SISO cancellers, which may also
need to be frequency-selective.

Figure 2.4: 2× 2 MIMO FD architecture with multiple HSIC and DSIC.

To reduce the complexity of an analog MIMO RF SIC, we decided to move analog
filtering to the digital domain. This is done by using digital filters and auxiliary trans-
mitters as shown in Fig. 2.4. The goal of the auxiliary transmitters is to cancel the SI in
the analog domain as much as possible, in any case enough for proper operation of the
(ADCs in the) receive chains. The output of each auxiliary transmitter is a combination
of signals coming from filtering the desired transmitter signals. In the end, DSIC mitigate
the remaining SI as discussed e.g. in [11]. Here we focus on the D2RF HSIC for a MIMO
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configuration. Our proposed MIMO D2RF HSIC solution is particularly well adapted
for MIMO with a large number of antennas as it only requires Nrx HSIC branches, as
compared to NtxNrx branches in the case of analog SIC. To follow the Effective Isotropic
Radiated Power (EIRP) regulation, the use of many transmit antennas implies power
reduction per transmit antenna, and thus reduction of the SI contribution coming from
each antenna.

2.3.2 System Model

It is possible to define a Nrx × (Ntx +Nrx) SI MIMO channel between all RF generators
(i.e. main transmit chains and auxiliary transmit chains) and the receive chains of the
same transceiver. Ignoring non-linearities, and considering only SI, we can write the
system equation in baseband in the frequency domain as:

y =
[
Hiac Hih

] [ x
xh

]
(2.44)

where y = [y1 · · · yNrx ]
T is the vector of received signal after HSIC cancellation and con-

version (see Fig. 2.4), x = [x1 · · ·xNtx ]
T is the transmit signal vector in the main transmit

chain, xh = [xh1 · · ·xhNrx ]
T is the transmit signal vector for the auxiliary transmit chain,

Hiac represents the Nrx ×Ntx MIMO SI channel for the main transmit chains (account-
ing for propagation from transmit to receive antenna arrays and electromagnetic (EM)
coupling between transmit and receive arrays), whereas Hih represents the Nrx ×Nrx

MIMO SI channel for the auxiliary transmit chains in the HSIC branches (accounting for
the explicit coupling from auxiliary transmit to receive RF arrays and their EM coupling
also).

We can also define a Nrx×Ntx MIMO digital filter Hhsic. This digital filter massages
the actual transmit signal x into an appropriate input xh for the auxiliary transmit
chains in the HSIC branches before subtraction in the receive chains and SI cancellation.
We have the relation

xh = Hhsic x . (2.45)

2.3.3 MIMO SI Channel Estimation

This section proposes a simple approach to estimate the SI MIMO channel (i.e. the
Nrx(Ntx + Nrx) sub-channels). The problem is similar to classical MIMO channel
estimation. The main difference is that time and frequency synchronisation is not
necessary in this configuration as the same oscillator and the same sampling frequency
are used for all the transmitters and all the receivers.

A reference signal is transmitted on each transmitted port sequentially. During this
phase, the two synchronised receivers estimate all the sub-channels. The SI MIMO
channel is estimated like in TDMA (orthogonal transmission scheme). We follow here
the dimensions Nrx = Ntx = 2 of Fig. 2.4. The four transmitted and received complex
signals (IQ) versus time are shown in Fig. 2.5 and Fig. 2.6 respectively, exhibiting the
time multiplexed pilots. This estimation phase is the most straightforward and was
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Figure 2.5: Estimation phase - Transmitted pilot signal on each tranmitter.

Figure 2.6: Estimation phase – Received signal on each receiver.

implemented in the simulator discussed further, but a non-orthogonal approach can also
be used to reduce its duration. Of course, adaptive filtering approaches can also be used
to determine Hhsic directly without SI channel estimation (as for the digital SIC).

2.3.4 Zero Forcing HSIC Solution

In the SISO configuration, when the transceiver has only one transmit and one receive
antenna, there is only one SI and the HSIC can easily be computed. In the MIMO
configuration the problem is a bit more complex. Considering the case of the MIMO
configuration shown in Fig. 2.4, we should find the HSIC filters which minimize the
SI power of the two received signals. The filtering can be narrowband (i.e. only one
complex coefficient per sub-channel) or wideband (i.e. FIR with several coefficients
per sub-channel). This depends on delay spread of the MIMO SI channel and the RF
bandwidth. Substituting (2.45) into (2.44) gives y = (Hiac +HihHhsic)x. Hence, in
order to zero-force all the SI effect of x on y, the HSIC filter obviously needs to be chosen
as

Hhsic = −H−1
ih Hiac . (2.46)
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In wideband filtering, to reach good SI mitigation, the delay spread of Hhsic needs to be
sufficiently large.

Simulations Results on HSIC

We simulated wideband filtering (up to 4 FIR coefficients per subchannel). The ZF
solution is computed based on the 8 MIMO SI subchannel estimations (FIR of length
4). Fig. 2.7 shows the transmitted signals and the SI when the HSIC is not applied (in
which case we have antenna isolation only) and when it is applied. The antenna isolation
is around 30 dB. HSIC MIMO allows around 30 dB of additional cancellation, up to the
noise floor in this scenario. The left and right subfigures correspond to receive chains 1
and 2, respectively.

Figure 2.7: MIMO HSIC Performance.

2.3.5 Self-Interference Nulling in MIMO Full Duplex

In the following, ULAs are assumed at the transmit and receive array of the MIMO
FD node. We first model the MIMO SI channel between ULAs with the near-field LoS
model and propose a new iterative RF calibration algorithm for correct analysis of SI
MIMO channel from the measured channel/data. We also present some measurement
results, performed with the software-defined radio USRP N310, with different antenna
array configurations of the ULAs and our objective would be to achieve a low rank
SI MIMO channel, which leads to reduced zero-forcing (ZF) constraints. Finally, a
reduced complexity analog SIN algorithm, which exploits the banded nulling structure
and motivated by the Vandermonde vector structure of ULA response is proposed.

2.3.6 RF Calibration and LoS Near Field MIMO Channel Model

We consider an Orthogonal frequency-division multiplexing (OFDM) FD system with a
total of Ns subcarriers. The measured SI MIMO channel at each subcarrier n can be
written as:
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H[n] = R[n]C[n]T[n] +V[n] (2.47)

where C[n] and V[n] are the internal SI MIMO propagation channel and measurement
noise, respectively. R[n] and T[n] denote the calibration matrices, which represent the
transfer function of RF circuitry in transmit and receive chains. As discussed in [43],
these matrices are diagonal, which is also true for our case. We consider the near field
line-of-sight (LoS) model for C[n], with each of it’s elements given by:

ci,j [n] =
α[n]
dγi,j

e−j β di,j , (2.48)

where β = 2πfn is the phase constant with subcarrier frequency fn, d denotes distance,
α[n] is a constant, γ is the pathloss factor and subscript (i, j) denotes the j-th transmit
and the i-th receive antennas, respectively. The measured channel H[n] not only depends
on the internal SI MIMO propagation channel, but also on the RF circuitry in the
transmit and receive chains. Therefore, to remove the effect of RF circuity from the
measured channel, we present a new iterative algorithm for RF calibration which leads
us closer to the actual internal SI MIMO propagation channel. This allows us to draw
conclusions which depend only on the antenna configuration and the effects of RF circuity
are removed. As the RF circuitry does not alter the phase of transmitted signals but
just their amplitudes, we only need the absolute calibration factors. To obtain these
factors in R[n] and T[n], we use the least square (LS) fitting criterion at the level of
C[n] instead of H[n], which reflects the decorrelated Gaussian modeling error on c[n]. By
estimating these absolute calibration factors directly from H[n], we apply them on c[n].
For calibration purposes, we minimize the average LS fit over subcarriers n− qs : n+ qs,
i.e. 2qs + 1 subcarriers, with qs ∈ [1, n]. The objective function we consider is:

min
α[n],T[n],R[n]

min(Ns,n+qs)∑
m=max(1,n−qs)

||R[n]H[m]T′[n]−C′[m]||2F , (2.49)

where C[m] = α[m]C′[m] and T′[n] = α[n]T[n] is the reparameterization of T[n]
in terms of α[n]. Optimization of (7.15) is done at each subcarrier with alternating
minimization approach according to the LS fitting w.r.t T′[n] and R[n]. For the sake of
simplicity, optimal solution for R[n] is also obtained in two steps. Firstly, we solve for its
unconstrained solution R′[n], which is later scaled to recover R[n]. By assuming γ = 1,
the LS cost solution for (7.15) w.r.t T′[n] and R[n] (in two steps) at iteration k can be
obtained as follows:

T′
k[n] = diag(

∑
m

HH [m]RH
k [n]C

′[m])(diag(
∑
m

HH [m]RH
k [n]Rk[n]H[m]))−1, (2.50)

R′
k[n] = diag(

∑
m

C′[m]T′H
k [n]HH [m])diag(

∑
m

H[m]T′
k[n]T

′H
k [n]HH [m]))−1, (2.51)

Rk[n] = R′
k[n]

√
Nrx/||r′k[n]||2, (2.52)

28



Chapter 2. On the SISO and MIMO Full Duplex Systems in Sub-6 GHz

where r′k[n] = diag(R′
k[n]), Nrx denotes the number of receive antennas and the scaling

factor
√
Nrx/||r′[n]||2 forces the values of R[n] to fluctuate around 1, leading to the true

physical RF calibration factors. By alternating between (2.50)-(2.52) at each subcarrier
until convergence, we get the optimal R[n]∗ and T′[n]∗. To recover α[n]∗,T[n]∗ the
following equations can be used:

α[n]∗ =
√
Ntx/||T′[n]∗||2, (2.53)

T[n]∗ = α[n]∗T′[n]∗, (2.54)

where T′[n]∗ = diag(T[n]∗) and Ntx denotes the number of transmit antennas. We then
compute the calibrated internal SI MIMO channel Ĉ[n] as:

Ĉ[n] = α[n]∗C′[n]. (2.55)

The complete iterative procedure for RF calibration at each subcarrier is presented in
Algorithm 3.

Algorithm 3 RF Calibration Algorithm

At each subcarrier n, initialize R[n],T′[n] = I.
Initialize C′[n] according to (2.48) with α[n], γ[n] = 1.
Repeat until convergence:

1. Update T′
k[n] according to (2.50).

2. Update R′
k[n] using (2.51).

3. Update Rk[n] from (2.52).

After convergence, from T′[n]∗ get α[n]∗, T[n]∗ and then Ĉ[n] according to (2.53)-(2.55),
respectively.

2.3.7 Reduced Complexity Analog SI Nulling

We now consider a generic FD communication system with ULAs equipped with Ntx

transmit and Nrx receive antennas. The SI MIMO channel is denoted with C ∈ CNrx×Ntx

and we assume Ntx < Nrx. For our LoS model, we first assume that the near field effects of
amplitude variation with distance and phase variation are negligible. Let x = [1, a, a2, ...]
be a Vandermonde vector, which represents the arrray response of a ULA array. Then, to
null x we can use a Toeplitz matrix T([1,−1/a, 0..0]) with [1,−1/a, 0..0] as its first row,
such that T([1,−1/a, 0..0])x = 0. Under the far field assumption, the channel matrix C
between ULAs, for array response of one array towards the centre of the other array, can
be written as a rank 1 product of two Vandermonde vectors. At the receive side, C looks
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like a Vandermonde vector and hence T([1,−1/a, ...0]) in front of C captures its singular
part. Motivated by this idea, for SIN we propose that at the receiver side a SIN filter
N ∈ CNrx−2×Nrx with the Toeplitz structure T([1,−1/a, 0..0]) should be applied. If the
receive array is a uniform rectangular array (URA), under the far field approximation, C
is still rank 1, as it is a product of the receive and transmit antenna array responses. But
the URA response at the receive side should be written as a Kronecker product vV ⊗ vH
of two ULA responses of vertical and horizontal dimensions, respectively. Moreover, if
we vectorize the URA response V = vV v

T
H as v = vec(V) = vH ⊗ vV , then to null v we

have to use two Toeplitz SIN filters NV and NH . We can also increase the number of
non-zero upper diagonals in one or the other SIN filter, or both, to change the dimensions.
Even with URA, we can decide to use only one SIN filter e.g. Nv, which may also work.
The Kronecker Toeplitz SIN structure with two filters given by (NV ⊗NH)v = 0 leads
to nulling the product of two zeros. However, this over nulling could be justified by the
fact that the Vandermonde structure we assume is approximate due to near field effects.
Therefore, for the actual C, the Kronecker Toeplitz SIN filter structure with two filters
would perform better in nulling the SI for URAs.

Aforementioned reasoning is the motivation for a banded nulling structure that we
impose on the SIN filter N. Nevertheless, in reality we don’t impose the Toeplitz structure
on it, but we let its elements on the non-zero upper diagonals to be arbitrary complex
numbers, which are then optimized for nulling purpose. For our problem formulation,
we choose only one SIN filter with two super diagonals to be non zero. The objective
function for SIN that we optimize is the following:

min
ai,bi

||NC||2F , for ai, bi ∈ C and i = 1, .., Nrx − 2. (2.56)

where ai and bi are the elements of the first and the second super diagonals in row i. To
solve (7.16), we rewrite the matrix C as a (Nrx − 2)Ntx × 2(Nrx − 2) + 1 sparse matrix
Cs (2.58) and reformulate (7.16) as a quadratic cost function of complex variables with
a linear constraint:

min
x

||Csx||2

s.t. eT1 x = 1
(2.57)

where e1 is the first standard basis vector of the Euclidean space and the vector x is
defined as x = [1, a1, ..., aNrx−2, b1, ..., bNrx−2]

T contains the complex coefficients of N.

Cs =



c1,1 c2,1 0 c3,1 0
... 0

. . . 0
. . .

cN−2,1 cN−1,1 cN,1...
...

...
...

c1,M c2,M
... c3,M

...
... 0

. . . 0
. . .

cN−2,M 0 cN−1,1 0 cN,M

 (2.58)

The solution for (2.57) can be obtained as:

x =
1

eT1 (C
T
sCs)−1e1

(CT
sCs)

−1e1. (2.59)
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The vector x provides the optimal complex coefficients to be stacked in the two upper
diagonals of N, which null the SI. However, as the dimension of receive signal after SIN
cannot be higher than Ntx, (2.56) with its reformulation (2.57), should be iterated K
times to reduce the size of N to L × Nrx, with L = Nrx −K and L ≤ Ntx. At each
iteration k for k = 1, .., K, the row i of N which produces the highest norm for A = NC
should be removed by restructuring Cs(k) with less columns, which correspond to the
removal of coefficients ai and bi of N. By doing so, we suppress the Ntx − L dominant
dimensions of the SI MIMO channel. The complete reduced complexity analog SIN
algorithm for SIN is given in Algorithm 4.

Algorithm 4 Reduced complexity analog SIN algorithm

Initialize Cs(0) according to (2.58).
for k = 1,..,K

1. Cs(k)= Cs(k − 1).

2. Evaluate ||NCs(k)||2F .

3. Update Cs(k) by removing its columns to remove the row in N which produces
the highest norm for A.

4. Solve for new x(k) with updated Cs(k) in (2.59).

5. Stack x(k) in the upper diagonals of N

end

2.3.8 Simulation and Measurement Results

In this section, simulation results are presented for the proposed RF calibration algorithm
applied to a 4× 4 FD OFDM system with Ns = 296 subcarriers implemented with the
USRP N310. Then to evaluate the performance of our reduced complexity analog SIN
algorithm, we present simulation results for a generic FD system with ULAs equipped
with 4 transmit and 6 receive antennas and with one SIN filter N of size 4× 6 and 3× 6.

2.3.9 RF Calibration Results

We considered a 4× 4 FD OFDM MIMO communication system. The experiments were
performed on a setup consisting of a USRP N310 software defined radio and Huawei
patch antenna cards as part of the OAI platform, Eurecom. Each card has four patch
antennas shaped like an Η. We observed during our experiments that the channel is
also affected by the orientation of the antenna cards and thus we perform the channel
measurements for two orientations Η and ⊥⊤ of the transmitter and the receiver. All the
measurements are taken indoors at the carrier frequency fc = 2.585 GHz.

For SI MIMO channel measurement, we transmit an OFDM frame of bandwidth
5 MHz with 296 subcarriers. The channel measurements are taken for three different
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Figure 2.8: Transmitter and Receiver Antenna Layout

configurations of the transmit and receive antennas as shown in Fig. 2.8. The distances dij
are a function of the distance between the transmitter and the receiver p, the horizontal
inter-antenna spacing δ1 and the vertical inter-antenna spacing δ2. The measurements
are done for different values of p.

Figures 2.9-2.10 show the singular value profile (SVP) for 296 subcarriers of the
measured SI MIMO channel H, the SI MIMO propagation channel C generated according
to the near field LoS model (2.48) and the calibrated SI MIMO channel Ĉ obtained by
using Algorithm 3. Fig. 2.9 corresponds to the transmitter and receiver in configuration
3 with p= 47 cm and transmitter in orientation Η and receiver in orientation ⊥⊤. Fig.
2.10 shows the SVP of the channels for transmitter and receiver in configuration 3 with
p= 37.1 cm and transmitter and receiver in orientation Η. It can be observed from the
Figures that the measured channel can be approximated as rank 2, which is evident after
the calibration process in Ĉ.

We do not include the results for configuration 1 and 2 as the measured (and calibrated)
channels for the considered antenna layouts resulted to be full rank.

2.3.10 Reduced Complexity SIN Results

In this section, we present the simulation results for our SIN approach applied to an
FD system with ULAs consisting of 4 transmit antennas and 6 receive antennas. The
internal SI MIMO propagation channel C is generated according to the near filed LoS
model (2.48) with γ, α = 1. For evaluation of the proposed SIN algorithm, we assume the
additive signal model y = Cs+ v, where s is the transmit signal and v is the intended
receive signal. We further assume that the signals s and v are white. However, in reality
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Figure 2.9: SVP of the SI MIMO channel for configuration 3 with p = 47 cm and with transmitter and
receiver in orientation Η and ⊥⊤, respectively.

they are not white but this assumption allows us analyze the upper bounds for the
proposed SIN Algorithm 4 for ULAs with different configurations shown in Fig. 2.8.
For evaluation purposes, we define the metric SI-to-signal-ratio (SISR) as the ratio of
effective SI power to effective receive signal power. The SISR before and after the SIN
filter N is denoted with SISRi and SISRo, respectively. For the assumed signal model
above, SISRi and SISRo can be calculated as:

SISRi =
σ2sTr(CCH)

σ2v(Nrx + 2)
SISR0 =

σ2sTr(NCCHNH)

σ2vTr(NNH)
. (2.60)

where σ2s and σ2v denote the variances of s and v, respectively.

Fig. 2.11 shows the ratio SISRo/SISRi as a function of distance, for C 6× 4 and
N 4 × 6 and 3 × 6. It is evident that the proposed SIN algorithm works better with
configuration 1. There is no significant variation in SISRo/SISRi for configuration 3 as
the distance between transmit and receive antennas increases but for configuration 1 the
ratio decays rapidly which demonstrates the nulling of SI. It is also evident in Fig. 2.11
the advantage of reducing the receive signal dimension by 1 with K = 3, which removes
the most dominant dimension of the SI signal for both configurations. Results are not
reported for configuration 2 because we considered only one SIN filter and configuration
2 requires two SIN filters NV and NH to null SI in vertical and horizontal dimensions to
achieve good results.
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Figure 2.10: SVP of the SI MIMO channel for configuration 3 with p = 37.1 cm and with transmitter
and receiver in orientation Η.
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2.3.11 Conclusions

This section has presented a new HSIC architecture which is prominent for the upcoming
FD massive MIMO communication scenarios, as its complexity at the analog cancelling
stage scales linearly only with the number of receive antennas. A new RF calibration
algorithm is also proposed, which is later used for the analysis of SI MIMO channel from
the measured channel with USRP N310. Results demonstrate that we can achieve a SI
MIMO channel of rank 2 with configuration 3 for a 4× 4 for a MIMO FD system, which
reduces the number of constraints to be imposed to ZF the SI signal. Finally, a reduced
complexity analog SIN algorithm is also proposed.
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Chapter 3

Hybrid Beamforming for
Point-to-Point and IAB Millimeter
Wave Full Duplex

HYBF is a potent tool as it enables designing FD systems with a less number of RF
chains that the number of antennas. This section first presents a novel HYBF design
for Integrated access and backhaul (IAB) mmWave MIMO FD systems serving multi-
antenna users. Then a novel HYBF design that generalize the point-point mMIMO FD
communication in the mmWave is presented. The content of this chapter is available in
[C1],[C3] and [C7]. The contribution [C2] is not included in this thesis, being a special
case of the contribution [C1].

3.1 Full Duplex Relay for IAB in Millimeter Wave

This section considers the case of a FD relay for IAB in mmWave. The literature on
the considered scenario is available in [44, 45, 46, 47, 48, 49, 50, 51]. In [44], the authors
proposed the first hybrid beamforming design for an amplify and forward FD relay for
the mmWave backhaul link. In [45], a novel hybrid beamforming design for a FD relay
assisted mmWave macrocell scenario is investigated. In [46], a robust hybrid design for
an amplify and forward mmWave FD relay with imperfect channel state information
(CSI) serving multiple single antenna users is studied. In [47], a joint beamforming,
positioning and power control scheme for a mmWave FD UAV relay is presented. In
[48], energy efficient precoding design for FD relay is proposed. The authors of [49]
present a two-time scale hybrid beamforming for multiple FD relays scenario. In [50]
a robust hybrid beamforming design for a network of FD relays under imperfect CSI
is investigated. In [51], hybrid beamforming for a single stream two hop amplify and
forward FD relay is proposed. Note that the available hybrid beamforming designs for
mmWave are limited to one multi-antenna uplink and downlink user communicating with
a FD relay or single antenna multiple downlink users served by a FD relay.

We consider the scenario of one HD BS communicating with multiples multi-antenna
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users to be served with multiples streams. The users are assumed to be very far from the
BS with no direct link and the communication takes place with a massive MIMO FD
relay, which simultaneously receive data from the HD BS and transmits it towards the
HD multi-antenna users. The scenario under consideration represents an IAB framework.
Compared to the state-of-the-art, we also assume that the transmit and receive chains
of the FD relay have LDR which dictates the overall noise level at the FD relay. To
the authors best knowledge, our work is first contribution to mmWave FD relay system
with LDR range which serves multiple multi-antenna users with multiple streams. We
present a novel HYBF and combining design to maximize the WSR from the HD BS to
the users aided with the FD relay. The overall optimization problem is separated into
two sub-problems under the assumption that the SI at the FD relay is cancelled, for
example based on the well known SIC techniques. The global optimization problem is
decomposed into two sub-problems and an alternating optimization approach is adopted.

3.1.1 System Model

We consider a mmWave multiuser FD system consisting of one mMIMO HD base station
and one mMIMO FD relay serving K multi-antenna users. Let K = {1, ..K} denote
the set containing the indices of the users. The BS is assumed to be equipped with Bt
transmit antennas and Br RF chains, respectively. FD relay is assumed to be equipped
with N receive and transmit antennas andM receive and transmit RF chains, respectively,
and has a SIC scheme to cancel the SI up to a certain level. We assume a narrow-band
flat fading radio channel and with no direct link between the BS and the end users due
to severe attenuation at the mmWave. Let sk ∈ Cdk×1 denote the white unitary data
streams intended for user k. Let Fk ∈ CBr×dk and GRF ∈ CBt×Br denote the digital and
the analog beamformer for the HD base station. The signal received at the relay can be
written as

yr = Hr,bGRF

∑
j∈K

Fjsj + nSI + nr + er (3.1)

where Hr,b ∈ CM×Bt denote the channel from the BS to the relay, er ∼ CN (0, σ2rI)
denotes the thermal noise vector at the relay and nSI ∼ CN (0, σ2SII) denotes the residual
SI. The distortions due to LDR at the receiver side are denoted

nr ∼ CN (0, β diag(Φr)) (3.2)

where β ≪ 1, Φr = Cov(r), and r = yr − nr denotes the undistorted received signal. Let
Ur ∈ CM×N and Ut ∈ CN×M denote the analog combiner and beamformer at the FD
relay, respectively. Let Wk ∈ Cdk×M and Ek ∈ CM×dk denote the digital combiner and
beamformer for user k at the relay, respectively. We assume that there is no delay in
processing and after the hybrid combining, the data streams of user k can be estimated
as

ŝk =WkUryr. (3.3)

LetQj,r = GRFFjF
H
j GRF

H denote the transmit covariance matrix for user k transmitted

to the FD relay by the HD base station. Let k denote all the indices in K, without the
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index k. The received (signal plus) interference and noise covariance matrix for user k at
the relay is denoted with (Rk,r) Rk,r and after the hybrid combining are given by

Φr = Hr,b

∑
j∈K,j ̸=k

Qj,rH
H
r,b + σ2SII+ σ2rI, (3.4)

Rk,r = WkUr(Φr + βdiag((Φr))U
H
r W

H
k , (3.5)

Rk,r = WkUrHr,bQk,rH
H
r,bU

H
r W

H
k +Rk,r, (3.6)

where Φr denotes the undistorted received covariance matrix. The WSR maximization
problem from the HD base station to the FD relay can be formally stated as

max
Ur,Wk
GRF ,Fk

∑
k∈K

wk lndet(R
−1
k,r

Rk,r) (3.7a)

s.t. Tr
(∑
k∈K

Qj,r

)
⪯ pb, (c1) (3.7b)

|Ur(m,n)|2 = 1, and |GRF (m,n)|2 = 1 (3.7c)

where pb denotes the total sum-power constraint, (3.7c) denote the unit modulus constraint
on the analog part. Once the data streams are detected by the FD relay, they are then
forwarded to the multi-antenna users with optimal power allocation based on the channel
state information from the relay to the users. The transmit signal from the FD relay can
be written as

yt = Ut

∑
j∈K

Ekŝj + nt (3.8)

where nt denotes the transmit LDR distortions, which can be modelled as

nt ∼ CN (0, k diag(Φt)), (3.9)

where Φt = Cov(y0), where y0 = yt − nt denotes the undistorted transmitted signal.
Let Hk ∈ CMk×N denote the MIMO channel from the FD relay to the HD user k. The
received signal at user k can be written as

yk = Hk(Ut

∑
j∈K

Ej ŝj + nt) + nk, (3.10)

where nk ∼ CN (0, σ2kI) denotes the noise vector at user k. Let Qk = UtEkEkUt

denote the transmit covariance for user k from the FD relay. The received (signal plus)
interference and noise covariance at user k is denoted with (Rk) Rk and can be written
as

Rk = Hk

∑
j∈K,j ̸=k

QjH
H
k + k Hkdiag(

∑
j∈K

Qj)H
H
k + σ2kI, (3.11)

Rk = HkQkH
H
k +Rk. (3.12)
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The WSR maximization problem from FD relay to the HD multi-antenna users can be
now formally stated as

max
Ut,Ek

∑
k∈K

wj lndet(R
−1
k

Rk) (3.13a)

s.t. Tr
(∑
k∈K

Qj

)
⪯ pb, and |Ut(m,n)|2 = 1 (3.13b)

where (3.13b) denote the total sum-power constraint and the unit modulus constraint.

3.1.2 Problem Simplification

The problem (3.7) and (3.13) are non-concave due to the interference terms and finding
a global optimum is challenging. Hence to render a feasible solution, we consider the
minorization maximization approach to solve (3.7) and (3.13) in two steps. Let WSRr

and WSR denote the WSR from the HD base station to the relay and from the FD relay
to the HD users, respectively. They can be written as the weighted rate (WR) of user k
(WRk or WRk,r) and the WSR of users k as

WSRr =WRk,r +WRk,r, WSR =WRk +WRk (3.14)

where WRkr is concave in Qk,r and WRk,r is non-concave in Qk,r. Similarly, WRk is
concave in Qk and WRk is non-concave in Qk. Since a linear function is simultaneously
convex and concave, DC programming [38] introduces the first order Taylor series
expansion of WRk,r in Qk,r around Q̂k,r and of WRk in Qk around Q̂k. Let Q̂ denote

the collection of Q̂k,r and Q̂k. The new tangent expressios for the WSR can be written
as

WRk,r(Qk, Q̂) =WRk,r(Qk,r, Q̂)− Tr((Qk,r − Q̂)Gk,r), (3.15)

WRk(Qk, T̂) =WRk(Qk, Q̂)− Tr((Qk − Q̂)Gk), (3.16)

where Gk,r and Gk denote the gradients of WRk,r and WRk with respect to Qk,r and
Qk, respectively.

Gk,r=
∑

j∈K,j ̸=k
wj(H

H
r,b[U

H
j W

H
j (R−1

j,r
−R−1

j,r )WjUj−β diag(UH
j W

H
j (R−1

j,r
−R−1

j,r )WjUj)]Hr,b),

(3.17)

Gk =
∑

j∈K,j ̸=k
wj(H

H
j [R

−1
j

−R−1
j ]Hj + kdiag(HH

j [R
−1
j

−R−1
j ]Hj). (3.18)

Note that, the tangent expressios constitutes a touching lower bound for (3.7) and (3.13),
hence the DC programming approach is also a MM approach [26], regardless of the
reparameterization of WSR as a function of beamformers. Let λb and λr be the Lagrange
multipliers associated with the sum-power at the base station and at the FD relay. Let

A ≜ GH
RFH

H
r,bU

H
r W

H
k R−1

k,FD
WkUrHr,bGRF , (3.19a)
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B ≜ GH
RF (G

r
k + λbI)GRF , (3.19b)

C ≜ UH
t H

H
k R

−1
k

HkUt, (3.19c)

D ≜ UH
t (Gk + λrI)Ut, (3.19d)

and dropping the constant terms, reparameterizing back the covariance matrices, per-
forming this linearization for all users, augmenting the WSRr with WSR with their
constraints, yields the following Lagrangians

max
Ur,Wk
GRF ,Fk

∑
k∈K

wk lndet(I+ FHk AFk)− Tr(FHk BFk) (P1)
(3.20a)

max
Ut,Ek

∑
k∈K

wk lndet(I+EHk CEk)− Tr(EHk DEk) (P2) (3.20b)

3.1.3 Hybrid Beamforming

This section present the solution for the problems (P1) and (P2) based on the problem
simplification (3.20).

Digital Beamforming

To optimize the digital transmit beamformers for the base station and FD relay, we
first take the derivative of (3.33) and (3.34) with respect to Fk and Ek, which yield the
following KKT conditions

AFk(I+ FHk aFk)
−1 −BFk = 0, (3.21)

CEk(I+EHk CEk)
−1 −DEk = 0, (3.22)

Theorem 2. Fixed the other variables, the digital beamformers Fk and Ek at each iteration
can be optimized as the dominant generalized eigenvector of the pairs

Fk = Ddk(A,B), Ek = Ddk(C,D) (3.23)

Proof. The result follows similarly as the proof for Proposition 1 [38].

Analog Beamforming

To optimize the analog beamformer, we exploit the knowledge that the optimal fully digital
beamformers Fk,dig and Ek,dig are known and computed based on the procedure provided
herein. Let Fopt ∈ CBt×d1+..+dK and Eopt ∈ CN×d1+..+dK contain the fully digital
beamformers at the base station and FD relay, respectively. Let FoptRF ∈ CBr×d1+..+dK

EoptRF ∈ CM×d1+..+dK contain all the digital beamforming vectors for the matched filter
solution of the size of RF chains. Since the analog beamformer is common to all the
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users, we optimize the analog beamformer as the one which minimize the error between
the fully digital and hybrid solution. Formally, the two unconstrainted problem can be
stated as

min
GRF

||Fopt −GRFF
opt
RF ||, min

Ut

||Eopt −UtE
dig
RF ||, (3.24)

and solving it yield the solution

GRF = (Fopt(FoptRF )
H)(FoptRF (F

opt
RF )

H)−1, (3.25)

Ut = (Eopt(EdigRF )
H)(EdigRF (E

dig
RF )

H)−1. (3.26)

which it normalized to obtain the unit-modulus solution as GRF = ∠GRF and Ut = ∠Ut.

Digital Combining

To further improve the rate and suppress the interference, we design the combiners based
on the MMSE criteria. Namely, let Ek = sk − ŝk denote the error vector for user k and
the error covariance matrix Err at the relay can be written as

Err = Rk,FD − I+ (WkUrHr,bGRFFj + FHk G
H
RFHr,bU

H
r )W

H
k (3.27)

and minimizing its trace leads to the solution

Wk = FHk V
HHr,bU

h
r [Φr + βdiag(Φr)]

−1, ∀k ∈ K. (3.28)

Analog Combining

As the analog combiner is common to all the users, we adopt the same mechanism as in
(3.24) to optimize it. Let Wopt ∈ Cd1+..+dK×N contain the combining vectors to the fully
digital solution obtained from (3.28) with Ur = I,∀k ∈ K. Let Wopt

RF ∈ Cd1+..+dK×M

contain the combining vectors of correct size with limited number of RF chains as a
matched filter solution. The analog combiner can be obtained by solving the following
optimization problem

min
Ur

||Wopt −UrW
opt
RF ||, (3.29)

which leads to the solution

Ur = (Wopt(Wopt
RF )

H)(Wopt
RF (W

opt
RF )

H)−1. (3.30)

To meet the unit-modulus constraint, we normalize the amplitudes to one as Ur =
∠Ur. Note that the digital beamformers (3.23) provide the optimized beamforming
directions, but not the optimal power. Therefore, we normalize the columns of the digital
beamformers Ek and Fk to be unit-norm, which allows designing an optimal power
allocation scheme. Let Σ1

k,Σ
2
k,S

1
k and S2

k be defined as

Σ1
k = FHk AFk, Σ1

k = FHk BFk, (3.31)
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S1
k = EHk CEk, S1

k = EHk DEk. (3.32)

and assuming that the optimal digital beamformers are computed at the last based on the
results in Theorem 3.3.1, (3.31) and (3.32) are diagonal. The optimal power allocation
can be included by solving the following optimization problem

max
Pk,BS

∑
k∈K

wk lndet(Σ
1
kPk,BS)− Tr(Σ2

kPk,BS) (3.33a)

max
Pk,FD

∑
k∈K

wk lndet(I+ S1
kPk,FD)− Tr(S2

kPk,FD) (3.34a)

where Pk,BS and Pk,FD denote the optimal power allocation for the BS and the FD
relay. Solving it yield the optimal power allocation

Pk,BS = (wk(Σ
2
k)

−1 − (Σ1
k)

−1)+ (3.35)

Pk,FD = (wk(S
2
k)

−1 − (S1
k)

−1)+ (3.36)

where (X)+ = max(0,X). To search for the optimal Lagrange multipliers λb and λr
satisfying the sum power constraints, we adopt the Bisection method in the search range
[0, λb,max] and [0, λr,max], respectively. The complete alternating optimization procedure
to iteratively optimize the beamformers and combiners is formally stated in Algorithm 5.

3.1.4 Convergence

The convergence can be proved by noticing that the KKT conditions of the simplified
problem and the original problem are the same. Each Iteration leads to and increase in
the WSR sum-rate which ensures convergence. A formal proof can be stated similarly as
the one given Proposition 3 [38].

3.1.5 Simulation Results

In this section, we evaluate the performance of our proposed HYBF and combining design.
The users channel and the channel from the BS to the relay are modelled with the path
wise channel model, with each channel matrix modelled as

H =

√
M0N0

NcNp

Nc∑
nc=1

Np∑
np=1

α
(np,nc)
k ar(ϕ

np,nc

k )aTt (θ
np,nc

k ), (3.37)

where Nc and Np denote the number of clusters and number of rays, respectively,

α
(np,nc)
k ∼ CN (0, 1) is a complex Gaussian random variable with amplitudes and phases

distributed according to the Rayleigh and uniform distribution, respectively, and ar(ϕ
np,nc

k )
and aTt (θ

np,nc

k ) denote the receive and transmit antenna array response with angle of
arrival (AoA) ϕ

np,nc

k and angle of departure (AoD) θ
np,nc

k . The BS and relay are assumed
to have uniform linear arrays with Bt = N = 100 and RF chains Br = M = 32. The
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Algorithm 5 Hybrid Beamforming for IAB FD

Given: The CSI and rate weights.
Initialize: the beamformers ∀k ∈ K.
Iterate first with Ur,V,Ut = I to get Fopt,Eopt and WDig

Set: ∠V,∠Ut,∠Ur with (3.25)-(3.26) and (3.30)
Repeat until convergence
for:k = 1, ..,K.

Compute Gk,r with (3.17).
Compute Fk with (3.23) and normalize it.
Set λb = 0 and λb = λb,max.
Repeat until convergence

set λb = (λb + λb)/2.
Compute Pk,BS with (3.35),
If constraint for µi is violated,
set λb = λb, else λb = λb,

Set Qj,FD = VFjPk,BSF
H
j V

H

Update Wk with (3.28)
Next k.

Repeat until convergence
for:k = 1, ..,K.

Compute Gk with (3.18).
Compute Ek with (3.23) and normalize it.
Set λr = 0 and λr = λr,max.
Repeat until convergence

set λr = (λr + λr)/2.
Compute Pk,FD with (3.36),
If constraint for λr is violated,
set λr = λr, else λr = λr,

Set Qj,FD = UtEkPk,FDE
H
k U

H
t

Next k.

SNR for the HD BS and the FD relay is defined as SNR= pb/σ
2
b = pr/σ

2
r . The maximum

transmit power is normalized to one and the thermal noise variance is chosen to meet
the desired SNR. We assume that the SI at the FD relay is cancelled up to the LDR
noise level, different values of k and β vary the residual SI level. We consider a scenario
of two downlink users with 5 antennas to be served with two data streams each. For
comparison purpose, we define a fully digital HD system with no LDR noise, and which
splits the resource in time and takes two time slots to transmit from the HD BS to the
users through the FD relay.

Figure 3.1 shows the average WSR as a function of the overall LDR noise level with
SNR = −5 dB. It can be seen that when the LDR noise variance is below the overall noise
level, the FD communication system achieves an additional gain of 98% compared to the
HD system. However, as the overall LDR noise variance increases, the overall maximum
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Figure 3.1: Average WSR as function of k = β dB, with SNR = −5 dB.
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Figure 3.3: Bidirectional FD MIMO OFDM System with Multi-Stage/Hybrid BF. Only a single node is
shown for simplicity in the figure.

achievable performance tends closer and closer to the HD system. Figure 3.2 show the
achievable WSR as a function of SNR with k = β = 0 (in linear scale, no LDR noise case)
and k = β = −60 dB. It can be seen that our proposed hybrid scheme performs closer to
the fully digital one with 32 RF chains. Moreover, with k = β = −60 dB, the maximum
achievable performance results to be very far from the achievable performance of an ideal
FD system. Increasing transmission power also increases the LDR noise variance, which
lead to enhanced LDR noise and less gain at high SNR.

