
Walks in Cyberspace: Improving Web Browsing and Network
Activity Analysis with 3D Live Graph Rendering

Lionel Tailhardat
Orange
France

lionel.tailhardat@orange.com

Raphaël Troncy
EURECOM
France

raphael.troncy@eurecom.fr

Yoan Chabot
Orange
France

yoan.chabot@orange.com

ABSTRACT
Web navigation generates traces that are useful for Web cartogra-
phy, user behavior analysis (UEBA) and resource allocation plan-
ning. However, this data still needs to be interpreted, sometimes
enriched and appropriately visualized to reach its full potential. In
this paper, we propose to explore the strengths and weaknesses
of standard data collection methods such as mining Web browser
history and network tra�c dumps. We developed the DynaGraph
framework that combines classical traces dumping tools with aWeb
application for live 3D rendering of graph data. We show that min-
ing navigation history provides useful insights but fails to provide
real-time analytics and is not easy to deploy. Conversely, mining
network tra�c dumps appears easy to set up but rapidly fails once
the data tra�c is encrypted. We show that 3D rendering allows to
highlight navigation patterns for a given data sampling rate.

CCS CONCEPTS
• Networks → Network performance evaluation; • Human-
centered computing→Visualization; • Information systems
→ Decision support systems.

KEYWORDS
Web Browsing Traces, User and Entity Behavior Analytics (UEBA),
Network Resource Allocation Planning, Network Visualization,
Multilayered Graphs

ACM Reference Format:
Lionel Tailhardat, Raphaël Troncy, and Yoan Chabot. 2022. Walks in Cy-
berspace: Improving Web Browsing and Network Activity Analysis with
3D Live Graph Rendering. In Companion Proceedings of the Web Conference
2022 (WWW ’22 Companion), April 25–29, 2022, Virtual Event, Lyon, France.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3487553.3524230

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9130-6/22/04. . . $15.00
https://doi.org/10.1145/3487553.3524230

1 INTRODUCTION
Comparing the Web to physical libraries makes location, distance
and time considerations vanish for Web browser users when ac-
cessing content on the Web: locations become URLs even if host-
ing servers are spread throughout the world; distances become
response-time and latency measures; and time is stored as access
records in the browsing history of Web browsers. When the idea of
“knowledge memorization and organization while reading and with
the help of a technical system” was introduced with the MemEx
machine [5], dismissing path and intent from Web navigation miss
the point for deeper contextualization (live or retrospective) of the
data being accessed. Analyzing the browsing history and data from
intermediate systems (e.g. logs, packet inspection) provides con-
textualization information (e.g. source/destination hosts, network
protocol, content size). However, taken as it is, we observe that
this data and its inherent representation does not directly or suf-
�ciently reveal details about the virtual travel that occurs. Firstly,
analyzing network tra�c traces gives insights about data exchange
domains on a host to host basis. However, providing insights about
“why” a given packet is sent between some hosts, and “how” this is
included into some higher level activity (e.g. Web navigation for
online shopping, video on demand streaming, peer-to-peer beacon-
ing of worms) is not available per se without additional knowledge
(i.e. combination of time, trigger and accessed resource indicators).
Secondly, providing network connectivity maps from tra�c dumps
is an appreciable option for high level activity analysis. However,
static and planar representations hinder �ner grain analysis by
compressing dynamics and complexity of network tra�c.

This has practical impacts on day-to-day experience of the Web
with respect to its underlying infrastructure: 1) Web citizens willing
to understand their Web browsing traces may �nd Web browser’s
history side panel impractical for (live) evaluation of their (complex)
browsing path, 2) cyber security analysts working on malicious ac-
tivity assessment (e.g. forensics, live application usage conformance
checking) may get lost in long lists of fast paced network transac-
tions without system topology contextualization, 3) network/plat-
form designers working on optimal data placement projects may
miss visual guess about how data is accessed in their system.

