"\ SORBONNE I

S UNIVERSITE

UNIVERSITE EURECOM

DEPUIS 1257 S ophia Antipolis

THESE DE DOCTORAT DE
SORBONNE UNIVERSITE
préparée & EURECOM

Ecole doctorale EDITE de Paris n°® ED130
Spécialité: «Informatique, Télécommunications et Electroniquey»

Sujet de la these:

An Analysis of Human-in-the-loop
Approaches for Binary Analysis
Automation

These présentée et soutenue a Biot, le 25/03/2022, par

ALESSANDRO MANTOVANI

Rapporteurs Prof. Marc Dacier KAUST
Prof. Jean-Yves Marion ~LORIA

Examinateurs Prof. Andrea Continella University of Twente

Dott. Leyla Bilge NortonLifeLock Research

Directeur de thése Prof. Davide Balzarotti EURECOM

o0¢e









Abstract

In system and software security, one of the first criteria before applying an
analysis methodology is to distinguish according to the availability or not
of the source code. When the software we want to investigate is present in
binary form, the only possibility that we have is to extract some information
from it by observing its machine code, performing what is commonly referred
to as Binary Analysis (BA). The artisans in this sector are in charge of
mixing their personal experience with an arsenal of tools and methodologies
to comprehend some intrinsic and hidden aspects of the target binary, for
instance, to discover new vulnerabilities or to detect malicious behaviors.

Although this human-in-the-loop configuration has been well consoli-
dated over the years, the current explosion of threats and attack vectors
such as malware, weaponized exploits, etc. implicitly stresses this binary
analysis model, demanding at the same time for high accuracy of the analy-
sis as well as proper scalability over the binaries to counteract the adversarial
actors. Therefore, despite the many advances in the BA field over the past
years, we are still obliged to seek novel solutions.

In this thesis, we take a step more on this problem, and we try to show
what current paradigms lack to increase the automation level. To accomplish
this, we isolated three classical binary analysis use cases, and we demon-
strated how the pipeline analysis benefits from the human intervention. In
other words, we considered three human-in-the-loop systems, and we de-
scribed the human role inside the pipeline with a focus on the types of feed-
back that the analyst “exchanges” with her toolchain. These three examples
provided a full view of the gap between current binary analysis solutions and
ideally more automated ones, suggesting that the main feature at the base
of the human feedback corresponds to the human ability at comprehending
portions of binary code.

This attempt to systematize the human role in modern binary analysis
approaches tries to raise the bar towards more automated systems by lever-
aging the human component that, so far, is still unavoidable in the majority



ii ii

of the scenarios. Although our analysis shows that machines cannot replace
humans at the current stage, we cannot exclude that future approaches will
be able to fill this gap as well as evolve tools and methodologies to the
next level. Therefore, we hope with this work to inspire future research in
the field to reach always more sophisticated and automated binary analysis
techniques.



Résumé

En matiére de sécurité des systémes et des logiciels, I'un des premiers critéres
avant d’appliquer une méthodologie d’analyse est de distinguer selon la
disponibilité ou non du code source. Lorsque le logiciel que nous voulons
investiguer est présent sous forme binaire, la seule possibilité que nous avons
est d’en extraire des informations en observant son code machine, en effec-
tuant ce qui est communément appelé Binary Analysis (BA). Les acteurs
de ce secteur sont chargés de méler leur expérience personnelle & un arsenal
d’outils et de méthodologies pour comprendre certains aspects intrinseques
et cachés du binaire cible, par exemple pour découvrir de nouvelles vulnéra-
bilités ou détecter des comportements malveillants.

Bien que cette configuration humaine dans la boucle se soit bien con-
solidée au fil des ans, l’explosion actuelle des menaces et des vecteurs
d’attaque tels que les logiciels malveillants, les exploits armés, etc. met
implicitement & ’épreuve ce modéle de BA, exigeant en méme temps une
grande précision de 'analyse ainsi qu'une évolutivité appropriée des binaires
pour contrer les acteurs adverses. C’est pourquoi, malgré les nombreux pro-
grés réalisés dans le domaine de la BA au cours des derniéres années, nous
sommes toujours obligés de chercher de nouvelles solutions.

Dans cette thése, nous faisons un pas de plus sur ce probléme et nous
essayons de montrer ce qui manque aux paradigmes actuels pour aug-
menter le niveau d’automatisation. Pour ce faire, nous avons isolé trois cas
d’utilisation classiques de 'analyse binaire et nous avons démontré comment
I’analyse en pipeline bénéficie de l'intervention humaine. En d’autres ter-
mes, nous avons considéré trois systémes "human-in-the-loop" et nous avons
décrit le role de 'homme dans le pipeline en nous concentrant sur les types
de feedback que l'analyste "échange" avec sa chaine d’outils. Ces trois exem-
ples nous ont fourni une vue compléte de 1’écart entre les solutions actuelles
d’analyse binaire et les solutions idéalement plus automatisées, suggérant
que la principale caractéristique a la base du retour d’information humain
correspond a la compétence humaine & comprendre des portions de code

iii



binaire.

Cette tentative de systématisation du réle de I’homme dans les approches
modernes de I'analyse binaire tente d’élever la barre vers des systéemes plus
automatisés en tirant parti de la composante humaine qui, jusqu’a présent,
est toujours inévitable dans la majorité des scénarios d’analyse binaire. Bien
que notre analyse montre que les machines ne peuvent pas remplacer les hu-
mains au stade actuel, nous ne pouvons pas exclure que les approches futures
seront en mesure de combler cette lacune et de faire évoluer les outils et les
méthodologies vers un niveau supérieur. Par conséquent, nous espérons avec
ce travail, inspirer les recherches futures dans le domaine pour atteindre des
techniques d’analyse binaire toujours plus sophistiquées et automatisées.



Contents

List of Publications ix
1 Introduction 1
1.1 Contributions . . . . . . . . . ... 3
1.2 Thesis Outline . . . .. . . . .. ... ... 7
2 Background 9
2.1 Malware Analysis . . . . . . . ... 9
2.1.1 Dynamic techniques . . . .. ... .. ... .. .... 10
2.1.2  Static techniques . . . . . . . ... ... L. 12
213 Packing . .. ... Lo 13
2.2 Vulnerability Discovery . . . . . . . . ... ... L. 14
2.3 Reverse Engineering approaches and tools . . . . . . ... .. 16
2.3.1 Disassemblers . . . . . .. .. ... .. 16
2.3.2 Decompilers . . . . . ... Lo 17

3 Prevalence and Impact of Low-Entropy Packing Schemes in
the Malware Ecosystem: 19
3.1 Background . . . .. ... oo 23
3.1.1 Entropy of Executable Files . . . . .. ... ... ... 23
3.1.2  Entropy and XOR Encryption . . . . . . .. ... ... 24
3.2 Prevalence of Low-Entropy Packing . . . . .. .. ... .. .. 26
3.21 Dataset . . . . . . ... ... 26
322 Analysis . . . ... L 27
323 Results . . ... ... 29
3.3 Low Entropy Packing Schemes . . . ... ... ... ..... 30
3.3.1 Schemes Taxonomy . . . . . . ... .. .. ... .... 32
3.3.2 Schemesinaction. . .. . . ... ... ... ..... 33
3.3.3 Scheme Classifier . . . . . .. ... ... ... ..... 34

334 Results . ... ... . 36



vi vi
34 Human Role. . . . . .. .. .. .. .. ... .. ... 37
3.5 Signature and Rule-based Packer Detection . . . . . .. ... 37
3.6 ML-based packing detection . . . . . ... ... ... ... 40

3.6.1 Feature Extraction . . . .. .. ... ... ... ... 41
3.6.2 Evaluation of Static Features on Low-entropy Packers 43
3.7 Casestudies . . . . . . ..o 45
3.7.1 Case I: Simple XOR Encryption . ... ... ... .. 45
3.7.2 Case II: Transposition Scheme . . . . . . . . ... ... 46
3.7.3 Case III: Custom Encoding . . . ... ... ... ... 47
3.8 Conclusions . . . . . .. ... 49

4 The Convergence of Source Code and Binary Vulnerability
Discovery — A Case Study: 53
4.1 Related Work . . . . . . ..o oo o6

4.1.1 SAST . . . . 56
412 Decompilers . . . . .. ... 0 o 596
4.2 Experiment Design . . . . .. .. ... oo 57
4.2.1 Vulnerability and Application Selection . . ... . .. 59
4.2.2  SAST Tools Selection . . . . . ... ... ... .... 61
4.2.3 Decompiler Selection . . . . . . ... ... ... ... 62
43 Experiments . . . . . . . . ... 63
4.3.1 Source code analysis . . . ... ... ... ... .. 63
4.3.2 Decompilation . . ... ... 64
433 Humanrole . . . . .. . .. ..o 65
4.3.4 Decompilers variability . . . . .. ... ... 66
4.3.5 Summary of Results: True Positives . . . . ... ... 67
4.3.6 Summary of Results: False Positives . . . . ... ... 69
4.3.7 Bugs detected *only* on pseudocode . . . . . .. ... 71
4.3.8 Compiler Impact . . . ... ... ... L. 72
4.4 Root Cause Analysis . . . . . . .. ... ... ... ... 74
4.5 Discussion and Conclusions . . . . . . .. ... ... ... .. 82

5 RE-Mind: a First Look Inside the Mind of a Reverse Engi-
neer: 85
5.1 Related Work . . . . .. ..o oo 88
52 Scopeofthestudy . .. ... ... ... ... ... .. ... 89
5.3 Methodology . . . .. ... . 90

5.3.1 Online Platform . .. ... ... ... ... ...... 91
5.3.2 Challenges Design . . . ... ... ... .. ... ... 93
5.4 Participants recruitment . . . . . ... ..o 97

55 Data Analysis . . . . . . . ... 98



Contents vii
5.5.1 Functions Exploration . . . . ... .. ... .. ..., 101

5.5.2 Code Selection . . . ... ... 0oL 103

5.5.3 Birdseye Overview . . . . .. .. ... ... ...... 106

5.5.4 Basic Blocks Exploration . . . ... ... ... .... 108

5.5.5 Speed Factors . . . . . ... ... ... ... ... ... 112

5.5.6 Other Aspects . . . . . ... ... ... ... 113

5.6 Summary of Findings . . . . . . .. .. ... L 115
5.7 Limitations . . . . .. . ... 116
5.8 Conclusions . . . . . . ... 118

6 Future Work and Conclusion 121
6.1 Future Work . . . . . . ... ... ... 122
6.1.1 Human studies and Binary Analysis . . . .. ... .. 122

6.1.2 Machines and Binary Analysis . . ... ... ... .. 122

6.2 Conclusion. . . . . ... ... 124
Appendices 125
A REmind 127
A.1 Text of the invitation email . . . .. ... ... ... ... .. 128






List of Publications

e A. Mantovani, S. Aonzo, X. Ugarte-Pedrero, A. Merlo, D. Balzarotti.
“Prevalence and Impact of Low-Entropy Packing Schemes in the Mal-
ware Ecosystem.” In NDSS. 2020.

e A. Mantovani, L. Compagna, Y. Shoshitaishvili, D. Balzarotti, “The
Convergence of Source Code and Binary Vulnerability Discovery - A
Case Study”, In AsiaCCS. 2022

e A. Mantovani, S. Aonzo, Y. Fratantonio, D. Balzarotti, “RE-Mind: a
First Look Inside the Mind of a Reverse Engineer”, In USENIX 2022

1X






Chapter 1

Introduction

In software security, we refer to Binary Analysis as the activity that enables
the extraction of some information from the code of a binary executable.
Executable programs are described by file formats (e.g., PE, ELF, and Mach-
O) that organize the data of the program in different segments and sections,
some of which are dedicated to encapsulate the binary executable code itself
(i.e., the machine code). Machine code is more difficult to analyze (both for
humans and machines alike) than its original source-level counterpart, and
this poses several challenges to any software analysis solution that needs to
operate on binary programs.

Several research fields indeed need to carry out binary analysis as their
inherent goal is to analyse different types of executables. For example, mal-
ware analysts use it to identify the malicious behaviors that a sample can
perform. In the area of vulnerability discovery, researchers implement in-
stead binary analysis approaches to identify interesting code locations that
can lead to dangerous vulnerabilities. Moreover, binary analysis is a fre-
quent practice also in the context of firmware analysis, where researchers
try to comprehend the security properties of a binary blob by looking at
its internals. Since it represents a crossroad that different lines of research
encounter for the development of novel analysis approaches, an extensive
amount of research has been performed over the years on binary analysis
solutions.

A common way to categorize these techniques is to split them into static
and dynamic analyses. The former aims to extract information by looking
at the code without executing it, while the latter collects the needed in-
formation by observing its behavior at run-time. Different techniques and
tools fall into one of these two major families. For instance, dynamic code
instrumentation (e.g., Frida |fri, DGHH™'15|) approaches inject additional

1



code into an application to monitor and trace it once it is executed. Thus,
this methodology belongs to the dynamic category, as it requires the code
to run. Similarly, debuggers such as GDB [gdb| are common dynamic tools
that are routinely used to perform a step-by-step execution of the target
program to inspect its internal state in some points of interest (such as the
invocation of a certain API or the registers’ value inside a basic block). On
the other hand, decompilation is a good example of static technique, as it
lifts the assembly code to a higher level of abstraction, normally known as
pseudocode. Other forms of static analysis try to recover meaningful rep-
resentations of the binary by working with disassembled code. In this last
case, a very common example is the control flow graph recovery, which re-
constructs how the different basic blocks are connected to each other inside
the binary and displays this information either in a graphical form or in a
more compact representation suitable for further processing.

Despite the fact that binary analysis is frequently used in many disci-
plines and that a large variety of approaches exist, complex activities often
require the support of human experts. In fact, while some cases exist where
fully automated solutions have completely replaced humans in binary anal-
ysis tasks, most analysis pipelines make use of automated components to
simplify the job of the analyst, who is still responsible for at least a part
of the careful and tedious manual investigation. More specifically, we can
think of many binary analysis pipelines as human-in-the-loop approaches,
where the analyst can interact with the analysis pipeline in various ways.
However, the fact that human analysts might be involved in a task does not
imply that they always play the same role in all systems.

In our research, we identified different ways in which human experts and
automated techniques contribute to the solution of security-related prob-
lems. According to the human role and position with respect to the auto-
mated components, we can encounter three distinct configurations.

In the first scenario, the help of an analyst is needed at the beginning
of the pipeline, for instance, to direct an automated component towards the
“interesting” portion of the binary code or to manually identify and model
new cases, whose information is then used as part of autonomous expert
systems. In the second scenario, the analyst contribution is in the middle
of the analysis pipeline. In this case, human experts are typically needed to
manipulate, enrich, or filter the output of some tools before it is fed to other
components. Finally, in the third category, human experts are employed
at the last step of the pipeline, where they are often called to interpret
the ‘meaning’ of the results of the autonomous system. For instance, while
a machine can flag a new suspicious behavior in an unknown application,



1.1. Contributions 3

humans are still needed to decide whether such behavior is malicious in
nature or is instead acceptable for the target program.

By looking at different examples of these three aforementioned cases, we
selected three existing research fields that often require human intervention
at different parts of their pipelines: malware analysis, vulnerability discov-
ery, and reverse engineering. In the first case, we looked at the problem
of identifying new types of packers, where human knowledge is needed to
design custom rules to detect in-memory transformation patterns. As an
example of human-in-the-middle configuration, we explored the domain of
vulnerability discovery and we proposed a novel approach to identify po-
tential memory corruption bugs in binary executables. Finally, we focused
on the problem of binary reverse engineering, showing how reversers can
‘understand’ the behavior of a previously unknown binary.