3.2 Multi-Stage Hybrid Beamforming for Point-to-Point OFDM
MIMO Full Duplex

This section consider the case of a point-to-point mmWave FD system. The literature
on such a scenario is avaiable in [52, 53, 54, 55, 56, 57], which is limited to a single
carrier FD systems in the mmWave. We present a two-stage beamforming design for
a bidirectional point-to-point OFDM MIMO FD system for WSR maximization. The
problem is solved by adopting the weighted sum mean square error (WSMSE) approach.
At the transmit side, we propose to use a two-stage beamformer at the baseband where
the higher dimensional precoder is applied to the time domain signal, which aims to
mitigate the SI. Then a lower-dimensional precoder is applied in the OFDM domain that
aims to provide spatial multiplexing gain. On the receiver side, we introduce HYBF. The
objective of the time domain phase shifter analog beamforming stage is to reduce the SI
significantly before the ADCs while preserving the dimension of the desired signal space.

3.2.1 System Model

We consider a point-to-point scenario, consisting of two MIMO FD nodes i and j,
communicating with each other. The number of transmit and receive antennas at the
both nodes are denoted N i

t and N
j
t , and N

i
r or N

j
r , respectively. The system is assumed to

be an OFDM system with Ns subcarriers. Let Hi,j , i ̸= j denote the MIMO channel from
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node i to node j. Let Hi,i denote the SI channel for node i. Let dj [n] of size dj×1 denote
the intended white and unit-variance data streams transmitted from node j for node i.
At the transmit side, a two stage digital beamforming is assumed, composed of an inner

beamformer Gj ∈ CM
j
t ×dj of lower dimension, and an outer beamformer Vj ∈ CN

j
t ×M

j
t

of higher dimension. The beamformer Vj is applied in the time domain signal after the
inverse DFT and is common to all the subcarriers, and the inner beamformers Gj is
different for different subcarriers. On the receive side, we assume that node i adopts
hybrid combining approach and uses the analog combiner FRF,i and the digital combiner
FBB,i to combine the received signal. For simplicity, only node i is shown in Fig. 3.3.

Let yi[n] denote the signal received by node i after the analog combiner FRF,i, which
can be written as

yi[n] =FRF,iHi,j [n](Vj Gj [n]dj [n] + cj [n]) + FRF,iHi,i[n](V
iGi[n]di[n] + ci[n])

+ ei[n] + FRF,ini[n].
(3.38)

The vector ni ∼ CN (0, IN i
r
) denotes noise. The vectors ci and ei denote the transmit

and receive LDR noise vectors and can be modelled as

ci[n] ∼ CN (0,
αi
Ns

diag(

Ns∑
n=1

Qi[n])), (3.39)

ei[n] ∼ CN (0,
βi
Ns

diag(Z)), (3.40)

where βi ≪ 1, αi ≪ 1 and Qi[n] denotes the transmit signal covariance matrix at
subcarrier n of node i and can be written as Qi[n] = ViGi[n]G

H
i [n]V

iH . The matrix
Z denotes the sum of the received covariance matrix of the undistorted received signal
across all subcarriers [58] assuming the subcarrier signals are decorrelated, and it can be

written as Z =
Ns∑
n=1

E(zi[n]zHi [n]), where zi[n] = yi[n]− ei[n].

We introduce a digital self interference canceller at the base band which subtracts
the residual interference signal Hi,ixi from the received signal. Assuming that Hi,i is
perfectly estimated at the baseband and since xi is already known to node i, we can
rewrite the received signal at the baseband as,

y′
i[n] = yi[n]− FRF,iHi,i[n]xi[n] = FRF,iHi,j [n]xj [n] + vi[n], (3.41)

where vi[n] = FRF,iHi,j [n]cj [n] + FRF,iHi,i[n]ci[n] + ei[n] + FRF,ini[n] is the unknown
interference plus noise component after SI cancellation. We assume that all the channel
matrices and scaling factors in (3.38) are known. It is also worth mentioning that the
dependence of the signal model (3.41) on the SI power is only through the LDR noise
and the beamformers are designed in such a way to minimize it.

Channel Model

In this sub-section, we omit the node indices for simplicity. Considering a delay-d
geometric direct channel model for a mmWave propagation environment [59] with Ls
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scattering clusters and Lr scatterers or rays in each cluster, we have,

H =

Ls∑
s=1

Lr∑
l=1

αs,lhr(θs,l)ht(ϕs,l)
Hp(dTs − τs − τrl) (3.42)

The scalars θs,l, ϕs,l denote the AoA and AoD, respectively, for the lth path in the sth

cluster. The vectors hr(·) and ht(·) denote the antenna array responses at receiver and
transmitter, respectively. The scalar αs,l ∼ CN (0, NtNr

LsLr
) and p(τ) denote the complex

path gain and the band-limited pulse shaping filter response evaluated at τ seconds,
respectively. Each cluster has a time delay τs ∈ R and each ray l ∈ {1, ..Lr} has a relative
time delay τrl. The (m,n)-th element of the channel response at the subcarrier n can be
written as

H[n] =

D∑
d=1

Hde
−j2π nd

Ns . (3.43)

To represent it in a more compact form, we define the following variables,

Hr = [hr(θ1,1), ...,hr(θLs,Lr)], Ht = [ht(ϕ1,1), ...,ht(ϕLs,Lr)], (3.44)

Ad[n] = diag(α1,1p(dTs− τ1 − τr1), ..., αLs,Lrp(dTs− τLs − τrLr))e
−j2π nd

Ns , (3.45)

which allows to rewrite the channel matrix (3.42) as

H[n] = Hr

D∑
d=1

Ad[n]H
H
t . (3.46)

The (m,n)-th element of the SI channel can be modelled with

(Hi,i)m,n =
ρ

rm,n
e(−j2π

rm,n
λ

), (3.47)

where rm,n is the distance between m−th element of the receive array and n−the element
of the transmit array, λ and ρ denote the wavelength and power normalization factor,
respectively.

3.2.2 Optimization of the Beamformers

Consider the optimization problem of the two-stage BF with hybrid combining to maximize
the WSR maximization as

max
V,G,

FRF ,FBB

WSR(G,V,FRF ,FBB) (3.48a)

Ns∑
n=1

Tr{Vj HVj Gj [n]G
H
j [n] } ≤ Pj (3.48b)

where (3.48b) denote the total sum-power constraint for for node j and the ui denotes
the rate weight. Note that the the unit-modulus constraint on the analog combiner will
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be incorporated later. The collection of beamformers at the two stage beamforming is
denotes with G and V. For the receiver, the collection of digital and analog combiners
is denote with FBB and FRF , respectively. The (signal-plus)interference-plus-noise
covariance matrices (Ri[n]) Ri[n] for (3.48) are considered after the analog combiner,
and have the following expressions

Ri[n] = FRF,i(αjΦi,j [n]+αiΦi,i[n])F
H
RF,i+βidiag(FRF,i(Θi,j [n]+Θi,i[n])F

H
RF,i) (3.49a)

Ri[n] = Ri[n] + FRF,iΘi,j [n]F
H
RF,i. (3.49b)

The matrices Θi,j [n] and Φi,j [n] appearing above are defined as

Θi,j [n] = Hi,j [n]Qj [n]H
H
i,j [n], , Φi,j [n] = Hi,j [n]diag(Qj [n])H

H
i,j [n]. (3.50)

After the digital receive combining, we have Σi[n] = FBB,i[n]Ri[n]F
H
BB,i[n] and Σi[n] =

FBB,i[n]Ri[n]F
H
BB,i[n]. Direct maximization of (3.48a), however, requires a joint opti-

mization over the four matrix variables and finding a global optimum solution for similar
constrained optimization is very challenging. So we decouple the joint transmitter-receiver
optimization and first focus on the design of combiners. We assume that the node i
applies the hybrid combiner Fi[n] = FBB,i[n]FRF,i to estimate the signal transmitted
from node j. The analog combiner FRF,i aims to reduce the SI while the digital combiner

FBB,i decouples the streams dj intended for user i from j. The estimated signal d̂j [n]
can be written as

d̂j [n] = Fi[n]Hi,j [n]xj [n] + FBB,i[n]vi[n]. (3.51)

At the receiver side, maximizing the WSR is equivalent to minimizing the weighted
MSE with the MSE weights being chosen as Wi[n] = uiRd̃j d̃j

[n]−1 [60, 61]. The error

covariance matrix for the detection of dj at node i can be written as

Rd̃j d̃j
[n] = E{(d̂j [n]− dj [n])(d̂j [n]− dj [n])

H}

= (Fi[n]Hi,j [n]VjGj [n]− I)(Fi[n]Hi,j [n]VjGj [n]− I)H + FBB,iRi[n]FBB,i[n]
H .
(3.52)

Fixed the beamformers, the combiners for node i can be alternatively optimized by
solving the following optimization problem

[FRF,i, FBB,i[n], ∀n] = min
FRF,i,FBB,i[n]

Ns∑
n=1

Tr{Rd̃j d̃j
[n]}, (3.53)

and solving it leads to the following digital MMSE combiner

FBB,i[n] = GH
j [n]V

H
j HH

i,j [n]F
H
RF,iRi[n]

−1. (3.54)

We remark that the optimization of the digital beamformers in (3.53) can be done
independently across different subcarriers. To optimize the analog combiner, we define
the following variables
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FHBB,i[n]FBB,i[n] = PB,i[n] (3.55a)

Bi =

Ns∑
n=1

[(Θi,j [n])
T ⊗PB,i[n] + ((αjΦi,j [n] + αiΦi,i[n])

T ⊗PB,i[n])

+ (βi(Θi,j [n] +Θi,i[n])
T ⊗ diag(PB,i[n])).

(3.55b)

To derive the unconstrained analog combining matrix, we take the gradient of (3.52)
with respect to FRF,i, which yield the following KKT condition

Ns∑
n=1

PB,i[n]FRF,iΘi,j [n]− FHBB,i[n]G
H
j [n]V

H
j HH

i,j [n] +PB,i[n]FRF,i(αjΦi,j [n] + αiΦi,i[n])

+ βidiag(PB,i[n])FRF,i(Θi,j [n] +Θi,i[n]) = 0,

where Bivec(FRF,i)
(a)
= vec(

Ns∑
n=1

FHBB,i[n]G
H
j [n]V

H
j HH

i,j [n]).

(3.56)
In (a), we use the result vec(AXB) = (BT ⊗A)vec(X) [62]. Given the KKT condition
for the analog combiner, it is immediate to conclude that it can be optimized as

vec(FRF,i) = B‡
ivec(

Ns∑
n=1

FHBB,i[n]G
H
j [n]V

H
j HH

i,j [n]), (3.57)

where ‡ represents the pseudoinverse. To reshape the analog combiner into correct
dimensions, we first apply the operator unvec(·) and normalize the amplitudes of the
analog combiner to unit-modulus as FRF,i = ∠FRF,i.

3.2.3 Two stage Transmit Beamforming

In this section, we consider the design of the two stage transmit beamformers Vj and
Gj [n] under the sum power constraint. To faciliate the gradients, we use the result
∂Tr{Adiag(CXD)B}

∂X = [Ddiag(BA)C]T , which is straightforward by using the matrix
differentiation properties. The beamformers as designed using the weighted sum MSE
criteria. For such purpose, the optimization problem can be formulated as

min
Vi,Gi[n],
Vj ,Gj [n]

Ns∑
n=1

Tr(Wi[n]E(d̂j [n]− dj [n])(d̂j [n]− dj [n])
H)

+ Tr(Wj [n]E{(d̂i[n]− di[n])(d̂i[n]− di[n])
H)

(3.58a)

s.t.

Ns∑
n=1

Tr{Qi[n]} ≤ Pi, ∀i. (3.58b)
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The matrix Wi[n] denotes the weight matrix of size di×di. Augmenting the cost function
with the sum-power constraints yield the following Lagrangian function

L =

Ns∑
n=1

2∑
i=1

Tr(Wi[n](I−GH
j [n]V

H
j HH

i,j [n]F
H
i [n]− Fi[n]Hi,j [n]VjGj [n]

+ Fi[n]Hi,j [n]QjH
H
i,j [n]F

H
i [n] + FBB,i[n]Ri[n]F

H
BB,i[n]))

+ (

2∑
i=1

λi(

Ns∑
n=1

Tr{Qi[n]})− Pi).

(3.59)

Let Aj [n] and Âj [n] be defined as

Aj [n] = FHj [n]Wj [n]Fj [n], Âj [n] = FHBB,j [n]Wj [n]FBB,j [n]. (3.60)

Taking the partial derivative of (3.59) with respect to the inner beamformer Gj [n],
we get

VH
j HH

i,j [n]Ai[n]Hi,j [n]VjGj [n]−VH
j HH

i,j [n]F
H
i [n]Wi[n] + λjV

H
j VjGj [n]

+
Tr(FBB,i[n]

HFBB,i[n]∂Ri[n])

∂Gj [n]
+

Tr(FBB,j [n]
HFBB,j [n]∂Rj [n])

∂Gj [n]
= 0.

(3.61)

Using the expression for Ri[n] in (3.49), we can write

Tr{FBB,i[n]HFBB,i[n]∂Ri[n]}
∂Gj [n]

= αjV
H
j diag(HH

i,j [n]Ai[n]Hi,j [n])VjGj [n]

+ βiV
H
j HH

i,j [n]F
H
RF,idiag(Âi[n])FRF,iHi,j [n]VjGj [n],

(3.62)

Tr{FBB,j [n]HFBB,j [n]∂Rj [n]}
∂Gj [n]

= αjV
H
j diag(HH

j,j [n]Aj [n]Hj,j)VjGj [n]

+ βjV
H
j HH

j,j [n]F
H
RF,idiag(Âj [n])FRF,iHj,j [n]VjGj [n],

(3.63)
By substituting (3.62)-(3.63) in (3.61), we obtain the the following expression to Gj [n]

Gj [n] = (Sj [n] + λjV
H
j Vj)

−1VH
j HH

i,j [n]F
H
i [n]Wi[n]. (3.64)

The matrix Sj [n] can be interpreted as the signal plus interference power seen by the
digital beamformer at the transmit side and is expressed as

Sj [n] = VH
j HH

i,j [n]Ai[n]Hi,j [n]Vj + αjV
H
j diag(HH

i,j [n]Ai[n]Hi,j [n])Vj

+ βiV
H
j HH

i,j [n]F
H
RF,idiag(Âi[n])FRF,iHi,j [n]Vj + αjV

H
j diag(HH

j,j [n]Aj [n]

Hj,j [n])Vj + βjV
H
j HH

j,j [n]F
H
RF,jdiag(Âj [n])FRF,jHj,j [n]Vj .

(3.65)

The values of the Lagrangian multipliers λj ≥ 0,∀j should be such that that the
power constraint is met. To compute the powers, we follow a similar approach as in
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[63], but extended to two-stage beamformer case applied to FD. Considering the eigen
decomposition of the matrices Sj [n] and VH

j Vj as

Sj [n] = UjΛj [n]U
H
j , VH

j Vj = Uj∆jU
H
j . (3.66)

Let Φ[n] = UH
j V

H
j HH

i,j [n]F
H
i [n]Wi[n]Wi[n]

HFi[n]Hi,j [n]VjUj , expanding the power

constraint
Ns∑
n=1

Tr{VjGj [n](λj)G
H
j [n](λj)V

H
j } = Pj , and solving it for the stream powers

we get

Ns∑
n=1

Mj
t∑

k=1

Φ[n]k,k(∆j)k,k
((Λj [n])k,k + λj(∆j)k,k)2

= Pj . (3.67)

The matrix Xk,k denotes the k-th diagonal element of the matrix X. Note that λj ≥ 0
and the left hand side of (3.67) is a decreasing function of λj for λj > 0. Hence we can
compute the values of λj using one dimensional linear search techniques such as Bisection.
In the following, we consider the optimization of the outer beamformer Vj , assuming the
other variables are fixed. Taking the partial derivative of (3.59) with respect to the inner
BF Vj , yields the following KKT condition

HH
i,j [n]F

H
i [n]Wi[n]Fi[n]Hi,j [n]VjGj [n]G

H
j [n]−HH

i,j [n]F
H
i [n]Wi[n]G

H
j [n]

+
Tr{FBB,i[n]HFBB,i[n]∂Ri[n]}

∂Vj [n]
+

Tr{FBB,j [n]HFBB,j [n]∂Rj [n]}
∂Vj [n]

+

λjVjGj [n]G
H
j [n] = 0.

(3.68)

For notational convenience, we define PG,j [n] = Gj [n]G
H
j [n]. Using the expression for

Ri[n] in (3.49), we can write,

Tr{FBB,i[n]HFBB,i[n]∂Ri[n]}
∂Vj [n]

= αjdiag(H
H
i,j [n]Ai[n]Hi,j [n])VjPG,j [n]

+ βiH
H
i,j [n]F

H
RF,idiag(Âi[n])FRF,iHi,j [n]VjPG,j [n],

(3.69)

Tr{FBB,j [n]HFBB,j [n]∂Rj [n]}
∂Vj [n]

= αjdiag(H
H
j,j [n]Aj [n]Hj,j [n])VjPG,j [n]

+ βjH
H
j,j [n]F

H
RF,jdiag(Âj [n])FRF,jHj,j [n]VjPG,j [n]].

(3.70)

By substituting (3.69)-(3.70) in (3.68) and using the result vec(AXB) = (BT ⊗
A)vec(X), we see that WSR maximizing beamformer Vj can be computed as

vec(Vj) = BH
j

Ns∑
n=1

HH
i,j [n]F

H
i [n]Wi[n]G

H
j [n], where (3.71)
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Bj =

Ns∑
n=1

(PG,j [n]⊗HH
i,j [n]Ai[n]Hi,j [n]) + αjPG,j [n]⊗ diag(HH

i,j [n]Ai[n]Hi,j [n])

+ βiPG,j [n]⊗HH
i,j [n]F

H
RF,idiag(Âi[n])FRF,iHi,j [n] + αjPG,j [n]⊗ diag(HH

j,jAj

Hj,j [n]) + βj(PG,j [n]⊗ (HH
j,j [n]F

H
RF,jdiag(Âj [n])FRF,jHj,j [n])).

(3.72)
Alternating optimization based WSR maximizing procedure to maximize the WSR is

formally stated in Algorithm 9. It’s convergence it straightforward, as each variable is
computed to minimize the MSE, which hence lead to a monotonic increase in the WSR.

Algorithm 6 Multi Stage Beamforming Design
Given: Pi,Hi,j ,Hi,i, ui ∀i, j.
Initialization: FRF,i = ej∠V

Mi (Ht,i,j), The Gi are taken as the ZF precoders for the effective channels ViHj,i

with uniform powers.
Iteration (t) :

1. Update the Rx side HYBF, i.e F
(t)
BB,i[n],F

(t)
RF,i∀i using (3.53), (3.57) respectively.

2. Set FRF,i = ∠FRF,i.

3. Update G
′ (t)
i [n] , ∀i, from (3.64).

4. Update Vi (t),∀i from (3.71) and λi using Bisection method from (3.67).

5. Check for convergence of the WSR: if not go to step 1).

It might be possible that only two-stage beamforming or only hybrid combining might
be enough if the transmit or receive antenna dimensions are sufficiently large. However,
to conclude that, we present a detailed analysis in the following.

3.2.4 Simulation Results

In this section, we present simulations to evaluate the performance of our proposed HYBF
scheme for a bidirectional FD system under LDR noise model. The far-field channels
are modelled with the path-wise channel model and their complex path gains for the
far-field channels are assumed to be Gaussian with variance distributed according to
an exponential profile. For the SI channel, we ignore the near-field effect of amplitude
variation with distance and the near field effects in the phase variation. In the Uniform
Linear Array (ULA), the AoD or AoA ϕ, θ are assumed to be uniformly distributed in the
interval [0o, 30o]. For comparison, we consider a fully digital beamforming design. The
dimensions of the system simulated to report the results are mentioned below each figure.
We consider comparing our design either by using only two stage transmit beamforming
at the transmit side or only hybrid combining at the receive side. As using both the
two-stage beamformers with hybrid combining could require high hardware cost, we
consider comparing them one versus the other to investigate which approach is much
more prominent and can be deployed cost-efficiently.
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Figure 3.4-3.5 show the performance of the proposed design either with two-stage
beamformers or analog combiner as a function of SNR. We can see that at high SNR,
the hybrid combiner achieves better performance than the two-stage beamformers at
high-SNR. Figure 3.4, also shows that the eigen beamforming solution, where the left
and right singular vectors of the corresponding channels are used as the combiners or
beamformers. We can see it perform worse than the proposed scheme.

The dimensions of the two-stage beamforming and hybrid combining are such that
the zero forcing capabilities at both sides are comparable. However, the number of LDR
noise contributions is equal to the number of antennas at the transmit side, whereas for
the analog receive stage, the number of LDR noises is the number of analog combining
outputs, which is less. We conjecture that the analog combining reduces the LDR noise
to a significant level and this would explain the better performance of the analog stage
at receive side (in both figures) compared to the two-stage architecture at transmit side.
In Figure 3.4, we compare also compare the eigen beamforming (where the left and right
singular vectors of the corresponding channels are used as the Combiner/BF and fully
digital) and shows that its performance is inferior compared to our proposed design.
Using both the two-stage and hybrid combining can lead to better performance, however
it might not be desirable due to hardware-cost.

3.2.5 Conclusion

This section has proposed a two-stage beamforming approach for mmWave MIMO point-
to-point OFDM FD system. The design is presented by decoupling the transmission
and reception side and an iterative procedure is presented for WSR maximization
by minimizing the MSE. Simulation results show that our design achieve significant
performance, in terms for WSR, as the WSR is comparable with the WSR of a fully
digital solution. Results motivate that using only hybrid analog combiner achieves better
performance than using a two-stage beamformer at the transmit side of the OFDM
MIMO FD system in mmWave.

3.3 Generalization of the point-to-point mMIMO Full-Duplex Com-
munication in Millimeter Wave

This section considers the general case of a point-to-point mmWave FD system for a
single-carrier point-to-point mmWave FD system. The literature on the point-to-point
mmWave FD systems is available in [52, 53, 54, 55, 56, 57], which is limited to a single
point-to-point FD link. We generalize the point-to-point FD communication to the case
of K-pair mMIMO nodes in mmWave. All the nodes are assumed to be equipped with a
massive number of antennas and only a limited number of RF chains. The coexistence
of multiple point-to-point FD nodes in mmWave leads to an FD mMIMO interference
channel in which each node suffers from SI and interference from all the other nodes
transmitting simultaneously. To enable FD communication in such a challenging scenario,
we present a novel HYBF and combining design based on MM [26] for WSR maximization.
Moreover, we present an optimal power allocation scheme for FD mMIMO nodes, which
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are both SI and mMIMO interference channel aware. Simulation results show that the
proposed HYBF and combining design exhibit significant performance improvement over
a fully digital mMIMO HD communication system with only a limited number of RF
chains.

3.3.1 System Model

We consider a setup of K-pair mmWave mMIMO FD point-to-point communication
links as shown in Figure 3.6. We distinguish the total nodes into two sets, left and right,

Figure 3.6: mMIMO interference channel in the mmWave consisting of Hybrid nodes with separate
transmit (TX) and receive (RX) array.

denoted with L = {1l, ...,Kl}. and R = {1r, ...,Kr}, respectively. Nodes involved in the
communication link 1 ≤ i ≤ K are denoted with ia, in which the subscript a ∈ L or
∈ R. We consider a multi-stream approach and let sil ∈ Cdil×1 denote the white and
unitary variance data-streams transmitted from node il ∈ L intended for node ir ∈ R.

Let Vil ∈ CM
t
il
×dil and Gil ∈ CN

t
il
×Mt

il denote the digital and the analog beamformer at

node il ∈ L, respectively. Let Fil ∈ CM
r
il
×Nr

il denote the analog combiner at node il ∈ L
for the data streams sir transmitted from node ir ∈ R. Let M t

il
and M r

il
denote the

number of transmit and receive RF chains for node il ∈ L, respectively. Let N t
il
and N r

il
denote the total number of transmit and receive antennas for node il ∈ L, respectively.
The signal received at node il ∈ L for the case of mMIMO FD interference channel, after
the analog combiner, can be written as

yil = FilHil,irGirVirsir + FilHil,ilGilVilsil + Filnil+∑
ml∈L
ml ̸=il

FilHil,ml
Gml

Vml
sml

+
∑
mr∈R
mr ̸=ir

FilHil,mrGmrVmrsmr , (3.73)
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where nil ∼ CN (0, σ2ilI) denote the noise vector at node i, Hil,ir ∈ CN
r
il
×Nt

ir , and

Hil,il ∈ CN
r
il
×Nt

il denote the channel between the node il ∈ L and ir ∈ R, and the SI

channel for node il, respectively. The matrices Hil,ml
∈ CN

r
il
×Nt

ml and Hil,mr ∈ CN
r
il
×Nt

mr

denote the interference channels for node il from node ml ∈ L,ml ̸= il and from node
mr ∈ R,mr ̸= ir, respectively. Let Til,ir = GirVirV

H
ir
GH
ir

denote the transmit covariance
matrix from node ir ∈ R intended for node il ∈ L. Let (Ril) Ril

denote the (signal plus)
interference and noise covariance matrix received at node il ∈ L. The covariance matrix
Ril can be written as

Ril = FilHil,irTil,irH
H
il,ir

FHil︸ ︷︷ ︸
≜Sil

+FilHil,ilTir,ilH
H
il,il

FHil + σ2ilFilF
H
il
+

∑
ml∈L,ml ̸=il

FilHil,ml

Tmr,ml
HH
il,ml

FHil +
∑

mr∈R,mr ̸=ir

FilHil,mrTml,mrH
H
il,mr

FHil ,

(3.74)
and Ril

can be written as Ril
= Ril − Sil , where Sil denotes the useful signal part for

node il ∈ L. In the mmWave, the channel Hil,ir can be modelled as

Hil,ir =

√
N r
il
N t
ir

NcNp

Nc∑
nc=1

Np∑
np=1

α
np,nc

il,ir
ail(ϕ

np,nc

il
)aTir(θ

np,nc

ir
), (3.75)

where Nc and Np denote the number of clusters and number of rays, respectively, α
np,nc

il,ir
∼

CN (0, 1) is a complex Gaussian random variable with amplitudes and phases distributed
according to the Rayleigh and uniform distribution, respectively, and ail(ϕ

np,nc

il
) and

aTir(θ
np,nc

ir
) denote the receive and transmit antenna array response with angle of arrival

(AoA) ϕ
np,nc

il
and angle of departure (AoD) θ

np,nc

ir
, respectively. Also, the channel matrices

Hil,mr and Hil,ml
can be modelled as (3.75). The SI channel can be modelled with the

Rician fading channel model given as

Hil,il =

√
κil

κil + 1
HLoS
il

+

√
1

κil + 1
HRef
il

, (3.76)

where κil , H
LoS
il

and HRef
il

denote the Rician factor, the line-of-sight (LoS) component
and reflected components matrices, respectively, at node il ∈ L. The channel matrix
HRef
il

can be modelled as in (3.75). The elements of matrix HLoS
il

at m-th row and n-th
column can be modelled as

HLoS
il

(m,n) =
ρ

rm,n
e−j2π

rm,n
λ (3.77)

where ρ is the power normalization constant which assure that E(||HLoS
il

(m,n)||2F ) =
N r
il
N t
il
and the scalar rm,n depends on the antenna array geometry. The WSR maximiza-

tion problem for a mMIMO interference channel under the total sum-power constraint
with unit-modulus phase shifters over the mmWave FD mMIMO interference channel
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can be stated as

max
G,V,
F

∑
il∈L

wil ln det(R−1
il

Ril) +
∑
ir∈R

wir ln det(R−1
ir

Rir). (3.78a)

s.t. Tr(GaVaV
H
a GH

a ) ⪯ pa, ∀a ∈ L or ∈ R, (3.78b)

|Ga(m,n)|2 = 1, ∀ m,n, ∀a ∈ L or ∈ R, (3.78c)

|Fa(m,n)|2 = 1, ∀ m,n, ∀a ∈ L or ∈ R. (3.78d)

The scalars wa and pa denote the rate weight and total sum-power constraint for node
a ∈ L or a ∈ R. The constraints (5.12c) and (5.12d) denote the unit-modulus phase-
shifter constraint on node a for the analog beamformer and combiner, respectively. In
the problem statement, G,V, and F, denote the collection of the analog and digital
beamformers and the analog combiners, respectively.

Remark- Note that (3.78), stated as ln det(·), is not affected by the digital combiners.
They can be chosen to be the well known MMSE combiners and the achieved rate would
not be affected (Please see (4)-(9) [64] for more details).

3.3.2 Minorization-Maximization

The problem (3.78) is non-concave due to interference. Given a non-concave structure of
the problem due to interference, it makes the searching for its global optima extremely
challenging. To render a feasible solution, we leverage the MM [26] approach. Note that
the WSR can be written as

WSR =WSRL +WSRR =
∑
il∈L

WRil +
∑
ir∈R

WRir (3.79)

whereWSRL andWSRR denote the WSR in sets L and R, respectively, andWR denotes
the weighted-rate of one particular user denoted with the subscript. Note that WRil is
only concave in Til,ir (point-to-point link between nodes il and ir) and the remaining
WRs are non-concave in Til,ir . Let il( ir) denote the summation in set L ( R) without
the element il ( ir). Since a linear function is simultaneously convex and concave, DC
programming introduces the first order Taylor series expansion of WSRil and WSRR in

Til,ir , around T̂il,ir , (i.e. all Til,ir). Let T̂ denote the set containing all such T̂il,ir . The
tangent expressios for the FD point-to-point link for the transmit covariance matrices of
node il ∈ L and ir ∈ L can be written by computing the following gradients

Âir = −
∂WSRil
∂T̂il,ir

∣∣∣
T̂
, B̂ir = −∂WSRR

∂T̂il,ir

∣∣∣
T̂
, (3.80)

Âil = −
∂WSRir
∂T̂ir,il

∣∣∣
T̂
, B̂il = −∂WSRL

∂T̂ir,il

∣∣∣
T̂
. (3.81)

58



Chapter 3. Hybrid Beamforming for Point-to-Point and IAB Millimeter Wave Full
Duplex

where Âa and B̂a, for a ∈ L or R, denote the linearization with respect to the same
set and the other set, respectively. The gradients can be computed by using the matrix
differentiation properties, which leads to the following expressions

Âir =
∑

ml∈L,ml ̸=il

HH
ml,ir

FHml
(R−1

ml
)−R−1

ml
))Fml

Hml,ir (3.82a)

B̂ir =
∑
nr∈R

HH
nr,irF

H
nr
(R−1

nr
)−R−1

nr
))FnrHnr,ir , (3.82b)

Âil =
∑

mr∈R,mr ̸=ir

HH
mr,il

FHmr
(R−1

mr
)−R−1

mr
))FmrHmr,ir , (3.82c)

B̂il =
∑
nl∈L

HH
nl,il

FHnl
(R−1

nl
)−R−1

nl
))Fnl

Hnl,il . (3.82d)

Note that the rate of node ir depends on the transmit covariance matrix from node il and
vice-versa, and the gradients B̂ir and B̂il take into account also the SI generated at the
node il and ir, respectively. Let λil and λir denote the Lagrange multipliers associated
with the sum-power constraint for the nodes il and ir, respectively. Considering the
unconstrained analog part, dropping the constant terms and reparametrizing back the
transmit covariance matrices as a function of the digital and the analog beamformers,
augmenting the minorized WSR cost function with the gradients (3.82) with the sum-
power constraints, leads to the following Lagrangian.

L =
∑
il∈L

λilpil +
∑
ir∈R

λirpir +
∑
il∈L

wil ln det(I+VH
irG

H
irH

H
il,ir

FHil R
−1
il

FilHil,irGirVir)

− Tr(VH
irG

H
ir (Âir + B̂ir + λirI)GirVir) +

∑
ir∈R

wir ln det(I+VH
il
GH
il
HH
ir,il

FHirR
−1
ir

FirHir,ilGilVil)− Tr(VH
il
GH
il
(Âil + B̂il + λilI)GilVil),

(3.83)
Note that (3.83) does not contain the unit-modulus constraints on the analog part and
they will be incorporated later.

3.3.3 Hybrid Beamforming and Combining

This section presents a novel HYBF and combining design for solving (3.83).

Digital Beamforming

To optimize the digital for node il ∈ L and ir ∈ R, we take the derivative of (3.83) with
respect to Vir and Vil , respectively, which leads to the following KKT conditions

GH
irH

H
il,ir

FHil R
−1
il

FilHil,irGirVir

(
I+VH

irG
H
irH

H
il,ir

FHil

R−1
il

FilHil,irGirVir

)−1
= GH

ir

(
Âir + B̂ir + λirI

)
GirVir ,

(3.84a)
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GH
il
HH
ir,il

FHirR
−1
ir

FirHir,ilGilVil

(
I+VH

il
GH
il
HH
ir,il

FHir

R−1
ir

FirHir,ilGilVil

)−1
= GH

il

(
Âil + B̂il + λilI

)
GilVil .

(3.84b)

Theorem 3.3.1. The digital beamformers Vil and Vir , fixed the remaining variables, can
be optimized as a generalized dominant eigenvectors of the pairs of the following matrices

Vir = Ddil
(GH

irH
H
il,ir

FHil R
−1
il

FilHil,irGir ,G
H
ir

(
Âir + B̂ir + λrI

)
Gir), (3.85)

Vil = Ddir
(GH

il
HH
ir,il

FHirR
−1
ir

FirHir,ilGil ,G
H
il

(
Âil + B̂il + λilI

)
Gil), (3.86)

where Ddil
(Ddir

) selects the dil (dir) dominant eigenvectors.

Proof. Given the analog part fixed, we proof the result only for Vil . The result for
Vir is then straightforward based on the proof for Vil . The proof relies on simplifying
(3.83) with fixed analog part until the Hadamard’s inequality applies. The Cholesky
decomposition of the matrix GH

il

(
Âil + B̂il + λilI

)
Gil) can be written as LilL

H
il

where
Lil is a lower-triangular Cholesky factor. Similarly we do Cholesky decomposition also
for GH

il
HH
ir,il

FHirR
−1
ir

FirHir,ilGil . Given the Cholesky decomposition, we can apply the

result provided in Proposition 1 [38] to the matrices (GH
il

(
Âil + B̂il + λilI

)
Gil) and

(GH
il
HH
ir,il

FHirR
−1
ir

FirHir,ilGil). By following similar steps, it follows immediately that

the digital beamformer Vil can be optimized as a dominant generalized eigenvector of
these two matrices. Similar steps can also be followed to prove the result for the digital
beamformer Vir .

Note that the solution stated in Theorem 3.3.1 provides the optimal beamforming
directions but not the optimal power allocation. Therefore, to include the optimal power
allocation, we normalize the columns of the digital beamformers to unit-norm.

Analog Beamforming

To optimize the analog beamformers for node il ∈ L and ir ∈ R, we take the derivative
of (3.83) for the analog beamformers Gil and Gir , which leads to the following KKT
conditions

HH
ir,il

FHirR
−1
ir

FirHir,ilGilVilV
H
il

(
I+VH

il
GH
il
HH
ir,il

FHir

R−1
ir

FirHir,ilGilVil

)−1
=

(
Âil + B̂il + λilI

)
GilVilV

H
il
,

(3.87a)

HH
il,ir

FHil R
−1
il

FilHil,irGirVirV
H
ir

(
I+VH

irG
H
irH

H
il,ir

FHil

R−1
il

FilHil,irGirVir

)−1
=

(
Âir + B̂ir + λirI

)
GirVirV

H
ir .

(3.87b)

To optimize the analog beamformer, the KKT conditions are not resolveable for Gil and
Gir . To do so, we apply the identity vec(AXB) = (BT ⊗A)vec(X), which shapes the
the KKT conditions as

[(VirV
H
ir

(
I+VH

irG
H
irH

H
il,ir

FHil R
−1
il

FilHil,irGirVir

)−1
)T

⊗HH
il,ir

FHil R
−1
il

FilHil,ir ]vec(Gir)

= [(VirV
H
ir )

T ⊗
(
Âir + B̂ir + λilI

)
]vec(Gir),

(3.88a)
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[(VilV
H
il

(
I+VH

il
GH
il
HH
ir,il

FHirR
−1
ir

FirHir,ilGilVil

)−1
)T

⊗HH
ir,il

FHirR
−1
ir

FirHir,il ]vec(Gil)

= [(VilV
H
il
)T ⊗

(
Âil + B̂il + λirI

)
]vec(Gil).

(3.88b)

Given the vectorized analog beamformer, by following a similar proof as for the digital
beamformers in the Theorem (3.3.1), it can be easily seen that the unconstrained
vectorized analog combiners vec(Gir) and vec(Gil) are given by

vec(Gir) =D1((VirV
H
ir

(
I+VH

irG
H
irH

H
il,ir

FHil R
−1
il

Fil

Hil,irGirVir

)−1
)T ⊗HH

il,ir
FHil R

−1
il

FilHil,ir ,

(VirV
H
ir )

T ⊗
(
Âil + B̂il + λirI

)
),

(3.89a)

vec(Gil) =D1((VilV
H
il

(
I+VH

il
GH
il
HH
ir,il

FHirR
−1
ir

Fir

Hir,ilGilVil

)−1
)T ⊗HH

ir,il
FHirR

−1
ir

FirHir,il ,

(VirV
H
ir )

T ⊗
(
Âir + B̂ir + λilI

)
),

(3.89b)

which needs to be reshaped into correct dimensions with the operation unvec(·). Fur-
thermore, to meet the unit modulus constraint, we apply the operation ∠Gil and ∠Gir ,
which scales it amplitude to unit-norm and preserves only the phase part.

Analog Combining

To optimize the analog combiner, we first define the received covariance matrices at the
antenna level as Rant

il
and Rant

ir
(obtained from (3.74) by simply omitting the analog

combiner). After the analog combining stage, we have the following expression for the
covariance matrices Ril = FilR

ant
il

FHil and Rir = FirR
ant
ir

FHir . Note that in the MM
approach, we linearize with respect to the WRs for which each transmit covariance matrix
generate interference. However, as the combiner do not generate any interference and
does not have the sum-power constraint, we can directly consider solving (3.78), which
result to be concave for the analog combiners. Namely, we can first write

max
F

∑
il∈L

wil [lndet(FilR
ant
il

FHil )− lndet(FilR
ant
il

FHil )]

+
∑
ir∈R

wir [lndet(FirR
ant
ir FHir )− lndet(FilR

ant
il

FHil )]
. (3.90)

in which both the terms are purely concave, in contrast to minorized version of the WSR,
in which the trace terms were only linear. To optimize the analog combiners, we take
the derivative of (3.90) with respect to Fil and Fir , which leads to the following KKT
conditions

wilR
ant
il

FHil
(
FilR

ant
il

FHil
)−1 − wilR

ant
il

FHil
(
FilR

ant
il

FHil
)−1

= 0, (3.91a)

wirR
ant
ir FHir

(
FirR

ant
ir FHir

)−1 − wirR
ant
ir

FHir
(
FirR

ant
ir

FHir
)−1

= 0. (3.91b)
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Given the structure of the KKT conditions, it is immediate to see that the analog
combiner can be optimized as a dominant generalized eigenvector solution of

Fil = DNr
il
(Rant

il
,Rant

il
), Fir = DNr

ir
(Rant

ir ,Rant
ir

), (3.92)

from which we select M r
il
and M r

ir
rows, respectively, equal to number of RF chains.