We hypothesize that a tool enabling semantically-enriched and
live graphical analysis of a Web browsing session could: 1) enable
live map-making of accessed resources and assets with timestamped
path taken by users or applications, 2) ease identifying access pat-
terns by disentangling map dimensions with 3D representation,
3) enable identifying multi-user/application access patterns by cen-
tralizing multiple trace sources in a single map. From the appli-
cation perspective, such tool would improve situations in need of
user behavior analysis (UEBA) for resource allocation planning

https://doi.org/10.1145/3487553.3524230
https://doi.org/10.1145/3487553.3524230

WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France Tailhardat, et al.

or access conformance checking. We propose to explore strengths
and weaknesses of standard data collection methods such as min-
ing Web browser history and network tra�c dumps. We develop
the DynaGraph framework, a system combining classical traces
dumping tools (i.e. the tshark tool and Firefox’s Network Monitor
component1) and an adhoc Web application that provides live 3D
rendering of graph data derived from traces.

The remainder of this paper is organized as follows. Section 2
presents some related work. Section 3 presents our approach while
Section 4 details the DynaGraph framework. Section 5 describes
our experiments and evaluations. Finally, Section 6 concludes the
paper and discusses some future work. We release the DynaGraph
code at https://github.com/Orange-OpenSource/dynagraph.

2 RELATEDWORK
Web browsing and network activity analysis topics are at the cross-
border of various research and technical domains, such as: Web
usage mining, malicious activity detection, network performance
monitoring, process modeling and graph-based analytics. In this
section, we review some of this related work from the aspect of
Web/IT resources cartography.

The Web cartography approach combines Web crawlers with
topic modeling [12] and graph clustering/traversal [4, 10, 14, 16]
techniques. It aims at understanding the shape and dynamics of
the Web from the lenses of both humanities and social science and
network science. Its e�ectiveness is determined by 1) the number
of layers (dimensions) to handle when looking for aggregates in
multilayered graphs, 2) the data spatialization and visual indicators
chosen by the analyst.

Closer to Web navigation, Web Usage Mining (WUM) “aims
at discovering interesting patterns by exploiting usage data stored
during the interactions of users with the Web site” [6]. WUM can be
carried out either on network or user side. Its e�ectiveness is �rstly
determined by the ability to access and inspect navigation data,
such as Web browser events (e.g. Web Navigation Window add-
on2), Web navigation session data (e.g. HAR �les3), Internet Service
Provider (ISP) access logs or encrypted network tra�c (e.g. TLS
protocol). Other e�ectiveness factors are 1) the ability to identify
and distinguish between the users who access Web resources [17],
and 2) algorithmic complexity/limitations inherent to the pattern
discovery technique (e.g. association rule mining, sequential pattern
discovery, clustering, classi�cation) [6].

Detailed knowledge of active IT resources (e.g. routers, servers,
virtual machines) is a prerequisite towards high quality of service
and operational e�ciency for network operators. Anomaly Detec-
tion (AD) and Root Cause Analysis (RCA) capabilities of Network
Monitoring Systems (NMSs) and Security Information and Event
Management systems (SIEMs) directly rely on such knowledge
(e.g. host IP address, running software, neighborhood). It is built
manually or with the help of automated process such as network
discovery (e.g. LLDP protocol, Nmap4 security scanner), �ow mon-
itoring/discovery (e.g. IPFIX protocol, Cisco Tetration platform5),

1https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
2https://github.com/vcharpenay/web-nav-window
3https://w3c.github.io/web-performance/specs/HAR/Overview.html
4https://nmap.org
5https://www.cisco.com/go/tetration

or information sharing between stakeholders (e.g. NDL [18], RDF-
based infrastructure description [7, 9]).

3 DYNAGRAPH APPROACH
Graphs are convenient tools for studying complex phenomenon
from the system point of view: they o�er both intuitive representa-
tion of relational objects, and mathematical tools (i.e. graph theory)
to measure structural characteristics of the system. We observe
that ICT systems (IT networks) are typically represented as graphs
where vertices are physical/logical resources and edges are phys-
ical/logical links between resources. The canonical form of such
graph is (=�) ←→

connected to
(=�) where = (·) is some IT resource (e.g.

server, router, �rewall, access point). Similarly, an agent (human
or scripted) querying some Web resource (e.g. an HTTP GET for
a Web page) is a two-sided relational model where an URL both
designate 1) the Web resource object itself, and 2) its location in
term of an IP address through name resolution. Canonical forms
for such graph are (064=C) −→

asks for
(DA;) and (DA;) −→

hosted by
(=�).