These three contributions advance the state of the art in binary analysis
and highlight that even state-of-the-art approaches are far from completely
replacing human analysts in their job. On the one hand, this can lead to
new tools and techniques that are able to mimic the human behavior for
a specific task. For instance, in our work, we noticed that humans are
primarily responsible for the comprehension of the code, whereas machines
are still unable to accomplish this type of task. On the other hand, this
thesis suggests that future research should make an effort to simplify the
daily life of binary analysts in terms of design, usability and interaction.

1.1 Contributions

This thesis makes three separate contributions to the binary analysis field.
We choose to investigate these three aspects, as they emphasize the different
roles of human experts in binary analysis tasks.

Human as the entry point of the pipeline

A common binary analysis application in the context of malware analysis
is malware packing. In this context, an open research problem on malware
analysis is how to statically distinguish between packed and non-packed
executables. This has an impact on antivirus (AV) software and malware
analysis systems, which may need to apply different heuristics or resort to
more costly code emulation solutions to deal with the presence of potential
packing routines. It can also affect the results of many research studies in
which the authors adopt algorithms that are specifically designed for packed
or non-packed binaries. Therefore, a wrong answer to the question “s this



executable packed?” can make the difference between malware evasion and
detection.

It has long been known that packing and entropy are strongly correlated,
often leading to the wrong assumption that a low entropy score implies that
an executable is NOT packed. Exceptions to this rule exist, but they have
always been considered as one-off cases, with a negligible impact on any
large-scale experiment.

In our first contribution, we measure the prevalence of malicious samples
that try to evade the static AV checks by hiding their malicious code with a
layer of low-entropy packing. The challenge here is that to defeat this layer
and correctly classify each malicious file, we need to analyse each sample (or
at least the part of the code that handles the unpacking routine) present in
our dataset. More specifically, our binary analysis task consists of two major
steps 1) understand if a sample is packed and in this case ii) determine the
adopted packing scheme. Automating this procedure is fundamental, as we
need to scale our analysis over a large number of malware samples. Indeed,
for our experiments, we constructed a dataset of 50K Windows malware, way
beyond what human analysts can process, independently on their expertise
level. However, the automated component alone cannot really understand
what the interesting part of the code that we want to track is. Hence, the
human role in this task is to manually sample and analyze representative
cases present in the dataset in an iterative process, each time translating the
detected schemes into rules that help the automated part to identify other
samples that adopt the same technique. This process needs to be repeated
until the vast majority of packed samples can be categorized.

To accomplish this binary analysis task, we developed a dynamic anal-
ysis pipeline that is based on a set of heuristics to determine the packing
scheme used by a certain malicious file. This requires an initial phase where
a human analyst studies a portion of the samples to understand their in-
ternal functioning. After that, she can develop some “rules” to point the
dynamic analysis to the specific code locations that show that particular
packing scheme. After the analysis pipeline is set up, we organize our exper-
iments in two distinct processes. First, we uncover those samples that show
unpacking behaviors by dynamically instrumenting the memory accesses,
and then, for those samples that are identified as packed, we implement a
classification algorithm that relies on the execution of some specific assembly
instruction typically adopted for some cryptographic operations as well as
the observation of some values contained in the related memory areas before
and after the operations.

Interestingly, after applying our automated binary analysis solution to



1.1. Contributions 5

the experiment dataset, we uncovered that low-entropy packing schemes are
widespread in the wild, accounting for a total of 31.5% of packed samples.
Moreover, low-entropy packing is based on a set of different cryptographic
operations such as XOR encryption, transposition, and encoding — for which
we propose a corresponding taxonomy and classification. This work was pub-
lished in a research paper entitled “Prevalence and Impact of Low-Entropy
Packing Schemes in the Malware Ecosystem”.

Human as the middle point of the pipeline

In our second contribution, we look at the possible use of decompilers in the
context of vulnerability discovery.

Decompilers are tools designed to recover a high-level language represen-
tation (typically expressed in C code) from binaries. Over the past five years,
decompilers have improved enormously in terms of both the readability of
the produced pseudocode and the similarity of the recovered representation
to the original source code. Albeit decompilers are routinely used by reverse
engineers in different disciplines (e.g., to support vulnerability discovery or
malware analysis), they are not yet adopted to produce input for source-code
static analysis tools. In particular, source code and binary vulnerability dis-
covery remain today two very different areas of research, despite the fact
that decompilers could potentially bridge this gap and enable source-code
analysis on binary files.

In this part of the thesis, we conducted a number of experiments on
real-world vulnerabilities to evaluate how the differences between original
and pseudocode impact the accuracy of static analysis tools after running
these on both the source and the decompiled code. One of the main limita-
tions that currently hinder the feasibility of this approach is that the output
of modern decompilers cannot be directly “re-compiled” by using traditional
compilers (such as Clang and GCC). Therefore, many static analysis frame-
works that rely on compiler passes to perform their vulnerability analysis
cannot function in an automated fashion on the raw pseudocode. In addition
to this, even for tools that implement a fuzzy parsing logic to read the code,
and that therefore would be suitable to analyse the decompiled code, some
complicated syntactical expressions contained in the pseudocode result in a
difficult evaluation, often leading to some analysis errors.

Thus, to address these two problems, we introduce a semi-automated
binary analysis approach, where the code lifting part is performed by three
state-of-the-art decompilers (IDA, Ghidra, and RetDec). After that, humans
are requested to manually “fix” the pseudocode to make it digestible for the
static software testing tools. In our study, this manual procedure is used



both to make the decompiled code “re-compilable” as well as to simplify
the problematic patterns present in the lifted code. While the first part is
needed for the static analysers to work properly, the second phase can tell
us which code excerpts are potentially problematic during the code analysis
and can therefore be the focus of future work in decompilation.

Interestingly, for this binary analysis task, human feedback is needed
to aid the analysers to properly analyse the decompiled code. Inherently
this affects the automation of the solution, as part of the task must be
accomplished by hands. However, this approach comes with the advantage
of statically finding vulnerabilities when source code is not available, which
is quite typical in some scenarios (such as firmware images).

Remarkably, our results show that in 71% of the cases, the same vulner-
abilities can be detected by running the static analyzers on the decompiled
code, even though for several cases, we observe a steep increment in the num-
ber of false positives. To understand the reasons behind these differences,
we manually investigated all cases, and we identified a number of root causes
that affected the ability of static tools to ‘understand’ the generated code.

This work was published in a paper entitled “The Convergence of Source
Code and Binary Vulnerability Discovery — A Case Study”.

Human as the end point of the pipeline

For the third and last contribution of this thesis we turn our focus to re-
verse engineering. In this case, while automated tools can be used to lift
binary code to a higher-level representation that is easier to read and un-
derstand, humans still play a crucial role to understand this output. For
instance, a system can reconstruct the control-flow graph of a binary, or
a decompiler can be used to automatically rebuild the approximate source
syntax of an assembly routine. However, the decompiler itself cannot de-
scribe the semantics of the code and its role in the overall program. Even
though state-of-the-art work in reverse engineering has shown incredible ad-
vances in recent years, this task remains to date primarily a human activity.
Therefore, we believe that studying how humans approach this type of task
can be of great interest for researchers who want to improve automated al-
gorithms or for training binary analysis experts. However, while experts
in many areas (ranging from chess players to computer programmers) have
been studied by scientists to understand their mental models and capture
what is special about their behavior, the “art” of understanding binary code
and solving reverse engineering puzzles remains to date a black box.

For this last application, we present a measurement of the different
strategies adopted by expert and beginner reverse engineers while approach-



1.2. Thesis Outline 7

ing the analysis of x86 (dis)assembly code, a typical static reverse engineering
task. We do that by performing an exploratory analysis of data collected
over 16,325 minutes of reverse engineering activity of two unknown bina-
ries from 72 participants with different experience levels: 39 novices and 33
experts.

For this set of experiments, we designed the two binaries to capture the
code comprehension of the participants. Although they did not contain a
high number of basic blocks, the binaries include many typical assembly
constructs that reverse engineers normally meet when approaching a static
reverse engineering task. For example, one of the two binaries implements
a simple server, whereas the second challenge consists of a list management
application. The participants can reason on the binaries by using a tool
(accessible as a web application) that performs some basic binary analysis
(e.g., disassembly, control flow graph, and call graph recovery) and displays
the results in a human-friendly fashion that mimics the interface of popular
commercial tools. These problems require a manual approach, as the proper
solution requires to fully understand the correct functionalities of the binary
that lead to the target program point.

Our effort to reverse engineer the behaviors of a reverse engineer helped
us to confirm some previously-proposed reverse engineering behaviors and
disprove others. We also isolated several interesting features that we hope
will be further analyzed by future research in this fascinating area. We
explore this subject in the research paper “RE-Mind: a First Look Inside
the Mind of a Reverse Engineer”.

1.2 Thesis Outline

The thesis is organized according to the following layout. Chapter 2 illus-
trates the background and concepts needed to understand the contributions
of the thesis.

Chapter 3 is based on the paper “Prevalence and Impact of Low-Entropy
Packing Schemes in the Malware Ecosystem” presented at the Network and
Distributed Systems Security Symposium (NDSS 2020), and shows a first
possible configuration of the human-in-the-loop binary analysis approach in
the context of malware packing.

Chapter 4 presents the paper “The Convergence of Source Code and
Binary Vulnerability Discovery — A Case Study” accepted at AsiaCCS 2022,
and illustrates our vulnerability discovery approach that allows to run static
software testing tools on the recovered pseudocode thanks to a human-in-
the-loop approach.



Chapter 5 is based on the paper “RE-Mind: a First Look Inside the Mind
of a Reverse Engineer” accepted at the Usenix symposium 2022 and intro-
duces our human study about static reverse engineering where the analyst
represents the end point of the analysis infrastructure.

Finally, Chapter 6 concludes the dissertation and provides possible future
research directions.



Chapter 2

Background

In this Chapter, we introduce the background concepts that are needed to
fully understand the technical contributions provided in the follow up of the
thesis. Since the topics span very different fields, ranging from malware anal-
ysis to vulnerability discovery, in each case we focus the discussion mainly
on the notions that are related to the area of binary analysis and leave a
more detailed cover of the related work to the individual chapters.

2.1 Malware Analysis

Malware analysis is the discipline that studies how to analyze malicious files
to determine their nature and behavior. Thus, malware analysts need to
develop a detailed understanding of the internals of the target operating
system and architecture. For the experiments reported in this thesis, we
focused on Windows malware analysis targeting the x86 architecture, and
here we will provide a quick overview of the related basic concepts.

First of all, malware, as other forms of generic software, is structured
according to a specific binary file format that depends on the host operating
system. In our case, the reference file format is the Portable Executable (PE)
format. The PE format organizes the information needed for the Windows
OS to spawn the corresponding process and execute the wrapped code. It
is made of different headers and sections whose main goal is to instruct
the loader and the dynamic linker on how to map the file into memory.
For instance, PE executables typically contain a code section (often named
.text) that is mapped in memory with execute/read privileges, as well as
a section for global variables (often named .data) mapped as read/write.
Among the other sections, a special role is played by the IAT (Import Address
Table), which contains the list of functions that are imported from external

9



10 10

libraries, along with their addresses.

A second aspect that plays an important role in our work is the fact that
malware often employs a variety of techniques to hinder the analysis and to
hide the actual malicious payload. For instance, packing allows the malware
author to decrypt some memory areas dynamically, generate valid code, and
redirect the execution to these unpacked locations. Other techniques, such
as obfuscation and anti-disassembly, do not hide the code but try instead
to make it more difficult to understand (e.g., by flattening the control flow
graph) or more difficult to analyze (e.g., by detecting the presence of analysis
tools). On their side, malware analysts can also employ a wide range of
techniques to analyze the target application and overcome evasive tricks.
These techniques can be broadly divided into two categories, those based on
static analysis and those on dynamic analysis. We will now provide more
details about static/dynamic analysis approaches as well as an overview of
packing, which plays a central role in understanding one of the contributions
of the thesis.

2.1.1 Dynamic techniques

Dynamic analysis techniques for malware analysis are based on the idea
of instrumenting the code to implement a certain monitoring logic. In
this section, we introduce some basic concepts, especially w.r.t. the tech-
nologies that are commonly used in this discipline. For a complete view
about state-of-the-art approaches, we point the reader to two more com-
prehensive surveys that illustrate the details that surround this important
topic [ESKKO08, OMNER19].

First of all, dynamic analysis techniques require running an executable
inside a dedicated environment. Thus, the first design choice to implement
this family of methodologies consists of selecting a run-time environment
that can be an emulator, a virtual machine, or even a bare-metal machine
specifically adopted for analysis purposes (thus set up so that the malicious
binary cannot damage any actual user data).

The following step instead is related to how we want to instrument and
monitor the process. Depending on the type of instrumentation, we can
think about several approaches sharing the common aspect that the mali-
cious sample is executed within an isolated environment referred to as the
quest.

A first possible way to separate the existing dynamic analysis techniques
is to classify them into in-guest and out-of-guest. With in-guest approaches,
the actual analysis happens inside the guest machine, and this opens to
two further implementation choices. Indeed, one possibility is to inject the



2.1. Malware Analysis 11

monitoring logic at the userspace level directly into the process we want to
track once this has been spawned. To achieve this, the tracer can mod-
ify some portions of the tracee’s memory depending on the necessity. An
example of this is A PI hooking that implements a function detouring mech-
anism to redirect the execution flow towards some monitoring logic before
invoking the actual API [BB10, Fat04]. Another well-known approach is
dynamic binary instrumentation that comes with the great advantage of a
lower granularity level, as implemented by frameworks such as Frida [fri]
and Intel Pin [RSCC04, LCM™05]. The overall idea is that the DBI frame-
work takes care of duplicating some portions of the code of the tracee into
a different mapped area that lives in the virtual address space of the tracee
itself. Then, the duplicated code is augmented with the custom instrumen-
tation, and the execution of the process interleaves between the original and
the instrumented code, depending on what the analyst wants to observe.
Userspace instrumentation is a good resource as it can collect fine-grained
information about the executed code but comes with the disadvantage that
malware authors can easily recognize when their malware is being analyzed
and evade the detection mechanisms.

The counterpart of the in-guest userspace approaches instead tries to
detect malicious actions from the kernel level. Kernel level monitoring has
some main advantages, such as the fact that the analysis can reach more
control over all the exhibited behaviors and performance-wise represents a
better alternative compared to the user level strategies. In addition, this
analysis paradigm can cope with the several malicious samples in-wild at-
tempting to gain privileges inside the infected machine by performing actions
directly at the kernel level. An example of this threat is the case of the so-
called rootkits that modify the internal functioning of the operating system
to conceal themselves (for instance hiding processes, etc.). On the other
hand, the main disadvantage is the level of the granularity, e.g., we cannot
reason at the instruction level. Kernel-side instrumentation typically con-
sists of a kernel module installed inside the guest that monitors the execution
of the system. When executing the module code (thus in kernel mode), the
analysis can access all normal userspace processes, filter their system calls,
monitor other aspects such as the creation/termination of a process and rely
on the internal data structures of the operating system. Over the past years,
this has become a standard technique, and indeed several modern antivirus
companies deploy and distribute a kernel-level monitoring system.

A totally different approach is the one that is carried out by tools such
as PANDA [DGHHT'15] and DECAF [DQQY19, HPY 14| and falls under
the category of the out-of-guest approaches. Indeed, for these cases, the



12 12

instrumentation is injected during the emulation process, i.e., the malicious
sample executes inside a system-level emulator (the guest) that internally
translates the emulated ISA. The analysis works at the level of the emulated
code, thus allowing for fine-grained measurements as it can see all instruc-
tions performed by the process. With this last approach, we do not affect
the virtual address space of the tracee even though we pay in performances
as this dynamic translation is very expensive.

Finally, the ensemble of run-time environment and instrumentation ap-
proaches represent the two design choices that are fundamental for the cre-
ation of a sandboz. According to the necessity, a sandbox could be designed
to implement one or another of the previously described concepts. For in-
stance, academic sandboxes often need to collect fine-grained information
about a particular malware aspect. Thus for this type of sandbox, we could
prefer to build an emulator-based machine and deploy an out-of-guest ap-
proach to monitor certain behaviors. Many industrial sandboxes instead
have to handle thousands of files per day and therefore, they mostly care
about lightweight techniques that do not introduce too much slowdown while
executing the tracked process.