Given the optimal analog combiner, operation ∠Fil and ∠Fir is required to meet the
unit modulus constraint.

Optimal Power Allocation

Given the optimized beamformers, in this section, we present a novel power allocation
scheme for the mMIMO FD interference channel.

Let Pil and Pir denote the power allocation matrix for the node il ∈ L and ir ∈ R,

respectively. Let Σ
(1)
il

,Σ
(2)
il

,Σ
(1)
ir

and Σ
(2)
ir

be defined as

Σ
(1)
il

= VH
irG

H
irH

H
il,ir

FHil R
−1
il

FilHil,irGirVir , (3.93a)

Σ
(2)
il

= VH
irG

H
ir (Âil + B̂il + λirI)GirVir , (3.93b)

Σ
(1)
ir

= VH
il
GH
il
HH
ir,il

FHirR
−1
ir

FirHir,ilGilVil , (3.93c)

Σ
(2)
ir

= VH
il
GH
il
(Ĉj + D̂j + λilI)GilVil . (3.93d)

Given (3.93), the problem (3.78) with its minorized version, with respect to the power
matrices can be stated as

max
Pil

∑
il∈L

wil lndet(I+Σ
(1)
il

Pil)− Tr(Σ
(2)
il

Pil),

max
Pir

∑
ir∈R

wir lndet(I+Σ
(1)
ir

Pir)− Tr(Σ
(2)
ir

Pir).
(3.94a)

To include the optimal power allocation, we take the derivative of (3.94a) for the
power matrices Pil and Pir , and from the KKT conditions it follows that the optimal
power allocation matrices can be computed as

Pil = (wilΣ
(2)
il

−1
−Σ

(1)
il

−1
)+, Pir = (wirΣ

(2)
ir

−1
−Σ

(1)
ir

−1
)+. (3.95)

where (X)+ = max{0,X}. To meet the sum-power constraint, we search the optimal
multipliers satisfying the power constraints while updating the powers with (3.95). The
multipliers λil and λir should be such that the Lagrange dual function (3.83) is finite
and the values of the multipliers should be strictly positive. Let Λ and P denote the
collection of multipliers and powers. Formally, the multipliers’ search problem can be
stated as

min
Λ

max
P

L
(
Λ,P

)
, s.t. Λ ⪰ 0. (3.96)
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Algorithm 7 Hybrid Beamforming and Combining

Given: The CSI and rate weights.
Initialize: All the beamformers and combiners.
Repeat until convergence

for ∀ il ∈ L and ∀ ir ∈ R
Compute Ail and Ail with (3.82a) and (3.82c)
Compute Bil and Bir with (3.82b) and (3.82d)
Compute Gil with (3.89b), do unvec(Gil) and ∠Gil

Compute Gir with (3.89a), do unvec(Gir) and ∠Gir

Compute Fil , Fir with (3.92) and do ∠Fil , ∠Fir
Compute Vil and Vir with (3.86) and (3.85)
Set λil = 0 and λil = µimax ∀il ∈ Ll
Repeat until convergence ∀il ∈ L

set λil = (λil + λil)/2
Compute Pil with (3.95),
If constraint for λil is violated,
set λil = λil , else λil = λil ,

Repeat until convergence ∀ir ∈ R
set λir = (λir + λir)/2.
Compute Pil with (3.95),
If constraint for λir is violated,
set λir = λir , else λir = λir ,

Repeat

The dual function max
P

L(Λ,P) is the pointwise supremum of a family of functions of Λ,

it is convex [40] and the globally optimal values for Λ can be found by using any of the
numerous convex optimization techniques. In this work,we adopt the Bisection method.
Let λia and λia , for ia ∈ L or ia ∈ R, denote the upper and lower bound for the Lagrange

multiplier search for node ia. Let [0, λmaxia
] denote the maximum search interval for the

multipliers of node ia. The WSR maximizing HYBF design for the mMIMO interference
channel is given in Algorithm 7.

Short Convergence Proof

For the WSR cost function (3.78), we construct its minorizer which restates the WSR
maximization as a concave problem, when the remaning variables are fixed in the
gradients. The minorizer results to be a touching lower bound for the original WSR
problem, therefore we can write

WSR =
∑
il∈L

wil ln det(I+Σ
(1)
il

Pil)− Tr(Σ
(2)
il

Pil),

+
∑
ir∈R

wir ln det(I+Σ
(1)
ir

Pir)− Tr(Σ
(2)
ir

Pir)
(3.97)
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The minorizer, which is concave in transmit covariance matrices, still has the same
gradient of the original WSR and hence the KKT conditions are not affected. Now
reparameterizing the transmit covariance matrices in terms of beamformer with the
optimal power matrices and adding the power constraints to the minorizer, we get the
Lagrangian (3.83). By updating all the beamformers and combiners as a dominant
generalized eigenvector solution, leads to a monotonic increase in the WSR [38] at each
iteration, thus assuring convergence.

3.3.4 Simulation Results

This section presents the simulation results for the proposed HYBF and combining design
for WSR maximization in a mmWave FD mMIMO interference channel.

We consider a scenario of 2 point-to-point communication links consisting of 4 nodes
operating in the mmWave. We assume that all the nodes are equipped with uniform
linear arrays, with transmit antennas placed at half-wavelength. The angle of arrival
ϕ
np,nc

il
and angle of departure θ

np,nc

il
are chosen to be uniformly distributed in the interval

[−20◦, 20◦]. The SI channel is modelled with the Rician factor κil = 105 dB and the
distance rm,n is modelled as in [54], with distance between the transmit and receive
array of 20 cm and with a relative angle of 90◦. The number of clusters and the number
of paths is set to be Nc = 3 and Np = 6. We define the transmit SNR at node il as
SNRil = pil/σ

2
il
and assume it to be the same for all the nodes, denoted as SNR. In the

plots, the proposed HYBF scheme will be referred as HYBF. For comparison purposes,
we define the following benchmark schemes.

• Fully Digital FD - with all the FD nodes having number of RF chains equal to the
number of antennas.

• Fully Digital HD - with all the nodes having number of RF chains equal to the
number of antennas but operating in HD mode by splitting the resources in time.

Figure 3.7 shows the achieved WSR as a function of SNR with a different number of
RF chains in comparison with the benchmark schemes. It can be clearly seen that the
proposed HYBF and combining has the potential to perform very close to the fully digital
FD beamforming design with 32 RF chains. Still the proposed algorithm exhibits some
gap compared to the fully digital solution as the analog beamforming stage is constrained
and must meet the unit modulus constraint. We can see that also with 16RF chains,
the proposed algorithm can considerably outperform the fully digital HD scheme, with
operates with 100 transmit and receive RF chains. Figure 3.8 shows the average WSR as
a function of SNR with 64 transmit and receive antennas. It can be seen that with the
same number of RF chains (32) and less number of transmit and receive antennas, the
performance of the proposed HYB algorithm gets strictly close to the fully digital FD
scheme.

3.3.5 Conclusions

In this section, we studied the problem of WSR maximization in a mmWave massive
MIMO FD interference channel consisting of K point-to-point FD communication links.
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RF chains M t
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The simultaneous coexistence of multiple FD nodes leads to an extremely challenging
communication scenario for which a novel hybrid beamforming and combining scheme is
proposed. Simulation results show that the proposed design can perform extremely close
to the fully digital FD beamforming design operating with 100 antennas, with only 32
RF chains. Moreover, the proposed design significantly outperforms the fully digital HD
system with only 16 RF chains.
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Chapter 4

Hybrid Beamforming for Single-Cell
Massive MIMO Millimeter Full Duplex

4.1 Introduction and Motivation

This chapter considers the problem of HYBF for a mmWave mMIMO FD system with
multi-antenna uplink (UL) and downlink (DL) users. For the literature on HYBF for
mmWave FD, we refer the reader to [24, 25, 65, 52, 53, 54, 55, 56, 57, 44, 49, 45, 66, 67,
68, 69, 70, 71, 72]. In [24], a novel HYBF design for the mmWave FD with one UL user
while jointly performing radar target sensing on the received side with hybrid combining
is proposed. In [65, 52, 53, 54, 55, 56, 57], novel HYBF designs for a point-to-point
mmWave massive MIMO (mMIMO) FD system are studied. HYBF schemes of mMIMO
FD relays and integrated access and backhaul are presented in [44, 49, 45] and [66],
respectively. HYBF designs with single antenna UL and DL users for a single-cell and
a multi-cell mmWave FD system are proposed in [67] and [68], respectively. In [69],
HYBF for mmWave mMIMO FD with only one UL and one DL multi-antenna user,
under the receive LDR is proposed. In [70], HYBF for two fully connected mMIMO FD
nodes that approaches SI-free sum-spectral efficiency is proposed. In [25], HYBF for a
mmWave FD system equipped with analog SI cancellation stage is presented. In [71],
HYBF to generalize the point-to-point mmWave mMIMO FD communication to the case
of a K-pair links is presented. Frequency-selective HYBF for a wide-band mmWave FD
system is studied in [72].

The literature on multi-antenna multi-user mmWave FD systems is limited only to
the case of one UL and one DL user [25, 69, 70, 72]. In [69], the receive side LDR of
FD BS is also considered, which is dominated by the quantization noise of the ADCs.
However, LDR noise from the transmit side is ignored, which also affects the performance
of FD systems significantly [36]. The effect of cross-interference generated from the UL
user towards the DL user is also not considered in [69], which can have a major impact
on the achievable performance. Cross-interference generated from the neighbouring cells
is well investigated in the DTDD networks [73, 7, 74, 75, 76], and it is more harmful to
the multi-user FD systems as it occurs in the same cell. For example, consider the case
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of a small cell, in which BSs and users are expected to operate with a similar amount of
transmit power [76]. Suppose that one FD BS simultaneously serves one UL and one DL
user and that both the users are located close to each other and sufficiently far from the
BS. In such a case, cross-interference can become as severe as the SI and can completely
drown the useful signal intended for the DL user if not considered in the beamforming
design. In a multi-user scenario with multiple UL users located near the DL users, each
DL user suffers from cross-interference, which is summed over all the UL users’ transmit
power, with each UL user transmitting with a similar amount of power as the BS. In
such a case, cross-interference can become even more severe than the SI if not considered
in the design.

4.1.1 Main Contributions

We present a novel HYBF design to maximize the WSR in a single-cell mmWave mMIMO
FD system, i.e., for multiple multi-antenna UL and DL users. The users are assumed
to have a limited number of antennas and digital processing capability. The FD BS is
assumed to have a massive number of antennas and hybrid processing capability. Our
design is based on alternating optimization and relies on the mathematical tools offered
by MM [26]. The users and BS are assumed to be suffering from the LDR noise due to
non-ideal hardware, modelled with the traditional LDR model [37] and by extending
it to the case of a hybrid transceiver, respectively. Our work represents the first-ever
impairment aware HYBF approach for mmWave FD and its analysis as a function of the
LDR noise levels. Extension of the LDR noise model presented herein is applicable to
any mmWave FD scenario.

In contrast to the conventional HYBF designs for mmWave FD, in this work, the
beamformers are designed under the joint sum-power and the practical per-antenna power
constraints. The sum-power constraint at each terminal is imposed by the regulations,
which limits its total transmit power. In practice, each transmit antenna is equipped
with its PA1 [34] and the per-antenna power constraints arise due to power consumption
limits imposed on the physical PAs [78]. We also present a novel SI, interference, cross-
interference and LDR noise aware optimal power allocation scheme to meet the joint
constraints.

Compared to the digital part, optimization of the analog stage is more challenging as
it must obey the unit-modulus constraint and it is common to all the users. Recently,
new transceivers have started to emerge, which with the aid of amplitude modulators
(AMs), also allow amplitude control for the analog stage [79, 80, 69]. Such transceivers
alleviate the unit-modulus constraint but require additional hardware. Hence, we study
both the unit-modulus and AMs cases and investigate when the amplitude control for
mmWave FD could be advantageous. In practice, as the analog beamformer and analog
combiner can assume only finite values, a quantization constraint is also imposed on
them during the optimization process. In our problem formulation, the WSR does not
depend on the digital combiners, which are omitted in the design. They must be chosen

1The mMIMO systems are also expected to be deployed with one PA per-antenna to enable the
deployment of very low-cost PAs [77].
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Figure 4.1: FD in mmWave with HYBF to serve multi-antenna users. Tx and Rx denote transmit and
receive, respectively.

as the minimum-mean-squared-error (MMSE) combiners after the convergence of the
proposed algorithm. By omitting the digital combiners, equal to the sum of the number
of UL and DL users, the HYBF design simplifies, and the per-iteration computational
complexity reduces significantly.

Simulation results show that our design outperforms a fully digital HD system and can
deal with the SI, interference and cross-interference with only a few RF chains. Results
are reported with different LDR noise levels, and significant performance gain is observed
at any level.

In summary, the contributions of our work are:

• Extension of the LDR noise model for the mmWave band.

• Introduction of the WSR maximization problem formulation for HYBF in a single-
cell mmWave mMIMO FD system affected by the LDR noise.

• A novel SI, interference, cross-interference, LDR noise and the practical per-antenna
power constraints aware HYBF design.

• Investigation of the achievable WSR in a multi-user mmWave FD system as a
function of the LDR noise.

• Optimal interference, SI, LDR noise and the per-antenna power constraints aware
power allocation scheme for the hybrid FD BS and UL users.

4.2 System Model

We consider a single-cell mmWave FD system consisting of one hybrid FD BS serving
J DL and K UL fully digital multi-antenna users, as shown in Fig. 4.1. We assume
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perfect channel state information (CSI)2. The FD BS is assumed to have Mt transmit
and Nr receive RF chains, and M0 transmit and N0 receive antennas. Let U = {1, ..., K}
and D = {1, ..., J} denote the sets containing the indices of K UL and J DL users,
respectively. Let Mk and Nj denote the number of transmit and receive antennas for
k-th UL and j-th DL user, respectively. We consider a multi-stream approach and
the number of data streams for k-th UL and j-th DL user are denoted as uk and vj ,
respectively. Let Uk ∈ CMk×uk and Vj ∈ CMt×vj denote the precoders for white unitary
variance data streams sk ∈ Cuk×1 and sj ∈ Cvj×1, respectively. Let GRF ∈ CM0×Mt and
FRF ∈ CN0×Nr denote the fully connected analog beamformer and combiner at the FD
BS, respectively. Let P = {1, ei2π/nps , ..., ei2πnps−1/nps} denote the set of nps possible
discrete values that the phasors at the analog stage can assume on unit-circle.

For HYBF with the unit-modulus constraint, we define the quantizer function QP (·)
to quantize the unit-modulus phasors of analog beamformer GRF and combiner FRF
such that QP (∠GRF (m,n)) ∈ P and QP (∠FRF (m,n)) ∈ P, ∀m,n. For HYBF with
amplitude control, the phase part is still quantized with QP (·) and belongs to P. Let
A = {a0, ...., aA−1} denote the set of A possible values that the amplitudes can assume.
Let QA(·) denote the quantizer function to quantize the amplitudes of GRF and FRF
such that QA(|GRF (m,n)|) ∈ A and QA(|FRF (m,n)|) ∈ A, ∀m,n. A complex number
GRF (m,n) with amplitude in A and phase part in P can be written as GRF (m,n) =
QA(|GRF (m,n)|)QP (∠GRF (m,n)). The thermal noise vectors for FD BS and j-th DL
user are denoted as n0 ∼ CN (0, σ20IN0) and nj ∼ CN (0, σ2j INj ), respectively. Let ck and
ej denote the LDR noise vectors for k-th UL and j-th DL user, respectively, which can
be modelled as [37]

ck ∼ CN
(
0Mk×1, kk diag(UkU

H
k )

)
, (4.1)

ej ∼ CN
(
0Nj×1, βj diag(Φj)

)
, (4.2)

where kk ≪ 1, βj ≪ 1,Φj = Cov(rj) and rj denotes the undistorted signal received by
j-th DL user. Let c0 and e0 denote the LDR noise vectors in transmission and reception
for FD BS, respectively. We model them as

c0 ∼ CN
(
0M0×1, k0 diag(

∑
n∈D

GRFVnV
H
n GH

RF )
)
, (4.3)

e0 ∼ CN
(
0Nr×1, β0 diag(Φ0)

)
, (4.4)

where k0 ≪ 1, β0 ≪ 1,Φ0 = Cov(r0) and r0 denotes the undistorted signal received
by FD BS after the analog combiner FRF . Note that (4.3) extends the transmit LDR
noise model from [37] to the case of a hybrid transmitter. For the hybrid receiver at the
mmWave FD BS, ADCs, the most dominant sources of receive LDR noise, are placed
after the analog combiner FRF . Consequently, e0 in (4.4) considers the undistorted
signal received after the analog combiner. We remark that the extension presented in

2The CSI of the mmWave FD systems can be acquired similarly as in [81] for the mmWave HD system
and it is part of the ongoing research [82].
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(4.3)-(4.4) is slightly simplified. In practice, as some circuitry might be shared among
multiple antennas, it can lead to some correlation.

Let y and yj denote the signals received by the FD BS and j-th DL user, respectively,
which can be written as

y =FHRF
∑
k∈U

HkUksk + FHRF
∑
k∈U

HkUkck + FHRFn0

+ FHRFH0

∑
j∈D

GRFVjsj + FHRFH0c0 + e0,
(4.5)

yj = Hj

∑
n∈D

GRFVnsn +Hj

∑
n∈D

GRFVnc0 + ej + nj

+
∑
k∈U

Hj,kUksk +
∑
k∈U

Hj,kck.
(4.6)

The matrices Hk ∈ CN0×Mk and Hj ∈ CNj×M0 denote channel response from the k-th UL
user to BS and from the BS to j-th DL user, respectively. The matrices H0 ∈ CN0×M0

and Hj,k ∈ CNj×Mk denote SI channel response for FD BS and cross-interference channel
response between k-th UL and j-th DL users, respectively. At the mmWave, the channel
response Hk can be modelled as[54]

Hk =

√
MkN0

NcNp

Nc∑
nc=1

Np∑
np=1

α
(np,nc)
k ar(ϕ

np,nc

k )aTt (θ
np,nc

k ), (4.7)

where Nc and Np denote the number of clusters and number of rays (Figure 1 [54]),

respectively, and α
(np,nc)
k ∼ CN (0, 1) denotes a complex Gaussian random variable whose

amplitude and phase are Rayleigh and uniformly distributed, respectively. The vectors
ar(ϕ

np,nc

k ) and aTt (θ
np,nc

k ) denote the receive and transmit antenna array response with
angle of arrival (AoA) ϕ

np,nc

k and angle of departure (AoD) θ
np,nc

k , respectively. The
channel matrices Hj and Hj,k can be modelled similarly as in (4.7). The SI channel can
be modelled as [54]

H0 =

√
κ

κ+ 1
HLoS +

√
1

κ+ 1
Href , (4.8)

where κ denotes the Rician factor, and the matrices HLoS and Href denote the line-of-
sight (LoS) and reflected contributions, respectively. The channel matrix Href can be
modelled as (4.7) and element of HLoS at the m-th row and n-th column can be modelled
as [54]

HLoS(m,n) =
ρ

rm,n
e−i2π

rm,n
λ . (4.9)

where ρ denotes the power normalization constant to assure E(||HLoS(m,n)||2F ) =M0N0

and λ denotes the wavelength. The scalar rm,n denotes distance between the m-th receive
and n-th transmit antenna, which depends on the transmit and receive array geometry
(9) [54]. The aforementioned notations are summarized in Table 4.1.
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Table 4.1: Notations

Mt Number of transmit RF chains for the BS

Nr Number of receive RF chains for the FD BS

M0 Number of transmit antennas for the BS

N0 Number of receive antennas for the BS

Mk Number of transmit antennas for UL user k

Nj Number of receive antennas for DL user j

Uk Digital beamformer for UL user k

Vj Digital beamformer for DL user j

GRF Analog beamformer for the FD BS

FRF Analog combiner for the FD BS

ck Transmit LDR noise from UL user k

c0 Transmit LDR noise from the FD BS

e0 Receive LDR noise at the FD BS

ej Receive LDR noise at the DL user j

n0 Thermal noise at the FD BS

nj Thermal noise at the DL user j

H0 SI channel

Hk Channel between the BS and UL user k

Hj Channel between the BS and DL user j

Hj,k Cross-interference channel between UL user
k and DL user j

⪯ Element-wise inequality

4.2.1 Problem Formulation

Let k and j denote the indices in sets U and D without the elements k and j, respectively.
The received (signal plus) interference and noise covariance matrices from UL user k ∈ U
at the BS and by the DL user j ∈ D are denoted as (Rk) Rk and (Rj) Rj , respectively.
Let Tk, ∀k ∈ U , and Qj , ∀j ∈ D, defined as

Tk = UkU
H
k , (4.10a)

Qj = GRFVjV
H
j GH

RF , (4.10b)

denote the transmit covariance matrices from UL user k ∈ U and DL user j ∈ D,
respectively. By considering the distortions from non-ideal hardware with the extended
LDR noise model, cross-interference, interference and SI, the received covariance matrices
at the BS after the analog combiner, i.e., Rk and Rk, and at the DL user j ∈ D, i.e., Rj

and Rj , can be written as (4.11), shown at the top of the next page. In (4.11), sk and sj
denote the useful received signal covariance matrices from k-th UL user at the FD BS
and by j-th DL user, respectively. The undistorted received covariance matrices can be
recovered from (4.11) as Φ0 = Rk, with β0 = 0, and Φj = Rj , with βj = 0.

The WSR maximization problem with respect to the digital beamformers, analog
beamformer and combiner with amplitudes in A and phase part in P, under the joint
sum-power and per-antenna power constraints, can be stated as
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Rk =FHRFHkTkH
H
k FRF︸ ︷︷ ︸

≜sk

+
∑
i∈U
i ̸=k

FHRFHiTiH
H
i FRF +

∑
i∈U

kiF
H
RFHidiag

(
Ti

)
HH
i FRF

+ σ20IN0 + β0diag
(
Φ0

)
+ FHRFH0

(∑
n∈D

Qn + k0diag
(∑
n∈D

Qn

))
HH

0 FRF ,

(4.11a)

Rj =HjQjH
H
j︸ ︷︷ ︸

≜sj

+Hj

∑
n∈D
n̸=j

QnH
H
j + k0Hjdiag

(∑
n∈D

Qn

)
HH
j + σ2j INj

+
∑
i∈U

Hj,i

(
Ti + kidiag

(
Ti

))
HH
j,i + βjdiag

(
Φj

)
,

(4.11b)

Rk = Rk − sk, Rj = Rj − sj . (4.11c)

max
U,V,

GRFFRF

∑
k∈U

wklndet
(
R−1
k

Rk

)
+

∑
j∈D

wj lndet
(
R−1
j

Rj

)
(4.12a)

s.t. diag
(
UkU

H
k

)
⪯ Λk, ∀k ∈ U , (4.12b)

diag
(∑
j∈D

GRFVjV
H
j GH

RF

)
⪯ Λ0, (4.12c)

Tr
(
UkU

H
k

)
≤ αk, ∀k ∈ U , (4.12d)

Tr
(∑
j∈D

GRFVjV
H
j GH

RF

)
≤ α0. (4.12e)

∠GRF (m,n) ∈ P, and |GRF (m,n)| ∈ A, ∀ m,n, (4.12f)

∠FRF (i, j) ∈ P, and |FRF (i, j)| ∈ A, ∀ i, j. (4.12g)

The scalars wk and wj denote rate weights for the UL user k and DL user j, respectively.
The diagonal matrices Λk and Λ0 denote the per-antenna power constraints for the k-th
UL user and FD BS, respectively, and the scalars αk and α0 denote their sum-power
constraint. The collections of digital UL and DL beamformers are denoted as U and
V, respectively. For unit-modulus HYBF, the constraints in (4.12f) − (4.12g) on the
amplitude part become unit-modulus.

Remark 1: Note that the rate achieved with (4.12) is not affected by the digital
receivers if they are chosen as the MMSE combiners, see e.g., (4) − (9) [64] for more
details. For WSR maximization with the combiners, only the analog combiner has to
considered in the optimization problem as it affects the size of the received covariance
matrices from UL users, i.e., the UL rate.
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4.3 Minorization-Maximization

Problem (4.12) is non-concave in the transmit covariance matrices Tk and Qj due to the
interference terms and searching its globally optimum solution is very challenging. In
this section, we present the MM optimization method [26] for solving (4.12) to a local
optimum.

The WSR maximization problem (4.12) will be reformulated at each iteration as a
concave reformulation with its minorizer, using the DC programming [38] in terms of the
variable to be updated, while the other variables will be kept fixed. To proceed, note
that the WSR in (4.12) can be written with the weighted-rate (WR) of user k ∈ U , user
j ∈ D, WSRs for k and j as

WSR = WRULk +WSRUL
k︸ ︷︷ ︸

≜WSRUL

+WRDLj +WSRDL
j︸ ︷︷ ︸

≜WSRDL

, (4.13)

where WSRUL and WSRDL denote the WSR in UL and DL, respectively. Considering the
dependence of the transmit covariance matrices, only WRULk is concave in Tk, meanwhile
WSRUL

k
and WSRDL are non-concave in Tk, when Tk and Qj , ∀j ∈ D, are fixed.

Similarly, only WSRDLj is concave in Qj and non-concave in WSRDL
j

and WSRUL, when

Qj and Tk, ∀k ∈ U , are fixed. Since a linear function is simultaneously convex and

concave, DC programming introduces the first order Taylor series expansion of WSRUL
k

and WSRDL in Tk, around T̂k (i.e. around all Tk), and of WSRDL
j

and WSRUL in

Qj , around Q̂j (i.e. around all Qj). Let T̂ and Q̂ denote the set containing all such

T̂k and Q̂j , respectively. Let R̂k(T̂, Q̂), R̂k(T̂, Q̂), R̂j(T̂, Q̂), and R̂j(T̂, Q̂) denote the

covariance matrices Rk,Rk,Rj and Rj as a function of T̂ and Q̂, respectively. The
linearized tangent expressions for each communication link by computing the gradients

Âk = −
∂WSRUL

k

∂Tk

∣∣∣
T̂,Q̂

, B̂k = −∂WSRDL

∂Tk

∣∣∣
T̂,Q̂

, (4.14a)

Ĉj = −
∂WSRDL

j

∂Qj

∣∣∣
T̂,Q̂

, D̂j = −∂WSRUL

∂Qj

∣∣∣
T̂,Q̂

, (4.14b)

with respect to the transmit covariance matrices Tk and Qj can be written as

WSRUL
k

(
Tk, T̂, Q̂

)
= WSRUL

k
(T̂, Q̂)− Tr

((
Tk − T̂k

)
Âk

)
, (4.15a)

WSRDL
(
Tk, T̂, Q̂

)
= WSRDL(T̂, Q̂)− Tr

((
Tk − T̂k

)
B̂k

)
, (4.15b)

WSRDL
j

(
Qj , Q̂, T̂

)
= WSRDL

j
(T̂, Q̂)− Tr

((
Qj − Q̂j

)
Ĉj

)
, (4.15c)

WSRUL
(
Qj , Q̂, T̂

)
= WSRUL(T̂, Q̂)− Tr

((
Qj − Q̂j

)
D̂j

)
. (4.15d)
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Âk =
∑

i∈U ,i ̸=k
wi

(
HH
k FRF

[
R̂i(T̂, Q̂)−1− R̂i(T̂, Q̂)−1 − β0 diag

(
R̂i(T̂, Q̂)−1

− R̂i(T̂, Q̂)−1
)]

FHRFHk − ki diag
(
HH
k FRF

(
R̂i(T̂, Q̂)−1 − R̂i(T̂, Q̂)−1

)
FHRFHk

))
,

(4.16a)

B̂k =
∑
l∈D

wl

(
HH
l,k

[
R̂l(T̂, Q̂)−1 − R̂l(T̂, Q̂)−1 − βj diag

(
R̂l(T̂, Q̂)−1

− R̂l(T̂, Q̂)−1
)]

Hl,k − kk diag
(
HH
l,k

(
R̂l(T̂, Q̂)−1 −Rl(T̂, Q̂)−1

)
Hl,k

))
,

(4.16b)

Ĉj =
∑

n∈D,n̸=j
wn

(
HH
n

[
R̂n(T̂, Q̂)−1 − R̂n(T̂, Q̂)−1 − βn diag

(
R̂n(T̂, Q̂)−1

− R̂n(T̂, Q̂)−1
)]

Hn − k0 diag
(
HH
n (R̂n(T̂, Q̂)−1 − R̂n(T̂, Q̂)−1

)
Hn

)
,

(4.16c)

D̂j =
∑
m∈U

wm

(
HH

0 FRF

[
R̂m(T̂, Q̂)−1− R̂m(T̂, Q̂)−1− β0 diag

(
R̂m(T̂, Q̂)−1− R̂m(T̂, Q̂)−1

)]
FHRFH0 − k0 diag

(
HH

0 FRF

(
R̂m(T̂, Q̂)−1 − R̂m(T̂, Q̂)−1

)
FHRFH0

))
,

(4.16d)

max
U,V

GRFFRF

∑
k∈U

[
wklndet

(
I+UH

k H
H
k FRFR

−1
k

FHRFHkUk

)
− Tr

(
UH
k

(
Âk + B̂k

)
Uk

)]
+

∑
j∈D

[
wj lndet

(
I+VH

j GH
RFH

H
j R

−1
j

HjGRFVj

)
− Tr

(
VH
j GH

RF

(
Ĉj + D̂j

)
GRFVj

)]
s.t. (4.12b)− (4.12g)

(4.17)

We remark that the tangent expressions (4.15a)-(4.15d) constitute a touching lower
bound for WSRUL

k
,WSRDL

j
,WSRDL and WSRUL, respectively. Hence, the DC program-

ming approach is also a MM approach, regardless of the restatement of the transmit
covariance matrices Tk and Qj as a function of the beamformers.

Theorem 3. The gradients Âk and B̂k which linearize WSRUL
k

and WSRDL, respectively,

with respect to Tk, ∀k ∈ U , and the gradients Ĉj and D̂j which linearize WSRDL
j

and

WSRUL, respectively, with respect to Qj, ∀j ∈ D, with the first order Taylor series
expansion are given in (4.16).

Proof. Please see Appendix B.
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4.3.1 Concave Reformulation

In this section, we simplify the non-concave WSR maximization problem (4.12). By using
the gradients (4.16), (4.12) can be reformulated as (4.17), given at the top of the this
page.

Lemma 4.3.1. The WSR maximization problem (4.12) for a single-cell mmWave FD
system with multi-antenna users reformulated at each iteration with its first-order Taylor
series expansion as in (4.17) is a concave reformulation for each link.

Proof. The optimization problem (4.12) restated as in (4.17) for each link is made of
a concave part, i.e., log(·), and a linear part, i.e., Tr(·). Since a linear function is
simultaneously concave and non-concave, (4.17) results to be concave for each link.

Remark 2: The problem (4.12) and its reformulated version (4.17) have the same KKT
conditions and therefore any sub-optimal (optimal) solution of (4.17) is also sub-optimal
(optimal) for (4.12).

Let Ψ0 = diag([ψ1, ..., ψM0 ]) and Ψk = diag([ψk,1, ..., ψk,Mk
]), denote diagonal matri-

ces containing the Lagrange multipliers associated with per-antenna power constraints for
the FD BS and UL user k, respectively. Let l0 and l1, ..., lK denote the Lagrange multipli-
ers associated with the sum-power constraint for FD BS and K UL users, respectively. Let
Ψ denote the collection of Lagrange multipliers associated with the per-antenna power
constraints, i.e., Ψ0 and Ψk, ∀k ∈ U . Let L denote the collection of Lagrange multipliers
associated with the sum-power constraints. Augmenting the linearized WSR maximiza-
tion problem (4.17) with the sum-power and practical per-antenna power constraints,
yields the Lagrangian (4.18), stated in the following.

L(U,V,GRF ,FRF ,Ψ,L) =
K∑
l=0

llαl +Tr
(
Ψ0Λ0

)
+

∑
u∈U

Tr
(
ΨuΛu

)
+

∑
k∈U

[
wklndet

(
I+UH

k H
H
k FRFR

−1
k

FHRFHkUk

)
− Tr

(
UH
k

(
Âk + B̂k + lkI+Ψk

)
Uk

)]
+

∑
j∈D

[
wj lndet

(
I+VH

j GH
RFH

H
j R

−1
j

HjGRFVj

)
− Tr

(
VH
j GH

RF

(
Ĉj + D̂j + l0I+Ψ0

)
GRFVj

)]

(4.18)

In (4.18), unconstrained analog beamformer and combiner are assumed and their
constraints will be incorporated later.

4.4 Hybrid Beamforming and Combining

This section presents a novel HYBF design for a multi-user mmWave mMIMO FD
system based on alternating optimization. In the following, optimization of the digital
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beamformers, analog beamformer and analog combiner is presented into separate sub-
sections. We will assume the other variables to be fixed during the alternating optimization
process while updating one variable. Information of the other variables updated during
previous iterations will be captured in the gradients.

4.4.1 Digital Beamforming

To optimize the digital beamformers, we take the derivative of (4.18) with respect to the
conjugate of Uk and Vj , which leads to the following KKT conditions

HH
k FRFR

−1
k

FHRFHkUk

(
I+UH

k H
H
k FRFR

−1
k

FHRFHkUk

)−1

−
(
Âk + B̂k +Ψk + lkI

)
Uk = 0,

(4.19a)

GH
RFH

H
j R

−1
j

HjGRFVj

(
I+VH

j GH
RFH

H
j R

−1
j

HjGRF

Vj

)−1
−GH

RF

(
Ĉj + D̂j +Ψ0 + l0I

)
GRFVj = 0.

(4.19b)

Given (4.19a)-(4.19b), the digital beamformers can be optimized based on the result
stated in the following.

Theorem 4. The digital beamformers Uk and Vj, fixed the other variables, can be
optimized as the generalized dominant eigenvector solution of the pair of the following
matrices

Uk = Duk

(
HH
k FRFR

−1
k

FHRFHk, Âk + B̂k +Ψk + lkI
)

(4.20a)

Vj = Dvj

(
GH
RFH

H
j R

−1
j

HjGRF , G
H
RF

(
Ĉj + D̂j +Ψ0 + l0I

)
GRF

)
, (4.20b)

where Dd(·) selects d generalized dominant eigenvectors.

Proof. Please see Appendix B.1.

The generalized dominant eigenvector solution provides the optimized beamforming
directions but not power [38]. To include the optimal stream power allocation, we
normalize the columns of digital beamformers to unit-norm. This operation preserves
the optimized beamforming directions and allows to design the optimal power allocation
scheme.

4.4.2 Analog Beamforming

This section presents a novel approach to design the analog beamformer for hybrid FD
BS in a multi-user scenario to maximize the WSR. The structure of the fully connected
analog beamformer GRF is shown in Figure 2. Assuming the remaining variables to be
fixed, we first consider the optimization of unconstrained analog beamformer GRF as

max
GRF

∑
j∈D

[
wj lndet

(
I+VH

j GH
RFH

H
j R

−1
j

HjGRFVj

)
− Tr

(
VH
j GH

RF

(
Ĉj + D̂j + l0I+Ψ0

)
GRFVj

)]
.

(4.21)
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Phase Shifter

Analog Beamformer

RF chains

Tx
Array

((a)) Analog beamformer with unit-modulus phase
shifters.

Phase Shifter

Analog Beamformer

RF chains

Tx
Array

AM

((b)) Analog beamformer with amplitude modulators.

Figure 4.2: (a) All phase shifters are unit-modulus. (b) With amplitude control.

Note that from (4.17) only the terms shown in (4.21) depend on the analog combiner
GRF and information about other variables is captured in gradients Ĉj and D̂j . To
solve (4.21), we take its derivative with respect to the conjugate of GRF , which yields
the following KKT condition

HH
j R

−1
j

HjGRFVjV
H
j

(
I+VjV

H
j GH

RFH
H
j R

−1
j

Hj

GRF

)−1
−
(
Ĉj + D̂j +Ψ0 + l0I

)
GRFVjV

H
j = 0.

(4.22)

Given (4.22), the analog beamformer GRF for mmWave FD BS can be optimized as
stated in the following.

Theorem 5. The vectorized unconstrained analog beamformer vec(GRF ) can be optimized
as one generalized dominant eigenvector solution of the pair of the following matrices

vec(GRF ) = D1

(∑
j∈D

(
VjV

H
j

(
I+VjV

H
j GH

RFH
H
j R

−1
j

HjGRF

)−1)T
⊗HH

j R
−1
j

Hj ,

∑
j∈D

(
VjV

H
j

)T
⊗
(
ĉj + D̂j +Ψ0 + l0I

))
,

(4.23)
where D1(·) selects the most dominant generalized eigenvector.

Proof. Please see Appendix B.1.

Note that Theorem 5 provides the optimized vectorized unconstrained analog beam-
formerGRF and we need to reshape it with unvec(vec(GRF )). To satisfy the unit-modulus
and quantization constraints, we do GRF (m,n) = QP (∠GRF (m,n)),∀m,n. For HYBF
with AMs, the columns are first scaled to be unit-norm and the quantization constraint
is satisfied as GRF (m,n) = QA(|GRF (m,n)|)QP (∠GRF (m,n)), ∀m,n.
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4.4.3 Analog Combining

This section presents a novel approach to design the analog combiner FRF for mmWave
FD BS to serve multiple UL users. Its design is more straightforward than the analog
beamformer. Note that the trace terms appearing in (4.17) have the objective to
make beamformers’ update aware of the interference generated towards other links.
However, FRF being a combiner, does not generate any interference and therefore does
not appear in the trace terms of (4.17). Consequently, to optimize FRF , we can solve the
optimization problem (4.12) instead of using its minorized version (4.17). By considering
the unconstrained analog combiner FRF , from (4.12) we have

max
FRF

∑
k∈U

wklndet
(
R−1
k

Rk

)
. (4.24)

To solve (4.24), FRF has to combine the signal received at the antenna level of hybrid FD
BS but Rk and Rk represent the received covariance matrices after analog combining. Let
(Rant

k ) Rant
k

denote the (signal-plus) interference and noise covariance matrix received at
the antennas of FD BS, which can be obtained from (Rk) Rk given in (4.11) by omitting
FRF . After analog combining, we can recover Rk and Rk as Rk = FHRFR

ant
k FRF and

Rk = FHRFR
ant
k

FRF , respectively, ∀k ∈ U . Problem (4.24) can be restated as a function

of Rant
k and Rant

k
as

max
FRF

∑
k∈U

[
wklndet

(
FHRFR

ant
k FRF

)
− wklndet

(
FHRFR

ant
k

FRF

)]
. (4.25)

In (4.17), the trace term was only linear, which made the restated optimization
problem concave for each link. In (4.25), all the terms are fully concave. To optimize
FRF , we take the derivative with respect to the conjugate of FRF , which yields the
following KKT condition∑
k∈U

wkR
ant
k FRF

(
FHRFR

ant
k FRF

)−1
−

∑
k∈U

wkR
ant
k

FRF

(
FHRFR

ant
k

FRF

)−1
= 0. (4.26)

It is immediate from (4.26) that the unconstrained analog combiner can be optimized as
the generalized dominant eigenvector solution of the pair of sum of the received covariance
matrices at the antenna level from all the K UL users, i.e.,

FRF → DNr

(∑
k∈U

wkR
ant
k ,

∑
k∈U

wkR
ant
k

)
. (4.27)

To satisfy the unit-modulus and quantization constraints for FRF , we do FRF (m,n) =
QP (∠FRF (m,n)) ∈ P, ∀m,n. If AMs are available, the columns are scaled to be
unit-norm and quantization constraint is satisfied as

FRF (m,n) = QA(|FRF (m,n))|QP (∠FRF (m,n)),∀m,n. (4.28)
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4.4.4 Optimal Power Allocation

Given the normalized digital beamformers and analog beamformer, optimal power allo-
cation can be included while searching for the Lagrange multipliers satisfying the joint
sum-power and practical per-antenna power constraints.