Finally, from the agent perspective, triggering a query is done at
a speci�c moment in time with a reference to a speci�c URL. In
addition to this, the same agent may carry out a sequence of queries
based on his agenda, thus building an ordered set of actions w.r.t.
time. Canonical forms for such graph are (064=CC) −→

asks for
(DA;)

with C ∈ {1 . . .) } a time position in the experiment of duration) ,
and (064=CC8) −→

followed by
(064=CC 9) where C8 ≤ C 9 .

We hypothesize that a multilayered graph (i.e. a graph with het-
erogeneous vertices or edges) with the following minimal set of
layers is su�cient for depicting a Web navigation session: 1) host-
ing IT network resources (e.g. IP addresses), 2) Web resources (e.g.
URLs), 3) timestamped agent actions. As we have no prior knowl-
edge of the course of action (i.e. the Web navigation scenario), we
propose to capture and process theWeb navigation session as a data
stream, and use a graph expansion principle for building up the
graph simultaneously on the three above mentioned layers through
adequate parsing of the data stream.

A broad variety of Web navigation context is possible. We sum-
marize usage context of our approach in Table 1. We will also
refer, in subsequent sections, to the typical situation where Web
navigation 1) is carried on by a user through a Web browser soft-
ware hosted on a personal computer or equivalent, 2) follows a
general search loop scheme. This typical situation entails the fol-
lowing remarks. Firstly, one cannot presuppose any user expertise
on both the setup or the usage of a path tracking system. Thus the
path tracker should rely as much as possible on already existing
technologies and con�gurations, and maximizes usability and in-
terpretability. A side consequence of this is that far too numerous
data may be collected, thus a processing/�ltering capability should
be taken into account in the design process. Secondly, lack of prior
knowledge on the Web navigation course (i.e. general search loop
scheme) do not allow to neatly distinguish search sub-sequences
within the overall Web browsing session. An illustrative scenario
is a student browsing through music fan blogs (i.e. a sequence of
hyper-link related Web sites), and then decide to connect to his
academic Web site to check for an eventual planning update (i.e.
URL-based access to a Web site), and �nally goes to a search engine

https://github.com/Orange-OpenSource/dynagraph
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://github.com/vcharpenay/web-nav-window
https://w3c.github.io/web-performance/specs/HAR/Overview.html
https://nmap.org
https://www.cisco.com/go/tetration

Walks in Cyberspace WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France

to get back on his initial music topic. Unless presence of useful
tags denoting activity start/stop in the user traces, the grouping
of events will solely rely on the correct choice of a time sampling
period. Thirdly, the graph activity diagram may be non-planar due
to redundant access to Web content. This scenario gives an example
where content may be accessed twice as the user wished to get it
twice (e.g. a blog page where details were skipped at �rst by the
student). A more subtle example comes from the fact that complex
Web platforms use dedicated servers for some types of contents and
refer to the same content from various documents (e.g. a federated
service commercial o�er where users’ avatars are managed on a
third-party social network platform). Therefore, accessed resources
are composite in the sense that an URL may inherently refer to a set
of sub-contents (e.g. images, videos, scripts, etc.) and IT resources
(i.e. servers). With both these behavioral and technical complexity
in mind, a classical 2D graph representation may not be suitable for
�nding patterns through visual analysis of such non-planar graphs.
A typical override for this is to work with a 3D representation.
However, data/graph visualization is a complex topic per se as it
combines user expectations about rendering quality with reactivity
of user interfaces. Hence, we argue that the development of the
path tracking solution should not focus on developing a rendering
engine, but will do best at integrating a generic and active rendering
engine project.

Capture source

Capture context Net. tra�c Web browser

Browser windows X -
Browser tabs X X
Multiple browser X -
Browser in incognito mode X -1
Browser online mode X X
Browser o�ine mode - -
Mobile Web browsing - -
Local process X -
Browsing session replay X X
Tra�c replay X -

1 Web browsing sessions cannot be saved to HAR �les in Private mode.

Table 1: Scope of the DynaGraph experiments
A check mark (X) indicates Web navigation context where the DynaGraph framework
apply.