2.1.2 Static techniques

Static analysis techniques focus on extracting a set of parameters and fea-
tures from the PE file to infer some aspects of the malware under observation.
Two main approaches exist in this context.

A first direction is to perform code analysis in a static way, thus without
actually executing the code but implementing some well-known program
analysis techniques [SOA18|. The fact that the source code is not available
inherently makes the development of such approaches more challenging, and
in addition to this, several anti-analysis techniques can make the recovery
of the code particularly challenging (e.g., packing).

A classical analysis paradigm is to infer some properties by studying
binary representations such as Control Flow Graph (CFG) and Data De-
pendency Graph (DDG). This can give us information about the execution
flow of the executable according to the value of some memory locations. For
instance, we can use CFG and DDG to inspect some interesting function
call sites and observe what the parameters of the invoked procedure are.
Another program analysis technique used in the context of malware is sym-
bolic execution, which can help to evaluate all execution flows of a binary
executable that satisfy a certain constraint!.

'We consider symbolic analysis as a static technique because its execution does not



2.1. Malware Analysis 13

On the other hand, a set of distinct solutions exist that work at the entire
file level. The idea is that we can find some indicators by looking at the PE
file format that suggests if a sample can be malicious or benign.

A first possibility is represented by those solutions that extract features
processed by a Machine Learning (ML) classifier [UAB19]. In recent years,
this has become a standard practice because it simply needs to fetch some
features from the analyzed files, encode them into a features vector and pass
it through a previously trained model. Static features can include different
fields of the PE such as the name and the permission of the sections, the IAT,
the timestamp, and other fields of this file format. More modern approaches
take into account more elaborated features, for instance, the ones extracted
from the binary code, such as n-grams of bytes or disassembled instructions.

At the other side of the spectrum, we find signature-based approaches
that consist of matching sequences of bytes or specific patterns that identify
a certain malware family |detay, peiay| or a certain packing or obfuscation
technique. W.r.t. this approach the YARA rules [yar| represent the de-
facto standard to implement expressive queries that can match such byte
sequences.

In both cases, a static analysis technique has the pro that it is extremely
fast to execute for each sample to analyze. However, they have the cons
of the potentially many false positives that can also arise due to the anti-
analysis techniques implemented by the malware authors.

A more comprehensive presentation of the related work about signatures
is given in Chapter 3.5 whereas Chapter 3.6 presents a survey of state-of-
the-art approaches in the context of machine learning for malware analysis,
with an emphasis on packing.

2.1.3 Packing

Over the years, anti-analysis techniques have evolved in several directions,
which include code obfuscation, compression, encryption, polymorphism,
metamorphism, and runtime packing. This process and the real-world adop-
tion of these techniques have been largely discussed in [YZA08, OSMI11,
RM13, UPBSBI15]. Since packing, as used by today’s malware, does not
have a precise definition, it is essential to clarify which techniques we cover,
and which we do not, in the rest of the thesis.

affect directly the system state (i.e., a symbolically executed program typically modifies
symbolic memory/registers which are not the physical ones). However, note that this
specific technique is actually in the middle between dynamic and static techniques and
thus we acknowledge that other ways to categorize it exist



14 14

First of all, to draw a line between packing and other forms of anti-
analysis, we consider packing only when I) the original code of the appli-
cation is already present in the file but is NOT present in an executable
form (i.e., it is encrypted, compressed, or otherwise transformed), and II)
the original instructions are later recovered and executed at runtime. We
consider instead obfuscation when the code is present in the binary and it
retains the ability to be executed, even if it is hard to understand (for hu-
mans and/or automated tools) or analyze because it was re-written with
the goal of hindering binary analysis. For the same reason, if a program
encrypts all its data but not its instructions, we do not consider that as a
form of packing in our study.

Dynamically-generated code (that also includes self-modifying code) is
a generic term that refers to techniques used to generate or modify code at
runtime dynamically. In a broad sense, packing relies on these techniques,
and it is, therefore, a form of dynamically-generated code. However, not all
forms of dynamically generated code are packing — for instance in the case
of just-in-time compilers. To distinguish among the two, in our study we
measure the size of the unpacked code and use this information to separate
the cases when the actual application code is unpacked from the cases when
just a small snippet of code (e.g., a shellcode) is generated at runtime.

Second, we limit our analysis to runtime packers that recover and ex-
ecute the original code at runtime. Droppers that download a compressed
archive from the Internet, unpack them on disk and then run the contained
application are outside our scope (as both the dropper and the dropped files
could be independently statically analyzed).

Finally, we do not consider emulators (like those included in the Themida
packer) that transform the original instructions into a new instruction set
and then execute them by using a custom emulator. In fact, in this case,
the original code is never recovered, but instead permanently replaced with
an (often randomized) instruction set.

2.2  Vulnerability Discovery

The goal of vulnerability discovery is to analyze different types of software
to identify vulnerable patterns that can compromise the system that runs
such programs. Since a very large and diverse set of approaches exist in this
field, we propose two main orthogonal classifications while we cite the more
comprehensive survey by Liu et al. [LSCL12| for more details.

The first way is to distinguish the cases where the source code is available
from those ones in which the program source is not accessible, and the pro-



2.2. Vulnerability Discovery 15

gram is only available in binary form. This comes with the main implication
that some critical information is lost at compile-time — such as the types,
the data structures, and the variables/functions names. As an example of
how this aspect influences the development of new bug-finding approaches,
we can consider fuzzing [MHH'19).

Fuzzing is a popular technique that consists of repeating the execution
of the program under test while mutating the input at each run. To monitor
the coverage of the target code, fuzzers usually deploy an instrumentation
that allows them to log when the execution encounters new program points
(such as new basic blocks or new edges) [FMEH20]. When the source code
is available, fuzzers normally inject the instrumentation needed at compile-
time, for instance, by implementing custom LLVM passes [LA04|. However,
when the program is accessible only in a binary form, researchers have to
find alternative mechanisms to instrument the application. One way to
solve this challenge is to emulate the target binary and inject the instru-
mentation during the phase of dynamic code generation (as done by popular
state-of-the-art fuzzers like AFL++ [FMEH20]). Another technique instead
is binary re-writing, which instruments the code directly at the assembly
level INNTH"21, DBXP20|. In all cases, fuzzing applied to binary-only
software requires a completely different approach compared to the source
code scenario. Similarly, this concept holds for other vulnerability detection
techniques such as symbolic execution, where previous work demonstrates
that the presence of the source code enables the symbolic executor to reach
better performances [PF20].

A second way to look at the vulnerability discovery techniques is to dis-
tinguish between the cases where we execute the target and the cases where
we do not. This translates into two opposite approaches, i.e., static and dy-
namic analysis. Fuzzing clearly falls into the second category, as it consists
of repeated executions of the target. Static software testing instead is repre-
sentative for the first category as it performs a series of analyses (typically
at the source code level) that investigate some program representations to
detect vulnerable patterns [LC10|. For instance, static analyzers can query
the Abstract Syntax Tree (AST) to take into account the basic semantics of
the program being evaluated. More advanced static software testing tools
instead are able to construct also the Control Flow Graph (CFG) and the
Data Dependency Graph (DDG) to develop data tracking techniques that
are useful to identify, for instance, the code locations that certain user input
can reach, thus determining if a certain statement is safe or not (for instance



16 16

a buffer indexing). Since a chapter of this thesis focuses on static software
testing, we will present the related work on these aspects later in Section 4.1.

2.3 Reverse Engineering approaches and tools

Reverse Engineering is a broad topic that covers several different activities.
Therefore, in this section, we emphasize what aspects we studied in our work
and the actual focus of the thesis.

In system security, we refer to binary Reverse Engineering (RE) as the
activity by which a human, the Reverse Engineer, analyzes an executable
file, either in whole or in part, to recover design and implementation infor-
mation useful to understand the program functionalities. This implies that
the reverse engineer has to interact with the low level mechanisms of an
architecture and the way a certain operating system manages these aspects.
Overall, for our studies we focused on the x86 architecture running both
Linux and Windows operating systems.

Depending on the context (e.g., malware analysis, vulnerability discov-
ery, firmware analysis), the output of a reverse engineering analysis can be
different. However in all cases the analyst is interested in reconstructing the
logic of the program and in understanding which conditions must be met to
reach a specific location in the code — which can be related to a bug or to
a suspicious behavior in the case of malicious files [Yurl3].

Independently from its goal, the RE process usually involves different
phases, and different tools are used to inspect the program and collect the
required information. Some popular frameworks that support the analyst in
this complicated task are interactive disassemblers, such as IDA Pro [idaay]
and Ghidra [ghiay|. These tools combine multiple functionalities (e.g., a
disassembler, a decompiler, a debugger) in an interconnected and interactive
user interface, which allows the analyst to inspect an enriched representation
of the binary code.

2.3.1 Disassemblers

Disassemblers are popular computer programs that lift the machine code
into assembly language. We can refer to the recovered assembly code as
disassembly, as it represents a close, but not perfect, reconstruction of the
original assembly code. In fact, some information is lost when the assembler
generates the machine code. For instance, embedding data in the code
areas is a source of errors for disassemblers as they might try to parse the
data bytes as if they were instructions, often leading to an incorrect output.



2.3. Reverse Engineering approaches and tools 17

Other reasons that can cause errors are indirect branches, functions without
an explicit CALL site, position independent code, and hand-written assembly.

Nevertheless, two main algorithms exist to implement a disassembler and
try to address some of these points. The first one is linear sweep. This naive
approach starts decoding instructions from the first byte and continues until
it reaches the end of the code section or an illegal instruction. A more
advanced approach is recursive traversal, that relies instead on a careful
control flow analysis. More specifically, it begins with the entry point and
then follows and visits each branch instruction either in a depth-first or
breadth-first fashion.

Finally, state-of-the-art disassemblers improve the recovered representa-
tion to make the disassembly reading easier for the analysts. For instance
they resolve libraries function calls, replacing their addresses with APT sym-
bols and often reporting their parameters. Moreover, they compute some
metadata that can be used by the reverse engineer to understand the inter-
nals of the application, such as the Xrefs to and from a certain function, i.e.,
the callers and the callees of the currently visited function.

2.3.2 Decompilers

In the current section, we present the basic concepts behind the design of
a decompiler while in Section 4.1 we will present the state-of-the-art work
related to this topic.

Decompilers are tools designed to recover a high-level C-like representa-
tion of the assembly code. Typically, we refer to this high-level represen-
tation as pseudocode or simply decompiled code. In recent years, using the
pseudocode to reverse complicated functions have become a standard tech-
nique, as it allows to automatically reconstruct C language constructs such
as loops, variable assignments, and function calls. However, compilation is
by definition an irreversible process, as a considerable amount of informa-
tion is stripped away when generating the final executable. For instance,
the type systems information and the size of many stack buffers are lost and
difficult to reconstruct.

To try to recover some of the list information, the first step that the
majority of modern decompilers adopt is to lift the disassembled code into
an intermediate representation (IR). Hence, a set of passes is executed on
the IR to reconstruct the expressions (expression propagation), the uses of
variables (data flow analysis), and the type system (type analysis and type
propagation).

In the last phase, the structuring module is in charge of transforming
the elaborated IR into high level constructs such as if /else/while statements.



18 18

After that, the decompiler backend can emit the resulting pseudocode. As
a consequence of all these modifications and lifting steps, the decompiled
code can contain complicated expressions and statements. A very frequent
example of this is the frequent use of GOTO statements, which are used to
reconstruct complex control flow topologies. Another case is the use fields
in a C struct. Since decompilers cannot precisely recover struct definitions,
they often mis-represent them as arrays, in which fields appears like elements
withing the array itself.



Chapter 3

Prevalence and Impact of
Low-Entropy Packing Schemes
in the Malware Ecosystem

This first chapter focuses on a classical malware analysis problem known
as packing. In the following sections, we will show how we implemented a
dynamic analysis approach to perform fine-grained measurements about the
packing methods implemented by the several malicious samples we collected
in our dataset. Moreover this study exemplifies our first scenario of human
intervention, where the analyst has the role to guide the automated compo-
nent towards the unpacking code and thus works as the entry point of the
pipeline.

Both benign and malicious applications have valid reasons to hide or
disguise their internal behavior; the former to deter attempts to reverse
engineer their code and break software protection mechanisms, and the latter
to evade detection from antivirus engines and security products. A wide
range of anti-reversing techniques exist that modify the binary code of a
program to make it difficult for humans to understand and for computers to
analyze. Among them, code obfuscation and runtime packing are the most
frequently adopted by both malware and goodware authors.

On the one hand, Obfuscation aims at rewriting a program in a way
that preserves its semantic but complicates its form. This can be done,
for example, by flattening the control-flow, inserting dead code or opaque
predicates, or by adding sequences of instructions that can confuse disassem-
blers (JLK09, BM08, BCCO16, MC06, CTL98, SRX14|). Obfuscation plu-

19



20 20

gins are often included in popular compiler toolchain infrastructures (e.g.,
Obfuscator-LLVM [JRWM15]| and Proguard [Laf04]).

On the other hand, Runtime Packing is a technique that was originally
introduced to save disk space by compressing (at rest) and decompressing (at
runtime) the code of an application. More generally, the term is used today
to describe a class of techniques designed to store a compressed, encrypted,
or otherwise encoded copy of the original program — thus preventing any
static analysis of the code itself. Packed samples rely on a short unpack-
ing routine that allows them to reconstruct the original application code in
memory and then execute it.

While the exact fraction of packed malware samples is still unclear, in a
recent study by Rahbarinia et al. [RBP17], the authors found that 58% of the
malicious downloaded files are packed with an off-the-shelf packer. However,
their estimation does not take into account the presence of custom pack-
ers (35% of packed malware adopts custom packers, according to [MP10]).
Moreover, the authors rely on signature-based tools that are known to gen-
erate many false positives — as we show in more detail in Section 3.5. In any
case, the widespread adoption of packing makes the problem of correctly
and efficiently answering the question “is an executable packed?” fundamen-
tal in malware analysis. In fact, many classes of techniques — such as static
analysis, clustering, and similarity among samples — do not work or provide
poor results in the presence of packed executables. This forces researchers to
pre-process packed samples by introducing a very costly and time-consuming
dynamic unpacking phase, or by completely replacing static approaches with
more resilient solutions based on dynamic analysis.

A wrong classification of packed samples can also pollute the datasets
used in many malware analysis studies. For instance, researchers often rely
on datasets that include both packed and not packed samples, and errors in
this separation can lead to unreliable or difficult to reproduce experimental
results.

To solve these problems, the security community developed a number
of efficient tests to assess the presence of packing. Historically, the Shan-
non entropy of a program was adopted for this purpose, as both encrypted
and compressed data are characterized by a very high entropy — which
can be easily distinguished from that of machine code. While early studies
(e.g., [LHOT]) classified executables just according to their average entropy,
researchers quickly moved towards entropy computations performed at a
lower granularity, i.e., by relying on sliding windows or by calculating the
entropy of individual sections. These more fine-grained techniques were of-
ten described as very successful in identifying the presence of packing. For



21

instance, Han and Lee [HLO09| reported 99% of accuracy and precision by
looking at the entropy of individual sections. Another well-known approach
to identify the presence of packing relies on the use of custom signatures, as
applied by popular tools like Detect It Easy [detay|, Manalyze [manay|, and
PEiD [peiay|. However, this solution is prone to errors, and it is unable to
identify previously-unknown packing routines — as we show in more detail
in Section 3.5.