Let Σ
(1)
k and Σ

(2)
k , ∀k ∈ U and Σ

(1)
j and Σ

(2)
j , ∀j ∈ D, be defined as

UH
k H

H
k FRFR

−1
k

FHRFHkUk = Σ
(1)
k , (4.29a)

UH
k

(
Âk + B̂k +Ψk + lkI

)
Uk = Σ

(2)
k , (4.29b)

VH
j GH

RFH
H
j R

−1
j

HjGRFVj = Σ
(1)
j , (4.29c)

VH
j GH

RF

(
Ĉj + D̂j +Ψ0 + l0I

)
GRFVj = Σ

(2)
j . (4.29d)

Given (5.30), the optimal stream power allocation can be included based on the result
stated in the following.

Lemma 4.4.1. Optimal power allocation for the hybrid FD BS and multi-antenna UL

users can be obtained by multiplying Σ
(1)
j and Σ

(2)
j with the diagonal power matrix Pj,

∀j ∈ D and Σ
(1)
k and Σ

(2)
k with the diagonal power matrix Pk, ∀k ∈ U , respectively.

Proof. The beamformers Uk and Vk, are computed as the generalized dominant eigenvec-

tors, which make the matrices Σ
(1)
k ,Σ

(2)
k , ∀k and Σ

(1)
j ,Σ

(2)
j , ∀j diagonal at each iteration.

Multiplying any generalized dominant eigenvector solution matrix with a diagonal matrix

still yields a generalized dominant eigenvector solution. Therefore, multiplying Σ
(1)
k ,Σ

(2)
k

with Pk, ∀k ∈ U and Σ
(1)
j ,Σ

(2)
j with Pj ,∀j ∈ D still preserves the validity of optimized

beamforming directions.

Given the optimized beamformers and fixed Lagrange multipliers, by using the result
stated in Lemma 4.4.1, stream power allocation optimization problems for UL and DL
users can be formally stated as

max
Pk

[
wklndet

(
I+Σ

(1)
k Pk

)
− Tr

(
Σ

(2)
k Pk

)]
, ∀k ∈ U , (4.30a)

max
Pj

[
wj lndet

(
I+Σ

(1)
j Pj

)
− Tr

(
Σ

(2)
j Pj

)]
, ∀j ∈ D. (4.30b)

Solving (4.30) leads to the following optimal power allocation scheme

Pk =
(
wk

(
UH
k

(
Âk + B̂k +Ψk + lkI

)
Uk

)−1

−
(
UH
k H

H
k FRFR

−1
k

FHRFHkUk

)−1)+
,

(4.31a)

Pj =
(
wj

(
VH
j GH

RF

(
Ĉj + D̂j +Ψ0 + l0I

)
GRFVj

)−1

−
(
VH
j GH

RFH
H
j R

−1
j

HjGRFVj

)−1)+
,

(4.31b)
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where (X)+ = max{0,X}. We remark that the proposed power allocation scheme is
interference, SI, cross-interference and LDR noise aware as it takes into account their
effect in the gradients, which are updated at each iteration. Fixed the beamformers,
we can search for multipliers satisfying the joint constraints while doing water-filling
for powers. To do so, consider the dependence of Lagrangian (4.18) on multipliers and
powers as

L(Ψ,L,P) =
K∑
l=0

llpl +Tr
(
Ψ0Λ0

)
+

∑
u∈U

Tr
(
ΨuΛu

)
+

∑
k∈U

[
wklndet

(
I+Σ

(1)
k Pk

)
− Tr

(
Σ

(2)
k Pk

)]
+

∑
j∈D

[
wj lndet

(
I+Σ

(1)
j Pj

)
− Tr

(
Σ

(2)
j Pj

)]
,

(4.32)

where P is the set of stream powers in UL and DL. The multipliers in Ψ and L should be
such that the Lagrange dual function (5.19) is finite and the values of multipliers should
be strictly positive. Formally, Lagrange multipliers’ search problem can be stated as

min
Ψ,L

max
P

L
(
Ψ,L,P

)
,

s.t. Ψ,L ⪰ 0.
(4.33)

The dual function max
P

L(Ψ,L,P) is the pointwise supremum of a family of functions

of Ψ,L, it is convex [40] and the globally optimal values for Ψ and L can be obtained
by using any of the numerous convex optimization techniques. In this work, we adopt
the Bisection algorithm to search the multipliers. Let M0 = {λ0, ψ1, .., ψM0} and
Mk = {λk, ψk,1, .., ψk,Mk

} denote the sets containing Lagrange multipliers associated
with the sum-power and practical per-antenna power constraints for FD BS and UL user
k ∈ U , respectively. Let µi and µi denote the lower and upper bound for the search range
of multiplier µi, where µi ∈ M0 or µi ∈ Mk. While searching multipliers and performing
water-filling for powers, the UL and DL power matrices become non-diagonal. Therefore,
we consider the SVD of power matrices to shape them back as diagonal. Namely, let Pi

denote the power matrix for user i, where i ∈ U or i ∈ D. When Pi becomes non-diagonal,
we consider its SVD as

[UPi ,DPi ,VPi ] = SVD(Pi). (4.34)

where UPi ,DPi and VPi are the left unitary, diagonal and right unitary matrices, respec-
tively, obtained with the SVD decomposition, and we set Pi = DPi to obtain diagonal
power matrices.

For unit-modulus HYBF, the complete alternating optimization based procedure to
maximize the WSR based on MM is formally stated in Algorithm 1. For HYBF with AMs,
the steps ∠GRF and ∠FRF must be omitted and amplitudes of the analog beamformer
and combiner must be quantized with QA(·). Once the proposed algorithm converges, all
the combiners can be chosen as the MMSE combiners, which will not affect the WSR
achieved with Algorithm 1 (4)− (9) [64].
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Algorithm 8 Practical Hybrid Beamforming Design

Given: The CSI and rate weights.
Initialize: GRF ,Vj , ∀j ∈ D and Uk,∀k ∈ U .
Set: µi = 0 and µi = µimax ∀i ∈ M0 or ∀i ∈ Mk, ∀k ∈ U
Repeat until convergence

Compute GRF (4.23), unvec(GRF ) and GRF = ∠GRF .
Compute FRF with (4.27), and do FRF = ∠FRF .
for: j = 1 : J

Compute Ĉj , D̂j with (4.16)
Compute Vj with (4.20b) and normalize it

end
Set: µ0 = 0 and µ0 = µimax ∀i ∈ M0

for: ∀µ0 ∈ M0

Repeat until convergence
set µ0 = (µ0 + µ0)/2
Compute Pj with (4.31b) ∀j
if constraint for µ0 is violated
set µ0 = µ0,

else µ0 = µ0
[UPj ,DPj ,VPj ] = SVD(Pj),∀j
Set Pj = DPj and Qj = GRFVjPjV

H
j GH

RF , ∀j
for: k = 1 : K

Compute Âk, B̂k with (4.16)
Compute Uk with (4.20a) and normalize it
Set: µk = 0 and µk = µlmax

for: ∀µk ∈ Mk

Repeat until convergence
set µk = (µk + µk)/2
Compute Pk with (4.31a).
if constraint for µ0 is violated
set µk = µk

else µk = µk
[UPk

,DPk
,VPk

] = SVD(Pk)
Set Pk = DPk

and Tk = UkPkU
H
k

Repeat
Quantize ∠GRF and ∠FRF (|GRF | and |FRF | with AMs)

4.4.5 Convergence

In our context, the ingredients required to prove the convergence are minorization
[26], alternating or cyclic optimization [26], Lagrange dual function [40], saddle-point
interpretation [40] and KKT conditions [40]. For the WSR cost function (4.12), we
construct its minorizer as in (4.15a), (4.15b), (4.15c), (4.15d), which restates the WSR
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maximization as a concave problem (4.17) for each link. The minorizer is a touching
lower bound for the original WSR problem (4.12), so we can write

WSR ≥ WSR = WRULk +WSRUL
k

+WRDLj +WSRDL
j
. (4.35)

The minorizer, which is concave in Tk and Qj , still has the same gradient of the original
WSR and hence the KKT conditions are not affected. Reparameterizing Tk or Qj in
terms of Uk, ∀k ∈ U and GRF or Vj , ∀j ∈ D, respectively, as in (5.10) with the optimal
power matrices and adding the power constraints to the minorizer, we get the Lagrangian
(4.18). Every alternating update of L for Vj , GRF , Uk,∀j ∈ D,∀k ∈ U or for P,Λ,Ψ
leads to an increase of the WSR, ensuring convergence. For the KKT conditions, at the
convergence point, the gradients of L for Vj ,GRF , Uj or P correspond to the gradients
of Lagrangian (4.12), i.e., for the original WSR problem. For fixed analog and digital
beamformers, L is concave in P, hence we have a strong duality for the saddle point, i.e.

max
P

min
L,Ψ

.L
(
L,Ψ,P

)
. (4.36)

Let X∗ and x∗ denote the optimal solution for matrix X or scalar x at the convergence,
respectively. When Algorithm 1 converges, solution of the following optimization problem

min
Λ,Ψ

L
(
V∗,G∗,U∗,P∗,L,Ψ

)
(4.37)

satisfies the KKT conditions for powers in P and the complementary slackness conditions

l∗0

(
α0 −

∑
j∈D

Tr
(
G∗
RFV

∗
jP

∗
jV

∗H
j G∗H

RF

))
= 0, (4.38a)

Tr
(
Ψ∗

0

(
P0 −

∑
j∈D

Tr
(
G∗
RFV

∗
jP

∗
jV

∗H
j G∗H

RF

)))
= 0, (4.38b)

l∗k

(
αk − Tr

(
U∗
kP

∗
kU

∗H
k

))
= 0, (4.38c)

Tr
(
Ψ∗
k

(
Pk − Tr

(
U∗
kP

∗
kU

∗H
k

)))
= 0, (4.38d)

where all the individual factors in the products are non-negative, and for per-antenna
power constraints Ψ∗

0 and Ψ∗
k, the sum of non-negative terms being zero implies all terms

result to be zero.

Remark 3: The unit-modulus HYBF scheme converges to a local optimum where
∠GRF (m,n),∠FRF (m,n)∈ P with |GRF (m,n)|, |FRF (m,n)|=1,∀m,n. Unconstrained
HYBF with AMs converges to a different local optimum, where ∠GRF (m,n),∠FRF (m,n) ∈
P and |GRF (m,n)|, |FRF (m,n)| ∈ A, ∀m,n. Due to quantization, GRF and FRF ob-
tained with Algorithm 1 tend to lose their optimality and consequently achieve less WSR
compared to their infinite resolution case. For unit-modulus HYBF, the loss in WSR
depends only on the resolution of phases. For HYBF with AMs, the loss in WSR depends
on the resolution of both the amplitudes and phases.

83



Chapter 4. Hybrid Beamforming for Single-Cell Massive MIMO Millimeter Full Duplex

0 10 20 30 40 50 60

Number of Iteration

40

45

50

55

60

65

70

W
ei

gh
te

d 
S

um
-R

at
e 

[b
ps

/H
z]

Fully Digital

HYBF-32RF

Figure 4.3: Typical convergence behaviour of the proposed HYBF for mmWave mMIMO FD system.

4.4.6 Complexity Analysis

In this section, we analyze the per-iteration computational complexity of Algorithm
1, assuming that the dimensions of antennas get large. Its one iteration consists in
updating K and J digital beamformers for the UL and DL user, respectively, and one
analog beamformer and combiner for the FD BS. One dominant generalized eigenvector
computation to update analog beamformer GRF from a matrix of size MtM0 ×MtM0

in (4.23), is O
(
M2

0M
2
t

)
. To update the gradients Âk and B̂k for one UL user, the

complexity is given by O((K − 1)N3
r ) and O(JN3

j ), respectively. For the gradient Ĉj

and D̂j , required to update the beamformer of j-th DL user, computational complexity
is O((J − 1)N3

j ) and O(KN3
r ), respectively. Updating the beamformers of k-th UL and

j-th DL users as the generalized dominant eigenvectors adds additional complexity of
O(ukM

2
k ) and O(vjN

2
j ), respectively. The Lagrange multipliers’ update associated with

the per-antenna power constraints for FD BS and UL users is linear in the number
of antennas M0 or Mk, respectively. However, as we jointly perform the multipliers’
search and power allocation, it adds O(v3i ), where i ∈ D or i ∈ U , which can be ignored.
Updating the analog combiner FRF for FD BS is O(NrN

2
0 ). Under the assumption that

the dimensions of antennas get large, the per-iteration complexity is

≈ O(K2N3
r +KJN3

j + J2N3
j + JKN3

r +M2
0M

2
t +NrN

2
0 ), (4.39)

which depends on the size of the antennas and number of UL and DL users served by the
mmWave FD BS.
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4.5 Simulation Results

This section presents simulation results to evaluate the performance of the proposed
HYBF scheme. For comparison, we define the following benchmark schemes:

a) A Fully digital HD scheme with LDR noise, serving the UL and DL users with time
division duplexing. Being HD, it is neither affected by the SI nor by the cross-interference.

b) A Fully digital FD scheme with LDR noise. This scheme sets an upper bound for
the maximum achievable gain by a hybrid FD system.

Hereafter, HYBF designs with the unit-modulus constraint and with AMs are denoted
as HYBF-UM and HYBF-AMs, respectively. We define the signal-to-noise-ratio (SNR)
for the mmWave mMIMO FD system as

SNR = α0/σ
2
0, (4.40)

where the scalars α0 and σ20 denote the total transmit power and thermal noise
variance for FD BS, respectively. We set the thermal noise level for DL users to be
σ20 = σ2j , ∀j, and the transmit power for UL users as α0 = αk, ∀k. We consider the total
transmit power normalized to 1 and choose the noise variance based on desired SNR. To
compare the gain of a FD system over a HD system, we define the additional gain in
percentage as

Gain =
WSRFD −WSRHD

WSRHD
× 100 [%], (4.41)

where WSRFD and WSRHD denote the WSR of a FD and HD system, respectively.
To evaluate the performance, we set the per-antenna power constraints for FD BS
and UL users as the total transmit power divided by the number of antennas, i.e.
α0/M0I and αk/MkI, ∀k. The BS and users are assumed to be equipped with a uniform
linear array (ULA) with antennas separated by half-wavelength. The transmit and
receive antenna array at the BS are assumed to be placed D = 20 cm apart, with the
relative angle Θ = 90◦, and rm,n is modelled as (9) [54]. The Rician factor κ for the SI
channel is set to be 1. We assume that the FD BS has M0 = 100 transmit and N0 = 50
receive antennas. It serves two UL and two DL users with Mk = Nj = 5 antennas
and with 2 data streams for each user. The phases for both designs are quantized
in the interval [0, 2π] with an 8-bit uniform quantizer QP (·). For HYBF with AMs,
the amplitudes are uniformly quantized with a 3-bit uniform quantizer QA(·) in the
interval [0, amax], where amax = max{|max{GRF }|,max{|FRF |}} is the maximum of the
maximum modulus of GRF or FRF . We assume the same LDR noise level for the users
and FD BS, i.e. k0 = β0 = κk = βj . The rate weights for the UL and DL users are
set to be 1. Aforementioned simulation parameters are summarized in Table 4.2. The
digital beamformers are initialized as the dominant eigenvectors of the channel covariance
matrices of the intended users. Analog beamformer and combiner are initialized as the
dominant eigenvectors of the sum of channel covariance matrices across all the UL and

85



Chapter 4. Hybrid Beamforming for Single-Cell Massive MIMO Millimeter Full Duplex

Table 4.2: Simulation parameters to simulate the multi-user mmWave FD system.

Simulation Parameters

UL and DL users K,J 2

Data streams vj ,uk 2

Antennas for the BS M0, N0 100, 50

Clusters and Paths Nc,Np 3,3

RF chains (BS) Mt = Nr 8,10,16 or 32

User antennas Mk = Nj 5

Rician Factor κ 1

Tx and Rx array response ar,at ULA,ULA

Angles ϕk,ϕj ,θk,θj U∼ [−30◦, 30◦]

Rate weights wk, wj 1

Uniform Quantizer QP (·),QA(·) 8, 3 bits

Angle between Tx and Rx ar-
ray (BS)

Θ 90◦

Antenna array separation
(BS)

D 20 cm

Per-antenna power constraint Λk,Λ0 αk/MkI,α0/M0 I

DL users, respectively. Note that as we assume perfect CSI, the SI can be cancelled with
HYBF only up to the LDR noise level, which represents the residual SI.

Figure 4.4 shows the achieved average WSR with the proposed HYBF designs as
a function of the LDR noise with SNR = 0 dB. The fully digital FD scheme achieves
an additional gain of ∼ 97% over a fully digital HD scheme. The impact of different
LDR noise levels on the maximum achievable WSR for a mmWave FD system with
different number of RF chains is also shown. For k0 ≤ −40 dB, HYBF-UM and HYBF-
AMs achieve an additional gain of ∼ 85%, 64%, 42%, 3% and ∼ 89%, 74%, 60%, 28%
with 32, 16, 10, 8 RF chains, respectively. We can see that as the LDR noise variance
increases, achievable WSR for both the hybrid FD and fully digital HD system degrades
severely. Figure 4.5 shows the achieved average WSR as a function of the LDR noise
with SNR = 40dB. For k0 ≤ −80 dB, HYBF-UM and HYBF-AMs achieve an additional
gain of ∼ 65%, 55%, 41%, 15% and ∼ 67%, 62%, 55%, 26% with 32, 16, 10, 8 RF chains,
respectively, and increasing the LDR noise variance degrades the achieved average WSR.
By comparing Figure 4.4 with Figure 4.5, we can see that at low SNR, HYBF-UM with
only 8 RF chains performs close to the fully digital HD scheme. As the SNR increases to
40 dB, HYBF-UM with 8 RF achieves an additional gain of ∼ 15%. HYBF-AMs with
only 8 RF chains outperforms the fully digital HD scheme for all the SNR levels. Figures
4.4-4.5 also show that HYBF-AMs with 10 RF chains achieves similar average WSR as
the HYBF-UM with 16 RF chains. It is interesting to observe that increasing the SNR
from 0 dB to 40 dB decreases the thermal noise variance and the LDR noise variance
dominates the noise floor already with k0 = −80 dB at SNR= 40 dB. For SNR= 0 dB,
the LDR noise variance dominates only for k0 > −40 dB. From this observation, we can
conclude that hardware with a low LDR noise is required to benefit from a high SNR in
the mmWave FD systems.
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Figure 4.5: Average WSR as a function of the LDR noise with SNR = 40 dB.
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Figure 4.4: Average WSR as a function of the LDR noise with SNR = 0 dB.

Figure 4.6 shows the average WSR with a low LDR noise level κ0 = −80 dB with
32, 16, 10 and 8 RF chains as a function of the SNR. Both the proposed designs perform
very close to the fully digital FD scheme with 32 RF chains. HYBF-UM and HYBF-AMs
outperform the fully digital HD scheme with only 8 RF chains at high SNR and at any
SNR level, respectively. It is evident the advantage of AMs, which add additional gain
for all the SNR levels when the number RF chains at the FD BS is small. With a high
number of RF chains, digital beamforming has enough amplitude manipulation liberty to
manage the interference and adding AMs does not bring further improvement. Figure 4.7
shows the average WSR achieved with a moderate LDR noise level κ0 = −60 dB. We can
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Figure 4.6: Average WSR as a function of the SNR with LDR noise k0 = −80 dB.
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Figure 4.8: Average WSR as function of the SNR with LDR noise k0 = −40 dB.

see that for a low SNR, the achieved average WSR results to be similar as reported in
Figure 4.6. At high SNR, the LDR noise variance starts dominating, which leads to less
achieved average WSR compared to the case of Figure 4.6. Figure 4.8 shows the achieved
WSR as a function of the SNR with a very large LDR noise variance of κ0 = −40 dB. By
comparing the results reported in Figure 4.8 and Figures 4.6-4.7, we can see that the
LDR noise variance dominates for most of the considered SNR range. For a very low
SNR, the achieved WSR is similar as reported in Figures 4.6-4.7. However, as the SNR
increases, it does not map into higher WSR. It is clear that the maximum achievable
WSR with κ0 = −40 dB saturates already at SNR= 20 dB for both the HD and FD
systems. Further improvement in the SNR does not dictate into higher WSR. When
the LDR noise variance dominates, it acts as a ceiling to the effective received-signal-to-
LDR-plus-thermal-noise-ratio (RSLTR). The transmit and receive LDR noise variance is
proportional to the total transmit power per-antenna and received power per RF chain
after the analog combining, respectively. When the LDR noise variance is large, the
thermal noise variance has a negligible effect on the effective RSLTR. Consequently, a
decrease in the thermal noise variance (increasing SNR) does not dictate a better WSR.

Figure 4.9 shows the achievable performance of HYBF-UM and HYBF-AMs as a
function of the RF chains with SNR= 20 dB, in comparison with the benchmark schemes,
with very high and very small LDR noise levels. In particular, with very high LDR
noise kk = −40 dB and 8 RF chains, HYBF-UM and HYBF-AMs perform close to the
fully HD system, and an increase in the number of RF chains improves the performance,
which tends towards the achieved WSR by a fully digital FD system with LDR noise
level kk = −40 dB. Similar behaviour can be observed for the case of low LDR noise
kk = −80 dB. Both the proposed schemes achieve higher WSR with the same number of
RF chains in the latter case. We can also see that AMs add additional gain with a low
number of RF chains, and as the number of RF chains increase, the gap in the achievable
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Figure 4.9: Average WSR as a function of the RF chains with LDR noise k0 = −80 dB and k0 = −40 dB
at SNR= 20 dB.

WSR with HYBF-AMs and HYBF-UM closes. In particular, with 32 RF chains, the
difference in the WSR with or without AMs becomes negligible.

From the results reported in Figures 4.4-4.9, we can conclude that the proposed
HYBF schemes achieve significant performance improvement, in terms of average WSR,
compared to a fully digital HD system. LDR noise plays a key role in determining the
maximum achievable WSR for both the FD and HD systems. Figures 4.4-4.5 shows how
an increase in the LDR noise variance degrades the average WSR at low and high SNR
levels. Figures 4.6-4.7 shows that with a large to moderate dynamic range, the LDR noise
degrades the performance only at very high SNR. Figure 4.8 shows the achieved WSR as
a function of a very large LDR noise variance. In that case, it is observed that the WSR
saturates at SNR= 20 dB and further improvement in the SNR does not dictate higher
WSR. From Figure 4.9, it is clear how the number of RF chains at the mmWave FD BS
affects the achievable WSR with different LDR noise levels and with or without the AMs.

4.6 Conclusions

This chapter has presented a novel HYBF design to maximize the WSR in a single-cell
mmWave FD system with multi-antenna users and suffering from LDR noise. The
beamformers were designed under the joint sum-power and the practical per-antenna
power constraints. Simulation results showed that the multi-user mmWave FD systems
can outperform the fully digital HD system with only a few RF chains. The advantage
of having amplitude control at the analog processing stage is also investigated, and the
benefit resulted to be evident with a small number of RF chains. Achievable average
WSR with different levels of the LDR noise variance is also investigated, and the proposed
HYBF designs outperformed the fully digital HD system at any LDR noise level.
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Chapter 5

Hybrid Beamforming for Millimeter
Wave Multi-Cell Massive MIMO Full
Duplex

5.1 Introduction and Motivation

In wireless communications, the multi-cell FD scenario is the most challenging one as
the interference escalates drastically compared to a multi-cell HD system. Besides the
interference of an HD system and SI, the DL users in FD also experience UL CI from
all the UL users transmitting in-cell, i.e., in the same cell, and out-cell, i.e., in the
neighbouring cells. Moreover, the neighbouring BSs generate DL BS-to-BS CI towards
the receive antennas of the FD BSs, already affected by the SI and interference. Fig.
5.1 highlights the difference in the interference contributions between the multi-cell HD
and FD systems. It is also clear from Fig. 5.1 that the multi-cell FD systems require
significant CSI compared to a multi-cell HD system. By shifting the FD paradigm
towards the mmWave, the size of direct, SI, interference and CI channel matrices with
multi-antenna users becomes massive. To manage interference, C-HYBF schemes will
need to transfer a vast amount of CSI to the central node every channel coherence time to
optimize the beamformers and combiners, e.g., based on a multi-hop communication if the
central node is located far from the FD network. It results in tremendous communication
overhead and the central node also requires a very high computational power to optimize
many variables jointly, both for the UL and DL users. The optimized variables need to be
communicated back to the FD BSs via feedback and each FD BS has to also communicate
the optimized beamformers and combiners to its UL and DL users, respectively. For
any C-HYBF design, the whole procedure must be executed at the millisecond scale.
Given the vast amount of CSI and required computational complexity for FD, it is clearly
prohibitive.

Distributed beamforming [83, 84, 85] can eliminate the problem of transferring com-
plete CSI to the central node and reduce computational complexity by decomposing
the global optimization problem into per-cell local optimization problems. Distributed
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Figure 5.1: Multi-cell mMIMO HD and FD systems with a significant difference in the interference
contributions and therefore required amount of CSI.

solutions can be implemented in a non-cooperative fashion [86], or in a cooperative
way [87] by exchanging information among the BSs. Per-link parallel and distributed
(P&D) [88, 89, 90] beamforming can push further the potential of distributed designs by
decomposing the global optimization problem into per-link independent local optimiza-
tion sub-problems. Therefore, each BS can have the advantage of solving independent
sub-problems associated with its communication links separately and simultaneously on
different computational processors. Such designs can lead to an exceptionally computa-
tionally efficient implementation as the global complexity can be decomposed on multiple
processors of each FD BS. If the number of processors available at each BS equals the
number of variables to be updated, then all the variables could be optimized in one shot at
each iteration, thus escaping the time-consuming alternating optimization.For a detailed
discussion about the literature on mmWave FD systems we refer the reader to previous
chapter [24, 25, 65, 52, 53, 54, 55, 56, 57, 44, 49, 45, 66, 67, 68, 69, 70, 71, 72]. We
remark that the literature does not contain any contribution for the mmWave multi-cell
mMIMO FD system with multi-antenna UL and DL users. Moreover, no P&D-HYBF
design, neither for FD nor for HD systems, has ever been presented.

5.1.1 Main Contributions

We consider the problem of HYBF for WSR maximization in a multi-cell mMIMO
mmWave FD network. The BSs and users are assumed to be operating in the FD and
HD mode, respectively, and suffering from the LDR noise due to non-ideal hardware [91].
The FD BSs are assumed to have a massive number of antennas and HYBF capability
with fully connected analog beamformers and combiners. Discrete phase-shifters are
assumed for the analog stage at the FD BSs. The users are assumed to have a limited
number of antennas, fully digital processing capability and are being served with multiple
streams by its hybrid FD BS.
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Firstly, we present a novel C-HYBF scheme based on alternating optimization, which
relies on the mathematical tools offered by the MM optimization technique [26]. However,
being centralized, it requires massive computational power to optimize numerous variables
jointly. Moreover, complete CSI needs to be transferred to the central node every channel
coherence time, and the variables can be optimized only at one computational processor
based on alternating optimization. Analysis shows that its complexity scales quadratically
as a function of the network size and density, which can limit its scalability. To overcome
these drawbacks, we introduce the concept of per-link parallel and distributed HYBF
for mmWave and propose a very low-complexity and cooperative P&D-HYBF design
for a multi-cell mMIMO FD system. By decomposing the global WSR maximization
problem into per-link WSR sub-problems, P&D-HYBF enables each multi-processor FD
BS to update multiple variables simultaneously. Analysis shows that its complexity is
significantly less than the C-HYBF, which scales only linearly as the network size grows,
making it desirable for the next generation of large and dense mmWave FD systems.1

Simulation results show that the P&D-HYBF scheme achieves similar WSR as the
C-HYBF, despite being a distributed design. Both designs converge in a few iterations,
which results in a minimal amount of data exchange for the P&D-HYBF. Results are
reported with different LDR noise levels, and both designs significantly outperform the
fully digital HD system with only a few RF chains at any level.

In summary, the contributions of our work are:

• Introduction of the WSR maximization problem formulation for a multi-cell mMIMO
mmWave FD system under LDR.

• Novel C-HYBF scheme for the multi-cell mMIMO mmWave FD system.

• Introduction to the parallel and distributed approach for HYBF in mmWave with
the P&D-HYBF design.

• Despite being a distributed design, the P&D-HYBF scheme achieves a similar WSR
as the C-HYBF scheme. It possesses all the characteristics to be implemented in a
real-time, large and dense multi-cell mMIMO mmWave FD network. It is highly
scalable, and converges in a few iterations, thus requiring a minimal communication
overhead.

• Simulation results show that both designs outperform the fully digital HD with
only a few RF chains at any LDR noise level.

5.2 System Model

Let B = {1, ...., B} denote the set containing the indices of B FD BSs serving in B cells.
Let Db = {1, ...,Db} and Ub = {1, ..., Ub} denote the sets containing the indices of Db

DL and Ub UL multi-antenna HD users communicating with BS b ∈ B. The DL user

1Proposed P&D-HYBF is also applicable to the multi-cell HD or dynamic time division duplexing
scenarios [73, 74, 92, 7], which are a special case of the multi-cell FD systems.
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jb ∈ Db and UL user kb ∈ Ub are assumed to have Njb receive and Mkb transmit antennas,
respectively. The BS b ∈ B is assumed to have MRF

b and NRF
b transmit and receive

RF chains, respectively, and Mb and Nb transmit and receive antennas, respectively.
We denote with Vjb ∈ CMRF

b ×djb and Ukb ∈ CMkb
×dkb the digital beamformers for the

white unitary variance data streams sjb ∈ Cdjb×1 and skb ∈ Cdkb×1 transmitted for

DL user jb ∈ Db and from UL user kb ∈ Ub, respectively. Let GRF
b ∈ CMb×MRF

b and

FRFb ∈ CNRF
b ×Nb denote the fully connected analog beamformer and analog combiner for

FD BS b, respectively. In practice, as the analog stage can assume only discrete values, let
Pb = {1, ei2π/nb , ei4π/nb , ..., ei2πnb−1/nb} denote the set of nb possible discrete values that
the unit-modulus phasors of GRF

b and FRFb can assume. We also define the quantizer
function Qb(·) to quantize the infinite resolution unit-modulus phasors of GRF

b (FRFb )
such that Qb(∠GRF

b )(Qb(∠FRFb )) ∈ Pb.
The users and BSs are assumed to be suffering from the LDR noise due to non-ideal

hardware. The LDR noise for UL user kb ∈ Ub and DL user jb ∈ Db is denoted as ckb
and ejb , respectively, and modelled as [37]

ckb ∼ CN
(
0Mkb

×1, kkb diag
(
UkbU

H
kb

))
, (5.1)

ejb ∼ CN
(
0Njb

×1, βjb diag
(
Φjb

))
, (5.2)

where kkb ≪ 1, βjb ≪ 1,Φjb = Cov(rjb) and rjb denotes the undistorted received signal
by DL user jb ∈ Db. Let cb and eb denote the transmit and receive LDR noise for BS b,
respectively, which is modelled as [91]

cb ∼ CN
(
0Mb×1, kb diag

( ∑
nb∈Db

GbVnb
VH
nb
GH
b

))
, (5.3)

eb ∼ CN
(
0NRF

b ×1, βb diag
(
Φb

))
, (5.4)

where kb ≪ 1, βb ≪ 1,Φb = Cov(rb) and rb denotes the undistorted received signal by BS
b after the analog combiner FRFb . The thermal noise for BS b and DL user jb is denoted
as nb ∼ CN (0Nb×1, σ

2
b I) and njb ∼ CN (0Njb

×1, σ
2
jb
I), respectively.

5.2.1 Channel Modelling

Let Hjb ∈ CNjb
×Mb and Hkb ∈ CNb×Mkb denote the direct channels2 from BS b ∈ B to DL

user jb ∈ Db and form UL user kb ∈ Ub to BS b, respectively. Let Hjb,kb ∈ CNjb
×Mkb and

Hjb,kc ∈ CNjb
×Mkc denote the in-cell UL CI channel for DL user jb ∈ Db from UL user

kb ∈ Ub and the out-cell UL CI channel for DL user jb ∈ Db from UL user kc ∈ Uc, with
b ̸= c, respectively. Let Hjb,c ∈ CNjb

×Mc and Hb,kc ∈ CNb×Mkc denote the interference
channels from BS c ∈ B to DL user jb ∈ Db and from UL user kc ∈ Uc to BS b, respectively,
with c ̸= b. Let Hb,c ∈ CNb×Mc denote the DL BS-to-BS CI channel from BS c ∈ B to BS

2We assume perfect CSI, which can be obtained as in [81] and it is a part of the ongoing research for
mmWave FD [93].
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b ∈ B. The SI channel for BS b is denoted as Hb,b ∈ CNb×Mb . In the mmWave frequency
band, the direct channel Hkb for UL user kb ∈ Ub can be modelled as [91]

Hkb =

√
MkbNb

Nc,bNp,b

Nc,b∑
nc,b=1

Np,b∑
np,b=1

α
(np,b,nc,b)
kb

ar,b(ϕ
np,b,nc,b

kb
)

aTt,kb(θ
np,b,nc,b

kb
),

(5.5)

where Nc,b and Np,b denote the number of clusters and number of paths for BS b

(Fig. 1 [54]), respectively, and α
(np,b,nc,b)
kb

∼ CN (0, 1) is a complex Gaussian random
variable with amplitudes and phases distributed according to the Rayleigh and uniform
distribution, respectively. The vectors ar,b(ϕ

np,b,nc,b

kb
) and at,kb(θ

np,b,nc,b

kb
) denote the receive

and transmit antenna array response for BS b and UL user kb, respectively, with the
angle of arrival (AoA) ϕ

np,b,nc,b

kb
and angle of departure (AoD) θ

np,b,nc,b

kb
. The channels

Hjb ,Hjb,kb ,Hjb,kc ,Hjb,c and Hb,kc can be modelled similarly as (5.5). The SI channel
Hb,b ∈ CNb×Mb can be modelled as [91]

Hb =

√
κb

κb + 1
HL
b +

√
1

κb + 1
HR
b . (5.6)

The matrices HL
b and HR

b denote the line-of-sight (LoS) and reflected components of
the SI channel response, respectively, and the scalar κb denotes the Rician factor. The
channel matrix HR

b can be modelled as (5.5) and element of HL
b at the m-th row and

n-th column can be modelled as [91]

HL
b (m,n) =

ρb
rm,n

e−j2π
rm,n

λ (5.7)

where ρb is the power normalization constant to assure E(||HL
b (m,n)||2F ) =MbNb, and

the scalars rm,n and λ denote distance and wavelength, respectively. A summary of the
aforementioned notations can be found Table 5.1.

5.2.2 Problem Formulation

Let yjb and ykb denote the received signal by DL user jb ∈ Db and from UL user kb at
the FD BS b after the analog combiner FRFb , respectively. By using the aforementioned
notations, they can be written as

yjb = Hjb

( ∑
nb∈Db

GRF
b Vnb

snb
+ cb

)
+ ejb + njb +

∑
kb∈Ub

Hjb,kb

(
Ukbskb + ckb

)
︸ ︷︷ ︸
UL Interference in cell b

+
∑

c∈B,c ̸=b
Hjb,c

( ∑
nc∈Dc

GRF
c Vncsnc + cc

)
︸ ︷︷ ︸

DL Interference from neighbouring BSs

+
∑

c∈B,c ̸=b

∑
kc∈Uc

Hjb,kc

(
Ukcskc + ckc

)
︸ ︷︷ ︸

UL Interference from neighbouring cells

,

(5.8)
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Table 5.1: Notations

MRF
b # of transmit RF chains for BS b

NRF
b # of receive RF chains for BS b

Mb # of transmit antennas for BS b

Nb # of receive antennas for BS b

Mkb # of transmit antennas for UL user kb
Njb # of receive antennas for DL user jb
Ukb Digital beamformer for UL user kb
Vjb Digital beamformer for DL user jb
GRF
b Analog beamformer for BS b

FRFb Analog combiner for BS b

ckb Transmit LDR noise from UL user kb
cb Transmit LDR noise from BS b

eb Receive LDR noise for BS b

ej Receive LDR noise for DL user jb
nb Thermal noise for BS b

njb Thermal noise for DL user jb
Hb SI channel for BS b

Hkb Channel between BS b and UL user kb
Hjb Channel between BS b and DL user jb
Hjb,kb CI channel between DL user jb and user kb.

Hjb,kc CI channel between DL user jb and user kc.

Hb,c CI channel between BS b and BS c.

Hjb,c Interference channel between DL user jb and BS c.

ykb = FRFb
H( ∑

kb∈Ub

Hkb

(
Ukbskb + ckb

)
+ nb +Hb,b

( ∑
jb∈Db

GRF
b Vjbsjb + cb

)
︸ ︷︷ ︸

SI

+
∑

c∈B,c ̸=b
Hb,c

( ∑
jc∈Dc

GRF
c Vjcsjc + cc

)
︸ ︷︷ ︸

BS to BS interference

+
∑

c∈B,c ̸=b

∑
kc∈Uc

Hb,kc

(
Ukcskc + ckc

)
︸ ︷︷ ︸

UL Interference from neighbouring cells

)
+ eb.