4 DYNAGRAPH FUNCTIONAL
ARCHITECTURE

For simple interpretation of our framework, we make use of the
observer design pattern [8] to form a system from two components
categories: 1) data collection and processing, and 2) graph visualiza-
tion. We also propose and make use of the criteria from Table 2 as
general directions for developing the DynaGraph framework. We
detail the DynaGraph components in the following paragraphs.

Data Collection: Live packet capture. Assuming that 1) network
packets carry useful information at basic �elds level, 2) network
packets capture should be launched in a programmatic way, we
propose a network capture and processing tool chain (Figure 1a)

based on the combination of the tshark tool6 and an adhoc script
for data processing and forwarding. We provide a standard data
forwarding process towards downstream components (e.g. data
visualization) by using the WebSockets protocol7. This script delin-
eates the tshark output stream to the data schemata of Listing 1,
and then streams graph data through a WebSockets server instance
with the help of the websockets package8.

(a) Data Collection: Live packet capture

(b) Data Collection: Web browser network capture

(c) Data Visualization: Web app

Figure 1: The DynaGraph architecture
Overview of the Data Collection (Figures 1a & 1b) and Visualization (Figure 1c) tool chains.

Data collection: Web browser network capture. Assuming that
1) network packets capture tools may not be available at host level,
2) Web browsers have the capability to analyze Web transactions
done by the user, we propose a tool chain (Figure 1b) combining net-
work capture from in-browser monitoring features9, with an adhoc
script for a posteriori processing/forwarding saved Web navigation
data.

We use the HTTP Archive (HAR) �le format for saving Web
navigation data. Our script parses HAR entries with the help of
the haralyzer package10, and then map event data to three links
declarations (Figure 2) following the data schemata of Listing 1.
“url” access events occurring within the same time period (i.e.
deltaThreshold parameter de�ned at script level) are grouped
into time buckets (i.e. linked to the same “browser” node). As for the
above “Live packet capture” method, we stream graph data through
a standard data forwarding process by using the WebSockets pro-
tocol.

Data visualization: WebSocket client and 3D graphs Web appli-
cation. Assuming that 1) no additional software will be installed
on the analyst computer, 2) multiple analysts may wish to observe
6https://www.wireshark.org/docs/man-pages/tshark.html
7IETF RFC 6455 https://rfc-editor.org/rfc/rfc6455.txt
8https://github.com/aaugustin/websockets
9See “Network Monitor” at https://developer.mozilla.org/en-US/docs/Tools
10https://github.com/haralyzer/haralyzer

https://www.wireshark.org/docs/man-pages/tshark.html
https://rfc-editor.org/rfc/rfc6455.txt
https://github.com/aaugustin/websockets
https://developer.mozilla.org/en-US/docs/Tools
https://github.com/haralyzer/haralyzer

WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France Tailhardat, et al.

Figure 2: Graph model from HAR entities
Event data from HAR entries are mapped to three links declarations: 1) a time-stamped
“browser” node→ “url” link, 2) a time-stamped “browser” node→ “server” link, 3) a “url”
node → “server” link. Time-stamped “browser” nodes denote the time period at which
“url” and “server” access events occur. The track of time is materialized by links between
“browser” nodes of increasing timestamps.

the same stream of data, we propose a Web app (Figure 1c) for
fetching and rendering data from the data collection components
in a one-to-many fashion. For this, we listen to upstream data by
using the WebSockets protocol. We apply a per-message processing
strategy, where each message is a graph link description in JSON
syntax following the schemata from Listing 1. We add data to a
graph structure after nodes/edges deduplication, then make use of
the react-force-graph11 third party module for client-side 3D
graph data spatialization (i.e. force layout) and rendering. Auto-
matic update of the graph rendering component is ensured by the
use of a ReactJS state12 on the graph structure storage.

1 {
2 "source": "node1_id",
3 "sourceGroup": "group1",
4 "target": "node2_id",
5 "targetGroup": "group2",
6 "time": "2021-09-08T10:35:12.138208Z",
7 "value": 100
8 }

Listing 1: DynaGraph graph data scheme, with sample data

5 EXPERIMENTS AND EVALUATION
Table 2 summarizes the evaluation of our approach.

Experiments phases

Requirements/Criteria Live Packet Web Browser

Loosely coupled process X X
Stream rendering X X
Objects grouping X X
Reproducibility X X
Secure solution X X
Minimal user involvement X X

Table 2: General approach and DynaGraph evaluation
Qualitative evaluation of experiments. “Experiments phases” correspond to the live packet
capture andWeb browser network capture phases, respectively. Symbols: Xstands for crite-
ria observed/positive evaluation, X stands for negative evaluation.