Since entropy became a discerning metric to discover packed code, both
researchers and malware authors experimented with techniques to pack ex-
ecutables while maintaining the entropy low. For instance, in 2010, Baig
et al. [BZRL12] discussed the possibility of using different encodings to re-
duce the entropy and evade the checks performed by antivirus software.
However, the study was purely theoretical, and the authors did not pro-
vide any evidence of the actual adoption of such schemes in the wild.
Two years later, Ugarte et al. [UPSST12] found that samples belonging
to the Zeus family contained trivial countermeasures to tamper with en-
tropy checks. In this case, the malware authors padded the encrypted
data by inserting the same byte (or a subset of bytes) repeated multiple
times — in Section 3.3 we inspect the details of how this and the other
schemes affects the entropy. Since then, this phenomenon has been spo-
radically mentioned by malware analysts, but it has never been discussed
in detail, and its adoption by malware authors has never been measured.
Therefore, even if the existence of low-entropy packing was known to re-
searchers, it was often dismissed as statistically irrelevant and with a negli-
gible impact on practical experiments. As a result, researchers (such as in
[LHO7, PLLO8b, SUPS*11, UPSGF*14, RBP17, UPBSB15|) continued to
resort to entropy-based metrics and static signatures to identify the presence
of packing. For instance, in the extensive analysis and large-scale measure-
ment of malware packing performed to date [UPBSB15|, the authors selected
their samples from VirusTotal [viray| by querying for files with an entropy
greater than seven.

Research questions

Even though security experts do not rely solely on entropy to identify packed
samples, there is no systematic study that measured how prevalent low-
entropy packing schemes are in the wild and whether existing techniques
are able to correctly classify these samples. Moreover, there are popu-
lar tools (discussed in Section 3.5), academic papers (discussed in Sec-
tion 3.6), and even books ([SH12, LAHRI10]) that still adopt the approx-
imation packed = high entropy. The goal of this chapter is to show that



22 22

this simple approximation is not correct in a large number of cases, and to
improve our knowledge of low-entropy packing by answering the following
research questions:

1. Which tricks and which packing techniques are used by real-world
malware to lower their entropy?

2. How widespread are these techniques in the wild? Is low entropy
packing a significant trend that needs to be considered when designing
malware experiments?

To answer these questions, we assembled a dataset containing 50,000 low-
entropy malicious samples belonging to multiple families. Our methodology
to analyse them consists of a human-in-the-loop approach where the expert
guides a dynamic analysis tool that, thanks to the initial input of the analyst,
can classify each sample and categorize the scheme and transformations
applied to the packed code. Our analysis pipeline reported that over 30% of
them adopt some form of runtime packing.

For this reason, we decided to investigate if other features can still be
used to detect the presence of packing. In fact, while some papers (e.g.,
[LHO7, PLLO8b, UPBSB15|) and tools (e.g., [peiay, detay|) consider only
entropy to distinguish packed from non-packed malware, state of the art so-
lutions use a combination of different static features, often based on PE
structural properties. Therefore, we introduced two additional research
questions:

3. Are existing static solutions able to distinguish low-entropy packing
from unpacked samples?

4. If not, can we do that by combining all static features that have been
proposed to date in related works, or new research is needed to solve
this problem?

In Section 3.5 we show how the most popular and actively maintained
static tools available today perform on our dataset. Finally, in Section 3.6,
we collected all the static features that have been proposed in previous stud-
ies as reliable indicators of the presence of packing. We then trained several
classifiers on the union of these features and tested them on our dataset
of low-entropy malware (containing both packed and not packed samples).
It is important to note that our goal was not to design a new classifica-
tion scheme based on the combination of all existing features but only to



3.1. Background 23

understand whether these features can successfully classify samples in the
presence of low-entropy packers.

3.1 Background

3.1.1 Entropy of Executable Files

Entropy is a metric to measure the uncertainty in a series of numbers (or
bytes) or, in other words, to capture how difficult it is to independently
predict each number in the series. The difficulty in predicting successive
values can increase or decrease depending on the amount of information
the predictor has about the function that generated the numbers, and any
information it retained about the prior numbers in the series.

In particular, the Shannon entropy H of a discrete random event x tries
to predict the number of bits required to encode a piece of data, as given by
the formula:

H(z) = =) P(zi)logy(P(z;))
1=1

where P(x;) is the probability of the i*® unit of information (such as a num-
ber) in event x’s series of n symbols. This formula generates entropy scores
between 0.0 and 8.0 when considering that each symbol can have 256 values
as it is the case for binary data. Both lossless compression and encryption
functions typically generate high entropy data. In fact, lossless compres-
sion functions start by generating a statistical model for the input data,
then use such a model to map input data to bit sequences in a way that
frequently encountered data will produce a shorter output than infrequent
ones; this removes predictability, which increases the entropy. The same
applies to encryption functions, as they are specifically designed to generate
unpredictable data.

Since the generation of a packed executable often relies on compression
and/or encryption to disguise the application code, packed files are usually
characterized by having a high entropy. As a consequence, entropy was the
primary metric used in the past to classify packed executables [LHOT7].

However, many file formats for executables, such as Portable Executable
(PE), Executable and Linkable Format (ELF), and Mach Object (MO) di-
vide the file into a number of isolated sections. Obviously, this way of
partitioning an executable affects the distribution of its entropy. For in-
stance, machine instructions are often redundant, thus resulting in middle-
range (typically 5-to-7) entropy scores, while strings of English text result
in even lower entropy values (on average 4.7 |For07]|) due to the limited



24 24

Figure 3.1: .text section entropy w.r.t. XOR encryption

8.0

w ("

7.0

Entropy

6.0 4

= mean
5.5 | minymax
| std

T T T T T T T
0 5 10 15 20 25 30
Key length [Byte]

number of characters they employ. To better discriminate among differ-
ent areas of an executable, researchers replaced file-level entropy scores
with a more fine-grained computation performed at the level of individ-
ual sections [HL09]| or by applying a (sliding) windows over the program’s
bytes [PLL08a, UPSGF14].

3.1.2 Entropy and XOR Encryption

Since packing usually encrypts code to hide it, we set up an empirical ex-
periment focused on PE x86 code encryption to distinguish between average
and high entropy values of plain and encrypted code. On Windows 7, we in-
stalled the top 10 applications from the Microsoft Store [Mic|, including top
browsers and the Visual Studio IDE. We then randomly selected 1,000 PE
executable files, both 64 and 32 bit, from the Program File folder!. For each
of them, we calculated the entropy of their .text sections; then we XORed
the .text section with a randomly generated key, and we re-calculated the
entropy of this new encrypted data. We repeated the experiment 128 times,
changing the key length from 1 to 32 Bytes.

Figure 3.1 shows the evolution of the entropy for different key lengths.
The circle shows the mean of the 128 experiments, the thick vertical line is

!We ensured that each file was not previously packed by using the tool we presented
in Section 3.2.



3.2. Prevalence of Low-Entropy Packing 25

Figure 3.2: Encrypted .text section — difference in entropy means

1.6

1.4

1.2

1.0

0.8 1

0.6 1

Difference in entropy means

0.4

0.2 1

0.0 1

T T
0 5 10 15 20 25 30
Key length [Byte]

the standard deviation, and the thin vertical line shows the range between
the maximum and minimum value. As shown in the image, the entropy
slowly grows accordingly to the length of the key. When the key length is
only 1 Byte long, the entropy does not change as this is just a substitution
of the plain-text code and does not alter the frequency of the symbols. Our
test shows that the average entropy of real-world plain x86 code is around
6.2 £ 0.3, and by using a 2-bytes key the entropy increases to 6.7 £ 0.3.
Figure 3.2 shows the difference between the means of the entropy of the
XORed code and the original code — emphasizing the rapid effect that the
key size has on the entropy of the data.

Finally, we observed that state-of-the-art approaches [UPBSB15] and
frequently used tools (e.g., [detay, manay, pefay| — discussed in Section 3.5)
adopt 7.0 as entropy threshold to separate packed and not packed executa-
bles. According to our graphs, this value is obtained on average by xor-ing
the code with a key of 3 bytes. In the rest of our thesis, we will use this
threshold to distinguish low entropy data (H < 7.0) from high entropy data
(H > 7.0) and we use this value to construct our low-entropy malware
dataset.



26 26

Figure 3.3: Byte Frequency Distribution w.r.t. Schemes

Original [H= 6.21]

Byte Padding - 0x64 Interleaving [H= 4.1]

Encoding - Base64 [H= 5.45]

104 |
10% 4 HI‘IH H

Monoalphabetic Substitution - 1 Byte XOR [H= 6.21]

Transposition - Reversed [H= 6.21]

Polyalphabetic Substitution - 4 Bytes XOR [H= 7.11]

loﬂ,
10% 4 “ “I‘“"I“Hi“ 'I } ||H ‘ i

o 50 100 150 200 250

3.2 Prevalence of Low-Entropy Packing

3.2.1 Dataset

We built our dataset by downloading 50, 000 Portable Executable (PE) files,
(excluding libraries and .Net applications), randomly selected among those
submitted to VirusTotal [viray| between 2013 and 2019. We only selected
PE samples classified as malicious by more than 20 antivirus engines, and
such that the entropy of each section, of the entire file, and of potential



3.2. Prevalence of Low-Entropy Packing 27

overlay data? were less than 7.0 (as motivated in Section 3.1.2). We adopted
these conservative criteria to ensure that a sample is certainly malicious and
contains neither compressed nor encrypted data.

Furthermore, we collected a second smaller dataset containing 476 sam-
ples used in APT campaigns [aptay|, which satisfies the same low entropy
constraints. From now on, we will refer to this dataset as the APT dataset.
The samples belonging to the APT dataset were collected over a period
spanning from 2015 to 2018.

3.2.2 Analysis

To carry out our first experiment, we designed and implemented Packer
Detector (hereafter, PD), a dynamic analysis tool built on top of the
PANDA [DGHHT15] analysis framework. The goal of PD is to precisely
trace unpacking behavior by monitoring when a sample executes a memory
area which it previously modified. The analysis of a single sample produces
as output several text files that are subsequently analyzed to reconstruct the
behavior of the sample.

Since the original code of a packed sample is hidden, the unpacking
procedure must carry out some operations to retrieve, restore, and store
somewhere in memory the unpacked code. For this reason, PD dynamically
executes the target sample on a virtual machine (Windows 7, 64 bit) by
spawning the corresponding process and monitoring its registers and mem-
ory content. Each sample is executed until the main process exits or until
a maximum timeout of 40 minutes is reached. The virtual machine gate-
way points to an INetSim? instance, which provides fake HTTP /S and DNS
responses to deceive the sample under analysis into believing that it is con-
nected to the Internet. Despite INetSim delivers fake files based on the file
extension in the HTTP request (e.g., .html or .exe), it is configured to avoid
returning any executable code, since we do not want to analyze malware
which uses external data because it can violate our low entropy constraints.

PD collects write accesses on the memory of the main process and, if
applicable, of its child processes, and stores this information as a list [W L]
(Writes List) of tuples. The memory accesses are detected thanks to the
PANDA callback PANDA_CB_VIRT_MEM_AFTER_WRITE which is raised every
time a process performs a memory write. If the PID matches with that one

2The overlay is just appended data to the end of the executable file that is ignored
when loading an executable into memory because it is not covered by the PE header.
Anyway, opening the executable file in reading mode will allow access to the entire file
including the overlay portion.

*https://www.inetsim.org/


https://www.inetsim.org/

28 28

of the process under analysis (or with one of his child ones), we store a tuple
in the list [WL]. Each tuple contains the Program Counter (PC') register
pointing to the instruction that triggered the write operation and the target
address AW (Address Written) of the operation. This means that for the
i-th write operation to the address AW, performed by the instruction at
address PC,, we have a tuple (PC,, AW,); € [WL]. If the write opera-
tion involves more than one byte, the system stores them separately. For
instance, if a sample executes the instruction “ mov WORD PTR [0x1000],
0x4142 7 at the address 0x1234, PD manages the size directive adding the
tuples [(0x1234,0x1000), (0x1234,0x1001)] € [WL]. Furthermore, if the
PC reaches a previously written address in the tuple (PCy, AW,) € [WL]
(i.e., AW, points to instruction that it is getting executed), it copies the
tuple into another list [WXL] (Written and eXecuted List); at the end of
the execution this list will contain all the written-then-executed addresses
and the PC values that triggered the write operation. When the sample
terminates, PD analyzes the [WXL] list: if the sample is packed, the list
is not empty and it encompasses some memory regions of consecutive ad-
dresses (modulo the x86 length of instructions) that contained the unpacked
code. However, when a sample manually loads a Dynamically Linked Li-
brary (DLL) and then executes one of its functions, PD would detect this
behavior as part of an unpacking routine. To remove this noise, our tool
further checks whether the program counter points to code that belongs to
a DLL, and remove these cases from our analysis. We also use a threshold
of 800 bytes on the length of the [W X L] list to exclude samples which sim-
ply decrypt a short shellcode, a behavior that we do not consider a form
of packing and that anyway would likely not significantly affect the overall
entropy.

The heuristic adopted by PD can also generate false negatives (i.e.,
packed samples detected as not packed) if the sample runs incorrectly be-
cause of an unexpected crash, incorrect command-line arguments, missing
dependencies, or virtual environment evasion *. To avoid the risk of pollut-
ing our dataset with wrong labels, we decided to conservatively discard the
samples that did not exhibit a sufficient amount of runtime behavior, and
that therefore might have been incorrectly executed. This includes samples
that did not invoke at least ten disk- or network-related syscalls as well as
samples whose executed instructions did not span at least five memory pages.
For this reason the PD hooks the disk /network-related syscalls (for instance

*Virtual environment evasions are techniques aimed at detecting whether an executable
is running on bare-metal or a virtual machine (regardless of it being emulated or based
on a hypervisor).



3.2. Prevalence of Low-Entropy Packing 29

NtOpenFile or NtCreatel'ile) relying on the syscall hooking interface offered
by PANDA. We also keep track of the code coverage of the sample, i.e., the
number of instructions executed compared to the total number of instruc-
tions in the executable sections (typically .text). The goal of these selection
criteria is not to detect evasive malware, which is still an open problem, but
to remove from our dataset those samples that could be incorrectly classified
as not packed simply because they failed to run. By applying these simple
heuristics, we removed a total of 3,705 malware samples from our dataset.
Based on our conservative thresholds, it is safe to assume that the remaining
samples executed long enough to at least unpack their code. For this reason,
from now on, we consider 46, 295 as the total number of samples over which
we compute our results.

3.2.3 Results

During our analysis, we run into a class of samples that, while packed with
a high-entropy scheme, evaded our set of filters described in Section 3.2.1.
These samples contained encrypted data, but the data was not stored in any
of the section nor the overlay area. For instance, a family of file infectors
adopted this technique to inject its encrypted code in an area created be-
tween the PE header and the first section. While this data belongs neither
to the PE header nor to any section, it is automatically loaded in the main
memory at runtime (unlike, for instance, the overlay data that needs to be
manually loaded by the program). Moreover, since the size of this encrypted
code is small with respect to the size of the entire file (approximately 2.6%),
it has little impact on the total entropy of the file. In addition to the area
between the PE header and the first section, we have also discovered samples
that used the empty area (if present) among sections to store their packed
data. In total, 11.6% (5, 386/46,295) of the samples in our dataset adopted
this interesting, and to the best of our knowledge previously undocumented,
scheme to store packed code in a way that evades common entropy-based
checks. Among them, the two prevailing families were hematite (64%) and
hworld (35%). Since these samples successfully evaded our entropy checks
but without using a low-entropy scheme, we decided to consider them as a
separate category in our dataset.

Over the remaining low-entropy samples, our tool discovered that a stun-
ning 31.5% (14, 583/46,295) employed some form of packing. This shows
that entropy alone is a very poor metric to select packed samples and that
roughly one-third of the samples with entropy lower than seven are still
adopting some form of runtime packing to prevent static analysis. This per-



30 30

Packed

Not packed

Hidden high-
entropy data

Figure 3.4: Dataset composition (cardinality = 46, 295)

centage is even higher if we exclude the samples with hidden high-entropy
data. In other words, if we pick a random malware sample that contains no
information with entropy higher than seven, according to our experiments
there is a 35.6% probability (14, 583/40,909) that it is packed with a low-
entropy scheme. The overall composition of our dataset is summarized in
Figure 3.4.