(5.9)
Let kb and jb denote the indices in sets Ub and Db without the elements kb and jb,
respectively. Let b denote the indices in set B except the element b. Let Tkb and Qjb

denote the transmit covariance matrices transmitted from UL user kb ∈ Ub and for DL
user jb ∈ Db by the BS b ∈ B, respectively, defined as

Tkb = UkbU
H
kb
, ∀kb ∈ Ub, (5.10a)

Qjb = GbVjbV
H
jb
GH
b , ∀jb ∈ Db. (5.10b)

The received (signal plus) interference and noise covariance matrices by BS b ∈ B from
the UL user kb ∈ Ub and at the DL user jb ∈ Db are denoted as (Rkb) Rkb

and (Rjb)
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Rjb =HjbQjbH
H
jb︸ ︷︷ ︸

≜Sjb

+Hjb

( ∑
nb∈Db
nb ̸=jb

Qnb

)
HH
jb
+Hjbkbdiag

( ∑
nb∈Db

Qnb

)
HH
jb
+

∑
kb∈Ub

Hjb,kb

(
Tkb

+ kkbdiag
(
Tkb

))
HH
jb,kb

+
∑
c∈B
c ̸=b

Hjb,c

( ∑
nc∈Dc

Qnc + kcdiag
(
Qnc

))
HH
jb,c

+
∑
c∈B
c̸=b

∑
kc∈Uc

Hjb,kc

(
Tkc + kkcdiag

(
Tkc

))
HH
jb,kc

+ βjbdiag
(
Φjb

)
+ σ2jbINjb

,

(5.11a)

Rkb =FRFb
H(

HkbTkbH
H
kb︸ ︷︷ ︸

≜Skb

+
∑
mb∈Ub
mb ̸=kb

Hmb
Tmb

HH
mb

+
∑
mb∈Ub

kmb
Hmb

diag
(
Tmb

)
HH
mb

+Hb,b

∑
jb∈Db

(
Qjb + kbdiag

(
Qjb

))
HH
b,b +

∑
c∈B
c ̸=b

Hb,c

∑
jc∈Dc

(
Qjc + kcdiag

(
Qjc

))
HH
b,c

+
∑
c∈B
c̸=b

∑
kc∈Uc

Hb,kc

(
Tkc + kkcdiag

(
Tkc

))
HH
b,kc + σ2b Inb

)
FRFb + βbdiag

(
Φb

)
,

(5.11b)
Rjb

= Rjb − Sjb , Rkb
= Rkb − Skb . (5.11c)

Rjb
, respectively, and can be written as (5.11a)-(5.11b), given at the top of the next

page. The matrices Sjb and Skb in (5.11a)-(5.11b) denote the useful signal covariance
matrices received by the DL user jb ∈ Db and FD BS b ∈ B from the UL user kb ∈ Ub,
respectively. The undistorted received covariance matrices Φjb (5.2) and Φb (5.4) can
be recovered from (5.11a)-(5.11c) without the receive LDR noise, i.e., with βjb = 0 and
βb = 0, respectively.

The WSR maximization problem with HYBF for a multi-cell mMIMO mmWave FD
system, serving multi-antenna Jb ∈ Db DL and Ub ∈ Ub UL users, ∀b ∈ B, under the joint
sum-power, unit-modulus and discrete phase-shifters constraints can be stated as

max
U,V,

GRFFRF

∑
b∈B

∑
kb∈Ub

wkb lndet
(
R−1
kb

Rkb

)
+
∑
b∈B

∑
jb∈Db

wjb lndet
(
R−1
jb

Rjb

)
(5.12a)

s.t. Tr
(
UkbU

H
kb

)
≤ pkb , ∀kb ∈ Ub, (5.12b)

Tr
( ∑
j∈Db

GbVjV
H
j GH

b

)
≤ pb, ∀b ∈ B, (5.12c)

GRF
b (m,n) ∈ Pb, ∀m,n & ∀b ∈ B, (5.12d)

FRFb (i, j) ∈ Pb, ∀i, j & ∀b ∈ B. (5.12e)
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The scalars wkb and wjb denote rate weights for UL user kb and DL user jb, respectively,
and the scalars pkb and pb denote sum-power constraint for UL user kb ∈ Ub and BS
b ∈ B, respectively. The collections of digital beamformers in UL and DL are denoted
as U and V, respectively, and the collections of analog beamformers and combiners are
denoted as GRF and FRF , respectively.
Remark 1: The WSR achieved with (5.12) is not affected with the minimum-mean-

squared-error (MMSE) combiners (4)− (9) [64]. Therefore, they can be omitted during
the optimization process and can be chosen as the MMSE receivers after solving (5.12).
The number of digital combiners would be equal to the number of total users in the multi-
cell FD network. By omitting them, the HYBF design simplifies and the per-iteration
computational complexity reduces significantly. Moreover, it will significantly reduce the
amount of data exchange required among the FD BSs by the P&D-HYBF.

5.3 Minorization-Maximization

Optimization problem (5.12) is non-concave in the transmit covariance matrices Tkb , ∀kb ∈
Ub, and Qjb ∈ Db, due to the interference generated towards other communication links
and finding its global optimum is very challenging. To find its sub-optimal solution, this
section presents the MM optimization method [26] to leverage alternating optimization.

The WSR problem (5.12) for the multi-cell mmWave FD system can be reformulated
with its minorizer [26] using the DC programming [94, 38]. The WSR in (5.12) can be
expressed with the weighted rate (WR) of user kb ∈ Ub (WRULkb ), user jb ∈ Db (WRDLjb ),

WSR of users kb (WSRUL
kb

) and jb (WSRDL
jb

), and WSR of all the UL and DL users in

cells different than b, denoted as WSRUL
b

and WSRDL
b

, respectively. We can express the
global network WSR as

WSR =WRULkb +WSRUL
kb︸ ︷︷ ︸

≜WSRUL
b

+WRDLjb +WSRDL
jb︸ ︷︷ ︸

≜WSRDL
b

+WSRUL
b

+WSRDL
b
,

(5.13)

where WSRULb and WSRDLb denote the UL and DL WSR for FD BS b. Considering the
dependence on the transmit covariance matrices, only WSRULkb is concave inTkb and the re-

maining terms WSRUL
kb

, WSRDLb , WSRUL
b

and WSRDL
b

are non concave in Tkb . Similarly,

only WSRDLjb is concave in Qjb and WSRDL
jb

, WSRULb ,WSRUL
b

,WSRDL
b

are non concave

in Qjb . As a linear function is simultaneously convex and concave, DC programming intro-
duces the first order Taylor series expansion of WSRUL

kb
, WSRDLb , WSRUL

b
and WSRDL

b

in Tkb , around T̂kb (i.e. around all Tkb), and for WSRDL
jb

, WSRULb ,WSRUL
b

,WSRDL
b

around Q̂jb (i.e. around all Qjb). Let T̂ and Q̂ denote the sets containing all such T̂kb

and Q̂jb , respectively. The tangent expressions by computing the gradients with respect
to the transmit covariance matrix Tkb , i.e.,

ĜUL
kb,b

= −
∂WSRUL

kb

∂Tkb

∣∣∣
T̂,Q̂

, ĜDL
kb,b

= −∂WSRDLb
∂Tkb

∣∣∣
T̂,Q̂

, (5.14a)
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max
U,V,

GRF ,FRF

∑
b∈B

∑
kb∈Ub

[
wkb lndet

(
I+UH

kb
HH
kb
FRFb R−1

kb
FRFb

H
HkbUkb

)
− Tr

(
UH
kb

(
ĜUL
kb,b

+ ĜDL
kb,b

+ ĜUL
kb,b

+ ĜDL
kb,b

)
Ukb

)]
+
∑
b∈B

∑
jb∈Db

[
wjb lndet

(
I+VH

jb
GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b Vjb

)
− Tr

(
VH
jb
GRF
b

H(
ĜUL
jb,b

+ ĜDL
jb,b

+ ĜUL
jb,b

+ ĜDL
jb,b

)
GRF
b Vjb

)]
.

(5.18a)

s.t. (5.12b)− (5.12e) (5.18b)

ĜUL
kb,b

= −
∂WSRUL

b

∂Tkb

,
∣∣∣
T̂,Q̂

ĜDL
kb,b

= −
∂WSRDL

b

∂Tkb

∣∣∣
T̂,Q̂

, (5.14b)

allow to write the following minorizers

WSRUL
kb

(
Tkb , T̂, Q̂

)
= WSRUL

kb

(
T̂, Q̂

)
− Tr

((
Tkb − T̂kb

)
ĜUL
kb,b

)
, (5.15a)

WSRDLb
(
Tkb , T̂, Q̂

)
= WSRDLb

(
T̂, Q̂

)
− Tr

((
Tkb − T̂kb

)
ĜDL
kb,b

)
, (5.15b)

WSRUL
b

(
Tkb , T̂, Q̂

)
= WSRUL

b

(
T̂, Q̂

)
− Tr

((
Tkb − T̂kb

)
ĜUL
kb,b

)
, (5.15c)

WSRDL
b

(
Tkb , T̂, Q̂

)
= WSRDL

b

(
T̂, Q̂

)
− Tr

((
Tkb − T̂kb

)
ĜDL
kb,b

)
. (5.15d)

Similarly, for the transmit covariance matrix Qjb , we have the gradients

ĜUL
jb,b

= −∂WSRULb
∂Qjb

∣∣∣
T̂,Q̂

, ĜDL
jb,b

= −
∂WSRDL

jb

∂Qjb

∣∣∣
T̂,Q̂

, (5.16a)

ĜUL
jb,b

= −
∂WSRUL

b

∂Qjb

∣∣∣
T̂,Q̂

, ĜDL
jb,b

= −
∂WSRDL

b

∂Qjb

∣∣∣
T̂,Q̂

, (5.16b)

which allow to write the minorizers

WSRULb
(
Qjb , Q̂, T̂

)
= WSRULb

(
Q, T̂

)
− Tr

((
Qjb − Q̂jb

)
ĜUL
jb,b

)
, (5.17a)

WSRDL
jb

(
Qjb , Q̂, T̂

)
= WSRDL

jb

(
Q̂, T̂

)
− Tr

((
Qjb − Q̂jb

)
ĜDL
jb,b

)
, (5.17b)

WSRUL
b

(
Qjb , Q̂, T̂

)
= WSRUL

b

(
Q̂, T̂

)
− Tr

((
Qjb − Q̂jb

)
ĜUL
jb,b

)
, (5.17c)

WSRDL
b

(
Qjb , Q̂, T̂

)
= WSRDL

b

(
Q̂, T̂

)
− Tr

((
Qjb − Q̂jb

)
ĜDL
jb,b

)
. (5.17d)

The gradients (5.14) for the UL user kb and (5.16) for the DL user jb are provided in
Appendix C.1.

The tangent expressions (5.15) and (5.17) constitute a touching lower bound for the
original WSR. Hence, the DC programming approach is also a MM approach, regardless
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L =
∑
b∈B

∑
kb∈Ub

[
wkb lndet

(
I+UH

kb
HH
kb
FRFb R−1

kb
FRFb

H
HkbUkb

)
− Tr

(
UH
kb

(
ĜUL
kb,b

+ ĜDL
kb,b

+ ĜUL
kb,b

+ ĜDL
kb,b

+ λkbI
)
Ukb

)]
+
∑
b∈B

∑
jb∈Db

[
wjb lndet

(
I+VH

jb
GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b Vjb

)
− Tr

(
VH
jb
GRF
b

H(
ĜUL
jb,b

+ ĜDL
jb,b

+ ĜUL
jb,b

+ ĜDL
jb,b

+ ψbI
)
GRF
b Vjb

)]
+
∑
b∈B

∑
kb∈Ub

λkbpkb +
∑
b∈B

ψbpb.

(5.19)

of the restatement of the transmit covariance matrices Tkb and Qjb as a function of the
beamformers. By using the gradients (5.14) and (5.16), the WSR maximization problem
with respect to the beamformers and combiners associated with each communication
link can be written as (5.18a), given at the top of this page. The KKT conditions of
(5.18) and (5.12) are the same, hence any sub-optimal or optimal solution for (5.18) is
also sub-optimal or optimal for (5.12).

Let λkb and ψb denote the Lagrange multipliers associated with the sum-power
constraint for UL user kb ∈ Ub and BS b ∈ B, respectively. Augmenting the WSR function
(5.18a) with the sum-power constraints yield the Lagrangian (5.19). Note that (5.19)
does not consider the quantization constraints on the analog beamformers and combiners,
which will be incorporated later.

5.4 Centralized Hybrid Beamforming

This section presents a novel C-HYBF design based on alternating optimization by
exploiting the tools of MM to solve (5.19) to a local optimum. Hereafter, for the sake of
a simplified explanation, we dedicate different sub-sections to optimize different variables.
However, while optimizing one variable, the remaining ones are assumed to be fixed and
their complete information is saved in the gradients, which will updated at each iteration.

5.4.1 Digital Beamforming

To optimize the digital beamformers Ukb and Vjb , we consider the remaining variables
to be fixed. By taking the derivatives of (5.19) with respect to the conjugate of Ukb and
Vjb , yield the following KKT conditions

HH
kb
FRFb

H
R−1
kb

FRFb HkbUkb

(
I+UH

kb
HH
kb
FRFb R−1

kb
FRFb

H
Hkb

Ukb

)−1 −
(
ĜUL
kb,b

+ ĜDL
kb,b

+ ĜUL
kb,b

+ ĜDL
kb,b

+ λkbI
)
Ukb = 0,

(5.20a)
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GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b Vjb

(
I+VH

jb
GH
b H

H
jb
R−1
jb

HjbG
RF
b

Vjb

)−1 −GRF
b

H(
ĜUL
jb,b

+ ĜDL
jb,b

+ ĜUL
jb,b

+ ĜDL
jb,b

+ ψbI
)
GRF
b Vjb = 0.

(5.20b)

Given the structure of the KKT conditions (5.20a)-(5.20b), the digital beamformers can
be optimized based on the result provided in the following Theorem.

Theorem 6. The WSR maximizing digital beamformers Ukb and Vjb , fixed the remaining
variables, can be obtained as the generalized dominant eigenvector solution of the pair of
the following matrices

Ukb = Ddkb

(
HH
kb
FRFb R−1

kb
FRFb

H
Hkb , Ĝ

UL
kb,b

+ ĜDL
kb,b

+ ĜUL
kb,b

+ ĜDL
kb,b

+ λkbI
)
, (5.21)

Vjb = Ddjb

(
GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b ,GRF

b
H(

ĜUL
jb,b

+ ĜDL
jb,b

+ ĜUL
jb,b

+ ĜDL
jb,b

+ ψbI
)
GRF
b

)
.

(5.22)
The matrix Dx selects x dominant generalized eigenvectors, equal to the number of data
streams.

Proof. Please see Appendix C.2.

Digital beamformers, given as the generalized dominant eigenvectors, provide the
optimized beamforming directions but not the optimal power allocation. Thus, we scale
the columns of the digital beamformers to unit-norm, which will allow designing the
optimal power allocation scheme.

5.4.2 Analog Beamforming

To design the analog beamformer GRF
b for BS b ∈ B, we assume the remaining vari-

ables fixed. By considering only the dependence of the WSR on unconstrained analog
beamformer GRF

b , simplifies (5.18a) into

max
GRF

b

∑
jb∈Db

[
wjb lndet

(
I+VH

jb
GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b Vjb

)
− Tr

(
VH
jb
GRF
b

H(
ĜUL
jb,b

+ ĜDL
jb,b

+ ĜUL
jb,b

+ ĜDL
jb,b

+ ψbI
)
GRF
b Vjb

)]
.

(5.23)

To optimize GRF
b , we take the derivative of (5.23) with respect to the conjugate of GRF

b ,
which leads to the following KKT condition∑

jb∈D
HH
jb
R−1
jb

HjbG
RF
b VjbV

H
jB

(
I+VjbV

H
jb
GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b

)−1

−
(
ĜUL
jb,b

+ ĜDL
jb,b

+ ĜUL
jb,b

+ ĜDL
jb,b

+ ψbI
)
GRF
b VjbV

H
jb

= 0.

(5.24)

Given the KKT condition (5.24), GRF
b can be optimized based on the result stated in

the following.
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Theorem 7. The vectorized unconstrained analog beamformer GRF
b , common to all the

DL users in set Db, can be optimized as one generalized dominant eigenvector solution of
the pair of the sum of following matrices

vec(GRF
b ) = D1

( ∑
jb∈Db

(
VjbV

H
jb

(
I+VjbV

H
jb
GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b

)−1)T ⊗HH
jb
R−1
jb

Hjb ,
∑
jb∈Db

(
VjbV

H
jb

)T
⊗
(
ĜUL
jb,b

+ ĜDL
jb,b

+ ĜUL
jb,b

+ ĜDL
jb,b

+ ψbI
))
,

(5.25)

Proof. The proof is provided in Appendix C.3.

The result stated in Theorem 7 optimizes the vectorized unconstrained analog beam-
former. Operation unvec(vec(GRF

b )) is required to reshape it into correct dimensions. To
meet the unit-modulus and quantization constraints, we do GRF

b = Qb(∠GRF
b ) ∈ Pb.

5.4.3 Analog Combining

Optimization of the analog combiner FRFb is more straightforward than the analog
beamformer as it does not generate any interference. Note that FRFb does not appear in
the trace operator of (5.18a). Combiners at the neighbouring FD BSs b appear only in the
gradients as we take into account the interference generated after the analog combining
stage. However, they are fixed while optimizing FRFb for BS b during the alternating
optimization process.

Given that the analog combiner FRFb does not generate any interference, the WSR is
purely concave with respect to FRFb in the received covariance matrices Rkb and Rkb

for
b ∈ B. Therefore, the original WSR maximization problem (5.12) can be considered to
optimize FRFb . By considering the dependence of the unconstrained FRFb on the WSR,
we have the following optimization problem

max
FRF

b

∑
kb∈Ub

lndet
(
R−1
kb

Rkb

)
. (5.26)

The analog combiner FRFb has to combine the received covariance matrices at the antenna
level. Let (Ra

kb
) Ra

kb
denote the (signal plus) interference and noise covariance matrices

received at the antennas of BS b ∈ B to be combined with FRFb . Given Ra
kb

and

Ra
kb

at the antenna level, Rkb and Rkb
can be recovered as Rkb = FRFb

H
Ra
kb
FRFb and

Rkb
= FRFb

H
Ra
kb
FRFb . The analog combiner FRFb , by writing (5.26) as a function of Ra

kb

and Ra
kb

and using the properties of log(·) function, can be optimized by solving

max
FRF

b

∑
kb∈Ub

[
wkb lndet

(
FRFb

H
Ra
kb
FRFb

)
− wkb lndet

(
FRFb

H
Ra
kb
FRFb

)]
. (5.27)
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Taking the derivative of (5.27) with respect to FRFb leads to the following KKT condition∑
kb∈Ub

wkbR
a
kb
FRFb

(
FRFb

H
Ra

Rkb

FRFb
)−1 −

∑
kb∈Ub

wkbR
a
kb
FRFb

(
FRFb

H
Ra

Rkb

FRFb
)−1

= 0.

(5.28)
From (5.28), it is immediate to see that the WSR maximizing analog combiner FRFb can
be obtained as the generalized dominant eigenvector solution of the pair of the sum of the
received covariance matrices at the antenna level from the UL users in the same cell, i.e.

FRFb = DNRF
b

( ∑
kb∈Ub

wkbR
a
kb
,
∑
kb∈Ub

wkbR
a
kb

)
. (5.29)

The matrix DNRF
b

selects generalized dominant eigenvectors equal to the number of

receive RF chains NRF
b at the BS b ∈ B. As the analog combiner given in (5.29) is

unconstrained, we normalize the amplitudes and perform the quantization such that
FRFb = Qb(∠FRFb ) ∈ Pb.

5.4.4 Optimal Power Allocation

This section presents a novel and optimal power allocation scheme for the FD BSs and
UL users operating in a mmWave multi-cell FD scenario, given the digital beamformers

with unit-norm columns. Let Σ
(1)
kb

, Σ
(2)
kb

, Σ
(1)
jb

and Σ
(2)
jb

, be defined as

UH
kb
HH
kb
FRFb R−1

kb
FRFb

H
HkbUkb = Σ

(1)
kb
, (5.30a)

UH
kb

(
ĜUL
kb,b

+ ĜDL
kb,b

+ ĜUL
kb,b

+ ĜDL
kb,b

+ λkbI
)
Ukb = Σ

(2)
k , (5.30b)

VH
jb
GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b Vjb = Σ

(1)
jb
, (5.30c)

VH
jb
GRF
b

H(
ĜUL
jb,b

+ ĜDL
jb,b

+ ĜUL
jb,b

+ ĜDL
jb,b

+ ψbI
)
GRF
b Vjb = Σ

(2)
jb
. (5.30d)

Let Pkb and Pjb denote the power matrices for UL user kb ∈ Ub and DL user jb ∈ Db,
respectively. Given the optimized beamformers and fixed Lagrange multipliers, the
optimal stream power allocation can be obtained by multiplying (5.30a) and (5.30b) with
Pkb , ∀kb and (5.30c) and (5.30d) with Pjb , ∀jb. As the beamformers are given by the

generalized dominant eigenvector solution, they diagonalize the matrices Σ
(1)
kb
,Σ

(1)
kb
,Σ

(1)
jb

and Σ
(1)
jb

. Multiplying (5.30a) and (5.30b) with a diagonal matrix Pkb or (5.30c) and
(5.30d) with a diagonal matrix Pjb , still yields the generalized eigenvector solution, and
thus the optimized beamforming directions are not affected [91].

The stream power allocation optimization problem for UL user kb and DL user jb can
be formally stated as

max
Pkb

[
wkb lndet

(
I+Σ

(1)
kb

Pkb

)
− Tr

(
Σ

(2)
kb

Pkb

)]
, (5.31)

max
Pjb

[
wjb lndet

(
I+Σ

(1)
jb

Pjb

)
− Tr

(
Σ
(2)
jb

Pjb

)]
. (5.32)
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Solving (5.31) and (5.32) leads to the following optimal power allocation scheme

Pkb =
(
wkb

(
UH
k

(
ĜUL
kb,b

+ ĜDL
kb,b

+ ĜUL
kb,b

+ ĜDL
kb,b

+ λkbI
)

Ukb

)−1 −
(
UH
kb
FRFb HH

kb
R−1
kb

FRFb HkbUkb

)−1)+
,

(5.33a)

Pjb =
(
wjb

(
VH
jb
GH
b

(
ĜUL
jb,b

+ ĜDL
jb,b

+ ĜUL
jb,b

+ ĜDL
jb,b

+ ψbI
)

GbVjb

)−1 −
(
VH
jb
GH
b H

H
jb
R−1
jb

HjbGbVjb

)−1)+
,

(5.33b)

where (X)+ = max{0,X}. Given the optimal stream powers, we can search for the
Lagrange multipliers satisfying the total power budget constraint while performing
interference, SI, and CI leakage aware water-filling for the powers with (5.33).

Let PDL and PUL denote the collection of stream powers in DL and UL, respectively.
We define Λ and Ψ as the collection of multipliers for λkb and ψb, respectively. Given the
optimal stream powers computed with (5.33), consider the dependence of the Lagrangian
on the multipliers and powers as

L(Λ,Ψ,PDL,PUL) =
∑
b∈B

ψbpb +
∑
b∈B

∑
kb∈Ub

λkbpkb

+
∑
b∈B

∑
kb∈Ub

[
wkb lndet

(
I+Σ

(1)
kb

Pkb

)
− Tr

(
Σ

(2)
kb

Pkb

)]
+
∑
b∈B

∑
jb∈Db

[
wjb lndet

(
I+Σ

(1)
jb

Pjb

)
− Tr

(
Σ
(2)
jb

Pjb

)]
,

(5.34)

The multipliers in Λ and Ψ should be such that the Lagrangian (5.34) is finite and the
values of multipliers are strictly positive. The multipliers’ search problem can be formally
stated as

min
Ψ,Λ

max
PDL,PUL

L
(
Λ,Ψ,PDL,PUL

)
,

s.t. Ψ,Λ ⪰ 0.
(5.35)

The dual function

max
PDL,PUL

L
(
Λ,Ψ,PDL,PUL

)
(5.36)

is the pointwise supremum of a family of functions of Ψ,Λ, it is convex [40] and the
globally optimal values for Ψ and Λ can be found by using any of the numerous convex-
optimization techniques. In this work, we adopt the Bisection algorithm to search the
multipliers. Let ψb, ψb and λkb , λkb denote the upper and lower bound for searching the
multipliers ψb and λkb , respectively. Let [0, λ

max
kb

] and [0, ψmaxb ] denote the search range
for the multipliers λkb and ψb, respectively, where λ

max
kb

and ψmaxb denote the maximum
values that λkb and ψb can assume. As the generalized dominant eigenvector solution is
computed given the fixed multipliers, doing water-filling for the powers while searching
for the multipliers leads to non diagonal power matrices (5.33). Hence, consider a singular
value decomposition (SVD) of the power matrices as

[Lsvdkb
,Dsvd

kb
,Rsvd

kb
] = Pkb , ∀kb ∈ Ub, (5.37a)
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[Lsvdb ,Dsvd
b ,Rsvd

b ] = Pjb , ∀jb ∈ Db, (5.37b)

where Lsvdx ,Dsvd
x and Rxsvd denote the left unitary, diagonal and right unitary matrices

obtained via SVD. Given (5.37), the diagonal power matrices can be obtained again as

Pkb = Dkb , ∀kb ∈ Ub, Pjb = Djb ,∀jb ∈ Ub, (5.38)

while searching for the multipliers satisfying the sum-power constraints.

The complete C-HYBF procedure to maximize the WSR in a multi-cell mMIMO
mmWave FD system based on the alternating optimization process by using MM is
formally stated in Algorithm 9. Once it converges, the combiners can be chosen as the
MMSE receivers, which will not affect the WSR achieved after convergence.

5.4.5 Convergence of C-HYBF

The convergence of Algorithm 9 can be proved by using the minorization theory [26],
alternating or cyclic optimization [26], Lagrange dual function [40], saddle-point interpre-
tation [40] and KKT conditions [40]. For the WSR cost function (5.12), we construct its
minorizer as in (5.15) for the WSR in UL and with (5.17) for the WSR in DL, ∀b ∈ B. It
constructs a touching lower bound for (5.12), hence we can write

WSR ≥ WSR = WRULkb,b +WSRUL
kb,b

+WRDLjb,b +WSRDL
jb,b

+WSRDL
b

+WSRUL
b
.

(5.39)

The minorized WSR, which is concave in Tkb and Qjb , has the same gradient of the
original WSR maximization problem (5.12), hence the KKT conditions are not affected.
ReparameterizingTkb orQjb in terms ofGRF

b ,Vjb , ∀jb ∈ Db orUkb , ∀kb ∈ Ub, respectively,
including the optimal stream power matrices and augementing the WSR cost function
with the Lagrange multipliers and power constraints leads to (5.34). Alternating update
of the Lagrangian L for the variables Vjb , G

RF
b , Ukb ,∀jb ∈ Db,∀kb ∈ Ub, Pkb ,Pjb ,Λ,Ψ

leads to a monotonic increase of the WSR, which assures convergence. For the KKT
conditions, at the convergence point, the gradients of L for Vjb ,G

RF
b ,Ukb or Pkb ,Pjb

correspond to the gradients of the Lagrangian of original WSR maximization problem
(5.12). For the fixed analog and digital beamformers, L is concave in powers, hence we
have strong duality for the saddle point, i.e.,

max
PDL,PUL

min
Λ,Ψ

L
(
Λ,Ψ,PUL,PDL

)
. (5.40)

Let X∗ and x∗ denote the optimal solution for matrix X or scalar x at the convergence,
respectively. As each iteration leads to a monotonic increase in the WSR and the power
are updated by satisfying the sum-power constraint, at the convergence point, the solution
of the optimization problem

min
Λ,Ψ

L
(
V∗
jb
,GRF

b
∗
,FRFb

∗
,URF

b
∗
,PDL∗,PUL∗,Λ,Ψ

)
(5.41)
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Algorithm 9 Centralized Hybrid Beamforming

Given: The CSI and rate weights.
Initialize: GRF

b ,FRFb ,Vjb ,Ukb , ∀jb & ∀kb.
Set: λkb = 0, λkb = λmaxkb

, ψb = 0, ψb = ψmaxb , ∀kb & ∀b
Repeat until convergence

for b = 1 : B
Compute GRF

b with (5.25), do unvec(GRF
b ) and get ∠Gt

for: jb = 1 : Db

Compute ĜUL
jb,b
, ĜDL

jb,b
, ĜUL

jb,b
, ĜDL

jb,b
(5.16)

Compute Vjb with (5.22) and normalize it
Next jb
Repeat until convergence
set ψb = (ψb + ψb)/2
for jb = 1 : Db

Compute Pjb with (5.33b)
[UPjb

,DPjb
,VPjb

] = SV D(Pjb)
Set Pjb = DPjb

Set Qjb = GbVjbPjbV
H
jb
GH
b

Next jb
if constraint for ψb is violated

set ψb = ψb,

else ψb = ψb
for: kb = 1 : Kb

Compute ĜUL
kb,b

, ĜDL
kb,b

, ĜUL
kb,b

, ĜDL
kb,b

(5.14)

Compute Ukb with (5.21) and normalize it
Repeat until convergence
set λkb = (λkb + λkb)/2
Compute Pkb with (5.33a).
[UPkb

,DPkb
,VPkb

] = SV D(Pkb)
Set Pkb = DPkb

Set T
b
= UkbPkbU

H
kb
.

if constraint for λkb is violated
set λkb = λkb

else λkb = λkb
Next kb

Next b

Quantize: GRF
b and FRFb , with Qb(·),∀b
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satisfies the KKT conditions for the powers in PDL and PUL and the complementary
slackness conditions

ψ∗
b

(
pb −

∑
jb∈Db

Tr
(
GRF
b

∗
V∗
jb
P∗
jb
V∗H
jb

GRF
b

∗H))
= 0, (5.42a)

λ∗kb
(
pkb − Tr

(
U∗
kb
P∗
kb
U∗H
kb

))
= 0, (5.42b)

where all the individual factors in the products are non-negative.

5.5 Parallel and Distributed Implementation

Algorithm 1 requires enormous communication overhead to transfer full CSI to the central
node every channel coherence time and very high computational power to update all the
variables jointly. As later shown in Section 5.5.4, it also scales quadratically as a function
of the number of users and cells, which limits its scalability in a real-time large and
dense multi-cell FD network. To overcome these drawbacks, we introduce the concept of
per-link parallel and distributed HYBF of mmWave and propose a very low-complexity
P&D-HYBF design based on cooperation. It removes the requirement of transferring full
CSI to the central node and allows each FD BS to update the beamformers associated
with different users on different computational processors in parallel at each iteration.

To proceed, we first make the following assumptions:

1. There exits a feedback link among the FD BSs and they cooperate among themselves
by exchanging information about the digital beamformers, analog beamformers and
analog combiners.

2. Local CSI is made accessible for the FD BSs.

3. Each FD BS has multiple computational processors dedicated for UL and DL.

4. The computations take place at the BSs and the optimized beamformers of the UL
users are communicated to them afterwards.

Note that the WSR maximization problem (5.12) is decomposed into (5.18a) with MM,
in which to update the beamformers for each UL or DL user at each iteration, only the
gradients are required. Therefore, they summarize complete information about all the
reamining links in the network. From a practical point-of-view, the gradients for each link
take into account the interference generated towards all the other links, and hence limit
greedy behaviour while updating its beamformer. However, problem (5.18a) is coupled
among different links as the covariance matrices of other users directly appear in the
gradients. Hence, the update of one beamformer affects the received covariance matrices,
and thus the gradients, of all the other users/links. Therefore, (5.18a) can be solved only
in a centralized fashion based on alternating optimization.

To decouple the global optimization problem (5.18a) into local per-link independent
optimization sub-problems for each FD BS, we assume that each FD BS has some memory
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to save information about the gradients. For each FD BS, we introduce the following
local variables ∀kb ∈ Ub, ∀jb ∈ Db,

LOutjb
= ĜUL

jb,b
+ ĜDL

jb,b
, LInjb = ĜUL

jb,b
+ ĜDL

jb,b
, (5.43a)

LOutkb
= ĜUL

kb,b
+ ĜDL

kb,b
, LInkb = ĜUL

kb,b
+ ĜDL

kb,b
. (5.43b)

The variables LInkb and Loutkb
save information about the overall interference generated

inside and outside the cell by the beamformer of UL user kb , respectively. Similarly,
the local variables LInjb and LOutjb

save information about the interference generated in
the same cell and in the neighbouring cells by the FD BS b while serving the DL user
jb, respectively. Note that each BS can update the in-cell local variables LInkb and LInjb
by itself. A feedback from the neighboring BSs is required only to update LOutjb

, ∀jb and
LOutkb

, ∀kb. To save information about the interference-plus-noise covariance matrices, we
define the following local variables

Rkb = Rkb , R−1
kb

= R−1
kb
, ∀kb, (5.44a)

Rjb = Rjb , R−1
jb

= R−1
jb
, ∀jb. (5.44b)

The analog combiner needs information about the received covariance matrices at the
antenna level, for which we define the local variables

Ra
kb

= Ra
kb
, Ra

kb
= Ra

kb
, ∀kb. (5.45)

We remark that all of the aforementioned local variables are fixed and saved in the
memory. Replacing the gradients with fixed local variables in the WSR cost function
(5.18a), leads to the following optimization problem

max
U,V,

GRF ,FRF

∑
b∈B

∑
kb∈Ub

[
wkb lndet

(
I+UH

kb
HH
kb
FRFb R−1

kb
FRFb

H

HkbUkb

)
− Tr

(
UH
kb

(
LOutkb

+ LInkb

)
Ukb

)]
+
∑
b∈B

∑
jb∈Db

wjb

[
lndet

(
I+VH

jb
GRF
b

H
HH
jb
R−1
jb

Hjb

GRF
b Vjb

)
− Tr

(
VH
jb
GRF
b

H(
LOutjb

+ LInjb
)
GRF
b Vjb

)]
.

(5.46a)

s.t. (5.12b)− (5.12e) (5.46b)

Note that (5.46a) has the same structure of (5.18a), but by replacing the gradients
with the fixed local variables, the global WSR problem decouples into per-link inde-
pendent optimization sub-problems. Optimization of the analog combiners and analog
beamformers is still coupled as they are common to all the UL and DL users in the same
cell, respectively. Also, optimization of the digital beamformers for the DL users in the
same cell remains coupled as each BS has to satisfy the sum power constraint. Their
decoupling and the solution of (5.46) is discussed in the following.
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Update Analog
Combiner

Multiplier Search and
power allocation

Multiplier Search and
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Update and normalize Update and normalize

Sub-Problem 1b Sub-Problem Ub

Figure 5.2: Decomposition of the WSR maximization problem in UL into per-link independent optimization
sub-problems. The sub-problems are solved from the bottom to the top.

5.5.1 Per-Link Independent Sub-Problems in UL

In the UL setting, each UL user has its own sum-power constraint and only the update of
analog combiner is coupled among different UL users in the same cell. We assume that
BS b updates FRFb only after having updated all the digital beamformers Ukb . Given this
assumption and fixed local variables, UL WSR maximization problem for BS b reduces
into three layers of sub-problems. At the bottom layer, BS b has to solve independent
optimization sub-problems to update Ukb for the beamforming directions and normalize
its column to unit norm, in parallel ∀kb. At the middle layer, BS b has to update the
stream power matrix Pkb while searching the multiplier λkb in parallel ∀kb. Finally, at
the top layer, once all the Ub two-layer sub-problems are solved by BS b, both for the
beamforming directions and powers, only one update of the analog combiner is required.
Fig. 5.2 highlights the idea of the proposed decomposition for WSR maximization in UL
for BS b and the sub-problems are solved from the bottom to top.

Given the fixed local variables, the local per-link independent optimization problem
in UL to optimize Ukb for user kb ∈ Ub can be stated as

max
Ukb

[
wkb lndet

(
I+UH

kb
HH
kb
FRFb R−1

kb
FRFb

H
HkbUkb

)
− Tr

(
UH
kb

(
LInkb + LOutkb

)
Ukb

)]
(5.47a)

s.t.Tr
(
UkbU

H
kb

)
⪯ pkb . (5.47b)

The per-link independent Lagrangian for (5.47) ∀kb, becomes

Lkb =wkb lndet
(
I+UH

kb
HH
kb
FRFb R−1

kb
FRFb

H
HkbUkb

)
− Tr

(
UH
kb

(
LInkb + LOutkb

+ λkbI
)
Ukb

)
+ λkbpkb .

(5.48)
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To solve it for Ukb , a derivative of (5.48) can be taken, which leads to a similar KKT
condition as (5.20a) with gradients replaced with the local variables. By following a
similar proof for (5.21), it can be easily shown that the WSR maximizing beamformer
Ukb can be updated as

Ukb = Ddkb

(
HH
kb
FRFb R−1

kb
FRFb

H
Hkb ,L

In
kb

+ LOutkb
+ λkbI

)
, (5.49)

which can be computed in parallel on different computational processors ∀kb. To include
the optimal power allocation Pkb in parallel, we consider the normalization of the columns
of (5.49) to unit-norm and multiply the log det(·) and Tr(·) terms in (5.48) from the
right hand side with the power matrix Pkb ,∀kb. Power optimization problem for each

link can be formally stated similarly as in (5.31), as a function of the local variables LInkb
and LOutkb

instead of gradients. Solving it yields the following parallel and optimal power
allocation scheme

Pkb =
(
wkb

(
UH
k

(
LInkb + LOutkb

+ λkbI
)
Ukb

)−1 −
(
UH
kb
HH
kb
R−1
kb

HkbUkb

)−1)+
, ∀kb.

(5.50)
Power allocation can be included while searching for the multiplier λkb associated

with the sum-power constraint of UL user kb. To yield a diagonal power matrix again
while searching for λkb , we do

[Lsvdkb
,Dsvd

kb
,Rsvd

kb
] = Pkb , and Pkb = Dsvd

kb
. (5.51)

Multiplier λkb should be such that (5.48) is finite and the value of λkb should be strictly
positive. We search it in parallel by solving the following problem ∀kb

min
λkb

max
Pkb

Lkb
(
λkb ,Pkb

)
,

s.t. λkb ⪰ 0.
(5.52)

The dual function
max
PDL

b

Lkb
(
λkb ,Pkb

)
(5.53)

is convex [40] and can be solved with the Bisection method. Note that each optimization
step stated above is fully decoupled for each communication link in UL as the local
variables are fixed.

At the final step, once updated the digital beamformers Ukb and powers Pkb , one
update of FRFb is required, which is common to all the UL users Ub served by BS b.
Simultaneous variation of all the UL beamformers Ukb in parallel vary the received
covariance matrices Ra

kb
and Ra

kb
at the antenna levels, which are required to optimize

FRFb . However, in the memory, each BS has complete information about the beamformers
of the UL users it has just updated at the bottom layer, which can be used to update
Ra
kb

and Ra
kb
, ∀kb ∈ Ub. Afterwards, for the top layer, optimization of the unconstrained

analog beamformer FRFb , given the local variables, can be formally stated as

max
FRF

b

∑
kb∈Ub

lndet
(
R−1
kb

Rkb

)
. (5.54a)
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To solve it, we first write it as

max
FRF

b

∑
kb∈Ub

[
wkb lndet

(
FRFb

H
Ra
kb
FRFb

)
− wkb lndet

(
FRFb

H
Ra
kb
FRFb

)]
, (5.55)

and by taking its derivative leads a similar KKT condition as in (5.28), from which it is
immediate to see that FRFb can be optimized as

FRFb = DNRF
b

( ∑
kb∈Ub

wkbR
a
kb
,
∑
kb∈Ub

wkbR
a
kb

)
(5.56)

which is unconstrained. To meet the unit-modulus and the quantization constraints,
we normalize the amplitudes to unit-norm and quantize the phase part as FRFb =
Qb(∠FRFb ) ∈ Pb.