Live packet capture. This experiments phase consists in analyz-
ing the output of an arbitrary Web navigation session through the
“live packet capture” and “Web app” components. Correct live graph
rendering is carried out by visual observation, including the de-
lay between noti�cations of new nodes/links and the addition of
11https://github.com/vasturiano/react-force-graph
12https://reactjs.org/docs/state-and-lifecycle.html

nodes/links to the graph rendering panel. TheWeb application reac-
tivity is tested by visual observation of camera rotation smoothness
when manipulating the rendering panel. In addition, the useful-
ness of Firefox “history” records is checked in order to allow for
tshark/Firefox history comparison.

This experiments phase put forefront two kinds of limitations
for both the DynaGraph system and the overarching goal of net-
work/activity analysis: 1) the capacity of the Web application to
manage high-rate data bursts (stream rendering), 2) the overall ca-
pacity to get insights about the Web user activity when network
tra�c is encrypted (objects grouping).

Firstly, the Web application User Interface (UI) keeps �uid for
a network capture without capture �lters or when navigating to
a Web sites with complex content. For example, navigating to the
http://scihi.org/vannevar-bush-memex/ Web page is a 327 requests
process (11.24 Mb, 15.34 seconds before the “load” event), which
in turn equates to the processing of ' 1380 network packets13.
However, more complex navigation schemes induces a partial freeze
of the UI at graph rendering component level until links/seconds
rate decreases.

Secondly, most of the Web tra�c is TLS encrypted, and thus only
“server” nodes are added to the graph as no inner packet inspection
can be conducted (i.e. using Request URI and “fetch metadata
request header” HTTP headers14). No live side channel help can be
taken from the Firefox history records as its corresponding SQLite
database is locked while Firefox instances are open.

Besides this, evaluation of the reproductibility criteria is positive
as the tshark tool can replay recorded captures (-r commutator) to
the DynaGraphWeb application through the ws_server_stdin.py
script. Finally, evaluation of the minimal user involvement is also
positive as the data collection tool chain 1) can be launched pro-
grammatically, 2) can be launched outside of theWeb user computer
(e.g. running tshark with the “promiscuous mode” on another host
located in the same network, or running the data collection tool
chain on an intermediary host such as a proxy server).

Web browser network capture. Similarly to the “live packet cap-
ture” experiment, this experiment phase consists in analyzing the
output of an arbitrary Web navigation session, saved in a HAR �le,
through the “Web browser network capture” and “Web app” com-
ponents. We reiterate the processing of the same HAR �le with
changes to the deltaThreshold parameter in order to evaluate its
e�ect on rendering andWeb navigation pattern emergence (Figures
3a to 3g). In addition, we also export TLS keys of the Web naviga-
tion session for comparing the rendering of the equivalent tshark
tra�c dump.

This experiments phase shows a highly positive evaluation de-
gree on the objects grouping criterion as “browser”, “server” and “url”
nodes are naturally produced by the ws_server_har2.py script.
Evaluation of the reproductibility criterion is also positive as HAR
�les can be stored, shared and replayed at a later time. Finally, eval-
uation of the loosely coupled process criterion is also positive as
data processing is a sub-part of the data collection process.

13Thus ' 90 links/second rate, and 1380 links without deduplication.
14IETF RFC 7230 https://rfc-editor.org/rfc/rfc7230.txt and
W3C fetch-metadata https://www.w3.org/TR/fetch-metadata/

https://github.com/vasturiano/react-force-graph
https://reactjs.org/docs/state-and-lifecycle.html
http://scihi.org/vannevar-bush-memex/
https://rfc-editor.org/rfc/rfc7230.txt
https://www.w3.org/TR/fetch-metadata/

Walks in Cyberspace WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France

However, evaluation of the stream rendering, secure solution
and minimal user involvement criteria is negative as 1) analysis is
carried out a posteriori (i.e. on a network tra�c dump), 2) HAR �les
include full content of the Web navigation session in a clear access
fashion, 3) the Web user is highly involved in the data collection
setup and restrained to the use of a single navigation panel (unless
more complex setup is developed).