We also downloaded the VirusTotal report of every sample in our dataset
and using AVclass [SRKC16], a malware labeling tool, and we have identified
the family associated to each sample. Table 3.1 reports a ranking of the top
ten families in the packed and not-packed categories.

Finally, in the APT dataset we did not find any sample that has hidden
high-entropy data, while low entropy packing schemes were adopted by 15%
of the samples. This shows that low entropy schemes are a well-known
practice for malware authors nowadays and the phenomenon is significantly
widespread in the wild, leading us to our next research question: which
packing techniques do malware authors adapt to keep the entropy below the
suspicious threshold?

3.3 Low Entropy Packing Schemes

In this section, we describe the experiments we conducted to enumerate and
analyze the different techniques adopted by malware authors to keep the



3.3. Low Entropy Packing Schemes 31

Table 3.1: Top 10 families distribution in our dataset

Packed ‘ % H Not packed‘ % ‘

sivis 28.0 lamer 104
unruy 11.6 daws 8.8
vobfus 9.5 vbclone 8.0

dealply | 5.4 sivis 7.5
upatre 4.1 triusor 4.5
shipup 4.0 flystudio 4.0
gepys 3.5 zegost 3.9
vilsel 2.9 mailru 3.6
sality 2.3 high 2.9
hematite | 2.0 nitol 24

Table 3.2: Low Entropy Scheme

Scheme ‘ Effect on Entropy
Padding Decrease
Encoding Decrease
Mono-alphabetic Substitution Unchanged
Transposition Unchanged
Poly-alphabetic Substitution Slightly increase

entropy below detectable levels, and measure the frequency in which they
appear in our dataset. We emphasize that we refer to low entropy packing
schemes regardless of their effect on the entropy (increasing, decreasing, or
unchanged), as long as such schemes produce low entropy data according to
our results in Section 3.1.2. Moreover, it is important to note that sophis-
ticated packers often involve several layers of unpacking routines, in which
the first layer unpacks the second one, which in turn unpacks the next layer
and so on until the original code is reconstructed. However, for our purpose,
we only need to study the first unpacking layer, as it is the only visible from
a static analysis point of view and the only one that determines the entropy
of the data. As we will discuss later in this section, malware authors may
also decide to use stronger encryption in deeper layers as long as they keep
the entropy of the first layer low.



32 32

o~ / Deterministic Packer \
&j PANDA record Detector

Is it No
packed?

Schema Yes | |
detected? @

[wxL] list

Scheme
Classifier

\_

Figure 3.5: Architecture of our analysis tools

3.3.1 Schemes Taxonomy

We can divide the low entropy schemes observed in the wild into five main
categories, summarized in Table 3.2. The table also shows the effect that
each scheme has on the final entropy. While some techniques can be used to
effectively lower the entropy of data (and therefore ‘hide’ an already packed
sequence of bytes), others can only maintain (or slightly increase) the current
entropy, thus requiring to be applied as standalone solutions on the original
application code.

Byte Padding includes all techniques in which additional low-entropy data
is added to the packed section to decrease the overall entropy. This data
typically consists of a single byte, or a repetitive subset of bytes, that are
either appended at the end of the code or interleaved with the packed in-
structions. The unpacking routine, accordingly, skips over the padding while
restoring the original instructions. Byte padding alone is not a packing tech-
nique, and therefore it is often used in combination with other encryption
or compression schemes.

Encoding-based schemes decrease the overall entropy by representing the
packed information using a different number of bits, thus encoding the same
data with a different alphabet of symbols. Although we observed some



3.3. Low Entropy Packing Schemes 33

samples applying well-known encoding schemes to pack their code, other
malicious samples often implement their custom encoding (during our
analysis we just observed 6-bit alphabets). As encoding-based schemes can
lower the entropy of high-entropy data, they can be used to mask multi-
layers approaches that also employ traditional encryption packing.

Monoalphabetic Substitution-based approaches aim at replacing every
single byte in the packed payload with a different byte, computed either by
using a simple algorithm (e.g., a XOR with a 1-byte key) or by looking up
each symbol in a translation table.

Transposition is another technique that does not alter the byte distribution
and the entropy of the data. In this case, either individual bytes or sequences
of bytes are shuffled around to recompose the original code. Sometimes the
transposition scheme is fixed, while in other cases the samples embed the
‘instructions’ to reassemble the bytes in the correct order in the packed data
itself.

Polyalphabetic Substitution schemes are simple cryptographic tech-
niques that extend simple byte substitution by using multiple substitution
alphabets. Common examples of this approach are the classic Vigenére ci-
pher or the XOR encryption with a multi-byte key. While these techniques
usually result in an increased entropy score, the use of very short keys (e.g.,
2-4 bytes, as shown in Section 3.1.2) do not significantly modify the byte
distribution, and therefore it limits the increase of the entropy level.

3.3.2 Schemes in action

To give an idea of how such schemes work on a real example, we have taken
a benign file from the samples we used in the experiment in Section 3.1.2.
In particular, we have chosen a sample with the entropy of its .text sec-
tion corresponding to the average entropy we previously measured in the
same experiment. Then, we applied an example of each of the different low-
entropy scheme listed above on its .text section. As shown in Figure 3.3,
we implemented respectively: padding — interleaving the byte 0x64 after
each original byte (thus doubling the size), encoding — base64, substitution
— XOR with a one-byte key, transposition — byte ordering reversed, poly-
alphabetic substitution — XOR with 4 Byte long key. The graph shows for
each byte [0,255] (represented on the x-axis) its frequency in the data (on
the y-axis) plotted on a logarithmic scale. In the padding plot, the 0x64 byte
is the most frequent; this scheme is noteworthy for the way that it effectively
decreases the entropy, with the downside of increasing the original source



34 34

size. The encoding plot contains only the bytes belonging to the base64
scheme, decreasing the entropy accordingly. Looking closely at the Substi-
tution plot, the reader can notice that the frequencies are shuffled w.r.t. the
original distribution; for example, given that we used the byte 0x32 as the
key, the original 0x00 byte frequency has been moved (0x32 & 0x00 = 0x32)
to the 0x32 (50 in decimal) frequency. Given that the frequency distribu-
tion does not consider the order, the transposition and the original plot are
identical, including the entropy. Lastly, the poly-alphabetic substitution is
characterized by a more uniformly distributed bytes frequency, and in fact
it is the only one that increases the entropy over the 7 threshold.

3.3.3 Scheme Classifier

Once Packer Detector identifies a sample as using some form of runtime
packing, a more refined analysis is needed to detect to which of the previously
introduced five categories the low-entropy packing scheme belongs to. To
accomplish this second set of experiments, we developed another dynamic
analysis tool, also based on PANDA, that we call the Scheme Classifier.
This tool relies on the output of Packer Detector and applies some heuristics
based on the fact that every packing scheme needs to follow the same steps:
i) locate and access the source buffer that contains the low entropy packed
data, ii) perform operations on such data, iii) write the unpacked data in
the destination buffer. We sketched the architecture of our tools and how
they are integrated together in Figure 3.5.

It is worth remembering that the output of Packer Detector is a list of
tuples, named [WXL]. Each tuple (PC,, AWX,) € [WXL], contains the
program counter PC, of the instruction that triggered the write operation
in memory, and the target address AW X, where the information was sub-
sequently stored and executed. Accordingly, this information defines the
memory regions that contain the destination buffer of the unpacking rou-
tine. Moreover, given that PANDA supports the deterministic record and
replay of a sample, the tool performs its analysis by replaying the same
trace that was recorded by Packer Detector. For each unpacking operation,
the Scheme Classifier disassembles (using Capstone [capay|) and analyses
the assembly instructions executed just before the memory write to the des-
tination buffer. It then parses the assembly code and, by relying on the
PANDA framework, it reads the values contained in the registers and in
the referred memory addresses. The instructions and the values we obtain
are used for two reasons: first, the Scheme Classifier performs a backward
data-flow analysis to locate the source buffer (Sp) — where the packed data
is located. This corresponds to the identification of all the memory read



3.3. Low Entropy Packing Schemes 35

operations which are supposed to contain the packed code which is being
unpacked. For this purpose the Scheme Classifier relies on the PANDA
callback PANDA_CB_VIRT_MEM_AFTER_READ, which is triggered every time a
memory read operation is performed by the process we are tracking (in our
case the sample under observation). Second, the Scheme Classifier extracts
all the mathematical operations that are applied to the source bytes to gen-
erate those in the destination buffer (Dj). To achieve this second step, the
tool makes use of the PANDA_CB_INSN_EXEC exported by PANDA, which
allows us to analyse all the instructions actually executed by the sample.
Since we already know the program counter values corresponding to inter-
esting memory writes (as Packer Detector provides such values in the [W X L]
list as mentioned before), we just need to track these specific values and the
previous mathematical instructions without taking care of the other instruc-
tions executed. It then uses these two pieces of information to classify the
possible packing scheme adopted by a sample, by following this sequence of
rules:

1. The Scheme Classifier first applies some rules to identify the presence
of known encoding schemes (base64, base32, ...) in the source buffer
Sp. If it recognizes a standard encoding, the Scheme Classifier marks
the sample as encoding.

2. If the frequency of the bytes in the source and destination buffers is
the same, but bytes appear in a different order, it classifies the scheme
as a transposition.

3. If the byte distribution in the Dy is shuffled with respect to the Sj
and the entropy is the same, the Scheme Classifier reports it as mono-
alphabetic substitution.

4. It then looks for arithmetic/logic operations (XOR, ADD, ...) that
modify the Sy and write to the Dy. If it finds an interesting crypto-
graphic operation, it tries to extract the potential encryption key by
analysing the disassembly and reading the value stored in the registers
and memory. For example, if before a memory write, the target value
was previously XORed with a 2-bytes fixed value, this means that the
sample is using a XOR encryption with a 2-bytes key. In this case, the
unpacking scheme is classified as poly-alphabetic (the mono-alphabetic
case is captured in the previous step).

5. If no interesting operations are detected, the Scheme Classifier looks
at the entropy of the input buffer. If it is the same that would be



36 36

obtained by applying a known encoding to the output buffer, but the
set of symbols is different, it marks it as a potential custom encoding.

6. When S, and Djp match except for a subset of bytes that is present
with high frequency in S, and with low frequency in Dy, the Scheme
Classifier infers that byte padding is being used.

7. When the Scheme Classifier cannot apply any of the previous tech-
niques, it marks the scheme as unknown, and leave it for a further
manual investigation.

3.3.4 Results

In Table 3.3 we report the result of the Scheme Classifier; namely, the distri-
bution of low-entropy schemes that we observed in our fine-grained analysis
performed over all the 14, 583 samples found by Packer Detector. When pos-
sible, we also specify the specific type of transformation that is employed.
It is also worth noting that the heuristics applied by the Scheme Classifier
are extremely time-consuming: in average, they require around 90 minutes
per sample.

Table 3.3: Scheme distribution

Scheme Type | % |
Padding - 5.0
. standard | 3.9
Encoding custom 0.5
XOR 29.8
Mono-alphabetic Substitution ADD 5.2
ROL/ROR | 0.5
Transposition - 0.3
_ . XOR 46.9
Poly-alphabetic Substitution ADD 28
Unknown - 2.1

XOR-based encryption is by far the most prevalent technique in our
dataset, accounting for more than 76.7% of the analyzed samples. Tt is
present both in its simplest form (xor with a single constant byte) in 29.8%
of the cases, as well as with multi-byte keys of various length. A basic
(base64) encoding was used in 3.9% of the samples, while padding accounted
for slightly more than 8%. In 97.9% (14, 276/14, 583) of the cases the Scheme
Classifier detected a tangible unpacking scheme, so we are reasonably sure



3.4. Human Role 37

that the vast majority of the samples discovered by the PD are actually
packed. The remaining 2.1% (307/14, 583) contains either samples adopting
unforeseen schemes that we could detect with our tool, or possibly samples
using other forms of dynamically-generated code that were not removed by
our heuristics.

3.4 Human Role

Despite the fact that our approach achieves a proper scalability to cope with
the high number of malicious files in our dataset, the human still plays a
fundamental role in the overall view of the analysis pipeline. Indeed, the
pipeline still represents a human-in-the-loop approach, where the human
provides with some input to redirect the analysis towards specific code loca-
tions. This source of input is linked to the code understanding skills of the
analyst and it is due to the fact that state-of-the-art frameworks cannot re-
ally comprehend the different portions of the code. For instance, in our case,
before writing our tools based on PANDA [DGHH" 15|, we needed to man-
ually analyse some samples to understand how the unpacking phase works
and how the schemes operate to generate a low entropy cipher text. This
can require a non negligible amount of time because of the many difficulties
that arise from the study of malicious code. In many cases in facts, we had
to face custom packers whose internal functioning was completely unknown,
and that required a careful job of decoding of all procedures involved in the
actual unpacking part.

Only after manually analysing a representative portion of the samples
we could automate the whole BA approach. This requires a second human
activity as the analyst has to indicate a set of “rules” that capture the inter-
esting behavior and encode such behaviors according to the expressiveness
of the language adopted. In our case, the “rules” are written in form of
C++ plugin for the binary analysis framework PANDA [DGHH"15]. Other
tools and approaches can generalize this concept or expose different APIs
and different langauges. However, writing down the automation step is the
outcome of a code comprehension phase that tries to point the adopted tool
to investigate a certain portion of the code.

3.5 Signature and Rule-based Packer Detection

So far, we have discussed the nature and measured the prevalence of differ-
ent low-entropy packing schemes adopted by real malware in the wild. Our
experiments show that this is a ubiquitous phenomenon and that entropy



38 38

alone cannot be used as a reliable indicator to identify the presence of pack-
ing. However, beyond simple entropy, security researchers also proposed
other tools and techniques to identify packed samples. In this second part
of the thesis, we measure to which extent these alternative approaches allow
us to distinguish packed from non-packed samples in presence of low-entropy
schemes.

Signature-based solutions identify known packers by relying on a (typ-
ically manually curated) set of patterns that are associated with known
off-the-shelf packers. Existing engines for pattern detection vary in com-
plexity, from the ones that work on raw bytes to those that recognize and
reason about the file structure. This difference consequently influences the
expressive power of the employed signatures.

For our experiments, we have chosen the most popular and actively
maintained tools available today that rely on open signatures: Detect It
Easy [detay|, Manalyze [manay|, and PEiD [peiay].

Detect It Easy (DIE) adopts an open architecture of signatures, based
on a scripting language similar to JavaScript. This language provides great
flexibility and expressive power that allows DIE to declare complex and
fine-grained signatures.

PEiD is another widely used tool for statically analyze PE files, looking
for most common packers, cryptors, and compilers. PEiD signatures only
contain low-level byte patterns, which can be optionally matched either at
the PE file’s entry point or anywhere in the file.

Manalyze is a static analyzer for PE files, composed of several plugins.
Its packer detection plugin adopts signatures based on the name of the PE
sections (for example the UPX packer compresses all existing sections and
renames them as UPX0, UPX1, etc.) as well as several rule-based heuris-
tics designed to capture anomalies in the PFE structure typically associated
with the presence of packing, including unusual section names, sections both
writable and executable, low number of imported functions, resources bigger
than the file itself, and sections with entropy greater than 7.0 — that is the
same threshold we used for constructing our dataset.

DIE and PEiD also have a dedicated component for the entropy. Even if
they have different thresholds (DIE 7.0 by default, PEiD is not open source
so we cannot report the precise number), all of them classify an executable
as packed when its entropy is greater than a certain value. Also, the python
module pefile [pefay|, often used to parse and edit PE headers, contains a
function that estimates if the input executable is packed, and it is solely
based on the entropy. This fact highlights how this metric is still relevant



3.5. Signature and Rule-based Packer Detection 39

nowadays and how popular tools still support the correlation between high
entropy and packing.