5.5.2 Per-Link Independent Sub-Problems in DL

The DL scenario is much more challenging as the digital beamformers have a coupling
total sum-power constraint among the DL users in Db. Moreover, GRF

b is common
between all the DL users and affects the transmit covariance matrices, i.e., Qjb =

GRF
b VjbPjbV

H
jb
GRF
b

H
, ∀jb, and thus the total transmitted power. To introduce the per-

link independent sub-problems in DL, we assume that each BS first updates all the digital
beamformers Vjb , ∀jb, by keeping the Lagrange multiplier ψb and the analog beamformer
GRF
b fixed. Also the power matrices Pjb are included afterwards, while searching for ψb.

Given this assumption, the WSR maximization problem in DL for each cell decomposes
into three layers of sub-problems. At the top layer we have to search for the Lagrange
multiplier ψb and update the power allocation matrices Pjb for all the DL users, in
parallel. At the middle layer, we have to optimize the analog beamformer GRF

b . At the
bottom layer, we have to update the DL beamformers Vjb and normalize their columns
to unit-norm, in parallel ∀jb. Fig. 5.3 shows the proposed per-link decomposition of the
DL WSR maximization problem for FD BS b ∈ B and the sub-problems are solved from
the bottom to the top.

For the bottom layer, to optimize the digital beamformer Vjb , each FD BS has to
solve the following independent optimization sub-problem in parallel ∀jb ∈ Db

max
Vjb

[
wjb lndet

(
I+VH

jb
GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b Vjb

)
− Tr

(
VH
jb
GRF
b

H(
LInjb + LOutjb

)
GRF
b Vjb

)] (5.57a)

Tr
( ∑
j∈Db

GbVjV
H
j GH

b

)
⪯ pb (5.57b)

with the coupling constraint (5.57b) among different DL users in the same cell. Aug-
menting the cost function with the total sum-power constraint yield the Lagrangian

LDLb =
∑
jb∈Db

wjb lndet
(
I+VH

jb
GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b Vjb

)
− Tr

(
VH
jb
GRF
b

H(
LInjb + LOutjb

+ ψbI
)
GRF
b Vjb

)
+ ψbpb.

(5.58)
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Figure 5.3: Decomposition of the WSR optimization problem in DL into per-link independent optimization
sub-problems. The sub-problems are solved from the bottom to the top.

In (5.58), ψb and GRF
b are fixed and will be updated with the power allocation at the

top and middle layer, respectively, to meet the total sum-power constraint. Therefore the
update of Vjb at the bottom layer only for the beamforming directions and normalization
to unit-norm columns remains decoupled ∀jb. To solve it, a derivative for Vjb can be
taken which leads to a similar KKT condition (5.20b) for the centralized version, with
gradients replaced with the fixed local variables. From the KKT conditions, by following
a similar proof for the C-HYBF scheme, it can be immediately shown that Vjb can be
updated as

Vjb = Ddjb

(
GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b ,GH

b

(
LInjb + LOutjb

+ ψbI
)
Gb

)
. (5.59)

To include the optimal power allocation, we consider the normalization of the columns
of Vjb to unit-norm in parallel. Once all the digital beamformers are optimized, at
the middle layer, BS b has to optimize the analog combiner GRF

b . By considering the
unconstrained analog combiner, at the middle layer, each BS has to independently solve
the following unconstrained optimization problem

max
GRF

b

∑
jb∈Db

[
wjb lndet

(
I+VH

jb
GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b Vjb

)
− Tr

(
VH
jb
GRF
b

H(
LInjb + LOutjb

+ ψbI
)
GRF
b Vjb

)]
.

(5.60)

Note that each BS has complete information about the digital beamformers optimized at

the bottom layer, which can be first used to update R−1
jb

and LInjb appearing in (5.60).

By taking the derivative of (5.60) and by following a similar proof of (5.25), it can be
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easily shown that GRF
b can be optimized as

vec(GRF
b ) = D1

( ∑
jb∈Db

(
VjbV

H
jb

(
I+VjbV

H
jb
GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b

)−1)T ⊗HH
jb
R−1
jb

Hjb ,
∑
jb∈Db

(
VjbV

H
jb

)T
⊗
(
LInjb + LOutjb

+ ψbI
))
,

(5.61)

with gradients of (5.25) replaced with the local variables. The analog beamformer
GRF
b in (5.61) is unconstrained and vectorized, we do unvec(vec(GRF

b )) to shape it into
correct dimensions and then set GRF

b = Q(∠GRF
b ) ∈ Pb to meet the unit-modulus and

quantization constraints. For the top layer, the optimal stream power allocation can
be included while searching the multiplier ψb to satisfy the sum-power constraint pb.
Assuming the multiplier ψb to be fixed, the per-link independent power optimization
problem ∀jb ∈ Db can be stated as

max
Pjb

[
wjb lndet

(
I+VH

jb
GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b VjbPjb

)
− Tr

(
VH
jb
GRF
b

H(
LInjb + LOutjb

+ ψbI
)
GRF
b VjbPjb

)]
.

(5.62)

In (5.62), the update of power matrix Pjb ,∀jb remains independent and the mul-
tiplier ψb must be updated based on the sum of the transmit covariance matrices∑

jb
GRF
b

H
VH
jb
PjbVjbG

RF
b , once all the power matrices Pjb are updated in parallel.

Solving (5.62) in parallel ∀jb leads to the following optimal power allocation scheme

Pjb =
(
wjb

(
VH
jb
GH
b

(
LInjb + LOutjb

+ ψbI
)
GbVjb

)−1

−
(
VH
jb
GH
b H

H
jb
R−1
jb

HjbGbVjb

)−1)+
.

(5.63)

Finally, the Lagrange multiplier can be searched with the Bisection method and while
doing so, the water-filling for the powers for each user in DL in Db can be done in parallel
with (5.63). Including the optimal power allocation (5.63) in the Lagrangian (5.58) leads
to

LDLb =
∑
jb∈Db

[
wjb lndet

(
I+VH

jb
GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b VjbPjb

)
− Tr

(
VH
jb
GRF
b

H(
LInjb + LOutjb

+ ψbI
)
GRF
b VjbPjb

)]
+ ψbpb

(5.64)

Multiplier ψb should be such that (5.64) is finite and the value of ψb should be strictly
positive. It can be searched by solving the following problem

min
ψb

max
PDL

b

LDLb
(
ψb,P

DL
b

)
,

s.t. ψb ⪰ 0.
(5.65)
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where PDL
b denotes the collection of powers in DL for BS b. The dual function

max
PDL

b

LDLb
(
ψb,P

DL
b

)
(5.66)

is convex [40] and can be solved with the Bisection Algorithm. When (5.63) becomes
non-diagonal while searching the multiplier ψb, we take the SVD of the stream powers
in parallel for each DL user and set Pjb = Dsvd

jb
,∀jb. After each iteration, the FD BSs

must exchange information such that the local variables could be updated. The complete
procedure to execute the cooperative P&D-HYBF for WSR maximization in a multi-cell
mMIMO mmWave FD network is formally stated in Algorithm 2. Once it converges, the
combiners for the UL and DL users must be chosen as the MMSE combiners, which will
not affect the rate achieved at convergence.

Remark 2: Note that each FD cell requires only the local CSI information, i.e.,
only for the out-cell interfering channels to update the the out-cell local variables LOutjb

and LOutkb
. As we considered the analog beamformer and combiner in the optimization

problem (which leads to the number of digital beamformers equal to the number of
user of the size of the RF chains), only one analog beamformer and combiner of bigger
dimension and many digital beamformers of minimal dimension need to be shared by
each FD BS, regardless of the number of users served in a mMIMO scenario. Moreover,
omitting the digital combiners reduces the per-iteration computational complexity, and
the communication overhead for P&D-HYBF is also minimized. To further reduce the
communication overhead, if the out-cell interference and the CI channels among different
cells vary slowly, the FD BSs can consider updating them only when these channels have
changed significantly compared to the last feedback stage.

Remark 3: Each BS has full flexibility to reconsider the allocation of processors in UL
and DL in a highly asymmetric traffic scenario. For example, suppose that BS b solves the
problem early in one direction with fewer users, i.e., in UL or DL. In that case, the idle
processors can be reallocated immediately to serve the transmission direction with many
users to further distribute the computational burden and achieve faster convergence.

5.5.3 On the Convergence of P&D-HYBF

The convergence proof for P&D-HYBF follows similarly from the proof stated for the
C-HYBF scheme. Compared to the centralized version, fixing the local variables leads
to a different type of information saved for each communication link while updating its
beamformer. As the beamformers are computed as the dominant generalized eigenvectors,
they increase the WSR for every link at each iteration. However, the increase is different
as the local variables’ information differs from the information captured in the gradients.
The gradients are updated immediately before updating each beamformer, and the
local variables are updated in a synchronized manner in parallel once all the FD BSs
have entirely updated their UL and DL beamformers. However, as in P&D-HYBF
the BSs share information about the updated variables at each iteration, it makes the
beamformers’ update aware of the generated interference towards other links, which leads
to a monotonic increase in WSR and assures convergence.
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Algorithm 10 Parallel and Distributed Hybrid Beamforming

Given: The rate weights, in-cell CSI and interfering channels.
Dedicate: Multiple processors in UL and DL ∀b.
Initialize: Gb,Vjb ,Ukb , ∀jb ∈ Db,∀kb ∈ Ub in each cell.
Repeat until convergence

Cooperation stage (∀b ∈ B)
Share GRF

b ,FRFb and Ukb ,Vjb , ∀kb, ∀jb
For each cell (∀kb ∈ Ub,∀jb ∈ Db.)

Update LInjb ,L
In
kb

from the memory.

Based on the feedback, update LOutjb
and LOutkb

Update Rkb ,Rkb
and Rjb ,Rjb

from the memory.
Solve in parallel ∀b ∈ B

Parallel DL for BS b
Set: ψb = 0, ψb = ψmaxb .

Compute Vd
jb

in parallel with (5.59) and normalize it

Update R−1
jb

and LInjb , ∀jb from the memory.

Compute GRF
b with (5.61), do unvec and get ∠GRF

b

Repeat until convergence
set ψb = (ψb + ψb)/2
In parallel ∀jb

Compute Pjb with (5.63)
[XPjb

,DPjb
,YPjb

] = SVD(Pjb)
Pjb = DPjb

Qjb = GbVjbPjbV
H
jb
GH
b

if constraint for ψb is violated
set ψb = ψb ,

else ψb = ψb
Parallel UL for BS b

Set: λkb = 0, λkb = λmaxkb
, ∀kb.

Compute Ud
kb

(5.49) in parallel and normalize it
Repeat until convergence in parallel ∀kb

set λkb = (λkb + λkb)/2
Compute Pkb in parallel with (5.50).
[XPkb

,DPkb
,YPkb

] = SVD(Pkb)
Set Pkb = DPkb

Set T
b
= UkbPkbU

H
kb

if constraint for λkb is violated
set λkb = λkb

else λkb = λkb
Update Ra

kb
,Ra

kb
, ∀kb.

Compute FRFb with (5.56) and get ∠FRFb .
Repeat

Quantize GRF
b and FRFb , with Qb(·), ∀b.
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Figure 5.4: Typical Convergence behaviour of the proposed HYBF designs with 32 RF chains in comparison
with the fully digital beamforming.

Fig. 5.4 shows a typical convergence behaviour of the proposed C-HYBF and P&D-
HYBF schemes in comparison with the centralized fully digital beamforming scheme. It
is also visible that the P&D-HYBF requires a similar number of iterations to converge as
the C-HYBF and therefore requires a minimal amount of information exchange among
different cells. We can also see that the increase in WSR at each iteration is different
for both designs as the information captured in the gradients and local variables differs.
It is also highlighted that despite being a decentralized design, the P&D-HYBF scheme
achieves similar WSR as the C-HYBF.

5.5.4 Computational Complexity Analysis

For complexity analysis, we assume equal number of users in DL and UL in each cell, i.e.,
Db = D and Ub = U , ∀b ∈ B. We also assume the same number of antennas in each cell
for the BSs, UL and DL users.

Computational Complexity of C-HYBF

One iteration of C-HYBF consists in updating BD DL beamformers Vjb , BU UL
beamformers Ukb , B analog beamformers GRF

b and B analog combiners FRFb . Assuming
that the number of antennas get large and the computations take place at the central
node iteratively, the per-iteration computational complexity of the proposed C-HYBF
scheme results to be

≈ O(B2U2NRF
b

3
+B2UDN3

jb
+B2D2N3

jb
+B2DUNRF

b
3
+BMRF

b
2
M2
b +BNRF

b N2
b

+BDdjbM
RF
b

2
+BDdkbN

2
kb
).

(5.67)
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Note that the complexity of C-HYBF (5.67) scales quadratically as a function of the
number of cells B (network size) and users U or D (density).

The computational complexity of P&D-HYBF in DL and UL for each FD BS is
fully decoupled on different processors. Therefore, in the following, it will be analyzed
separately under the assumption that the dimensions of the antennas get large.

Worst-case Computational Complexity in DL for P&D-HYBF

We first assume the number of computational processors dedicated for DL equal to the
number of DL users for each FD BS. The worst-case computational complexity for each
BS in P&D-HYBF in DL is given for the processor which has to update one digital
beamformer and then update also the analog beamformer GRF

b , which is given by

DL ≈ O(BDN3
jb
+BUNRF

b
3
+ djbM

RF
b

2
+MRF

b
2
M2
b ). (5.68)

If the number of processors dedicated for DL is less than the total number of DL users,
then each processor may have to update K digital beamformers before updating the
analog beamformer GRF

b . In that case, the worst-case complexity is given for the processor
in each cell which updates K digital beamformers and then also the analog beamformer.
In such a case, the complexity is given by

DL ≈ O(KBDN3
jb
+KBUNRF

b
3
+KdjbM

RF
b

2
+MRF

b
2
M2
b ). (5.69)

Worst-case Computational Complexity in UL for P&D-HYBF

Assuming the dedicated processors for UL equal to the UL users in each cell, the worst-
case complexity in each cell is given for the processor which has to update one analog
combiner FRFb and one digital beamformer Ujb . In such a case, the complexity results to
be

UL ≈ O(BUNRF
b

3
+BDN3

jb
+ dkbN

2
kb

+NRF
b N2

b ). (5.70)

If the number of dedicated computational processors is less than the UL users, then
each processor may have to update N UL beamformers Ukb before updating the analog
combiner FRFb . In such a scenario, the worst-case complexity is given by

UL ≈ O(NBUNRF
b

3
+NBDN3

jb
+NdkbN

2
kb

+NRF
b N2

b ). (5.71)

From the analysis presented above, it is clear that the complexity of P&D-HYBF
distributed over multiple processors at each FD BS is significantly less than the C-HYBF
scheme. Namely, the latter is quadratic, and the former is only linear in the number of
UL and DL users and number of cells. Intuitively, for every beamformer’s update, we
have to invert the covariance matrices in the gradients for all the remaining users. As we
have to repeat this for all the beamformers, it leads to a quadratic behaviour. Note that
any of the centralized HYBF schemes would have a quadratic behaviour. On the other
hand, in P&D-HYBF, each processor has to update only one or a very limited number of
variables and linearize with the gradients for all the remaining users at each iteration,
which leads to only a linear increase in the complexity.
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Table 5.2: Simulation parameters to simulate a multi-cell mMIMO mmWave FD system.

Parameters

Cells B 2

UL and DL users Ub, Db 1, ∀b
Data streams djb ,dkb 2, ∀b
BSs antennas Mb, Nb 100, 60

Clusters and Paths Nc,b,Np,b 3,3

RF chains (BSs) MRF
b = NRF

b 10,12,16,32

Rx RF chains Nr 10,12,16,32

User antennas Mkb = Njb 5

DL user antennas Nj 5

Rician Factor κb 1

Array response ar,b,at,kb ,ar,jb ULA,ULA,ULA

AoA ϕjb ,ϕkb U∼ [−30◦, 30◦]

AoD θjb ,θkb U∼ [−30◦, 30◦]

Rate weights wk, wj 1

Sum Power pkb , pb 1,1

Uniform Quantizer Qb(·) 4 or 10 bits

Relative Angle Θb 90◦

Array separation Db 20 cm

5.6 Simulation Results

This section presents simulation results to evaluate the performance of the proposed
C-HYBF and P&D-HYBF schemes for the multi-cell mMIMO mmWave FD network.
For comparison, we consider the following benchmark schemes:

• A centralized Fully Digital FD scheme affected by the LDR noise.

• A centralized Fully Digital HD scheme with LDR noise, serving the UL and DL
users by separating the resources in times. It is neither affected by the SI nor by
the CI.

To compare the performance with a fully digital HD system, we define the additional
gain in terms of percentage for an FD system over an HD system as

Gain =
WSRFD −WSRHD

WSRHD
× 100[%]. (5.72)

where WSRFD and WSRHD are the network WSR for the FD and HD system, respectively.
We assume the same SNR level for all the FD BSs, defined as

SNR = pb/σ
2
b , (5.73)

with transmit power pb and thermal noise variance σ2b . We assume that the UL users
and FD BSs transmit with the same amount of power, i.e., pkb = pb,∀kb. The thermal
noise level for DL users is set as σ2jb = σ2b ,∀jb. The total transmit power is normalized
to 1 and we choose the thermal noise variance to meet the desired SNR. We simulate a
multi-cell network consisting of B = 2 cells with each FD BS serving one DL and one UL
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Figure 5.5: Execution time for the C-HYBF and the P&D HYBF schemes with 32-RF chains.

user. P&D-HYBF is evaluated on a computer consisting of 4 computational processors,
equal to the number of users in the network, i.e., fully parallel implementation. BSs
are assumed to have Mb = 100 transmit and Nb = 60 receive antennas. The RF chains
in transmission and reception for FD BSs are chosen as MRF

b = NRF
b = 32, 16, 10 or

8 and the phase-shifters are assumed to be quantized with a uniform quantizer Qb(·)
of 10 or 4 bits. The DL and UL users are assumed to have Njb = Nkb = 5 antennas
and are served with djb = dkb = 2 data streams. The number of paths and number of
clusters are chosen to be Nc,b = Np,b = 3 and the AOA θ

np,b,nc,b

jb
and AOD ϕ

np,b,nc,b

kb
are

assumed to be uniformly distributed in the interval U ∼ [−30◦, 30◦],∀jb, kb. We assume
uniform-linear-arrays (ULAs) for the FD BSs and users. For the FD BSs, the transmit
and the receive array are assumed to be separated with distance Db = 20 cm with a
relative angle Θb = 90◦ and rm,n in (6.3) is set given Db and Θb as in (9) [54]. The
Rician factor is chosen to be κb = 1 and the rate weights are set to be wkb = wjb = 1.
Table 5.2 summarizes all the parameters’ choice. Digital beamformers are initialized as
the dominant eigenvectors of the channel covariance matrice of each user. The analog
beamformers and combiners are initialized as the dominant eigenvectors of the sum of
the channel covariance matrices across all the DL and UL users, respectively. The results
reported herein are averaged over 100 channel realizations. Note that as we are assuming
perfect CSI, the SI can be cancelled only up to the LDR noise floor, which reflects the
residual SI power.

Fig. 5.5 shows a typical execution time to run the C-HYBF and the P&D-HYBF with
32 RF chains. We can see that the former requires significant computational time as it can
only update different variables iteratively based on alternating optimization, one after the
other. Transferring full CSI to the central node and communicating back the optimized
variables to all cells will add significant additional time. For the latter, computation of the
local variables takes place in parallel for each BS, which has to compute only the variables
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Figure 5.6: Average WSR as a function of the LDR noise at SNR= 20 dB with 32 or 16 RF chains and
10 or 4 bit phase-resolution.

associated with its users in parallel on different processors. We can see the P&D-HYBF
requires ∼ 1/21 and ∼ 1/2.3 less time in UL and DL, respectively, than the average
execution time of C-HYBF. The complexity of P&D-HYBF in DL is dominated by the
computation of one large generalized dominant eigenvector to update the vectorized
analog beamformer, which has complexity O(MRF

b
2
M2
b ). In UL, complexity of the analog

combiner is only O(NRF
b N2

b ). We also show the execution time to solve one sub-problem
for the bottom layers in UL and DL, which is negligible compared to the average execution
time of C-HYBF. Given the complexity analysis in Section-5.5.4, we can expect that the
execution time of C-HYBF will increase quadratically as the number of users or cells
increase. P&D-HYBF requires significantly less time and the execution time is expected
to increase only linearly as the network size grows, which makes it very desirable.

Fig. 5.6 shows the average WSR achieved with both schemes as a function of the
LDR noise with 32 or 16 RF chains and 10 or 4 bits phase-resolution. We can see that
the P&D-HYBF performs very close to the C-HYBF scheme with the same number of RF
chains and phase resolution. Fully digital FD achieves ∼ 83% of additional gain than the
fully digital HD for any LDR noise level. For a low LDR noise level kb < −80 dB, C-HYBF
and P&D-HYBF with 32 RF chains achieve ∼ 74%, 55% and ∼ 71%, 54% additional
WSR with 10, 4 bits phase resolution, respectively. With 16 RF chains, the gain results
to be ∼ 67%, 48% and ∼ 64%, 47%, with 10, 4 bits phase-resolution, respectively. As the
LDR noise variance increases, the achievable WSR for both the FD and HD systems
decreases considerably. For kb ≥ −40 dB, all of the beamforming schemes achieve a
similar average WSR. Fig. 5.7 shows the average WSR as function of the LDR noise
with only 12 or 10 RF chains and with 10 or 4 bits phase-resolution. We can see that
both schemes achieve significant performance improvement in terms of WSR with a few
RF chains and very low phase-resolution and significantly outperforms the fully digital
HD system at any LDR noise level. In Fig. 5.7, for LDR noise kb ≤ 80 dB, C-HYBF and
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Figure 5.7: Average WSR as a function of the LDR noise at SNR= 20 dB with 12 or 10 RF chains and
10 or 4 bit phase-resolution.
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Figure 5.9: Average WSR as a function of the SNR with LDR noise κkb = κb = βb = βjb = −80 dB, with
12 or 10 RF chains and 10 or 4 bit phase-resolution.

P&D-HYBF with 12 RF chains achieves ∼ 60, 43% and ∼ 57, 43% additional gain with
10, 4 bit phase-resolution, respectively. With 10 RF chains, the additional WSR results
to be ∼ 58, 38% and ∼ 53, 37%, with 10, 4 bit phase-resolution, respectively. As the LDR
noise increases, the achievable average WSR decreases and results to be a fewer bps/Hz
for any of the designs.

Fig. 5.8 shows the average WSR as a function of the SNR with 32 and 16 RF
chains and with 10 or 4 bit phase-resolution affected with LDR noise kb = −80 dB, in
comparison with the benchmark schemes. A fully digital FD system achieves ∼ 94% and
∼ 82% additional gain at low and high SNR, respectively. With 32 RF chains and 10 bit
phase-resolution, the C-HYBF scheme achieves ∼ 79% gain at all the SNR levels and the
P&D-HYBF achieves ∼ 77% and ∼ 68% gain at low and high SNR, respectively. As the
phase-resolution decreases to 4-bits, we can see that the loss in WSR compared to the
10-bit phase-resolution case is much more evident at high SNR. Still, with 16 RF chains
and 10 or 4 bit phase-resolution, both schemes significantly outperform the fully digital
HD scheme for any SNR. Fig. 5.9 shows the average WSR as a function of the SNR with
same LDR noise level as in Fig. 5.8, i.e., kb = −80 dB, but with 10 or 12 RF chains and
10 or 4 bit phase-resolution. The achieved average WSR presents a similar behaviour as
in the case of a high number of RF chains. We can see that both the proposed schemes
significantly outperform the fully digital HD system with only 10 RF chains and with a
very low phase-resolution of 4 bits.

Fig. 5.10 shows the achieved average WSR as a function of the SNR with LDR noise
kb = −40 dB, which reflects communication systems in which the signal suffers from a very
high level of distortions. It is visible that at very high LDR noise level, the WSR does not
increase as the SNR increases. When the LDR noise dominates, decreasing the thermal
noise variance has negligible effect on the effective signal-to-LDR-plus-thermal-noise ratio
(SLNR). Therefore, dominance of the LDR noise variance acts as a ceiling to the effective
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Figure 5.10: Average WSR as function of the SNR with LDR noise κkb = κb = βb = βjb = −40 dB, with
32 or 16 RF chains and 10 or 4 bit phase-resolution.
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Figure 5.11: Average WSR as a function of the SNR with LDR noise κkb = κb = βb = βjb = −40 dB,
with 12 or 10 RF chains and 10 or 4 bit phase-resolution.
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SLNR ratio, which limits the achievable WSR. Consequently, increasing the SNR does
not dictate higher WSR in a multi-cell mmWave FD system in the case of high LDR
noise, which saturates at SNR=10 dB. We can also see that with a large LDR noise
level, C-HYBF and P&D-HYBF perform similarly with the same phase-resolution and
RF chains. At high SNR, both schemes achieve higher WSR at high LDR noise level
with 16 RF chains and 10 bit phase-resolution than the case of 32 RF chains and 4 bit
phase-resolution. Fig. 5.11 shows the average WSR as a function of the SNR with only
10 or 12 RF chains and with 10 or 4 bit phase-resolution. We can also see that, at very
high LDR noise level, both schemes still perform similarly even with a very low number
of RF chains and low phase-resolution. Fig. 5.11 also shows that both schemes with 10
RF chains and 10 bit phase resolution are more robust to the LDR noise than the case of
12 RF chains and 4 bit phase-resolution.

As the results reported above consider LDR for all the devices, the achieved WSR as
a function of LDR noise variance can be expected in a practical multi-cell FD system
with non-ideal hardware. From the results presented above, we can conclude that both
the proposed HYBF schemes achieve significant additional gain and outperform the
fully digital HD system with only a few RF chains. Both the schemes achieve similar
average WSR with the same number of RF chains and phase-resolution. However, P&D
HYBF is much more attractive because it can be distributed at each FD BS and allows a
parallel update of all the variables on multiple computational processors. It eliminates
the problem of transferring full CSI to the central node every channel coherence time.
Moreover, it results to be also highly scalable as its complexity increases only linearly
as the number of users or BSs increases. C-HYBF suffers from a quadratic increase in
the computational complexity and requires a massive computational power to update all
the variables jointly based on alternating optimization. P&D-HYBF achieves a similar
average WSR as the C-HYBF but imposes a minimal computational burden on each
processor and converges in a few iterations, thus requiring only a limited amount of
information exchange among the BSs. We have also investigated the execution time for
both designs and observed that parallel HYBF requires significantly less execution time.
Therefore, it has the potential to be implemented in a real-time large and dense mmWave
multi-cell massive mMIMO FD network and can deal with the optimization of numerous
variables for the UL and DL users very efficiently.

5.7 Conclusions

This chapter has presented two joint HYBF schemes for WSR maximization in multi-cell
mmWave mMIMO FD systems. Firstly, we have presented a C-HYBF scheme based
on alternating optimization. It has several drawbacks and is not desirable for real-time
implementation in a multi-cell mmWave FD system. To overcome all of its drawbacks,
we have proposed a very low-complexity P&D-HYBF design. Its complexity scales only
linearly as a function of the network size, making it desirable for the large and dense
mmWave FD networks. Simulation results show that both the HYBF designs achieve
similar average WSR and significantly outperform the centralized fully digital HD systems
with only a few RF chains and very low phase-resolution at any LDR or SNR level.
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Chapter 6

Near-Field Intelligent Reflecting
Surfaces for Millimeter Wave MIMO
Full Duplex

Wireless communication in mmWave or THz band is subject to severe propagation
challenges, requiring the communication systems to be designed with a massive number
of antennas. As discussed in the previous chapters, hybrid beamforming and combining
is a cost-efficient solution to enable designing FD BSs with fewer radio frequency chains
than the number of antennas. However, analog processing stage is not desirable as it has
very high power consumption, high insertion loss and requires high resolution tuning of
the phase shifters. Moreover, for FD, SI depends on the number of transmit antennas.
Therefore, very high cost and complexity are also associated with the SI architectures
to cancel the SI signal, which has the objective to mimic the transmit signal with an
opposite sign from each transmit antenna and cancel it on the receive side.

The objective of this chapter is to combine the FD systems with the IRSs [95, 96,
97, 98, 99, 100]. IRS is a recently emerging hardware technology with the potential for
significant energy consumption reductions. It is a meta-surface made of electronic circuits
which can be flexible programmed to shape the incoming electromagnetic field in a desired
way. It is constructed with a single or fewer layer stack of planer structures which are
fabricated with lithography and nano-printing methods. Each RIS unit is implemented by
reflect-arrays that employ varactor diodes or other MicroElectrical-Mechanical Systems,
and whose resonant frequency is electronically controlled [101, 102, 103, 104, 105, 106, 107].
The RIS units operating on the incoming field can be distributed over the meta-surface
with continuity [108, 109, 110, 111] or in discrete positions [112, 113, 114, 115]. Literature
on the FD systems with the IRSs is avaiable in [116, 117, 118, 119, 120, 121], which
assumes the IRSs to be placed in the far-field to improve the channel quality. This
chapter aims to introduce the concept of the near-field intelligent reflecting surface
(NF-IRS) for mmWave MIMO FD systems by removing the analog stage, which enables
lower-dimensional active beamforming with digital beamformers and large dimensional
passive beamforming with the NF-IRSs. As the FD system simultaneously transmits and
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Figure 6.1: Near field IRSs assisted MIMO point-to-point FD communication in mmWave.

receives, each NF-IRS’s objective will be to compensate simultaneously for the analog
beamforming and combining stages of the FD systems. Moreover, the NF-IRS will also
assist in shaping the SI channel, leading to a very advanced approach for SIC while
keeping the cost and power consumption for the SIC very low. We remark that the
proposed idea here is prominent for mmWave and THz MIMO FD systems. However,
as the investigation of the FD operation in THz band is in its initial phase and the
properties of the SI channel are unknown, we focus on applying the NF-IRSs for MIMO
FD systems in the mmWave band.

6.1 System Model

We consider a mmWave point-to-point FD communication system consisting of two
MIMO FD nodes assisted with one NF-IRS each, as shown in Figure 6.1. Let F = {l, r}
denote the set containing the indices of such nodes. Let I = {il, ir} denote the set
containing the indices of the NF-IRSs, where the IRS il ∈ CLr∈Lc and IRS ir ∈ CRr×Rc

are dedicated for node l and r, respectively. The MIMO FD node l is assumed to be
equipped with Ml transmit and Nl receive antennas, respectively, and node r is assumed
to be equipped with Mr transmit and Nr receive antennas, respectively. Let Vl ∈ CMl×dl

and Vr ∈ CMr×dr denote the digital beamformers at the FD node l and r for the white
and unitary variance data streams sl ∈ Cdl×1 and sr ∈ Cdr×1, respectively. Let ϕl and ϕr
denote the vectors containing the collection of the phase shift response of the IRSs il and
ir, respectively. The elements of ϕl and ϕr at position i and j are phasors of the form
ϕl(i) = eiθ

l
i and ϕr(j) = eiθ

r
j , respectively. Let Φl = diag(vec(ϕl)) ∈ CLrLc×LrLc and

Φr = diag(vec(ϕr)) ∈ CRrRc×RrRc denote the matrices containing the phase response of
the IRSs il and ir on its diagonal, with off-diagonal elements being zero.

Let Hil,l ∈ CLrLc×Ml and Hir,l ∈ CRrRc×Ml denote the direct channels from the
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FD node l to the NF-IRS il and to the far-field (FF)-IRS ir, respectively. The direct
channels from the FD node r to the NF-IRS ir and to the FF-IRS il ares denoted
with Hir,r ∈ CRrRc×Mr and Hil,r ∈ CLrLc×Mr , respectively. Let Hil,l ∈ CLrLc×Ml and
Hir,l ∈ CRrRc×Ml denote the direct channels from the FD node l to the NF-IRS il and to
the FF-IRS ir, respectively. The channels from IRSs il and ir to the receive antenna array
of node l are denoted with Hl,il ∈ CNl×LrLc and Hl,ir ∈ CNl×RrRc , respectively. The
channels from the IRSs il and ir to the receive antenna array of node r are denoted with
Hr,il ∈ CNr×LrLc and Hr,ir ∈ CNr×RrRc , respectively. Let Hir,il ∈ CRrRl×LrLc denote
the channel from IRS il to the IRS ir and the channel from IRS ir to IRS il is denoted
with Hir,il ∈ CRrRc×LrLc . Due to reciprocity, the channel from IRS r to IRS l is given
as Hil,ir = HT

ir,il
. The direct channels from node l to node r and from node r to node l

are denoted with Hr,l ∈ CNr∈Ml and Hl,r ∈ CNl∈Mr , respectively. The SI channel for the
MIMO nodes l and r are denoted with Hl,l ∈ CNl∈Ml and Hr,r ∈ CNr∈Mr , respectively.

6.1.1 Channel Modelling

The direct channel Hl,r from the FD node r to node r can be modelled with the path-wise
channel model as [54]

Hl,r =

√
MrNl

NcNp

Nc∑
nc=1

Np∑
np=1

α
(np,nc)
l,r al(ϕ

np,nc

l )aTr (θ
np,nc
r ), (6.1)

where Nc and Np denote the number of clusters and number of rays (Figure 1 [54]),

respectively, α
(np,nc)
l,r ∼ CN (0, 1) is a complex Gaussian random variable with amplitudes

and phases distributed according to the Rayleigh and uniform distribution, respectively,
al(ϕ

np,nc

l
np,nc) and aTr (θ

np,nc
r ) denote the receive and transmit antenna array response

at the MIMO node l and r, respectively, with angle of arrival (AoA) ϕ
np,nc

l
np,nc and angle of

departure (AoD) θ
np,nc
r . Also, the far-field channelsHr,l,Hir,l,Hl,ir ,Hir,l,Hil,r,Hil,ir ,Hir,il

can be modelled similarly as in (6.1). The SI channel for node l can be modelled as [54]

Hl,l =

√
κl

κl + 1
HLoS
l +

√
1

κl + 1
Href
l . (6.2)

The scalar κl denotes the Rician factor, and HLoS
l and Href

l denote the line-of-sight (LoS)

and reflected contributions for the SI channel, respectively. The channel matrix Href
l

can be modelled as in (6.1) and the element at the m-th row and n-th columns of HLoS
l ,

using the NF channel model which will be discussed next, can be modelled as [54]

HLoS
l (m,n) =

ρ

rm,n
e−i2π

dm,n
λ . (6.3)

where ρ denotes the power normalization constant to assure E(||HLoS
l ||2F ) =MlNl and λ

denotes the wavelength. The scalar dm,n denotes the distance between m-th receive and
n-th transmit antenna of node l ∈ F , which depends on the transmit and receive array
geometry (9) [54].
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Due to the NF-IRSs, the channels Hil,l,Hl,il ,Hir,r,Hr,ir cannot be modelled as in
(6.1). To shed light on the NF concept, let D denote the size of the radiating element,
which could be the transmit array of the FD node i ∈ F or the IRS il or ir operating in
the NF of nodes il and ir, respectively. The space surrounding any transmitting device
can be divided into 3 regions: 1) Reactive NF (RE-NF) 2) Radiating NF (RA-NF), and 3)
Far field (FF), as shown in Figure 6.2. The radius R1 and R2 are the boundaries, which
divides the three regions and depends on the size D and the wavelength λ. The regions
RE-NF, RA-NF and FF are also known as inductive NF, Fresnel zone and Fraunhofer
zone, respectively. In the RE-NF zone, the reactive fields dominate the radiation fields,
and therefore its not of interest for wireless communications. In the RA-NF zone, the
radiation fields dominate over the reactive fields, however, the wave received by any
receiver in the RA-NF zone is characterized by a spherical wave-front. In the FF zone,
the received wave-front is plane and the receiver sees the transmitter as a point-wise
source. For the mmWave FD systems, the zone of interest to place NF-IRSs, such that
it can compensate for the analog stage and assist with SIC, is the RA-NF zone, i.e., at
distance R1 ≤ r ≤ R2.

Figure 6.2: Field regions of the radiating element of size D.

Therefore, in contrast to the FF case, for the channels Hil,l,Hl,il ,Hir,r,Hr,ir , we
have to consider a spherical wave-front, as considered also for the SI channel. We first
consider the modelling of the NF channel Hil,l, from the transmit antenna array of node
l to the NF-IRS il. As we are in NF zone, for these channels we can assume that only
LoS component dominates due to a very small path-loss. The impinging wave on the
NF-IRS il transmitted from node l ∈ F is spherical, and therefore we must consider a
phase shift from each antenna element to the each NF-IRS element, instead of treating
the transmit antenna array or the NF-IRS as a point-wise element. Namely, the element
Hil,l(m,n) of the channel response Hil,l, can be modelled similarly as the near-field SI
channel model (6.3), given as

Hil,l(m,n) =
ρil,l
dm,n

e−jkdm,n , (6.4)

where k = 2π/λ is the wavenumber, and dn,m denotes the distance between the n-th
transmit antenna and m-th element of ϕl, with 1 ≤ n ≤Ml and 1 ≤ m ≤ LrLc and ρil,l
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is a normalization constant which assures E[||Hil,l||2F ] = LrLcMl. Similarly, for the NF
channel Hl,il , from the IRS il to the receive antenna array of l, its element Hl,il(i, j) can
be modelled as

Hl,il(i, j) =
ρl,il
di,j

e−jkdi,j , (6.5)

where di,j denotes the distance from the j-th element of ϕl to the transmit antenna i at
the FD node l, with 1 ≤ j ≤ LrLc and 1 ≤ i ≤ Nl, and ρl,il is the power normalization
constant which assures E[||Hl,il ||2F ] = LrLcNl. The elements of the channel response
matrices Hir,r and Hr,ir can also be modelled similarly as (6.4) and (6.5), respectively.

For the mmWave band 30 − 300 GHz, the wavelengths corresponding to 30 GHz
and 300 GHz result to be 10mm and 1mm, respectively. For the mmWave FD, the
state-of-the-art reported results with ≤ 32 RF chains to achieve performance with HYBF
comparable to the fully digital beamforming ,[54, 71]. Assuming uniform linear arrays
(ULAs) with antenna separated by half-wavelength, for a typical antenna array with 32
antenna elements, D = 16λ. Typically, the IRS are made of hundreds of meta elements,
and therefore, the NF region of each MIMO FD node is strictly dictated by the size of
the NF-IRS. Assuming a NF-IRS il of size 100λ× 100λ, the boundary regions can be
identified as R1 = 0.62

√
L2
max/λ and R2 = 2Lmax

2/λ, where Lmax = max{Lr, Lc}, and
for the values concerning the mmWave band are reported in Table 6.1.

Table 6.1: Field regions boundries for an IRS of size D = 100λ.