Visual and statistical analysis of the deltaThreshold parameter
e�ect (Figure 3) lead to several additional remarks: 1) resource
nodes (i.e. “url” and “servers”) are invariant although their degree
vary with deltaThreshold, 2) the numbers of nodes and links
appear to be lower bounded (Figure 3g) by the distribution of “url”
nodes over “server” nodes, 3) higher bounds relate to operating
system’s timers resolution, 4) it appears that a correct choice of
deltaThreshold relates to cognition (e.g. user’s reading speed)
unless network tra�c is generated by non-human agent standard
activity (e.g. scripted Web browsing, concurrent Web navigation
traces in the same capture), 5) canonical access patterns (e.g. Figure
3h) emerge with high resolution analysis (e.g. “varied url from
same server” or “many time same url from same server”). It can be
tentatively concluded that the general model of such graph is a
trajectory in a virtual space with multiple scales of constraints.

6 CONCLUSION AND FUTUREWORK
In this work, we aimed to understand and make use of the form
of Web navigation traces. We �rstly hypothesized that a 3-layered
graph (multilayered graph) data representation would be relevant
for depicting aWeb navigation session. Next, we explored 1) strength
and weaknesses of network tra�c capture techniques at user-side
on both operating system network interface and Web browser pro-
cess levels, 2) feasibility and interest in having live 3D graph visu-
alization of data derived from navigation traces.

We developed the DynaGraph framework, a system combining
classical traces dumping tools (i.e. the tshark tool and Firefox’s
Network Monitor component) and an adhoc Web application for
graph data visualization. The proposed framework follows the ob-
server design pattern with the help of theWebSockets protocol. Live
3D graph spatialization and rendering is done within the Web app
with the help of the react-force-graph client-side third-party
module. This framework proved to be e�ective for carrying out our
experiments on streamed data, although some real-time rendering
performance limitations arise on our setup for complex navigation
schemes with mean links/seconds rate above 90.

Data collection at operating system network interface level ap-
pears to be easy to set up, but raises the pitfall of low tracking details
whenever data encryption is present. Conversely, data collection at
Web browser process level brings up expected details about Web
navigation history. However, this second technique in its present
form fails on live streaming and low user involvement expectations
as it highly rely on Web browser features. Additional experiments
with 3D spatialization and various data sampling periods reveal the
emergence of graph patterns about bothWeb navigation events and
Web content/IT architecture. For instance, the force layout spreads
nodes over the representation space in such way that it gets easy to
immerse into a Web session navigation path and visually identify
access patterns as spatial structures. We observe prevalent structure

(a) 50`B/584/1192 (b) 5000`B/489/1108

(c) 50000`B/447/1040 (d) 500000`B/356/974

(e) 5000000`B/313/927 (f) 50000000`B/306/912

(g) 500000000`B/305/815 (h) 50`B pattern example

Figure 3: deltaThreshold parameter in�uence on graph ren-
dering, pattern emergence and graph statistics
Renderings derived from experiments on the DynaGraph “656 requests HAR” dataset: the
same data set is parsed with increasing deltaThreshold values for rendering and explo-
ration on separate DynaGraph instances. Node colors: violet for “url”, orange for “servers”,
beige for “browser”. Figures’ caption: deltaThreshold/vertices number/edges number.

kinds such as “various urls from same server”, “several times same
url from same server” and “many sub-resources from many servers”.

Next step we envision is to build a graph-based navigation pat-
tern catalog related to Web content/IT architecture archetypes.
With such catalog, we expect that, beyond Web cartography con-
cerns, improvements could bemade forWeb navigationwith respect
to performance and security. For example, combining topic discov-
ery techniques on Web content with navigation pattern learning
could lead to topic-based resource allocation algorithms. Similarly,
conformance checking and policy-based approaches could help

WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France Tailhardat, et al.

infer user intent and alert on anomalous behavior with navigation
pattern comparisons.