Signature scan results

Probably because of its finely tuned signatures, DIE detects no well-known
packer in our entire dataset. This is not a bad result, as we expect the vast
majority of samples in our dataset to rely on custom packing routines. In
fact, popular off-the-shelf packers are widely known and easily recognizable,
thus making it more unlikely for them to ‘fly under the radar’, which is the
main advantage of adopting a custom low-entropy scheme.

In contrast, both PEiD and Manalyze generated a large number of alerts,
as summarized in Table 3.4. The result of both tools are comparable, but
also quite surprising, as they consistently detected the presence of pack-
ing more often in not packed samples than in the packed group. For in-
stance, signature-based mechanisms recognized 1.7%-t0-2.6% of samples in
the packed group but misclassified 9.6%-t0-13.1% of the entries in the not
packed dataset. For Manalyze this is due to the presence of sections names
that correspond to those used by some off-the-shelf packers. We cannot say
for sure why the malware authors used those names. They could be fake
clues used on purpose to deceive automated tools into believing that a sam-
ple is packed with a known packer and, consequently, to trigger the use of
unpacking routines that would invariably fail on the program.

Table 3.5 shows the top five common packers detected by these signature-
based systems. Given that our dataset only contains samples with low en-
tropy, the presence of compressor packers (UPX, UPolyX®, and ASPack)
and a crypto packer (Petite) immediately suggests that these are probably
all false positives. In any case, we run existing unpacking tools for UPX,
UPolyX, and ASPack and confirmed that all of them failed and found no
sign of packing. We also manually inspected samples reported as PolyEnE
and Petite (as no tools are available for these packers) and again confirmed
that there were no traces of these packers. A closer look at the matching
PEiD signatures revealed that they were often too general, or designed to
match anti-disassembly tricks and strings that could also be used in other
contexts. The only case we were able to confirm consisted of three samples
recognized as packed (also confirmed by our Packer Detector) with Beria.
Samples packed with Beria contains two types of byte, which we call “orig-
inal” and “metadata”. During the unpacking routine, the metadata bytes

5UPolyX is basically a scrambler (thus, it does not affect entropy) that needs a UPX
packed input file to produce a number of different output files.



40 40

are evaluated through an algorithm that computes the correct offset where
the original bytes need to be written inside the destination buffer. This ap-
proach does not increase the entropy as the original bytes appear unchanged
(just not in the correct order) and the metadata bytes follow a strict and
repetitive pattern.

Table 3.4 also reports the alert generated by the Manalyze heuristic com-
ponent, which flagged 57% of the packed samples and 23% of non-packed
samples as likely packed. By investigating the internal logs, these misclas-
sifications are mainly due to the presence of unusual section names or of
executable permission on writable sections.

Table 3.4: Signature-based detection results. “sig.” stands for signature and
“heur.” stands for “heuristics”

l Dataset l Manalyze sig. l Manalyze heur. l PEiD l sig A PEiD ‘
Packed 242 (1.7%) 8,358 (57.3%) 386 (2.6%) 214 (1.5%)
Not Packed 2,518 (9.6%) 6,023 (22.9%) 3,438 (13.1%) | 2,487 (9.4%)
Hidden H-E 0 (0%) 14 (0.3%) 2 (0.1%) 0 (0%)

Table 3.5: Well-Known Packers Detections

Packed Not Packed
Name \ % | Name \ %
UPX 1.1 | UPX 10.0

ASPack | 0.5 | ASPack 1.2
UPolyX | 0.5 | UPolyX 1.2
Petite 0.1 | PolyEnE | 0.7
PolyEnE | 0.1 | Petite 0.4

In conclusion, existing signature-based tools are well suited to detect
the presence of common off-the-shelf packers, but unfortunately, generate a
large number of false alerts on non-packed samples. Even worse, these false
positives are more frequent on non-packed malware than on those packed by
using low-entropy schemes, which suggest that these samples are difficult to
classify statically.

3.6 ML-based packing detection

If the use of signatures or hard-coded heuristics failed to detect the packed
samples in our dataset, this does not rule out the possibility to find other



3.6. ML-based packing detection 41

Table 3.6: Results of ML experiments

’ Alg. ‘ Train ‘ ET"I’notPack(W) ‘ Er"'pack(W) ‘ E"'TnotPack(W) ‘ ETTpaCk(W) ‘

75% 4.43% 25.01% 4.12% 24.57%
SVM 50% 4.31% 28.41% 3.97% 26.20%
25% 4.44% 32.01% 4.11% 29.85%
5% 6.34% 12.70% 5.86% 12.15%
MLP 50% 6.87% 16.14% 6.24% 14.73%
25% 6.89% 11.91% 6.33% 12.93%
75% 0.20% 32.77% 0.23% 31.54%
RF 50% 0.18% 29.46% 0.20% 28.46%
25% 0.21% 28.84% 0.20% 26.83%

discriminatory features that can help identify even the most elusive form of
packing.

Therefore, in the following section we explore alternative static analysis
approaches proposed by other researchers. We first survey the state of the
art and gather all the features that have been proposed in the past. In
order to evaluate the performance of these features, we implement a machine
learning classifier based on the union of all these features. With this, we do
not intend to propose a new classification system, nor to compare existing
approaches with respect to each other. Instead, like in previous sections,
our goal is simply to evaluate whether these features are able to correctly
classify our low-entropy set of samples.

3.6.1 Feature Extraction

Lyda and Hamrock [LHO07| were the first to take into consideration entropy
(computed initially over the entire file) as a metric to classify packed mal-
ware. The basic idea was then refined to calculate the entropy for each
section of the sample [HLO09] or over small byte windows [UPSST12).
Researchers also investigated the use of machine learning to train a
classifier over a large number of static features. To start with, many au-
thors [CkKOcR08, PLL08b, STF09, TZ09, DN12, STMF09| proposed fea-
tures that captured specific anomalies that packers introduce in the PE file
format. Even if such features could identify off-the-shelf packers with a high
level of accuracy, samples making use of custom packers could successfully
evade all the checks based on the file structure alone. As a consequence of
this, malware researchers extended the sets of features to include some that
would allow capturing the presence of custom packing routines better. For
instance, the approaches proposed in [PLL08a], [ASPE13], [SUPST11] and
[UPSGF*14] adopt a larger collection of features that include structural PE



42 42

attributes, heuristic values, entropy-based metrics, byte n-grams, and disas-
sembly opcodes. Other heuristics includes the raw data per virtual size ratio
(computed over all the sections), the ratio of the sections with virtual size
higher than raw data or the fact that the entry point is outside any section.

In 2010, Jacob et al. [JOCN'12] extended the idea of n-grams analysis
by proposing a methodology for detecting the similarity between packed
samples, which takes into consideration the n-grams fetched from the code
sections and tunes them according to the noise introduced by the different
packers. In 2019 Lim et al. [LRK'19] proposed to analyze executable files
as a stream of bytes, and discuss several statistical properties to determine
the randomness level of each stream. Finally, we considered some dynamic
unpackers (|[CMF*18, SYS*08|) that rely on static features to understand if
the unpacking procedure is correctly terminated. Unfortunately, while some
of these works included custom packers in their experiments, none of the
aforementioned proposals considered the presence of samples packed with
low-entropy schemes.

We are only aware of two exceptions to this rule. In 2012, Ugarte et
al.JUPSS'12| performed several experiments which included some samples
of the Zeus botnet, one of the first families that adopted a low entropy
packing scheme. However, the approach proposed by the authors is tailored
to the single specific case documented in their paper and would fail to address
other common low-entropy techniques. Therefore, we did not include this
technique in our study.

Raphel et al. [RV15], instead, focused their study on the use of XOR-
based encoders. In this work, XOR encryption is recognized as a form of
obfuscation mainly used to encrypt small parts of the code like shellcodes.
The idea was to refine the use of entropy to recognize samples that adopted a
XOR-based scheme. Mainly, their approach relies on 5 steps: (i) extraction
of fragments from files; (ii) computation of entropy for each fragment; (iii)
concatenation of fragments; (iv) computation of entropy for each concate-
nated fragment; and (v) construction of a similarity distance matrix based
on the previously computed values for each file pair in the dataset. Like in
the previous case, this solution targets a very specific problem and is not
directly applicable to the type of packers we are studying because the au-
thors designed it with the purpose of detecting small portions of encrypted
code (essentially schellcodes). Anyway, we considered this approach in our
evaluation.

To summarize, we can group the proposed features in six different fami-
lies:

e PE Structure: values extracted from the PE headers (and thus often



3.6. ML-based packing detection 43

Table 3.7: GreyEnergy dynamically allocated memory regions

‘ Name ‘ Size [Byte] ‘ Permissions

Mdst 0x20200 RW
Moffsets | 0x808 RW
Mtmpl | 0x200 RW
Mtmp2 | 0x200 RW
Mexe 0x24000 RWX

referred simply as PE).

e Heuristics: features produced as a result of common knowledge about
characteristics of packed PE files.

e Opcodes: sequences of assembly instructions extracted from the exe-
cutable sections.

e N-grams: sequences of N bytes extracted from the entire file or some
of its sections.

e Statistical features: evaluation of statistical properties about the ran-
domness of a sequence.

e Entropy features: features based on the computation of entropy with
respect to some areas of the file (sections, overall file, sliding windows).

Table 3.8 summarizes all the presented static analysis approaches and
lists the categories of features as well as how the authors constructed the
dataset they used in their experiments.

3.6.2 Evaluation of Static Features on Low-entropy Packers

In this section, we evaluate the reliability of the previously discussed static
analysis techniques in detecting packed samples.

To assess this, we use our dataset of 40,909 samples (i.e., all running
programs minus the samples with hidden high-entropy data, because those
can be detected with proper entropy analysis). For the same reason we
also decided not to include in the dataset any high-entropy packed samples,
i.e., those using traditional packing schemes such as UPX, ASPack, and
Armadillo. In summary, our dataset contained 14, 583 samples packed with
low-entropy schemes and 26, 326 not packed samples. From now on we will
refer to this subset of samples as the ML dataset.



44 44

For each malware in the ML dataset, we extracted all the features
adopted by the 15 state-of-the-art approaches discussed in the previous sec-
tion, and summarized in Table 3.8. We refer each approach through an index
i, where 0 <= i <= 14. The i*" approach applies several ML algorithms
using an input vector of n features V(i) = [fo,, ..., fn,] Where fp,, represents
the m!" feature of the i — th approach, with f,,. € R. To simplify the ex-
perimental setup, we joined the feature vectors V' (i), for i = 0,..,14, in a
single vector W = [V(0)|...|V(14)]. If two or more approaches rely on the
same feature, we considered it only once. We point out that the vector W
includes the entropy features as well. To verify if entropy still plays a role as
discerning metric, we define the vector W as the feature vector containing
all the features of W except for all the entropy features.

We split the ML dataset into train set (T'rS) and test set (T'eS) and
we run the classifiers on different subsets of TrS and TeS. TeS is com-
posed by a subset T'eSpqcreq 0f packed samples, and a complementary subset
TeSpotPacked 0f not packed samples, s.t. TeSpacked U T'€SnotPacked = T'€S.

We indicate F'P and F'N the sets of false positives and false negatives
samples, respectively. The set F'P contains the not packed samples which
are classified as packed, while F'IN contains the packed samples which have
been classified as not packed. In particular, we focus on the number of errors
the classifiers make respectively on packed and not packed samples:

|FP|
ErrnotPack = 1o ———— N
TTnotPack |TeSnotPacked| Y
|FN|
i __|IFN| 3.2
TT'pack |TeSpacked| e

We show our results in Table 3.6. For each classifier we report the ratio
between training and testing sets, and the Erryotpack and Errpqq, obtained
by using the two feature vectors W and 1474 (i.e., with and without entropy
features). Our experiments, summarized in Table 3.6, indicate that none of
the classifiers provide a high level of accuracy — with the best model im-
plementing MLP and achieving the 11.91% as false negatives rate but also
the 6.89% as false negatives rate. It is worth noting that in most of the
cases, the classifiers show a high Err,qq ratio, which means that a signifi-
cant number of packed binaries are classified as not packed. This suggests
low entropy schemes can effectively be used by malware authors to bypass
classifiers based on static features alone. For instance, we noticed that sev-
eral files have PE headers appearing perfectly normal (sections named with
standard names, entry point correctly located inside .text, a high number



3.7. Case studies 45

of entries in the IAT, etc.). While this somehow decreases the level of obfus-
cation provided by traditional packing schemes, it still succeed in protecting
the application code against automated static analysis routines.

With this we do not want to say that static features used in previous
studies are useless. In fact, they do much better than entropy alone. How-
ever, in presence of low-entropy packed samples all classifiers trained on
these features perform quite poorly, and certainly far worse than what was
reported in previous experiments. For instance the authors of [HLO09| claim
to reach the 0.0% as false positive rate and 2.5% as false negative rate by
only relying over entropy metrics while in works that employ ML features,
the authors declare to obtain a false positive rate of 0.8% ([SUPST11]).

3.7 Case studies

In this section, we discuss in more details three malware samples that im-
plement low entropy packing techniques. We also investigate why they are
(or are not) detected by the features introduced in the previous section. We
hope that this can help to understand better the internals of real-world low-
entropy packing schemes and the reason why malware writers adopt them.

3.7.1 Case I: Simple XOR Encryption

For the first case study, we look at a sample® that belongs to the berbew
family. By looking at the code located at the application’s entry point,
it is easy to identify a simple XOR encryption algorithm that applies a
fixed 4-bytes key to decrypt in place the .text section. The hardcoded
decryption key is 0x6d02676d. Since the first and last digits are the same,
the encryption only raises the overall entropy of the packed code to 6.9; it is
reasonable to believe that this repetition was a conscious decision introduced
to lower the entropy. The malware author also padded the code of its .aciof
section with a large number of 0x90 bytes (corresponding to the nop x86
instruction) — likely for the same purpose.

Although this sample can evade any entropy-based check, it is easily
detectable by using other static features. In fact, this PE file contains several
anomalous values — including the RWX permissions of the .text section and
the non-standard name of the section .aciof.

While this scheme is relatively simple and not particularly interesting
from a research point of view, we decided to include it in our case studies
because it is representative of the vast majority of low-entropy techniques

®md5= 7186708dd7a1b0dbf9294909679ec30b



46 46

we observed in our dataset and because our Scheme Classifier could auto-
matically categorize it. Next, we are going to present two more complex
cases that required manual investigation to be classified.

3.7.2 Case II: Transposition Scheme

Our second example is a sample’ that belongs to the arsenal of a cyber-
espionage group dubbed GreyEnergy [greay|. Since 2015, this malware has
been used as part of attacks against energy companies and other high-value
targets in Ukraine and Poland. Most specifically, the binary is a loader,
i.e., the code in charge of stealthily loading the real malware into the target
system.

The sample hides the packed data in the .text section, within the
range [0x1000, 0x211ff], for a total of 0x21200 bytes. This packed data,
PackedSrc from now on, has an entropy of 6.59, and it contains, in a scat-
tered disposition, all the data that is necessary to create a valid PE file.
A simplified algorithm of the packing scheme is presented in Algorithm 1
(the original technique also involved operations between integers of differ-
ent sizes that we omit for brevity). The unpacker uses five memory regions
dynamically allocated (using the VirtualAlloc API) as reported in Table
3.7.

The first step is a call to init (Moffsets, n) to initialize the Moffsets
memory region (line 1 and 6), that represents an array of integers. This array
is initialized with n integers s.t. Mof fsets = {Vi = 0...n|0 < Mof fsets[i] <
n} and every number in range [0,n] is contained in the Moffsets. Those
properties allow the unpacker to later use the Moffsets region as a lookup
table that implements a bijective function f : [0,n] — [0, n].