λ R1 R2

1mm 0.62m 20m

10mm 6.2m 200m

Scaling of the Channels Gains to Capture Distance Dependence

As we have defined above normalized channel gains (modelled with a statistical channel
model), to capture the dependence of the channel gain on the distance, we consider
scaling them with average channel gains which strictly depends on the distance. Each
channel matrix is scaled with a scale factor

√
β which dictates the average channel gain.

It is chosen to be 1 for the direct links between the FD nodes l and r, respectively, which
yields the minimum channel gain. As for the other links, the distance is shorter, we
consider scaling them which scale factors greater than 1. For the other channels, e.g.

for the SI channel Hl,l, the scale factor is defined as
√
βl,l =

√
Dl,r

Dl,l
, where Dl,r is the

distance between the centre of the FD nodes l and r and Dl,l is the distance between the
centre of the transmit and receive antenna arrays of the FD node l. Also for the other
channels, between any node m and n, the channel gains are scaled with a scale factor
which is expressed as a square root of the ratio of Dl,r and Dm,n, where Dl,r is still the
distance between the centre of the FD nodes l and r and Dm,n is the distance between
the centres of the nodes constructing the link m and n, respectively.
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6.1.2 Problem Formulation

Let H̃l,r, H̃r,l and H̃l,l, H̃l,l denote the effective direct and the SI channels for the two
nodes, defined as

H̃l,r =Hl,r +Hl,irΦrHir,r +Hl,ilΦlHil,r +Hl,ilΦlHil,irΦrHir,r (6.6a)

H̃r,l =Hr,l +Hr,ilΦlHil,l +Hr,irΦrHir,l +Hr,irΦrHir,ilΦlHil,l (6.6b)

H̃l,l =Hl,l +Hl,ilΦlHil,l +Hl,irΦrHir,l +Hl,irΦrHir,ilΦlHil,l (6.6c)

H̃r,r =Hr,r +Hr,irΦrHir,r +Hr,ilΦlHil,r +Hr,ilΦlHil,irΦrHir,r (6.6d)

Let yl and yr denote the signal received at the FD nodes l and r, respectively, which
can be written as

yl =H̃l,rVrsr + H̃l,lVlsl + nl, (6.7a)

yr =H̃r,lVlsl + H̃r,rVrsr + nr, (6.7b)

where nl ∼ CN (0, I) and nr ∼ CN (0, I) denote the noise at the MIMO FD nodes l and
r, respectively. Let k denote the indices in the set F except the element k. Let (Rl) Rl

and (Rr) Rr denote the (signal and) interference plus noise covariance matrices, which
can be stated as

Rl = H̃l,rVrV
H
r H̃H

l,r︸ ︷︷ ︸
≜Sl

+H̃l,lVlV
H
l H̃H

l,l + I, (6.8a)

Rr = H̃r,lVlV
H
l H̃H

r,l︸ ︷︷ ︸
≜Sr

+H̃r,rVrV
H
r H̃H

r,r + I, (6.8b)

Rl = Rl − Sl, Rr = Rr − Sr. (6.8c)

The WSR maximization problem for the NF-IRSs assisted mmWave MIMO FD system,
under the sum-power constraint for the FD nodes and the unit-modulus constraint for
the NF-IRSs can be written as

max.
Vl,Vr,
Φl,Φr

wllndet
(
R−1
l

Rl

)
+ wrlndet

(
R−1
r Rr

)
(6.9a)

s.t. Tr
(
VkV

H
k

)
⪯ pk, ∀k ∈ F (6.9b)

|θbi | = 1, ∀i and ∀b ∈ I, (6.9c)

where wl and wr denote the rate weights for node l and r, respectively, pl and pr denote
their total sum power constraint, respectively.
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6.2 Beamforming

The WSR maximization problem stated above is non-concave and finding it global
optimum is challenging. To provide its suboptimal solution, we adopt the weighted
minimum mean squared error (WMMSE) method. Such approach can be adopted as it
well-known that maximizing the WSR is equivalent to minimizing the weighted MSE
[64].

We assume that the MIMO FD nodes l and r deploy the digital combiners Fl and Fr
to estimate the received data streams. i.e.,

ŝl = Fryl, ŝr = Flyr. (6.10a)

By using (6.10), the MSE matrices El and Er for node l and r can be written as

MSEl =E[(Flyl − sr)(Flyl − sr)
H ] = FlH̃l,rVrV

H
r H̃H

l,rF
H
l

− FlH̃l,rVr + FlH̃l,lVlV
H
l H̃H

l,lF
H
l + FlF

H
l

−VH
r H̃H

l,rF
H
l + I

(6.11a)

MSEr =E[(Fryr − sl)(Fryr − sl)
H ] = FrH̃r,lVlV

H
l H̃H

r,lF
H
r

− FrH̃r,lVl + FrH̃r,rVrV
H
r H̃H

r,rF
H
r + FrF

H
r

−VH
l H̃H

r,lF
H
r + I

(6.11b)

We assume that the combiners Fl and Fr are optimized based on the MMSE criteria,
and therefore, they can obtained by solving the following optimization problem

min
Fl,Fr

Tr(MSEl) + Tr(MSEr) (6.12)

which leads to the following optimal MMSE combiners

Fl = VH
r H̃H

l,r(H̃l,rVrV
H
r H̃H

l,r + H̃l,lVlV
H
l H̃H

l,l + I)−1 (6.13a)

Fr = VH
l H̃H

r,l(H̃r,lVlV
H
l H̃H

r,l + H̃r,rVrV
H
r H̃H

r,r + I)−1 (6.13b)

Assuming the combiners to be fixed according to (6.13) and by plugging these
expressions in the error covariance matrices, it is immediate to show the error covariance
matrices can be written as

El = (I+VH
r H̃H

l,rRlH̃l,rVr)
−1 (6.14)

Er = (I+VH
l H̃H

r,lRrH̃r,lVl)
−1 (6.15)

Therefore, maximizing the WSR is equivalent to minimizing the MSE error. The WSR
maximization problem now can be stated with the minimization of the mean squared
error criteria with respect to the digital beamformers and IRSs as

min
Vl,Vr,
Φl,Φr

Tr(WlEl) + Tr(WrEr) (6.16a)
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s.t. Tr
(
VkV

H
k

)
⪯ pk, ∀k ∈ F (6.16b)

|θbi | = 1, ∀i and ∀b ∈ I, (6.16c)

where Wi and Wl are the constant weight matrices associated with the MIMO FD nodes
il and ir, respectively. The gradient of the WSR and the WMMSE optimization problems
results to be the same if the weight matrices are chosen as [41]

Wl =
wl
ln 2

E−1
l , Wr =

wr
ln 2

E−1
r . (6.17)

6.2.1 Active Digital Beamforming

We assume the combiners and the IRSs’ response to be fixed and consider the optimization
of the digital beamformers Vl and Vr for the MIMO FD nodes il and ir, respectively.
The active digital beamforming optimization problem can be formally stated as follows

min
Vl,Vr

Tr(WlEl) + Tr(WrEr) (6.18a)

s.t. Tr
(
VkV

H
k

)
⪯ pk, ∀k ∈ F . (6.18b)

By taking the partial derivative of the Lagrangian function of (6.18) with respect to
the digital beamformers Vl and Vr, we obtain the following optimal beamformers

Vl =
(
H̃H
r,lF

H
r WrFrHr,l +HH

l,lF
H
l WrFlHl,l︸ ︷︷ ︸

≜Xl

+µlI
)−1

H̃H
r,lF

H
r Wr

(6.19a)

Vr =
(
H̃H
l,rF

H
l WlFlHl,r +HH

r,rF
H
r WlFrHr,r︸ ︷︷ ︸

≜Xr

+µrI
)−1

H̃H
l,rF

H
l Wl

(6.19b)

where µl and µr denote the Lagrange multipliers for the sum-power constraint for the
MIMO FD nodes l and r, respectively. The Lagrange multipliers can be calculated while
meeting the sum-power constraints. Namely, to find the Lagrange multiplier, we can
consider the singular value decomposition of Xl = UlΣlU

H
l and Xr = UrΣrU

H
r and

write the power constraints in (6.19), after simple steps, as

Tr(VlV
H
l ) =

Nl∑
i=i

Gl(i, i)

(µl +Σl(i, i))2
= pl, (6.20a)

Tr(VrV
H
r ) =

Nr∑
i=i

Gr(i, i)

(µr +Σr(i, i))2
= pr, (6.20b)

where the matrices Gl and Gr are defined as

Gl = UH
l H̃

H
r,lF

H
r WrWrFrH̃r,lUl, (6.21a)

Gr = UH
r H̃

H
l,rF

H
l WlWlFlH̃l,rUl. (6.21b)

To find the optimal values of µl and µr, a linear search method can be adopted and we
consider finding the multipliers with the Bisection method. If the values of the Lagrange
multipliers results to be negative, then we assign them the value zero.
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6.2.2 Passive Beamforming with the IRSs

We assume the digital combiners and beamformers to be fixed and consider the optimiza-
tion of the Φr and Φl to optimize the passive beamforming response of the IRSs. To
highlight their dependence on the WSR, we first write the effective channel responses
either as

H̃l,r = A1,r +A2,rΦrHir,r, H̃r,l = B1,r +Hr,irΦrB2,r, (6.22a)

H̃l,l = C1,r +Hl,irΦrC2,r, H̃r,r = D1,r +D2,rΦrHir,r. (6.22b)

to optimize Φr or as

H̃l,r = A1,l +Hl,ilΦlA2,l, H̃r,l = B1,l +B2,lΦlHil,l, (6.23a)

H̃l,l = C1,l +C2,lΦlHil,l, H̃r,r = D1,l +Hr,ilΦlD2,l. (6.23b)

to highlight the effective channel responses as a function of Φl, where the auxiliary
matrices appearing in (6.22)-(6.23a) are defined as

A1,r = Hl,r +Hl,ilΦlHil,r, A2,r = Hl,ir +Hl,ilΦlHil,ir (6.24a)

B1,r = Hr,l +Hr,ilΦlHil,l, B2,r = Hir,l +Hir,ililHil,l, (6.24b)

C1,r = Hl,l +Hl,ilΦlHil,l, C2,r = Hir,l +Hir,ilΦlHil,l, (6.24c)

D1,r = Hr,r +Hr,ilΦlHil,r, D2,r = Hr,ir +Hr,ilΦlHil,ir . (6.24d)

A1,l = Hl,r +Hl,irΦrHir,r, A2,l = Hil,r +Hil,irΦrHir,r (6.24e)

B1,l = Hr,l +Hr,irΦrHir,l, B2,l = Hr,il +Hr,irΦrHir,il , (6.24f)

C1,l = Hl,l +Hl,irΦrHir,l, C2,l = Hl,il +Hl,irΦrHir,il , (6.24g)

D1,l = Hr,r +Hr,irΦrHir,r, D2,l = Hil,r +Hil,irΦrHir,r. (6.24h)

Let Sr,Zr,Tr Sl,Zl,Tl denote additional auxiliary matrices defined as

Sr =Hir,rVrV
H
r A1,r

HFHl WlFlA2,r −Hir,rVrWlFlA2,r +C2,rVlV
H
l C1,r

HFHl WlFlHl,ir

−B2,rVlWrFrHr,ir +B2,rVlV
H
l B1,r

HFHr WrFrHr,ir

+Hir,rVrV
H
r D1,r

HFHr WrFrD2,r,
(6.25a)

Zr =HH
r,irF

H
r WrFrHr,ir +D2,r

HA2,r
HWrFrD2,r +A2,r

HFHl WlFlA2,r

+HH
l,irF

H
l WlFlHl,ir ,

(6.25b)

Tr =B2,rVlV
H
l B2,r

H +Hir,rVrV
H
r HH

ir,r +HirVrV
H
r HH

ir,r +C2,rVlV
H
l C2,r

H .
(6.25c)

Sl =A2,lVrV
H
r AH

1,lF
H
l WlFlHl,il +Hi,lVlV

H
l CH

1,lA
H
l WlAlC2,l −A2,lVrWlAlHl,il

+Hil,lVlV
H
l BH

1,lA
H
l WrArB2,l +D2,lVrV

H
r DH

1,lA
H
r WrArHr,il

−Hil,lVlWrArB2,l,
(6.26a)
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Zl =HH
l,il

AH
l WlAlHl,il +CH

2,lA
H
l WlAlC2,l +AH

l WrArB2,l +HH
r,il

AH
r WrHr,il ,

(6.26b)

Tl =A2,lVrV
H
r AH

2,l +Hil,lVlV
H
l HH

il,l
+Hil,lVlV

H
l HH

il,l
+D2,lVrV

H
r DH

2,l. (6.26c)

By substituting (6.25) and (6.26) in the expressions of the error covariance matrices,
the minimization of the MSE optimization problem with respect to Φr and Φl, can be
formally stated as

min
Φr

Tr(ΦH
r ZrΦrTr) + Tr(ΦH

r S
H
r ) + Tr(ΦrSr) + cr (6.27a)

s.t. |θri | = 1, ∀i, (6.27b)

min
Φl

Tr(ΦH
l ZlΦlTl) + Tr(ΦH

l S
H
l ) + Tr(ΦlSl) + cl (6.27c)

s.t. |θli| = 1, ∀i, (6.27d)

where cl and cr denote constant terms which are independent of Φl and Φr, respectively.
We remark that when solving (6.27a)-(6.27b), Φl is assumed to fixed, and similary, when
solving (6.27c)-(6.27d), Φr will be assumed to fixed.

Recall that ϕl and ϕr are vectors containing the diagonal elements of Φl and Φr,
respectively. As the off-diagonal elements of the Φr are zero, we wish to maximize the
WSR or minimize the MSE with respect to ϕl and ϕr. For such purpose, we use the
identity 1.10.6 from [122], to restate the first trace term appearing in (6.27a) and (6.27c)
as

Tr(ΦH
r ZrΦrTr) = ϕHr Σrϕr, where Σr = Zr ⊙TT

r , (6.28a)

Tr(ΦH
l ZlΦlTl) = ϕHl Σlϕl, where Σl = Zl ⊙TT

l . (6.28b)

Let sr and sl denote the vectors containing the diagonal elements of the matrices
Sr (6.25a) and Sl (6.26a), respectively, given as sr = [Sr(1, 1), ...,Sr(Rr, Rc)]

T and
sl = [Sl(1, 1), ...,Sl(Rr, Rc)]

T . The second and third terms appearing in (6.27a) and
(6.27c) can be restated as

Tr(ΦH
r S

H
r ) = sr

Hϕ∗
r , Tr(ΦrSr) = sr

Tϕr. (6.29a)

Tr(ΦH
l S

H
l ) = sl

Hϕ∗
l , Tr(ΦlSl) = sl

Tϕl. (6.29b)

By using the aforementioned properties, the optimization problem (6.27a) and (6.27c) to
optimize ϕl and ϕr, respectively, can be written as

min
Φr

ϕHr Σrϕr + sr
Hϕ∗

r + sr
Tϕl, (6.30a)

s.t. |ϕr(i)| = 1, ∀i, (6.30b)

min
Φl

ϕHl Σlϕl + sl
Hϕ∗

l + sr
Tϕl (6.30c)

s.t. |ϕl(i)| = 1, ∀i. (6.30d)
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which is non-convex due to the unit-modulus constraint. To render a feasible solution, we
adopt the majorization-maximization optimization method [123]. Its objective is solve a
difficult problem by constructing a series of more tractable problems. We carry out its

explanation only for ϕr and a similar reasoning follows also for ϕl. Let f(ϕ
(n)
r ) denote the

value of the objective function as a function of ϕr at the n-th iteration. We proceed by
constructing an upper bound on the objective function (6.27a)-(6.27b), which is denoted

with g(ϕr|ϕ(n)
r ). Instead of directly solving the optimization problem (6.27a)-(6.27b),

we construct an approximate problem by using g(ϕr|ϕ(n)
r ) at the n+ 1-th iteration. If

g(ϕr|ϕ(n)
r ) satisfies the following conditions

1. g(ϕ
(n)
r |ϕ(n)

r ) = f(ϕ
(n)
r ),

2. ∇ϕrg(ϕr|ϕ
(n)
r )|

ϕr=ϕ
(n)
r

= ∇ϕrf(ϕr(n))|ϕr=ϕ
(n)
r

,

3. g(ϕr|ϕ(n)
r ) ≥ f(ϕ

(n)
r ),

then the sequence of the solutions obtained at each iteration will result in a monotonically
decreasing objective function and converge to the actual solution of f(·). The first two
conditions dictate that g(ϕr|ϕr(n)) and its first order gradient should be the same and
the third condition state that it should construct an upper bound for the original function.

It has been shown in [124] that a simple upper bound g(ϕr|ϕ(n)
r ) or g(ϕl|ϕ

(n)
l ) for Φl for

the problems of the form (6.27c)-(6.27d) is given by

g(ϕr|ϕ(n)
r ) = 2Re{srHq(n)

r }+ or, (6.31a)

g(ϕl|ϕ(n)
r ) = 2Re{slHq

(n)
l }+ ol, (6.31b)

where or and ol denote constant terms, and q
(n)
r and q

(n)
l are given by

q(n)
r = (λmaxr I−Σr)ϕ

(n)
r − sr

∗, (6.32a)

q
(n)
l = (λmaxl I−Σl)ϕ

(n)
l − sl

∗, (6.32b)

and λmaxr and λmaxl denote the maximum eigenvalues of Σr and Σl, respectively. The
optimization problems (6.27a)-(6.27b) and (6.27c)-(6.27d), by ignoring all the terms
which are constant, can be restated by using the upper bounds (6.31a) and (6.31b),
respectively, as

min
ϕr

2Re{srHq(n)
r }, (6.33a)

s.t. |ϕr(i)| = 1, ∀i, (6.33b)

min
ϕl

2Re{slHq
(n)
l }, (6.33c)

s.t. |ϕl(i)| = 1, ∀i. (6.33d)
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Algorithm 11 Optimization of IRS i ∈ I
Given: ϕi(0).
Initialize: iteration index n = 1, accuracy ϵ.
Evaluate: f(ϕi(0)).
Repeat until convergence

Calculate q
(n)
i = (λmaxi I−Σi)ϕ

(n)
i − si

∗

Update ϕ
(n+1)
i with ϕ

(n+1)
i = ϕ

(n+1)
r = ei∠q

(n)
i .

if |f(ϕ(n+1)
i )− f(ϕ

(n)
i )|/f(ϕ(n+1)

i ) ≤ ϵ

Stop and return ϕ
(n+1)
i .

else n=n+1 and repeat.

Algorithm 12 WSR maximization for MIMO FD with NF-IRSs

Given: The CSI and rate weights.
Initialize iteration index n, accuracy ϵ, beamformers and combiners.
Repeat until convergence

for ∀i ∈ F
Update Fi with (6.13).
Update Wi with (6.17).
Update Vi with (6.19).
Update Φi with Algorithm 11.

if convergence condition is satisfied
Stop and return the optimized variables.

else repeat.

By solving (6.33)-(6.33b) and (6.33c)-(6.33d) we get that the optimal ϕr and ϕr at
n+ 1-th iteration is given as

ϕ
(n+1)
r = ei∠q

(n)
r . (6.34a)

ϕ
(n+1)
l = ei∠q

(n)
l . (6.34b)

At each iteration, when the digital beamformers are fixed, optimization of Φr and Φl

consists in updating their response iteratively until convergence by solving a series of
more tractable optimization problems. The procedure for the optimization of the phase
response of IRS i ∈ I is stated in Algorithm 1, which needs to be iterated for each update
of the digital beamformers and combiners. The overall procedure to jointly optimize the
digital beamformers, combiners and the response of the NF-IRSs is formally stated in
Algorithm 2.

6.2.3 Convergence

The proof of the convergence of the algorithm is based on the proof of a more general
equivalent optimization problem, which includes the MSE weights and receive filters as
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new optimization variables in addition to digital beamformers and the IRSs’ response.
The global optimization problem as function of the new variables can be formally stated
as

min
Fl,Fr,Vr
Vl,Φl,Φr

∑
f∈F

Tr(WfMSEf )− wf logdet(
ln 2

wf
Wf ) + df

wf
ln2

(6.35)

By fixing the digital beamformers, IRSs’ response and the weight matrices, the combiners
are chosen to be the MMSE combiners as (6.13). By substituting the optimal MMSE
receivers given in (6.35) in the MSEl and MSEr in (6.11a) and (6.11b), respectively,
yields a new cost function

min
VrVl,
Φl,Φr

∑
f∈F

Tr(WfEf )− wf logdet(
ln 2

wf
Wf ) + df

wf
ln2

. (6.36)

Optimization of (6.36) with respect to the weight matrix Wf , yields the solution Wf =
wf

ln 2
E−1
f . By plugging the optimized weight matrices in (6.36) leads to a new cost function,

given as

min
Vl,Vr,
Φl,Φr

∑
f∈F

−wf ln det
(
(Ef )

−1
)

(6.37a)

s.t. Tr
(
VkV

H
k

)
⪯ pk, ∀k ∈ F (6.37b)

|θbi | = 1, ∀i and b ∈ I, (6.37c)

which is exactly same as the original WSR cost function (6.9). Every update of the
digital beamformers Vl and Vr and the IRSs’ phase response by minimizing the MSE
leads to a monotonic increase in the WSR, which assures convergence of the proposed
joint active and passive beamforming design.

A typical convergence behaviour of the proposed beamforming design for the NF-IRSs
assisted FD systems is highlighted in Fig. 6.3.

6.2.4 Simulation Results

In this section, we present simulation results to evaluate the performance of the proposed
joint active and passive beamforming design to analyze its potential to replace HYBF
and combining simultaneously for the FD systems while shaping the SI channel for SI
management.

For comparison, we define the following benchmark schemes:

• mMIMO HD system with fully digital beamforming capability with 100 transmit
and 50 receive antennas, denoted with HD-100× 50.

• mMIMO FD system with fully digital beamforming capability with 100 transmit
and 50 receive antennas, denoted with FD-100× 50.
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Figure 6.3: Typical convergence behaviour of the proposed joint active and passive beamforming design.

Note that digital beamforming designs represent an upper bound for the HYBF designs.
Therefore we consider comparing the performance with the mMIMO fully digital systems
only, which represent the maximum achievable gain for the HYBF designs. We define
the SNR for the NF-IRSs assisted FD system as SNR = pk/σ

2
k = pl/σ

2
l , where pi and

σ2i denote the total transmit power and noise variance for node i, respectively, where
i ∈ F or i ∈ I. We assume that the systems operate at the frequency of 30 GHz, i.e.,
λ = 10mm. The noise σ2i is set to 1, and the total transmit power is chosen to meet the
desired SNR. For the NF-IRSs assisted FD system, the number of transmit antennas are
chosen to be 5 times less, i.e. only Ml = Mr = 20 transmit and Nl = Nr = 10 receive
antennas, respectively, and the number of data streams are set to be dl = dr = 2 for
both the nodes. The FD nodes are assumed to be Dl,r = 200m far, and the NF-IRSs
are placed at the minimum distance of 3m from their FD nodes, which is varied up to
90 m. We assume the NF-IRSs for both nodes to be of the same size, i.e., Lr = Rr and
Lc = Rc, which is denoted with IRS−X ×X, and for performance evaluation, we choose
X = 10, 20 or 30. We assume ULAs for both the FD nodes and their transmit and the
receive array are assumed to be separated with distance Db = 20 cm with a relative
angle Θb = 90◦ and rm,n in (6.3) is set given Db and Θb as in (9) [54]. The Rician factor
is chosen to be κb = 1 and the rate weights are set to be wl = wr = 1. The number
of paths and number of clusters are chosen to be Nc,b = Np,b = 3 and the AOA θ

np,nc
r

and AOD ϕ
np,nc

l are assumed to be uniformly distributed in the interval U ∼ [−30◦, 30◦].
The digital beamformers are initialized as the dominant eigenvectors of effective channel
covariance matrices, and the response of the NF-IRSs is initialized with random phases.
The results reported herein are averaged over 200 channel realizations. Let x̂, ŷ and ẑ
denote the 3 versors on the three dimensional space. Any point on the 3 dimensional
vector space can be written as (xx̂, yŷ, zẑ). The FD nodes with ULAs are aligned with
x̂ direction and the first transmit antenna of the FD nodes l and r are assumed to be

138



Chapter 6. Near-Field Intelligent Reflecting Surfaces for Millimeter Wave MIMO Full
Duplex

-10 -5 0 5 10 15 20 25 30 35 40

SNR [dB]

10

20

30

40

50

60

70

80

90

100

A
ve

ra
g

e
 W

e
ig

h
te

d
 S

u
m

-R
a

te
 [

b
p

s/
H

z]

FD 20x10-IRS 30x30-3m

FD 20x10-IRS 20x20-3m

FD 20x10-IRS 10x10-3m

FD 100x50

HD 100x50

Figure 6.4: Average WSR as a function of SNR with NF-IRSs of size 30× 30, 20× 20 and 10× 10, placed
at distance of 3m.

placed in the positions (0, 0, 0) and (0, Dl,rŷ, 0), respectively, with other antennas placed
in positions x+. The NF-IRSs are placed on the plane identified with the versors (0, ŷ, ẑ),
with reflecting elements pointing towards the direction (x̂, 0, 0).

Fig. 6.4 shows the achieved average WSR as a function of the SNR for the FD systems
assisted with the NF-IRSs placed at 3m far from the transmit array. We can see that
despite using 5 times fewer antennas than the mMIMO FD systems, the proposed idea
has the potential to significantly outperform the HD system and the classical mMIMO
fully digital FD system. The FD systems are well-known to double the spectral efficiency.
However, as shown in Fig. 6.4, they can achieve significantly higher gains. For example,
an FD system with NF-IRSs of size 30× 30 can achieve 5 times higher gains than the
traditional mMIMO HD system while operating with 5 times fewer antennas. Fig. 6.4
exhibits that the achievable gains of the FD systems are limited only by the size of
the NF-IRSs, and having larger NF-IRSs will lead to higher gains. Fig. 6.5 shows the
performance of the proposed design as a function of the SNR with NF-IRSs placed at
30m far from the transmit array. We can see that when the NF-IRSs are placed far from
the FD node, they achieve significantly less gain. The reason lies in the fact that the
IRSs placed far from the FD node cannot aid in shaping the SI channel, which is handled
only with the digital beamformers, which leads to less achievable gain.

Fig. 6.6 shows the performance of the proposed joint active and passive beamforming
design as a function of the distance between the FD node and their NF-IRSs, which is
varied in the interval 3− 90m, with the two FD nodes operating at the distance of 200m
at SNR= 0 dB. It is visible from Fig. 6.6, that the FD systems benefit the most with
NF-IRSs instead of the FF-IRSs by bringing significant improvement in terms of the
achievable WSR compared to the traditional mMIMO FD systems. Placing the IRSs
far from the FD systems leads to small performance gains as the FD systems improve
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Figure 6.5: Average WSR as a function of SNR with NF-IRSs of size 30× 30, 20× 20 and 10× 10, placed
at distance of 30m.
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SNR= 0 dB.
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Figure 6.7: Average WSR as a function of the distance between the FD nodes and the NF-IRSs at
SNR= 30 dB.

only the quality of the direct links and cannot assist in shaping the SI channel. Fig. 6.7
shows the performance as a function of the distance between the NF-IRSs from their
FD node at SNR= 30dB. It is clearly visible that the regardless of the SNR at which
the NF-IRSs assisted FD systems operate, the distance between the FD nodes and their
NF-IRSs dictates the maximum achievable gain.

6.3 Conclusions

This chapter has introduced the idea of NF-IRSs assisted FD systems for enhancing
the performance of the traditional FD systems while reducing the hardware cost for
the SI cancellation and the number of active elements in the system. A novel joint
active and passive beamforming design is proposed for WSR maximization based on
the minimization of the MSE. Simulation results show that the proposed idea has the
potential to leverage to the maximum the acheiveable gains of the FD system while
operating with minimum cost. Results also show that the distance between the FD
nodes and the IRSs can severely affect the FD systems’ performance. Therefore, it is not
desirable for the next generation of wireless FD systems to be aided with the FF-IRSs
but only with the NF-IRSs.
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Chapter 7

Dynamic TDD: A Special Case of
Multi-Cell Full Duplex Systems

7.1 Introduction and Motivation

In HD cellular networks, UL and DL transmissions occur either at different times or
over different frequency bands. In particular, with TDD, the BSs alternates time periods
when it receives signals from its served users in the UL, or transmits to users in the DL.
In advanced long-term evolution (A-LTE) networks, a fixed configuration of the TDD
periods is used, to be chosen among a given set. In the new radio (NR) standard for
fifth-generation (5G) networks, this rigid scheme is broken, and DTDD [125] enables cells
to independently set the UL/DL configuration in each slot.

As well-discussed in Chapter 5, FD multi-cell FD systems are severely affected by the
CI. DTDD represents a special case of the FD systems, which introduces UL-to-DL, i.e.,
from UL users towards DL users, and DL-to-UL, i.e., from BS-to-BS, CI among cells, as
shown in Fig. 7.1(a)-7.1(b). As for FD systems, DTDD also requires CI management
techniques to outperform the classical TDD systems. Fortunately, intelligent scheduling
of the different cells in DTDD is possible, which if done correctly, can significantly limit
the CI contributions.

In this chapter, we consider the joint scheduling and power allocation problem, aiming
at a maximizing the average WSR of the network: this is mixed-integer and non-convex
(MINC), which turns out to be NP-hard [126]. Thus, we decouple the problem: first,
power is allocated with a low complexity, greedy, and decentralized algorithm, then,
the mode is scheduled by playing a game among cells. We consider a non-cooperative
game, wherein each base station plays an action (the UL or DL mode) with a given
probability distribution, so as to maximize its utility function, given the choices made by
its opponents. The neighboring cells’ choices are crucial for the resulting utility, due to CI.
The game is solved according to the mixed-strategy Nash equilibrium (MS-NE) concept,
which always exists for finite games [127]. We consider two payoffs, using different models
for the CI and requiring different overheads for the information exchange among cells.
The proposed scheduling is performed at each slot independently, a solution that can
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Figure 7.1: Multi-cell DTDD and FD systems, where both are affected by the CI.

be included in future releases of NR, as currently only a limited number of slot mode
configurations can be selected.

Simulation results are presented for a dense, outdoor, and small-cells scenario, with
line-of-sight (LoS) links. To our best knowledge, this is the first contribution to provide
results for the most challenging DTDD scenario of [128], without resorting to clustering.

In summary, the contributions of our work are:

• the definition of the joint scheduling and power allocation problem for DTDD for
average weighted sum-rate maximization;

• the decoupling of the power allocation and scheduling problem in DTDD; we obtain
a much simpler system of (nonlinear) equations suited for a very efficient solution,
without iterations or tuning of multiple parameters, as in [129];

• a novel scheduling procedure, implemented as a game among cells; the MS-NE
solution is computed once over many slots, as long as the channel can be considered
invariant, whereas DTDD modes are still selected for each slot. This leads to a
significant saving of computational resources, while exploiting the full flexibility of
DTDD.

• the definition of a simplified payoff model for the scheduling game that reduces the
information exchange overhead among cells.

Lastly, note that we do not cluster cells for DTDD scheduling, which allows each cell to
independently adapt the DTDD modes to its local traffic.

7.2 System Model

We consider N cells, where cell n, n = 1, . . . , N , serves users with indices in the set Un,
and |Un| = K, ∀n. Thus, the total number of users is NK, which are identified by indices
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k = 1, . . . , NK. Time is split into slots. Each slot comprises multiple resource blocks of 12
subcarriers each. For the sake of a simpler explanation, we assume that the same number
of simultaneous resource blocks is allocated to each user for an entire slot. Moreover, the
K users in a cell occupy all the available spectrum. We denote the resulting per-user
portion of the time-frequency plane as user block.1 Let ϕi ∈ {1, . . . ,K} denote the user
block assigned to user i ∈ Un, ∀n. As only one user is allocated to each user block in each
cell, N users are served simultaneously in the network on the same user block.

In each slot, cell n can be in either DL or UL mode, indicated as zn = 1 or zn = 0,
respectively. Moreover, at each slot, the UL and DL transmit powers are also set. Let
z = [z1, . . . , zN ] denote the chosen modes for all cells at each slot. Let pk(z) be the
power allocated either to or from user k, in DL or UL mode, respectively. Note that the
dependence of power allocation arises due to CI, which must be taken into account. We
consider the following power constraints for users and base stations:

pk ≤ α0, k ∈ Un, if zn = 0, (7.1a)∑
k∈Un

pk ≤ α1, if zn = 1, (7.1b)

with mode-dependent constants α0 and α1, respectively.

We assume that the link between user k and its serving base station n is a narrowband
channel with gainHn,k and we letH be theN×NK matrix with entries {Hn,k}. Moreover,
since users operating in UL mode interfere with the DL users of neighboring cells (UL-
to-DL interference), we define the NK ×NK symmetric matrix U , whose entry Uk1,k2 ,
k1, k2 = 1, . . . , NK, is the channel gain between users k1 and k2. Similarly, base stations
operating in DL interfere with base stations operating in UL (DL-to-UL interference),
thus we define the N ×N symmetric matrix B, whose entry Bn1,n2 , n1, n2 = 1, . . . , N ,
is the channel gain between base stations n1 and n2. We assume also that channel
reciprocity holds for H,U , and B.

7.2.1 Scheduling and Power Allocation Problem

To compute the network WSR, used as optimization metric, let the power of interference
suffered by user k served in cell n operating in DL mode (zn = 1) be

In,k(z) =
N∑

m=1,m ̸=n
I ′n,k,m(z), (7.2)

I ′n,k,m(z) = zmHm,k

∑
j∈Um:ϕj=ϕk

pj + c1(1− zm)
∑

j∈Um:ϕj=ϕk

Uj,kpj , (7.3)

with c1 ∈ [0, 1] being the UL-to-DL CI management factor. In (7.3), we account for
the interference from other base stations operating in DL (matrix H) and other users

1This can be easily extended to more general cases of different resources allocated to each user and
different numbers of users per cell.
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operating in UL (matrix U). Similarly, the power of interference suffered by user k served
in cell n operating in UL mode (zn = 0) is given by (7.2), now with

I ′n,k,m(z) = c2zmBm,n
∑

j∈Um:ϕj=ϕk

pj + (1− zm)
∑

j∈Um:ϕj=ϕk

Hn,jpj , (7.4)

where c2 ∈ [0, 1] is the DL-to-UL CI management factor. In (7.4), we take into account
the interference from other base stations operating in DL (matrix B) and other users
operating in UL (matrix H). Note that c1 and c2 varying in the interval [0, 1] assume
value 0 or 1 in the case of perfect or no interference management, respectively. For a
given set of modes z, the WSR at base station n is then

Wn(z) =
∑
k∈Un

wk(zn) log2

(
1 +

Hn,kpk

σ2 + In,k(z)

)
, (7.5)

where σ2 is the variance of the noise, wk(zn) ∈ [0, 1] is the weight of user k ∈ Un, when
the serving base station n is operating in mode zn. The network WSR is

W (z) =

N∑
n=1

Wn(z). (7.6)

A possible target for scheduling optimization is the maximization of the instantaneous
WSR, i.e.,

max
{pk(z)},z

W (z), s.t. (7.1) and zn ∈ {0, 1}, ∀n. (7.7)

However, the joint scheduling and power allocation problem (7.7) is MINC and turns out
to be NP-hard [126]. In particular, its non-convexity comes from the interference terms.
Note that, to fully exploit DTDD, the problem must be solved at each slot (millisecond
scale), which is prohibitive.

7.3 Scheduling and Power Allocation Decoupling

To simplify and decentralize the problem, we assume that each base station randomly
selects its own mode, thus zn becomes a Bernoulli random variable. Let qn be the
probability that base station n selects zn = 1, i.e.,

qn = P[zn = 1], 1− qn = P[zn = 0]. (7.8)

The value of qn is chosen to maximize the average WSR, i.e.,

max
qn

Ez [Wn(z)] , (7.9)

with the expectation taken over the actions of all players. Note that problem (7.9) should
be solved once over multiple slots, as long as channel conditions and rate weights do not
change, thus the network WSR for a given mode configuration does not change. Still,
the mode is chosen for each slot according to the obtained distribution qn.
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Problem (7.9) requires the computation of Wn(z), which, from (7.5) requires the
knowledge of all channel gains. To reduce the communication overhead needed to share
this information among all base stations, we approximate the instantaneous interference
power level with its average, as better detailed in the following.

7.3.1 Average Interference Power

We define the average interference power for cell n as

Jn(z) =

N∑
m=1,m ̸=n

Īn,m(z), (7.10)

where Īn,m(z) is the average interference power suffered by users in cell n from cell m,
i.e.,

Īn,m(z) =EB,H,U ,{pk}[I
′
n,k,m(z)], (7.11)

and the expectation is taken with respect to both the channel gains and the powers.

The computation of the average in (7.11) is rather complex, since the allocated power
depends on scheduling and power assignments, which in turn depend on the channel
gains. Thus, we consider an approximated value of the average interference power, where
we keep the transmit power as a fixed term. In particular, we assume the DL transmit
power as equally split (on average) among the K served users, i.e., pk = α1/K for k ∈ Um
when zm = 1, ∀m. In UL, we assume that all users transmit at their maximum power, i.e.,
pk = α0, for k ∈ Um when zm = 0, ∀m. Then, under this setting, the average interference
power suffered by users in cell n from cell m becomes

Īn,m(z) =EB,H,U [I ′n,k,m(z)], (7.12)

while (7.10) still holds. When cell n is in DL (zn = 0), since we have one user per user
block from (7.3) we have

Īn,m(z) =
α1

K
zmEH [Hm,k] + c1(1− zm)EU [Uj,k]α0, (7.13)

while when cell n is in UL (zn = 1), from (7.4) we have

Īn,m(z) =
α1

K
c2zmEB[Bm,n] + (1− zm)EH [Hn,j ]α0. (7.14)

Note that the expectations here can be computed either using the channel statistics,
if available, or by averaging multiple channel estimates over time. When using this
approximation Jn(z) in the following will be denoted as reference interference power.
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7.3.2 Power Allocation Sub-problem

For power allocation, we assume that each cell allocates power to maximize only its
utility function, regardless of interference and CI. This enables a greedy, decentralized,
and low complexity power allocation.

In UL mode, we assume that each user transmits at its maximum power, to maximize
its rate, i.e.,

p∗k = α0 k ∈ Un, if zn = 0. (7.15)

For the DL mode, we approximate In,k(z) ≈ Jn(z) and we distribute the transmit
power according to a modified version of the (weighted) water-filling algorithm [130],
which takes into account the noise, interference, and CI and aims at maximizing W s

n(z)
at each cell independently, i.e.,

p∗k =

(
wk(1)

λk
− σ2 + Jn(z)

Hn,k

)+

, if zn = 1, (7.16)

where λk > 0 is the Lagrange multiplier that satisfies the power constraint (7.1b).

7.3.3 Approximated WSRs

Once powers have been allocated, let W s
n(z) be the WSR (7.5), with powers given either

by (7.15) or (7.16), depending on the DTDD mode, to be used in (7.9).

A further simplification is obtained by replacing In,k(z) with Jn(z) in (7.5), providing
the WSR W a

n(z), which is then used instead of W s
n(z) in (7.9).