Future works will consider the following approaches. Firstly,
data collection components will bene�t from additional processing
in a centralized platform. Merging multiple streams in a message
bus platform (e.g. kafka2websocket15) and semantic mapping/�lter-
ing/processing with Stream Reasoning Processors (e.g. Streamin-
MASSIF [3], RMLStreamer [11]) are interesting options towards this
path. In addition, further considerations will be done on adding con-
nectors at Web app level for RDF data handling (e.g. rdfjs/N3.js16),
or migrating to standard graph analytics products with streaming
and rendering capabilities (e.g. Gephi17). Secondly, data collection
at the Web browser level can be made simpler and automated using
a Web browser extension: the main option here is to develop a Web
browser plug-in capable of catching Web request events (e.g. with
Chromium’s chrome.webRequest API18) and sending key infor-
mational Web navigation data (e.g. request URI, remote address,
HTTP fetch metadata request headers) as an RDF stream (or alike)
over a secured channel. Thirdly, activity identi�cation and architec-
ture classi�cation will bene�t from advanced mathematical/logical
techniques for topos learning on multilayered graphs. Emphasis
will be set on overcoming (potentially) missing data, such as in the
case of encrypted data with the lack of HTTP headers inspection.
Concerns here will fall into �nding, �rst, an adequate semantiza-
tion of the user’s trace. Using HTTP RDFS/OWL models [1] is an
interesting basis for taking advantage of logic-based inference ca-
pabilities over heterogeneous data. We will also consider the use
of more general mathematical frameworks such as graph embed-
dings [13, 19], clustering on graph streams [15] and spatial analysis
and reasoning [2].

REFERENCES
[1] Noam Ben-Asher, Alessandro Oltramari, Robert F. Erbacher, and Cleotilde

González. 2015. Ontology-Based Adaptive Systems of Cyber Defense. In STIDS.
[2] Isabelle Bloch. 2021. Hybrid AI Models: Some Opportunities for Explainability

Application to Spatial Reasoning and Image Understanding. https://gitlab.lip6.
fr/maudetn/ia2-explainability/-/blob/master/slides/4-slides-bloch.pdf

[3] Pieter Bonte, Riccardo Tommasini, Emanuele Della Valle, Filip De Turck, and
Femke Ongenae. 2018. Streaming MASSIF: Cascading Reasoning for E�cient
Processing of IoT Data Streams. Sensors 18 (Nov. 2018), 3832. https://doi.org/10.
3390/s18113832

[4] Rodrigo A. Botafogo and Ben Shneiderman. 1991. Identifying Aggregates in
Hypertext Structures. In Proceedings of the Third Annual ACM Conference on
Hypertext - HYPERTEXT ’91. ACM Press, San Antonio, Texas, United States,
63–74. https://doi.org/10.1145/122974.122981

[5] Vannevar Bush. 1945. As We May Think. https://www.theatlantic.com/-
magazine/archive/1945/07/as-we-may-think/303881/.

[6] Giovanna Castellano, Anna M. Fanelli, and Maria A. Torsello. 2013. Web
Usage Mining: Discovering Usage Patterns for Web Applications. In Ad-
vanced Techniques in Web Intelligence-2: Web User Browsing Behaviour and
Preference Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg, 75–104.
https://doi.org/10.1007/978-3-642-33326-24

[7] Oscar Corcho, David Chaves-Fraga, Jhon Toledo, Julián Arenas-Guerrero, Carlos
Badenes-Olmedo, Mingxue Wang, Hu Peng, Nicholas Burrett, José Mora, and
Puchao Zhang. 2021. Oeg-Upm/Devops-Infra: First O�cial Version. (April 2021).
https://doi.org/10.5281/ZENODO.4701264

[8] Eric Freeman, Elisabeth Robson, Kathy Sierra, and Bert Bates (Eds.). 2004. Head
First Design Patterns. O’Reilly, Sebastopol, CA.