The algorithm then splits the PackedSrc and Mdst in 514 chunks of
256 bytes each and it copies every chunk from PackedSrc to Mdst (line 4),
but not consecutively: it uses the Moffsets table (initialized in line 1) for
looking up the proper offset in the destination buffer (line 3).

After that, it splits again Mdst in chunks (this time 257 chunks of 512
bytes) and each chunk is copied into Mtmp1 (line 8); then, one byte at a time,
it is copied into Mtmp2 by using the offsets specified in the re-initialized (in
line 6) Moffsets table (line 10). At the end, Mtmp2 is directly copied into
Mdst (lines 12-14) and in turn into the executable region Mexe (line 16).

When the unpacking procedure is completed, the sample parses the
unpacked PE in the Mexe memory, and loads (using the library function
LoadLibraryA) every dll requested in the Import Table. Then it modi-

"md5= 7a7103abfclcf7c4bbeef1a6935554b7



3.7. Case studies 47

fies the Process Environment Block structure’s ImageBaseAddress field &,
so that it points at the very beginning of the unpacked PE file. Finally, it
jumps to the entry point of the unpacked PE?.

The remarkable achievement of this scheme is that the byte distribu-
tion, and consequently the entropy, of the packed and unpacked regions
are identical. Moreover, from the static analysis point of view, this sample
is undetectable using both signatures and ML techniques, among the ones
described in the previous sections.

Algorithm 1: GreyEnergy unpacking scheme

init (Moffsets, 0x202);

for (i = 0, = 0; i < 05202 i += 1, j += 02100) do
offset = Moffsets [i] * 0x100;
memcpy (Mdst [offset], PackedSrc [j], 0x100);

end

init (Moffsets, 0x200);

for (i = 0; i < 028080; i += 0280) do

memcpy (Mtmpl, Mdst [i], 0x200);

for (j = 0; j < 02200; j += 1) do

10 | Mtmp2 [Moffsets [j]] = Mtmpl [j];

11 end

12 for (k = 0; k < 02200; k += 1) do

13 | Mdst [i+k] = Mtmp2 [k];

14 end

SV I M

© o N o o

15 end

16 memcpy (Mexe, Mdst, 0x20200);

3.7.3 Case III: Custom Encoding

Our final sample!'® uses two layers of packing. The second (deepest) layer,
relies on a traditional XOR encryption scheme (with an 8-bytes key) and
ROR/ROL loops that produced packed data with high entropy. To mask
this fact, the malware authors added a first layer of packing that reduced
the entropy from 7.63 to 6.57 by adopting a custom encoding scheme.

The first layer relies on the content of two sections: .rsrc and .rdata.
Figure 3.6 shows some bytes extracted from the .rsrc section. It is clear
that the data consists of sequences of three bytes (highlighted by the green

8The ImageBaseAddress field contains the address where the legitimate process exe-
cutable is loaded.

‘md5= ab8df9b7389ae890c3396a238bdc4606

”md5= c03bc642c5249c55e£b2d07a7272af2e



48 48

Figure 3.6: Pattern stored inside the .rsrc section

41 58|02 8 4E 720344 51 ZBJO1

39 7T||00)ES 64 GGROOYSS 73 ZBJO2

50 TE01|H2 57 490235 51 30403

32 7TA00 4 57 3ITROL1Y4D 58 42400

TA TH02|F1 4F 37QO1Q38 56 4300

63 49102|E1 6F 5AQO1)54 4F 30§01
0300BAS0 6F 63 61 74 69 6F 6E 00 00 [EZ]42 42 42 42 42 42
0300BAAQ 42 42 42 40 42 42 42 42 42 22)|42 42 42 42 42 42
0300BABO 42 42 42 42 42 42 42 42 42 42|42 42 42 42 42 42
0300BACO 42 42 42 42[3E]42 42 42 3F 34|35 36 37 38 39 3A
0300BADO 3B 3C 3D 42 4Z2]42 41 42 42 42|00 01 02 03 04 05
0300BAE0 06 07 08 09 ODAJOB OC 0D OE OF|10 11 12 13 14 15
0300BAFO 16 17 18 19 42|42 42 42 42 42|1A 1B 1C 1D 1E 1F
0300BBO0 20 21 22 23 24|25 26 27 28 29]|2A 2B 2C 2D 2E 2F
03008B10 30 31 32 [33]42|42 42 42 42 42|42 42 42 42 42 22

]

RDATA_STR_ADDR

RDATA_STR_ADDR-+0XZB
RDATA_STR_ADDR+0XTA

Figure 3.7: The string 0x0300ba99 in .rdata section

rectangles) within the range |0x2b, 0x7a|, separated by a single byte [0x00,
0x03| (highlighted by the red rectangle in the image).

The .rdata section contains a buffer filled with some characters with-
out a particular meaning (mainly the “B” character, 0x42 in hexadecimal).
However, from the offset 0x2b to 0x7a (as shown in Figure 3.7), the buffer
contains bytes ranging from 0x00 to 0x3f.

Algorithm 2 summarizes the unpacking procedure in pseudo-code. The
code loops through all values in the .rsrc Section (line 3) and uses each byte
as offset to access the string (lines 4-5). If the value of the read byte is 0x42,
the algorithm moves to the next byte (line 6), while others are combined
four at a time by adding each value to the previous one shifted by six bits
(lines 7-8). The result is finally written to another memory region (line 12),
before resetting the counter and restarting the loop (lines 13-14).

The PE structure of this file does not contain any anomaly, and the
above-described custom scheme (that uses the same symbols of the Base64
scheme) is able to hide the packed code from n-grams and opcodes analysis;
therefore this sample evades all the previously described ML techniques.



3.8. Conclusions 49

Algorithm 2: Pseudocode of the first layer
i =0;

res = 0;

for addr < RSRC START to RSRC END do
offset = readByte(addr);

byte = readByte(RDATA STR + offset);
if byte /= 0z42 then

res = res << 6;

res = res + byte;

i=i+1;

end

if i == / then

writeToMemory(res);

res = 0;

i=0;

end

addr = addr + 1

end

© o N O o~ W N =

e e e =
» W N = O

-
o

=
[~

[
~

3.8 Conclusions

In this work, we conducted a set of experiments on real-world malware to
demonstrate that existing static approaches fail to take into consideration
the threat represented by low-entropy packed malware and that this phe-
nomenon is relevant enough that cannot be ignored when designing malware
experiments. Although previous works [UPSST12, RV15]| have discussed the
existence of low-entropy packing schemes as case studies, our work is the
first to study this phenomenon in depth, and to measure the prevalence of
this technique over a large dataset.

While it might be true that high-entropy file are often packed, our exper-
iments show that the opposite is not correct — i.e., the fact that the entropy
is low is not sufficient to conclude that the file is most likely not packed.
This is important as many studies and tools still use the entropy alone to
classify a sample as packed or not.

The results of our large scale dynamic analysis performed on 46, 295 sam-
ples shows that 31.5% of low-entropy files were packed, proving that this type
of malware represents an actual and widespread reality. As final proof of our
results, we have also analyzed a reduced set of 476 APT-linked (Advanced
Persistent Threat) malware that represent state of the art for complex at-
tacks. We found that in this context the phenomenon of low-entropy packed
malware occurs with a frequency of the 15%. In Section 3.3 we have catego-



50 50

rized how such schemes keep their entropy low and the frequency in which
this technique is adopted in the wild.

We then investigated why actual static analysis techniques are unable to
detect the presence of low-entropy packing. We have studied two kinds of ap-
proaches: those based on signature/heuristic in Section 3.5, and those based
on machine learning in Section 3.6. On the one hand, signatures are just well
suited to detect the presence of common off-the-shelf packers, while heuris-
tics generate a large number of false alerts on non-packed samples. On the
other hand, we evaluated the performance of static feature-based classifiers,
when entropy is no longer a reliable way to detect packers. Unfortunately,
our experiments show that this is not the case as even the best classifier was
able to detect only 70% of the packed samples in our dataset. Our results
show that the accuracy of these classifiers degrades drastically in the pres-
ence of low entropy packers, which means that the results reported in the
past relied significantly on the entropy to discern between packed and not
packed files, and that the datasets employed may have not correctly repre-
sented the low-entropy packers that we found in the wild. Moreover, the
machine learning experiments tell us that the static features proposed so far
are inadequate and needs to be extended to allow for a accurate classifica-
tion of packed samples. This does not mean that these approaches, including
simple entropy-based measurements, must be abandoned. Instead, our work
emphasizes the need for new solutions to this open problem, and that the
existence of low-entropy packing must be considered in future experiments
conducted by researchers and practitioners.

Moreover, we share!'! the hashes of the samples, labeled with the cor-
responding category by Packer Detector (described in Section 3.2.1) in the
hope that other researchers will use it as a basis for further studies.

11http ://www.s3.eurecom.fr/datasets/low_entropy_malware/LEM_dataset.7z


http://www.s3.eurecom.fr/datasets/low_entropy_malware/LEM_dataset.7z

3.8. Conclusions

51

Table 3.8: Overview of Previous Approaches

l Paper Type ‘ Features ‘ Dataset construction
Not Packed: benign executables
[LHO7] Ent. Ent. Packed: Packers manually applied to benign files
Not Packed: benign executables and PE files from AV
: PE manually analysed
[CKKOCROS] | ML Heuristics Packed: benign executables and PE files from AV
vendors manually analysed
PE Not Packed: benign executables
[PLLO8D] ML Heuristics Packed: malware from MALFEASE project and
Ent. application of a set of packers benign executables
[PLLOSH] Not Packed: malware from MALFEASE project
[PLLO08a] ML N filtered with unpackers ([RHD06], [KPY07])
grams Packed: malware from MALFEASE and benign files
Not packed: benign executables and malware
SUPS*11 ML fIE isti from VxHeavens
[ | Ez:rls 108 Packed: Variants of the 'Zeus’ family and application
’ of a set of packers to the benign executables
Not packed: mal/good-ware filtered by PEid,
entropy analysis, TAT entries, imported dlls
4 [SUPST11] | and ratio of standard sections
[UPSGF™14] | ML N-grams Packed: Application of a set of packers
to the benign files, malware
reported by PEid as not packed, *Zeus’ family
PE Not packed: benign executables
[PN12] ML Ent. Packed: Application of UPX to benign executables
Not packed: benign executables and malicious samples
taken from VxHeavens and checked with PEid
[UPSS*12] Ent. Ent. Packed: application of some packers to benign files
,malware from Zeus family
Not packed: Benign executables and malware from
[STMF09] ML PE VxHeavens/Malfease filtered by PEid
Packed: malware detected packed by PEid
. Ent. Not packed: benign executables
[RV15] Ent. Statistical Packed: packers/encoders on benign files
Ent Not packed: benign executables and evaluation of
[LRK ™19 ML Stat.istical similarity for adding other binaries
Packed: Samples tested with [UPBSB15]
Not packed: benign executables
[HLO9] Ent. Ent. Packed: malicious samples from honeypot
Not packed: Windows files and files filtered by PEid
[T209] ML PE Packed: malicious samples filtered by PEid
PE Not packed: benign and malicious file from honeypots
[ASPELS] ML Heuristics Packed: Malicious samples tested with [Ste05]
Not packed: Benign executables fetched from Windows
[JCNT12] ML Opcodes Installation and unpacked malware

Packed: Executables packed with off-the-shelf packers




52

52




Chapter 4

The Convergence of Source
Code and Binary Vulnerability
Discovery — A Case Study

While in the first chapter we demonstrated an example of how the human
can help the binary analysis pipeline by redirecting it at the initial step,
now we want to show a use case of human-in-the-loop approach where the
analyst is in the middle between two algorithmic machines, and serves as a
bridge to simplify the communication between the two parts. We do this by
concentrating on a different binary analysis task, i.e., vulnerability discovery,
and by presenting a novel methodology to detect vulnerable flaws in binary
executables.

As our world continues to accelerate into a software-powered future, vul-
nerabilities in the software that supports our lives are on the rise. This poses
a set of unique challenges for software development and testing. Software
tends to be checked for bugs by two categories of testers: by those developing
it and thus having access to the source code(source-level program analysis)
and by external security researchers who, often, do not have access to the
source code (binary-level program analysis).

Source-level vulnerability analysis is fundamentally different from
binary-level vulnerability analysis, because critical information about the
software, such as type, structure, and size information, is lost when the
software is compiled. This makes performing certain analysis paradigms,
such as static vulnerability detection, on binary code a daunting challenge:
before vulnerabilities can be detected in binary code, this lost information

93



54 54

must be somehow recovered. This explains why little work exists in this
direction [cweay| and why commercial tools that can analyze binary code
(such as Veracode) require the application to be compiled with debugging
symbols [veray| (i.e., inherently requiring the source code). Lack of source
code also hampers other analysis paradigms, such as fuzzing and symbolic
execution, because even these techniques benefit from the ability to compile,
rather than retrofit, instrumentation into the analysis target [PF20]. As a
result, static analysis techniques tend to require source code to effectively
detect vulnerabilities, and dynamic techniques also function better when
source code is available.

Interestingly, there is a related area of research that concerns itself with
recovering information lost in the compilation process: decompilation. In
recent years, techniques have been proposed to improve the recovery of data
types [LAB11, NLC16], code structure [YEGPS15, YDGPS16, GDFFA20],
and even exact syntactic identity [SRNT18|. These techniques have been
integrated into increasingly powerful, accurate, and publicly available de-
compiler prototypes [KRS18, KOGY19, FCL*19].

Our insight is that the place, conceptually, where decompilation leaves
off is close to the place where vulnerability detection picks up. That is, we
realized that the type information, structure information, and pseudocode
recovered by decompilers could be analyzed by vulnerability detection tools
in lieu of the original source code, to at least some degree of efficacy. Addi-
tionally, as emerging techniques continue to improve decompilation results,
and the gap between the original code and pseudocode from the decompi-
lation of the program binary narrows, decompilers can become a more and
more effective “crutch” to source-based vulnerability detection techniques.

Research questions

In this thesis, we undertake a study to determine the ability of current Static
Application Security Testing (SAST) tools to detect vulnerabilities when ex-
ecuted on decompilers’ generated code. While it might seem obvious that
decompiler code is still unsuitable for static analysis, our case study wants
to quantify experimentally how “far” we are from the point in which static
analysis tools could be an effective solution on decompiled code. To do this,
we measure precision and recall of 8 state-of-the-art SAST tools as they
operate on the original code of 9 real-world applications versus the pseu-
docode of those applications resulting from the decompilation by 3 different
state-of-the-art decompilers.

In summary, this chapter tries to investigate the following research ques-
tions:



55

e Can we “connect the dots” between decompilation and source-level
static analysis?

e What is the effort required to the human analyst who wants to perform
this vulnerability discovery task?

e How does the detection efficacy of the SAST tools change when we
execute them over pseudocode?

e What are the root causes of these efficacy changes?

Our study has resulted in four main findings. First, the output of cur-
rent decompilers is unsuitable for any analysis by most SAST tools without
human analyst intervention and must be fixed before compilation-based an-
alyzers (e.g. such as those based on LLVM passes) can be applied. In other
words, in our pipeline, an analyst corresponds to the middle point between
the decompilers and the SAST tools and her goal is to enrich the output
of the decompilers to properly feed the static analysers. Second, when the
compilation issues are fixed, SAST tools operate at a reduced 71% rate of
recall suggesting that a latent potential could actually exist in this approach.
Unfortunately, the precision of SAST tools on pseudocode suffered, with an
average false positives increase of 232%. Third, compiler optimizations (es-
pecially function inlining) can sometimes help (and, at other times, hamper)
SAST tools. Fourth, by analyzing discrepancies in SAST results between
original and decompiled code, we detailed 7 root causes that impact the
differences between false positive and true positive detection performance.