7.4 Game-theoretic Scheduling

As the major contribution of this work, we tackle this issue by framing the scheduling
problem (7.9) as a non-cooperative, decentralized, and instantaneous game, played by the
base stations. The MS-NE solution of the game provides an efficient distributed scheduling,
where no players desire to deviate from. Differently from a centralized scheduling scheme,
each base station n acts as a player on its own, with action set An = {0, 1}, corresponding
to UL and DL modes. Let the overall set of actions be A = A1 × . . .×AN . For each slot,
each base station n chooses its mode over its action set An, according to the distribution
qn. Define q = [q1, . . . , qN ]

T as the vector of probabilities of choosing the DL mode for
the N base stations: this is the vector of mixed strategies over the action set A. Since we
aim at maximizing the average WSR, the payoff of player n, denoted as Wn(z), can be
either the WSR W s

n(z) or its approximated version W a
n(z). The objective of each player

is the maximization of his/her average payoff, through the choice of a mixed strategy.

Now, the scheduling problem translates into the following static game (in normal
form) with players, actions, and payoffs

G = ({1, . . . , N},A, {Wn(z)}) . (7.17)
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7.4.1 Mixed Strategy Selection

We find an MS-NE, where each player aims at maximizing its average payoff (solution
of (7.9)); if any player deviates, then its payoff degrades. In DTDD, this means that
the equilibrium distribution locally maximizes the payoff at each cell. To solve the
optimization problem in the MS-NE sense, we impose also the principle of indifference
[127]. This principle imposes the further constraint that player n chooses qn also to make
his/her opponents indifferent over their actions. More precisely, the opponents would
obtain the same average payoff, no matter which action they choose. Hence, the cross
interference with optimal distribution yields that the same rate in UL and DL is achieved
by neighboring cells.

This is achieved only in the asymptotic regime, with many opportunities to alternate
between UL and DL, while in practice channel and rate weights can be considered constant
only over a few slots, yielding only few opportunities.

For user n in UL and DL modes, the average payoff is denoted as Ez

[
Wn(z)|zn = a

]
,

with a = 0 or 1, respectively, where the expectation is taken with respect to all the
possible actions zm, m ̸= n of the opponents of player n. By imposing the indifference
principle, we obtain the following system of N nonlinear equations in N variables (qn)
[Sec. 4.6.2 [127]]

Ez

[
Wn(z)|zn = 1

]
= Ez

[
Wn(z)|zn = 0

]
, n=1, . . ., N. (7.18)

The average payoff of player n, can be written as a function of the probability that the
various modes are selected, i.e., [see (113.1) [127]]

Ez [Wn(z)| zn = a] =
∑

z′∈A:z′n=a

Wn(z
′)P[z = z′]

=
∑

z′∈A:z′n=a

Wn(z
′)

N∏
m=1,m ̸=n

qz
′
m
m (1− qm)

1−z′m ,

(7.19)

where the latter equality is obtained considering that modes are selected independently
by each player n with probabilities qn (see (7.8)).

Given the information shared from neighboring cells, (7.18) and (7.19) provide a
system of polynomial equations in qm ∈ [0, 1], which can solved by each cell using
numerical methods (see [131] and references therein) to pick its mixed strategy. Moreover,
each cell also knows the strategies of others as every player solve the same system (7.18),
according to MS-NE.

Problem (7.7) is then shifted into a system of equations, which can be solved very
efficiently. To further save computational complexity, (7.18) can be solved only at one
base station and the optimal distribution communicated to the others, as all players solve
the same system. The amount of information shared strictly depends on the type of
payoffs, as discussed in Section 7.4.2. Lastly, note that the MS-NE system of equations
has at least one solution as the actions set of DTDD players is finite [Prop. 116.1 [127]].
However, being nonlinear, it may exhibit multiple solutions. In that case, all the players
must agree to choose the mixed strategy that maximizes the overall system performance,
to avoid ambiguity.
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7.4.2 Impact Of The Payoff Model

We now consider the different alternatives of payoff Wn(z), and their consequences on
the communication overhead.

Simplified-payoff (SIP) game with payoffW s
n(z) WhenWn(z) = W s

n(z), the interference
power In,k(z) has to be computed. In this case, although players independently solve
(7.18), they need to share information on the mutual interference, in particular, matrices
B, H, U , weights {wk(zn)}, and the allocated powers.

Approximated-payoff (APP) game with payoff W a
n(z) When Wn(z) = W a

n(z), the base
stations only need to share information about weights {wk(zn)}, allocated powers and
NK elements of matrix H, corresponding to the direct signal channel gains. All the CI
channel gains instead can be omitted. Still, we need the average interference power Jn(z).
From (7.10), we observe that this can be obtained from the (N − 1) average interference
terms Īn,m(zm), m = 1, . . . , N , m ̸= n. Therefore, a significant reduction of signaling
overhead is obtained with this payoff. Moreover, as these average interference terms are
slowly time-varying, they can be shared at a slower rate that H, making the signaling
overhead negligible.

7.5 Numerical Results

We now evaluate the performance of both SIP and APP games in a DTDD 5G network.
We assume that channel varies every 10 ms (one frame) and each user block comprises
one resource block of 12 subcarriers, continuously allocated to the same user for one
DTDD frame. Therefore, only one computation of the MS-NE takes place to schedule 10
slots. For comparison purposes, we consider:

a) the instantaneous optimal approach (OPT), which works as follows. At each slot,
we first compute the WSR W (z) of (7.6) with W s

n(z) for all possible scheduling modes z,
using the power allocation of (7.15)-(7.16), and then select the mode and powers yielding
the maximum WSR. Note that we must evaluate 2N scheduling modes (all possible z
vectors of size N with 0-1 entries). Moreover, the full channel state information must be
transferred to a central node, where the WSRs are computed, and then the scheduling
decision should be broadcast to all cells. These operations must be repeated at each slot;

b) the static TDD (STDD) scheme with frame equally partitioned in both directions,
i.e., 5 slots in UL and 5 in DL;

c) the decentralized scheme [129], which always assigns the first 2 and the last 2
slots to DL and UL, respectively, whereas the rest of the slots are chosen by making the
optimal allocation of a DL to UL switching point.

In all cases, power is allocated in the greedy fashion, as in (7.15) and (7.16). The
expectations of (7.13) and (7.14) have been computed by averaging multiple channel
estimates.

We consider an outdoor dense scenario, with seven hexagonal small cells, having side
of size 333 m. LoS channels with path-loss exponent 2 are assumed. This results to
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Figure 7.2: Average network payoff of a DTDD system for OPT, SIP, APP, and STDD, as a function of
c, with fixed 15 users per cell.

be the most challenging scenario for DTDD [128]. We wrap the scenario into a sphere,
which leads to each cell having 6 interfering cells. We also assume c1 = c2 = c and the
maximum transmit powers at the base stations and users, α1 = α0 = 23 dBm, as in [132].
Each base station and user is equipped with one omni-directional antenna. The UL and
DL rate weights are chosen from a uniform distribution. The noise power is -10 dB to
the signal power.

We remark that, although under the APP model the players use an approximation of
the payoff, we report here the resulting true payoffs obtained with their actions, according
to (7.5), by considering the actual CI at each slot.

Fig. 7.2 shows the average WSR achieved by the various approaches, as a function of
c. We note that both SIP and AAP significantly outperform TDD and [129], for all values
of c. This is due to the higher flexibility of both SIP and AAP compared to TDD and
[129]. Moreover, APP performs strictly close to SIP, despite its use of the approximated
payoff, which in turn makes APP quite appealing for its reduced communication overhead.
Still, SIP and APP exhibit a performance gap with respect to OPT, as in OPT we
optimize the cell mode, thus maximizing the instantaneous sum-rate, while APP and
SIP randomly select the cell modes, with densities that maximize the resulting average
sum-rate. Moreover, with APP players do not have a perfect estimate of the interference
when locally solving the MS-NE problem.

Fig. 7.3.a shows the cumulative distribution function (CDF) of the average WSR for
the various methods and typical CI management factor c = 0.3. Both SIP and APP shows
a similar CDF, and provides higher average rates than static TDD and the method of
[129]; this indicate the proposed solution operates fairly among cells. Fig. 7.3.b shows the
average WSR as a function of the number of users per cell, again for c = 0.3. According
to our assumptions in the System Model, the user block shrinks in the frequency domain
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Figure 7.3: a) CDF for the WSR with c = 0.3 and 15 users/cell. b) Average network payoff of a DTDD
system for OPT, SIP, APP, and STDD, as a function of the number of users per cell.

as the number of users increases. The figure shows that our approaches are particularly
effective in dense networks, which are of interest for current and future generations of
cellular systems. Moreover, both games result to be extremely scalable as the network
size grows. With decentralized CI management, we provide a fully decentralized and low
complexity DTDD scheduling for dense networks.

7.6 Conclusions

A new CI aware, decentralized, and low complexity power allocation is proposed. Schedul-
ing of UL/DL transmissions in a DTDD scenario is cast into the MS-NE of a simultaneous
game among the base stations. Our performance evaluation shows a significant advantage
with respect to TDD and the state-of-the-art in terms of achievable WSR even in absence
of further interference rejection techniques for the most challenging DTDD scenario. In
particular, the APP solution also significantly reduces the communication overhead, while
performing close to SIP.
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Chapter 8

Conclusions and Future Work

This thesis presented several novel contributions for the SISO and MIMO FD systems in
the sub-6GHz and for the mMIMO FD systems in the mmWave. This chapter provides
the concluded remarks on the work items, lessons learned, and some future research
directions to be explored.

• This thesis started with a novel idea to reconstruct the saturated signal in the FD
systems with the LMMSE estimates of missing samples, presented in Chapter 2.
Results showed an optimal tuning point dependent on the resolution of the ADCs,
which exhibits the optimal compromise between the number of samples required to
reconstruct the missing samples and the QN. Our work addressed an important
issue of the FD systems, but it was presented in a simple scenario. Namely, it
was assumed that the known samples were perfectly SI free and only the SISO
FD case was investigated. Future work direction for this work may consider that
the known samples are corrupted with the residual SI, and joint adaptation of the
DSIC stage and signal reconstruction must be investigated, which can lead to a
more realistic design. Extension of this work to MIMO or mMIMO FD systems
is also desirable. In the second part of Chapter 2, a novel digital beamforming
design for the MIMO FD system under the joint sum-power and the per-antenna
power constraints was presented. Results show that the considered constraints
are prominent when the transmit power increases. Namely, as the LDR noise is
proportional to the total power transmitted from each antenna, imposing the power
constraint also constraints the transmit LDR noise variance and thus leads to higher
gain. Chapter 2 concluded with a novel SIC architecture, RF calibration algorithm
and measurements results for the MIMO OFDM FD system. The proposed SIC has
very low complexity, making it very desirable, and the proposed RF calibration is
applicable to any MIMO FD system. The experimental results taken at EURECOM
for an OFDM FD system showed that it is possible to achieve a low-rank SI channel
when the FD systems transmit and receive antennas arrays are placed according
to ULAs configurations. One interesting future research direction for this work
is to show the validity of the presented idea for a mMIMO setting, possibly with
multiple UL and DL users.
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• In Chapter 3, we first studied a novel HYBF for the IAB mmWave FD system.
Results showed that FD relay could lead to significant performance improvement.
Apart from the WSR, which was the criteria assumed in the problem formulation,
the FD relay also results in minimum latency for the communication from the
mmWave mMIMO HD BS to the users via hybrid FD relay. Future work of this
study item may consist in investigating the coexistence of multiple FD relays and
mmWave HD BSs and the design of the beamformers which are global network
interference aware. Then we studied a novel HYBF/multi-stage design for a point-
to-point mmWave MIMO OFDM FD system. Future work for this study item
may consist in extending the proposed design to multiple pairs of the OFDM FD
links or to the case of a multi-user OFDM mMIMO FD system. Finally, Chapter
3 concluded with a novel HYBF design for a K-pair point-to-point FD system.
Simulation results showed that the K-pair mMIMO FD system is able to achieve
significant gain over an HD system. As this work assumed a single-carrier FD
system, future work for this study item can consider the case of K-pair point-to-point
mMIMO OFDM FD links and investigate the achievable performance.

• In Chapter 4, we studied a novel HYBF design for a mmWave mMIMO FD
system with multi-antenna UL and DL users under several practical considerations.
Simulation results showed that the proposed design can achieve significant higher
gain over a single-cell mMIMO HD system by handling the SI and CI jointly with
the beamformers. As this work considered a single-carrier FD system, future work
for this contribution can consider the case of an OFDM single-cell FD system,
possibly including the joint adaption of the SIC architecture. Another interesting
research direction for this work could be the joint blind channel estimation and
beamforming design, which could reduce the communication overhead significantly.

• In Chapter 5, we extended our HYBF design to the case of a multi-cell mmWave
FD system by proposing a novel C-HYBF design. We also shed light on the fact
that centralized HYBF designs are infeasible for a multi-cell FD system. Then
we presented the first-ever P&D-HYBF design for mmWave, which enables per-
link independent optimization of the beamformers at each multi-processor FD BS.
Simulation results showed that both the proposed designs significantly outperformed
the traditional multi-cell HD system and achieved similar performance. Even though
the proposed P&D-HYBF design achieves similar performance as the C-HYBF, its
drawback is that it requires sharing one analog beamformer and analog combiner
of massive dimensions. Future work for this study item may consider the design of
the analog stage based solely on statistical CSI, which can avoid sharing the analog
beamformers and combiners of massive dimensions every channel coherence time
and thus reducing the communication overhead significantly. Another interesting
research direction could be studying non-cooperative P&D-HYBF schemes, which
could be very prominent for the next generation of mmWave FD networks.

• In Chapter 6, we introduced the concept of NF-IRSs for the mmWave FD system,
which leads to reduced power consumption and hardware cost. Results show that
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the NF-IRSs not only can replace the analog stage of the mmWave FD systems
but also lead to significantly higher gain. An interesting research direction for this
work could be the analysis of the performance with multiple users. Distributed
optimization of the beamformers and the NF-IRSs could also be an interesting
research direction as it can lead to faster convergence of the algorithm, for which
the joint optimization can require significant execution time, especially when large
NF-IRSs are used.

• Chapter 7 studied the problem of joint scheduling and power optimization of the
multi-cell DTDD system. The proposed solution is fully distributed and has low
complexity. Simulation results showed that our design can achieve significant
performance gain. This work was limited to the case of single-antenna users.
Future work direction for this study item could consider the joint optimization
of the beamformers, scheduling and power in a multi-cell MIMO DTDD network.
Moreover, in our work, we considered a non-cooperative approach. Distributed
solutions with cooperation by exchanging a small amount of information could also
be investigated, which can surely lead to further performance improvement.
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Appendix A

Gradient Derivation for OFDM FD
System

In this section we derive an expression for the gradient for the terms of the form,

Y = Adiag(CXD)B+ F(X), R = CXD, (A.1)

where F(X) represents any matrix function in X. Each element of Y can be written as,

Yi,j =
∑
m,n

Ai,mRm,nBn,jδm−n + F(X)i,j ,

Rm,n =
∑
p,q

Cm,pXp,qDq,n,

Yi,j =
∑
m,n

Ai,m(
∑
p,q

Cm,pXp,qDq,n)Bn,jδm−n + F(X)i,j ,

(A.2)

where δk represents the Kronecker delta function. We define Vr,s as zero-valued matrix
except for a unity element at row r and column s and we obtain,

∂det(Y)

∂X
=

∑
r,s

Vr,s
∂det(Y)

∂Xr,s
=

∑
r,s

Vr,s

∑
i,j

∂det(Y)

∂Yi,j

det(Yi,j)

∂Xr,s

=
∑
r,s

Vr,s

∑
i,j

∂det(Y)

∂Yi,j
[
∑
m,n

Ai,mCm,rDs,nBn,jδm−n +
det(F(X)i,j)

∂Xr,s
]

=
∑
r,s

Vr,s(
∑
m,n

Cm,rDs,n(
∑
i,j

∂det(Y)

∂Yi,j
Ai,mBn,j)δm−n+

∑
i,j

∂det(Y)

∂Yi,j

det(F(X)i,j)

∂Xr,s
)=[Ddiag(B(

∂det(Y)

∂Y
)TA)C]T + F′

(A.3)

For simplicity we call the second term in the summation F′ since that is not of interest
here or the required gradients (needed forms of F(X)) are derived in [133]. Further using
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the result, ∂det(Y)
∂X = det(Y)(Y−1)T we can simplify it as ,

∂det(Y)

∂X
= det(Y)[Ddiag(BY−1A)C]T + F′. (A.4)

160



Appendix B

Proofs for Chapter 5

The proof of Theorem 3 is based on the result derived in the following.

Lemma B.0.1. Let Y = AXB + a A diag
(
X + Q

)
B + b diag

(
CXD + E

)
+ F. The

derivative of lndet
(
Y
)
with respect to X is given by

∂lndetY

∂X
=AHY−HBH + a diag

(
AHY−HBH

)
+ b CHdiag

(
Y−H)DH .

(B.1)

Proof. By substituting ϕ = lndet(Y), we can write

∂ϕ = Y−H : dY = Tr
(
Y−1dY

)
, (B.2)

where operator : denotes the Frobenius inner product, i.e. GRF : H = Tr
(
GH
RFH

)
. Its

derivative with respect to X can be written as

∂ϕ

∂X
= Y−H :

[ d

∂X

(
AXB+ a Adiag

(
X
)
B

+ b diag
(
CXD+E

)
+ F

))]
,

(B.3)

where the last term results to be zero as independent from X. Substituting the Forbenius
product with the trace operator, using its cyclic shift and separating terms, yields

∂ϕ

∂X
=
∂ Tr

(
BY−1AX

)
∂X︸ ︷︷ ︸
1

+ a
∂ Tr

(
BY−1Adiag(X)

)
∂X︸ ︷︷ ︸
2

+ b
∂ Tr

(
Y−1diag(CXD)

)
∂X︸ ︷︷ ︸
3

+b
∂ Tr

(
Y−1diag(E)

)
∂X

,

(B.4)

where the last term being independent of X is also zero. To proof the aforementioned
result, we proof the derivatives of 1, 2 and 3 separately. Firstly, for 1, by using : and
doing some simple algebric manipulations leads to

∂ Tr
(
BY−1AX

)
∂X

= AHY−HBH : ∂X = AHY−HBH . (B.5)
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To obtain the derivative of 2, we first define diag
(
X
)
= Z. The diagonal of X can be

written as diag
(
X
)
= I ◦X where ◦ denotes the Hadamard product. By writing 2 with :

and expressing the diagonal term as a function of ◦, and using the commutative property
of the Hadamard product leads to the following result

a
∂ Tr

(
BY−1AZ

)
∂Z

= a AHY−HBH : ∂Z,

= a AHY−HBH : I ◦ ∂X,
= a AHY−HBH ◦ I : ∂X,
= a diag

(
AHY−HBH

)
.

(B.6)

To compute the derivative of 3, we first define diag
(
CXD

)
= W. By using a similar

approach as in (B.6), we get

b
∂ Tr

(
Y−1W

)
∂W

= b Y−H : ∂W,

= bY−H : I ◦C∂XD,

= b Y−H ◦ I : C∂XD,

= b diag
(
Y−H) : C∂XD,

= b CHdiag
(
Y−1

)H
DH .

(B.7)

Combining the result from each term concludes the proof for Lemma (C.1).

To prove Theorem 3, note that the covariance matrices in 4.11 has a special (Hermitian)
structure, i.e., B = AH and D = CH . Therefore, the result of Lemma C.1.1 for this
particular case is given in the following.

Lemma B.0.2. Let Y = AXB+ a Adiag
(
X+Q

)
B+ b diag

(
CXD+E

)
+ F, where the

size of matrices involved is such that the product is valid. Let B = AH and D = CH and
the derivative of lndet(Y) is given by

∂lndetY

∂X
=AHY−HA+ a diag

(
AHY−HA

)
+ b CHdiag

(
Y−H)C. (B.8)

Proof. The result follows directly by relying on the result given in Lemma C.1.1 by
substituting B = AH and D = CH

Proof. Theorem 3 To prove the gradients to linearize the WSR with respect to Tk and
Qj , we proceed by simplifying the WSR as

WSR =
∑
k∈U

wklndet
(
Rk

)
− wklndet

(
Rk

)
+

∑
j∈D

wj lndet
(
Rj

)
− wj lndet

(
Rj

)
.

(B.9)
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The WSRUL
k

and WSRDL should be linerized for Tk and WSRDL
j

and WSRUL for

Qj . Note from (4.11) that Tk appears in WSRUL
k

and WSRDL with the structure

Y = AXAH + a A diag
(
X +Q

)
AH + b diag

(
CXCH + E

)
+ F, where the scalars a

and b are due to the LDR noise model, A and C are the interfering channels, F and E
contain the noise contributions from other transmit covariance matrices but independent
from Tk. The same structure holds also for the DL covariance matrices Qj , ∀j ∈ D. By
applying the result from Lemma B.0.2 with Y = Rk or Y = Rk repetitively K − 1 time
for linearizing WSRk with respect to Tk yield the gradient Ak. Similarly, by considering
Y = Rj or Y = Rj , ∀j ∈ D and applying the result from Lemma B.0.2 yield the gradient
Bk.

The same reasoning holds also for Qj , which leads to the gradients Ĉj and Dj by
applying the result provided in Lemma B.0.2 for WSRDL

j
J − 1 times and for WSRUL K

times, respectively, ∀j ∈ D.

B.1 Proof of Theorem 5

The dominant generalized eigenvector solution maximizes the reformulated concave WSR
maximization problem

WSR =
∑
k∈U

[
wklndet

(
I+UH

k H
H
k FRFR

−1
k

FHRFHkUk

)
− Tr

(
UH
k

(
Âk + B̂k + lkI+Ψk

)
Uk

)]
+

∑
j∈D

[
wj lndet

(
I+VH

j GH
RFH

H
j R

−1
j

HjGRFVj

)
− Tr

(
VH
j GH

RF

(
Ĉj + D̂j + l0I+Ψ0

)
GRFVj

))]
.

(B.10)

To prove Theorem 5 for solving (B.10), we first consider the UL digital beamforming
solution by keeping the analog beamformer and the digital DL beamformers fixed. We
proceed by considering user k ∈ U for which we wish to compute the WSR maximizing
digital UL beamformer. The same proof will be valid ∀k ∈ U . The proof relies on
simplifying

max
Uk

wklndet
(
I+UH

k H
H
k FRFR

−1
k

FHRFHkUk

)
− Tr

(
UH
k

(
Âk + B̂k + lkI+Ψk

)
Uk

) (B.11)

until the Hadamard’s inequality applies as in Proposition 1[38] or Theorem 1 [134]. The

Cholesky decomposition of the matrix
(
Âk + B̂k + lk +Ψk) is given as LkL

H
k where Lk

is the lower triangular Cholesky factor. By defining Ũk = LHk Uk, (B.11) reduces to

max
Uk

wklndet
(
I+ Ũk

H
L−1
k HH

k FRFR
−1
k

FHRFHk

L−H
k Ũk

)
− Tr

(
Ũk

H
Ũk

)
.

(B.12)
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Let EkDkE
H
k be the eigen-decomposition of L−1

k HH
k R

−1
k

HkL
−H
k , where Ek and Dk are

the unitary and diagonal matrices, respectively. Let Ok = EHk ŨkŨk
H
Ek and (B.12) can

be expressed as

max
Ok

wklndet
(
I+OkDk

)
− Tr

(
Ok

)
. (B.13)

By Hadamard’s inequality [Page 233 [135]] , it can be seen that the optimal Ok must be

diagonal. Therefore, Uk = L−H
k EkO

1
2
k and thereby

HH
k FRFR

−1
k

FHRFHkUk = LkL
H
k L

−H
k EkO

1
2
kDk

=
(
Âk + B̂k + lk +Ψk

)
UkDk,

(B.14)

from which we select uk dominant eigenvectors, which concludes the proof for the UL
beamformer for user k ∈ U . For the digital DL beamformers the proof follow similarly by
considering the following optimization problem ∀j

max
Vj

wj lndet
(
I+VH

j GH
RFH

H
j R

−1
j

HjGRFVj

)
− Tr

(
VH
j GH

RF

(
Ĉj + D̂j + l0 +Ψ0

)
GRFVj

)
.

(B.15)

and simplifying it until the Hadamard’s inequality applies to yield a similar result as
expressed in (C.8).

The proof for analog beamformer GRF does not apply directly as the KKT condition
have the form A1GRFA2 = B1GRFB2, which are not resolvable. To solve it for the
analog beamformer GRF , we apply the result vec(AXB) = BT ⊗Avec(X) [136], which
allows to rewrite (4.22) as∑

j∈D
wj

((
VjV

H
j

(
I+VjV

H
j GH

RFH
H
j R

−1
j

HjGRF

)−1)T
⊗

HH
j R

−1
j

Hj

)
vec

(
GRF

)
−

∑
j∈D

((
VjV

H
j

)T
⊗
(
Ĉj

+ D̂j +Ψ0 + l0I
))

vec
(
GRF

)
= 0.

(B.16)

The WSR maximizing analog beamformer can alternatively be derived as follows
(which allows the proof for the digital beamformers to be applicable directly). First we
apply a noise whitening procedure using the noise plus interference covariance matrix

R
1/2

j
on the received signal. Further, we can rewrite the whitened signal as follows

Ỹj =
((

sTjdV
T
j

)
⊗R

−1/2

j
Hj

)
vec(GRF ) + ñj , (B.17)

where ỹj = R
−1/2

j
yj and ñj represents the whitened noise plus interference signal. We

can write the resulting WSR optimization problem, after the approximation to concave
form and some algebraic manipulations on the linearized term, as
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max
GRF

∑
j∈D

wj lndet
(
I+ vec

(
GRF

)H((
VjV

H
j

)T
⊗HH

j R
−1
j

Hj

)
vec

(
GRF

))
− Tr

(
vec

(
GRF

)H(
VjV

H
j ⊗(

Ĉj + D̂j

)
+Ψ0 + l0I

)
vec

(
GRF

))
.

(B.18)

Taking the derivative of (C.12) for the conjugate of GRF leads to the same generalized
eigenvector solution as in (4.23). Note that this alternative representation has the same
form as (B.11), which is resolvable for the vectorized version of the analog beamformer
GRF . Therefore, the proof for the UL and DL digital beamformers can now be applied
directly on the vectorized analog beamformer vec(GRF ), which is summed over all the
DL users served by the mmWave FD BS.
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Proofs for Chapter 5

C.1 Gradients

To derive the gradients (5.14) and (5.16) to construct the minorized WSR cost function,
we apply the following result we derived in Lemma 3 [91].

Lemma C.1.1. Let Y = AXB + a A diag
(
X +Q

)
B + b diag

(
CXD +E

)
+ F . The

derivative of lndet
(
Y
)
with respect to X is given by

∂lndetY

∂X
=AHY −HBH + a diag

(
AHY −HBH

)
+ b CHdiag

(
Y −H)DH .

(C.1)

The result stated above can be used to construct the gradients for the multi-cell
mMIMO mmWave FD system. To proceed, we write the WSR cost function (5.12) as∑

b∈B

∑
kb∈Ub

[
wkb lndet

(
Rkb

)
− wkb lndet

(
Rkb

)]
+
∑
b∈B

∑
jb∈Db

[
wjb lndet

(
Rjb

)
− wjb lndet

(
Rjb

)] (C.2)

To compute the gradient ĜUL
kb,b

to optimize the transmit covariance matrix Tkb for
UL user kb, in the same cell for which Tkb acts as interference, we have to linearize with
respect to the users mb ∈ Ub with mb ̸= kb. Applying the result in (C.1) for Rmb

as X
and then Rmb

as X Ub−1 times, and considering that X is Hermitian, yields the gradient

ĜUL
kb,b

=
∑
mb∈Ub
mb ̸=kb

wmb

[
HH
mb

FRF
b

(
R−1
mb

−R−1
mb

+ βbdiag
(
R−1
mb

−R−1
mb

))
FRF
b

H
Hmb

+ kmb
diag

(
HH
mb

FRF
b

(
R−1
mb

−R−1
mb

)
FRF
b

H
Hmb

)]
.

(C.3a)

To linearize with respect to the DL users in the same cell for which the transmit covariance
matrix Tkb acts as CI, we first replace Rjb as X and then Rjb

as X in (C.1), and repeating
it for all the DL users in the same cell leads to the following gradient
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ĜDL
kb,b

=
∑
jb∈Db

wjb
[
HH
jb,kb

(
R−1
jb

−R−1
jb

+ βjbdiag
(
R−1
jb

−R−1
jb))

Hjb,kc + kkbdiag
(
HH
jb,kb

(
R−1
jb

−R−1
jb

)
Hjb,kb

)]
,

(C.3b)

By repeating a similar reasoning for all the remaining gradients and applying the results
provided in (C.1) yields the gradients

ĜUL
kb,b

=
∑
c∈B
c ̸=b

∑
kc∈Uc

wkc
[
HH
c,kb

FRF
c

(
R−1
kc

−R−1
kc

+ βcdiag
(
R−1
kc

−

R−1
kc

))
FRF
c

H
Hc,kb + kkbdiag

(
HH
c,kb

FRF
c

(
R−1
kc

−R−1
kc

)
FRF
c

H
Hc,kb

)]
,

(C.3c)

ĜDL
kb,b

=
∑
c∈B
c ̸=b

∑
jc∈Dc

wjc
[
HH
jc,kb

(
R−1
jc

−R−1
jc

+ βjcdiag
(
R−1
jc

−

R−1
jc

))
Hc,kb + kkbdiag

(
HH
c,kb

(
R−1
jc

−R−1
jc

)
Hc,kb

)]
,

(C.3d)

ĜUL
jb,b

=
∑
kb∈Ub

wkb
[
HH
b,bF

RF
b

(
R−1
kb

−R−1
kb

+ βbdiag
(
R−1
kb

−R−1
kb

))
FRF
b

H
Hb,b + kkbdiag

(
HH
b,bF

RF
b

(
R−1
kb

−R−1
kb

)
FRF
b

H
Hb,b

)]
,

(C.3e)

ĜDL
jb,b

=
∑
lb∈Db
lb ̸=jb

wlb
[
HH
lb

(
R−1
lb

−R−1
lb

+ βlbdiag
(
R−1
lb

−R−1
lb

))
HH
lb
+ kcdiag

(
HH
lb

(
R−1
lb

−R−1
lb

)
Hlb

)]
,

(C.3f)

ĜUL
jb,b

=
∑
c∈B
c ̸=b

∑
kc∈Uc

wkc
[
HH
c,bF

RF
c

(
R−1
kc

−R−1
kc

+ βcdiag
(
R−1
kc

−R−1
kc

))
FRF
c

H
Hc,b + kbdiag

(
HH
c,bF

RF
c

(
R−1
kc

−R−1
kc

)
FRF
c

H
Hc,b

)]
,

(C.3g)

ĜDL
jb,b

=
∑
c∈B
c ̸=b

∑
jc∈Dc

wjc
[
HH
jc,b

(
R−1
jc

−R−1
jc

+ βjcdiag
(
R−1
jc

−R−1
jc

))
Hjc,b + kbdiag

(
HH
jc,b

(
R−1
jc

−R−1
jc

)
Hjc,b

]
.

(C.3h)
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C.2 Proof of Theorem 6

The proof of Theorem 6 follows similarly as in Appendix B [91]. We proceed with the
proof by considering the minorized version of the optimization problem

max
U,V,

GRFFRF

∑
b∈B

∑
kb∈Ub

[
wkb lndet

(
I+UH

kb
HH
kb
FRF
b R−1

kb
FRF
b

H
Hkb

Ukb

)
− Tr

(
UH
kb

(
ĜUL
kb,b

+ ĜDL
kb,b

+ ĜUL
kb,b

+ ĜDL
kb,b

+ λkbI
)
Ukb

)]
+
∑
b∈B

∑
jb∈Db

[
wjb lndet

(
I+VH

jb
GRF
b

H
HH
jb

R−1
jb

HjbG
RF
b Vjb

)
− Tr

(
VH
jb
GRF
b

H(
ĜUL
jb,b

+ ĜDL
jb,b

+ ĜUL
jb,b

+ ĜDL
jb,b

+ ψbI
)
GRF
b Vjb

)]
.

(C.4)

We first consider the optimization only with respect to Vjb . The proof for the digital
beamformer Ukb will follow similarly. When optimizing Vjb , all the remaining variables
are fixed and their information from their previous update is saved in the gradients.
Therefore, form (C.4), only the following optimization problem needs to be considered

max
Vjb

[
wjb lndet

(
I+VH

jb
GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b Vjb

)
− Tr

(
VH
jb
GRF
b

H(
ĜUL
jb,b

+ ĜDL
jb,b

+ ĜUL
jb,b

+ ĜDL
jb,b

+ ψbI
)
GRF
b Vjb

)]
.

(C.5)

The proof consists in simplifying (C.5), until the Hadamard’s inequality applies as in
Proposition 1 [38] or Theorem 1 [134]. The Cholesky decomposition of the matrix(
GRF
b

H(
ĜUL
jb,b

+ ĜDL
jb,b

+ ĜUL
jb,b

+ ĜDL
jb,b

+ ψbI
)
GRF
b ) can be written as LjbL

H
jb

where Ljb is

the lower triangular Cholesky factor. We can define Ṽjb = LHjbVjb , which allows to write
(C.5) as

max
Vjb

[
wjb lndet

(
I+ Ṽjb

H
L−1
jb

GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b

L−H
jb

Ṽjb

)
− Tr

(
Ṽjb

H
Ṽjb

)]
.

(C.6)

Let EjbDjbE
H
jb

be the eigen-decomposition of L−1
jb

GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b L−H

jb
, where

Ejb is a unitary matrices and Djb is diagonal. Let Ojb = LHjb ṼjbṼjb
H
Ljb , and we can

express (C.6) as

max
Ojb

[
wjb lndet

(
I+OjbDjb

)
− Tr

(
Ojb

)]
. (C.7)

By invoking the Hadamard’s inequality [Page 233 [135]], we can see that the optimal Ojb
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must be diagonal. Therefore, Ujb = L−H
jb

EjbO
1
2
jb

and thus

GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b = LjbL

H
jb
L−H
jb

EjbO
1
2
jb
Dk

= GRF
b

H(
ĜUL
jb,b

+ ĜDL
jb,b

+ ĜUL
jb,b

+ ĜDL
jb,b

+ ψbI
)
GRF
b ,

(C.8)

from which we select djb dominant generalized eigenvectors, equal to the number of data
streams to be transmitted, which concludes the proof for the digital beamformer Vjb .
For the digital DL beamformers Ukb , the result mentioned above holds immediately by
applying it to the optimization problem

max
Ukb

[
wkb lndet

(
I+UH

kb
HH
kb
FRF
b

H
R−1
kb

FRF
b HkbUkb

)
− Tr

(
UH
kb

(
ĜUL
kb,b

+ ĜDL
kb,b

+ ĜUL
kb,b

+ ĜDL
kb,b

+ λkbI
)
Ukb

))]
.

(C.9)

and simplifying the terms in log det(·) and Tr(·) until the Hadamard’s inequality applies
to yield a result similar to (C.8).

C.3 Proof of Theorem 7

To provide the proof for the analog beamformer, the results stated above cannot be
applied directly as the KKT condition (5.24) is not resolvable for GRF

b , having the
form A1G

RF
b A2 = B1G

RF
b B2. To solve it for GRF

b , we apply the result vec(AXB) =
BT ⊗Avec(X) [91], which allows to rewrite (5.24) as∑

jb∈Db

((
VjbV

H
jb

(
I+ VjbV

H
jb
GRF
b

H
HH
jb
R−1
jb

HjbG
RF
b

)−1)T⊗
HH
jb
R−1
jb

Hjb

)
vec

(
GRF
b

)
−
(
(VjbV

H
jb
)T ⊗

(
ĜUL
jb,b

+ ĜDL
jb,b

+ ĜUL
jb,b

+ ĜDL
jb,b

+ ψbI
))
vec

(
GRF
b

)
= 0.

(C.10)

which now become resolvable for vec(GRF
b ). To get to the KKT condition (C.10), we

first consider rewriting the cost function such that, taking its derivative leads to (C.10).
Firstly, we consider applying a noise whitening procedure using the noise plus interference

covariance matrix R
1/2

jb
on the received signal. We can rewrite the whitened signal as

ỹjb =
((

sTjbV
T
jb

)
⊗R

−1/2

jb
Hjb

)
vec(GRF

b ) + ñjb , (C.11)

where ỹjb = R
−1/2

jb
yjb and ñjb represents the whitened noise plus interference signal. The

resulting WSR optimization problem by computing the minorizers for all the links with
respect to the unconstrained analog beamformer GRF

b can be stated as

max
GRF

∑
jb∈D

[
wjb lndet

(
I+ vec

(
GRF

)H((
VjbV

H
jb

)T ⊗HH
jb
R−1
jb

Hjb

)
vec

(
GRF
b

))
− Tr

(
vec

(
GRF
b

)H(
VjbV

H
jb

⊗
(
ĜUL
jb,b

+ ĜDL
jb,b

+ ĜUL
jb,b

+ ĜDL
jb,b

+ ψbI
))
vec

(
GRF

))]
.

(C.12)
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By taking the derivative of (C.12) leads to the KKT condition (C.10). Note that
the restatement of the whitened version stated with vec(GRF

b ) has the same form as
the digital beamformer Vjb or Ukb . By following a similar proof for Vjb , now it can be
easily shown that we can optimize the analog beamformer vec(GRF

b ) as one generalized
dominant eigenvector, which is summed over all the users in DL in the same cell.
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[51] R. López-Valcarce and N. González-Prelcic, “Beamformer design for full-duplex
amplify-and-forward millimeter wave relays,” in 2019 16th International Symposium
on Wireless Communication Systems (ISWCS). IEEE, 2019, pp. 86–90.

[52] ——, “Analog beamforming for full-duplex millimeter wave communication,” in
IEEE 16th International Symposium on Wireless Communication Systems (ISWCS),
Aug. 2019, pp. 687–691.

[53] C. K. Sheemar and D. T. Slock, “Hybrid beamforming for bidirectional massive
MIMO full duplex under practical considerations,” in IEEE 93rd Vehicular Tech-
nology Conference (VTC) Spring, Apr. 2021.

[54] K. Satyanarayana, M. El-Hajjar, P.-H. Kuo, A. Mourad, and L. Hanzo, “Hy-
brid beamforming design for full-duplex millimeter wave communication,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 2, 2018.

[55] E. Balti, N. Mensi, and S. Yan, “A modified zero-forcing max-power design for
hybrid beamforming full-duplex systems,” arXiv preprint arXiv:2003.00147, 2020.

[56] S. Huang, Y. Ye, and M. Xiao, “Learning based hybrid beamforming design for full-
duplex millimeter wave systems,” IEEE Transactions on Cognitive Communications
and Networking, vol. 7, pp. 120–132, Mar. 2020.

[57] J. Palacios, J. Rodriguez-Fernandez, and N. González-Prelcic, “Hybrid precoding
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