15https://github.com/GenEars/kafka2websocket
16https://github.com/rdfjs/N3.js
17https://gephi.org/
18https://developer.chrome.com/docs/extensions/reference/webRequest/

[9] M. Ghijsen, J. van der Ham, P. Grosso, C. Dumitru, H. Zhu, Z. Zhao, and C. de Laat.
2013. A Semantic-Web Approach for Modeling Computing Infrastructures. Com-
puters & Electrical Engineering 39 (2013). https://doi.org/10.1016/j.compeleceng.
2013.08.011

[10] Sharad Goel, Duncan J. Watts, and Daniel G. Goldstein. 2012. The Structure
of Online Di�usion Networks. In Proceedings of the 13th ACM Conference on
Electronic Commerce - EC ’12. ACM Press, Valencia, Spain, 623. https://doi.org/
10.1145/2229012.2229058

[11] Gerald H, Sitt Min Oo, Gertjan De Mulder, Michiel Derveeuw, Pieter Heyvaert,
Wouter Maroy, Vincent Emonet, Kmhaeren, De Ben Meester, and Thomas. 2021.
RMLio/RMLStreamer: Release 2.1.1. https://doi.org/10.5281/ZENODO.3887065

[12] Ismail Harrando, Pasquale Lisena, and Raphaël Troncy. 2021. Apples to Apples:
A Systematic Evaluation of Topic Models. In Proceedings of the International
Conference on Recent Advances in Natural Language Processing (RANLP 2021).
INCOMA Ltd., Held Online, 483–493. https://aclanthology.org/2021.ranlp-1.55

[13] Thomas Kipf. 2020. Deep Learning with Graph-Structured Representations. Ph.D.
Dissertation.

[14] Jon M. Kleinberg. 1999. Authoritative Sources in a Hyperlinked Environment. J.
ACM 46, 5 (Sept. 1999), 604–632. https://doi.org/10.1145/324133.324140

[15] Ryan McConville, Weiru Liu, and Paul Miller. 2015. Vertex Clustering of Aug-
mented Graph Streams. In Proceedings of the 2015 SIAM International Confer-
ence on Data Mining. Society for Industrial and Applied Mathematics, 109–117.
https://doi.org/10.1137/1.9781611974010.13

[16] F. Pfaender, M. Jacomy, and G. Fouetillou. 2006. Two Visions of the Web: From
Globality to Localities. In 2006 2nd International Conference on Information Com-
munication Technologies, Vol. 1. 566–571. https://doi.org/10.1109/ICTTA.2006.
1684433

[17] Clearcode S.A. 2020. User Identi�cation. https://adtechbook.clearcode.cc/user-
identi�cation/.

[18] Jeroen van der Ham, Paola Grosso, Ronald van der Pol, Andree Toonk, and Cees
de Laat. 2007. Using the Network Description Language in Optical Networks. In
2007 10th IFIP/IEEE International Symposium on Integrated Network Management.
IEEE, Munich, Germany, 199–205. https://doi.org/10.1109/INM.2007.374784

[19] Tianxing Wu, Arijit Khan, Huan Gao, and Cheng Li. 2019. E�ciently Embedding
Dynamic Knowledge Graphs. (Oct. 2019). arXiv:1910.06708

https://gitlab.lip6.fr/maudetn/ia2-explainability/-/blob/master/slides/4-slides-bloch.pdf
https://gitlab.lip6.fr/maudetn/ia2-explainability/-/blob/master/slides/4-slides-bloch.pdf
https://doi.org/10.3390/s18113832
https://doi.org/10.3390/s18113832
https://doi.org/10.1145/122974.122981
https://doi.org/10.1007/978-3-642-33326-24
https://doi.org/10.5281/ZENODO.4701264
https://github.com/GenEars/kafka2websocket
https://github.com/rdfjs/N3.js
https://gephi.org/
https://developer.chrome.com/docs/extensions/reference/webRequest/
https://doi.org/10.1016/j.compeleceng.2013.08.011
https://doi.org/10.1016/j.compeleceng.2013.08.011
https://doi.org/10.1145/2229012.2229058
https://doi.org/10.1145/2229012.2229058
https://doi.org/10.5281/ZENODO.3887065
https://aclanthology.org/2021.ranlp-1.55
https://doi.org/10.1145/324133.324140
https://doi.org/10.1137/1.9781611974010.13
https://doi.org/10.1109/ICTTA.2006.1684433
https://doi.org/10.1109/ICTTA.2006.1684433
https://doi.org/10.1109/INM.2007.374784
http://arxiv.org/abs/1910.06708

	Abstract
	1 Introduction
	2 Related work
	3 DynaGraph Approach
	4 DynaGraph Functional Architecture
	5 Experiments and Evaluation
	6 Conclusion and Future Work
	References