In turn, a number of immediate steps forward can be inspired by our re-
sults. Our research solidifies an idea that modern decompilers are designed
to generate pseudocode that is easy to understand for humans, while SAST
tools are not designed to ingest it. This suggests a set of new directions
for researchers: small improvements to decompilers can improve the effi-
cacy of SAST tools on binary code, even though they were designed with a
source code requirement in mind. Alternatively, future studies could focus
on SAST tools to make them more noise-resilient when parsing decompiled
code. For example, the fuzzy-parsing approach performed by Joern [YGAR],
already goes in this direction. Furthermore, the use of decompilers as a first
stage in source-level static analysis can have applications beyond the use
of SAST tools on our dataset. For example, embedded device firmware re-
mains difficult to test with either dynamic (due to the rehosting problem)
and static (due to the binary-only form in which the firmware is often dis-
tributed) techniques. Though some limited progress on both fronts has been
made |[KKK™'20, DPY18, PGG™15|, decompiler-aided static analyzers could



56 56

automate vulnerability assessment for these scenarios where no standard
alternatives exist.

4.1 Related Work
4.1.1 SAST

Static Application Security Testing (SAST) aims at removing vulnerabilities
from the source code during the development phase as argued by Chess et
al. [CM].

The first approaches consisted of a simple lexical analysis of source
code to detect the presence of known vulnerable constructs [ratay, VBKM,
PSDV06]| (e.g., dangerous API invocations).

To overcome the limitations of these naive techniques, researchers pro-
posed new approaches that leveraged a more detailed model of the source
code, often obtained by relying on the compilers parsing components such
as the AST generation [YLR12, LLZW17, SEHM13].

Other researchers instead tried to improve the detection accuracy
for specific classes of bugs. This was the case, among the others, for
buffer overflows [WFBA00, GJCT03, HDWY06, XGMO08, KLHC10|, use af-
ter free [YZH14, FMBT19, YSCX17, YSCX18|, and null pointer derefer-
ence [HSP05, HP07, MJZ"15].

That being said, the case study that we present in the current chapter
is closer to the many studies that focus on benchmarking program analysis
tools, such as [EN08, CK11, Kra05, McL12, AM14, ACCT17, FBH18|, where
several aspects are analyzed ranging from the creation of a comprehensive
testcase to a different set of tools adopted in the experiments.

4.1.2 Decompilers

One of the first studies about decompilers was conducted in 1995 by Ci-
fuentes [CG]|, as part of her Ph.D. dissertation where she described how a
decompiler works, the future challenges in the field and presented dec, a
decompiler for Intel 80286.

Over the past two decades, two main approaches have emerged for
the development of decompilers: rule-based decompilation and NMT-based
(Neural Machine Translation) decompilation. Rule-based approaches [ghiay,
hexay, BLSW13, KMZ17| are the most popular today even though the pro-
duction of a rule-based decompiler is particularly time consuming. For in-
stance, according to its authors, the development of RetDec took a total of
7 years for a team of 24 developers |avaay].



4.2. Experiment Design 57

N
Q SAST
Tools

Original Apps
Source Code

} Decompilers

2 &

Compiled
Binary

Figure 4.1: Summary of the Experiment Pipelines

The birth of the NMT-based approaches [KRS18, KOGY19, FCLT19]
coincides with the seminal work of Katz et al. [KRS18|, where the authors
generalize the decompilation problem as a language translation task, namely
from assembly to C thanks to the adoption of Natural Language Processing
(NLP).

Another line of research has focused on improving the quality of the
generated decompiled code by focusing on two main aspects: improving the
readability and improving the control flow layout. The first category in-
cludes work that aimed at better recovering variable types [LAB11, NLC16]
and at suggesting more meaningful variable names [LYS*19]. The second
category traditionally focused on reducing the number of GOTO state-
ments generated by the decompiler [YEGPS15, YDGPS16, GDFFA20| (
DREAM /|DREAM++ decompilers) .

It is important to underline that all these studies focused only on improv-
ing the readability (and therefore the usability of the decompiler output) for
humans. No study to date has analyzed how easy it is for a machine to
process the produced code.

Finally, in 2018 Schulte et al. [SRNT18] proposed a novel approach to
generate a binary-equivalent decompiled code that can be successfully re-
compiled. The paper by Schulte relies on a number of innovative techniques,
such as adoption of existing decompilers to seed the lifting process and use
of a human-written code excerpts for the generation of human-readable code
even though the tool (named BED) is not released.

4.2 Experiment Design

This chapter studies how modern static analysis tools are impacted by
the decompilation process, from the perspective of vulnerability detection.
To that end, we study the interaction of the following entities: SAST
tools (Sec. 4.2.2), Vulnerable applications (Sec. 4.2.1) and Decompilers



58 58

(Sec. 4.2.3).

For each vulnerable application, we proceed as summarized in Figure 4.1 ,
where two main pipelines are executed.

Baseline analysis. In the source code analysis pipeline, we input the
original source code of the application to the different static analyzers and
store their generated reports for later analysis.

Compilation. We compile each application according to the provided
build scripts (e.g., Makefiles), using the same compiler options as suggested
by the developers, to obtain the compiled binary that is in turn fed into
the decompiled code analysis pipeline. A further insight is presented in Sec-
tion 4.3.8, where we show the results of the differential analysis we performed
for a subset of the vulnerable applications to assess the impact of compiler
optimizations.

Decompilation and analysis. In the decompiled code analysis
pipeline, we decompile the binary using our decompilers and run the re-
sulting code through the SAST tools that do not require re-compilation.

As we will describe in more details in Section 4.2.2, the majority of
the SAST tools require to compile the target application (for example, to
perform LLVM passes). Therefore, since the decompilers typically generate
C-like pseudocode which cannot be re-compiled out of the box, we manually
applied the fixes needed to make the decompiler result compilable by both
the gcc and clang compilers. This time-consuming process is interesting
for different reasons. First, it allowed us to complete the experiments with
all the static analysis tools selected in our study. Moreover, it provided us
with an invaluable feedback on the steps an analyst should take if they want
to apply source-code static analysis on binary programs. In other words, it
allowed us to quantify the feasibility and effort required by a human-in-the-
loop solution.

After manually repairing the decompiled results, we process the recom-
pilable code by the compilation-based SAST tools.

Result comparison. Finally, we proceed to manually compare the
three sets of reports obtained in our experiments (the one on the original
source code, and the two on the decompiled and recompilable code) to assess
how the detection and false positive rates were affected by the previous steps.
The results of this comparison are presented in Section 4.3.

Whenever results differ (i.e., if a previously detected vulnerability was
no longer detected or if new false alarms were generated by the tools), we
performed a root-cause analysis to determine the cause. This step, again
performed manually, required us to progressively modify the decompiled
code by making it more and more similar to the original source, until the



4.2. Experiment Design 59

effect we wanted to study disappeared (i.e., the vulnerability was detected
or the false alerts were not raised anymore). We discuss the findings of this
analysis in Section 4.4.

In the rest of this section we discuss the methodology we used to select
vulnerable applications, SAST tools, and decompilers. It is important to
note that the applications and SAST tools had to be selected together. In
fact, to have enough results for our comparison, we required each vulnerabil-
ity to be detected by at least two SAST tools, and viceversa. This constraint
forced us to perform a long pre-selection phase in which we evaluated many
candidates (both for vulnerabilities and static tools).

4.2.1 Vulnerability and Application Selection

Our selection of vulnerable code was driven by five main requirements.

Codebase size. We included a mix of small and large code bases to assess
the impact of code complexity w.r.t. decompilation and vulnerability
detection.

C+—+. We included a C++ codebase to evaluate the fact that decompilers
only produce C code as output.

Real vulnerabilities. We collected real-world CVEs/bugs that are repre-
sentative of the typical classes of bug. This would allow us to be as
general as possible in the evaluation phase, without focusing on artifi-
cially generated vulnerabilities.

Bug complexity. Third, an important factor that affects the precision of
static analysis is whether the bug that needs to be detected is inter-
procedural (i.e., its discovery involves to go through multiple func-
tions) or intra-procedural (i.e., it is self-contained in a single procedure)
We included examples of both categories, with a preference for intra-
procedural. In fact, the purpose of our testbed is not only to benchmark
SAST tools, but to cover bugs with different detection complexity.

Bug discoverability. Finally, we were also limited by the fact that our
vulnerabilities should be identified on the original code by the SAST
tools, to compare with the decompiled code output.

To satisfy our constraints, we collected 10 vulnerabilities from nine applica-
tions (summarized in Table 4.1). The applications ranged from 4 Thousands
to 2.1 Millions LOC (for LOC statistics see Tab. 4.4). Note that for two



60 60

Table 4.1: The vulnerabilities adopted for the evaluation

Vulnerability Application Description

Stack BOF, unchecked
memcpy

CVE-2017-  file (C)
1000249

Stack BOF, unchecked

CVE-2013- Xorg comp- scant

6462 nent (C)
BUG-2012 libssh2 (C)  IOF (leading to heap BOF)

CVE-2017-  ytnef (C)  NPD
6298

CVE-2018- wireshark Heap BOF (off-by-one) (*)
11360 (C/C++)

CVE-2017- OpenCV BOF in C++ virtual method
17760 component
(C++)

CVE-2019- libyang (C)  Stack BOF, unchecked strcpy
19334

CVE-2019- wavpack DBZ
1010315 (C)

BUG-2010  libslirp (C)  UAF

BUG-2018 wireshark DF (*)
(C/C++)

(*) indicates an inter-procedural bug, all the others are intra-procedural




4.2. Experiment Design 61

projects,Xorg and OpenCV, the vulnerability was present in a sub compo-
nent of the application that could be compiled as an independent module.
Our dataset covers the following five classes of vulnerabilities:

Buffer Overflow (BOF) are probably the most widespread class of vul-
nerabilities and this is why we decided to include five variations of it, e.g.,
three incorrect uses of a buffer handling API (respectively scanf, memcpy
and strcpy), an example of heap-based off-by-one buffer overrun (inter-
procedural) and finally a further stack-based BOF, present in a C++ code
base and located in the implementation of an abstract method from a parent
class.

Integer Overflow (IOF) bugs are a common cause of undefined behaviors
in software. Our dataset includes one example of IOF that affects the size of
a dynamic memory allocation, and that therefore can lead to an heap BOF.

Null Pointer Dereference (NPD) bugs exist when a NULL pointer is de-
referenced. We include one example of NPD in our data set: in this example
the pointer is returned by a calloc invocation and it is stored inside the
field of a structure. The bug is due to the fact that the caller fails to check
the pointer validity.

Double Free/Use After Free (DF/UAF). On the one hand, we would
expect that such vulnerabilities are easier from the decompilation point of
view, because the decompiler can reconstruct the use of a free without any
type system/size problems. On the other hand, SAST tools that detect
DF /UAF need to internally keep track of freed pointers and check the sub-
sequent pointer accesses. As a further layer of complexity, one of the two
bugs (the DF), is the second of the two inter-procedural vulnerabilities.

Division By Zero (DBZ) is not a memory corruption bug, but it affected
several real world software in the past and can be used as denial of service
vulnerability.

4.2.2 SAST Tools Selection

Firstly, we wanted to evaluate a range of products relying on a diverse set
of features and techniques. Therefore we identified twelve tools (nine open
source and three commercials) based on their popularity according to the
studies proposed by [Kra05, SMM15, CK11, MM18, FBH18| and including
non-academic sources such as [sasay, bloayb, bloaya].

Over the 12 candidate SAST tools, we selected those ones that were able
to satisfy the selection criteria of detecting at least two of the vulnerabilities



62 62

Table 4.2: SAST tools selected for our study

Commercial / Compilation User-provided

Open Source required queries
CPPCheck Open Source No No
Joern Open Source No Yes
Fortify Commercial Yes No
Infer Open Source Yes No
Clang Open Source Yes No
Ikos Open Source Yes No
Code-qgl Open Source Yes Yes
Checkmarx Commercial No No

in our dataset (cf. Table 4.3 detailed in Section 4.3).! Finally, our collection
of static analyzers, listed in Table 4.2, includes: CPPCheck [cppay]| 2.1,
Joern [joeaya, YGAR] 1.1.95, Fortify [foray| 19.1.2, Infer |infay| 0.17.0
, Scan-build [scaay| 11.0, Ikos [ikoay| 3.0, Code-ql [codaya] 2.2.4, and
Checkmarx [cheay] 9.2.2.

Before selecting these eight tools we conducted a set of preliminary exper-
iments, in which we tested many other SAST tools such as Coverity |covay],
Frama-C [fraay|, CPAChecker |[BK]| and Flawfinder [flaay]. However, we dis-
carded them because after executing on a subset of bugs, they did not show
a sufficient detection rate.

4.2.3 Decompiler Selection

We selected three cutting-edge decompilers for our evaluation: HexRays
7.1 |hexay| (the state of the art commercial decompiler from IDA Pro),
Ghidra 9.2 [ghiay] (the leader open source decompiler), and Retdec
4.0 [KMZ17| (the emerging challenger).

Two main reasons influenced our choice of these three tools. First, other
emerging alternatives are quite far behind in terms of precision and quality of
the generated code. Furthermore, prior work about decompilers [YEGPS15,
YDGPS16, GDFFA20, SRN'18] only focused on these three decompilers

when performing their evaluations.

!Note that the low detection rate of some tools may just be due to their underlying
strategy in minimizing the false positive rate.

2The name of the commercial tools is provided for reviewing purposes and it will be
anonymized before publication



4.3. Experiments 63

Table 4.3: A breakdown of the bug detections for SAST tools (when applied
to original program source code).

‘CPPCheck Joern Checkmarx Clang lkos Infer Code-gql Fortify

CVE-2017-1000249 4 v v
CVE-2013-6462
BUG-2012
CVE-2017-6298
CVE-2018-11360
CVE-2017-17760
CVE-2019-19334
CVE-2019-1010315
BUG-2010
BUG-2018

PR R R R R RSN
AN N N NN T N NN
T ™X X NUX N NN X X%
™ X X X X X NN X X
* O XN X X XN XN

x X NN X X X X N
ERNENE NN
NN N N S NN

Non-decompiling lifters. Some tools, such as MCSema [DR14], can lift
binary code directly to LLVM IR, in lieu of decompilation. At first glance,
these might be a usable route for applying compilation-requiring SAST tools
on binary code. However, these tools perform only a subset of the analysis
which are executed by decompilers, and, in fact, can be considered as the
“first stage” of a decompilation process. As a result, their output will con-
tain insufficient information compared to the result of a decompiler, making
the resulting code unsuitable for SAST analysis. For example, bytecode
produced by lifters does not contain debug information whereas SAST tools
that work on top of an llvm pass typically need compiler-generated symbols.
Though it would be possible to develop more sophisticated SAST tools that
bridge the gap between the output of static lifters and their expected input,
this is exactly what decompilers already do from the other direction.

4.3 Experiments

In this section we discuss our experiments with particular focus on how the
decompilation process affects the detection and false positive rates. We leave
the investigation of the root causes to Section 4.4.

4.3.1 Source code analysis

Table 4.3 reports the detection results of the eight SAST tools when ana-
lyzing the original source code of the vulnerable applications.

It is interesting to notice that, except for Joern, Clang and Code-ql, the
other tools are quite complementary in the bug detection, uncovering 2-4
bugs each and missing only two bugs overall (CVE-2017-17760 and BUG-
2018).



64 64

Table 4.4: LOCs produced by different decompilers

Application‘ Original HexRays  Ghidra  RetDec

file 14,056 18,012 18,296 24,114
Xorg 20,331 32,131 31,132 62,819
libssh2 22,322 26,806 33,186 37,531
ytnef 4,025 3,529 5,736 4,427
wireshark 2,110,822 2,345,564 2,444,145 NA
openCV 507,508 826,104 871,848 NA
libyang 102,750 104,789 98,886 151,049
wavpack 6,084 8,671 11,645 23,084
libslirp 7,806 12,178 14,058 15,915

The high detection rate of Joern and Code-ql is due to the custom query
rules written by us and inspired from the guidelines described by the au-
thors [joeayb, codayb|. Although our scope was not to generate a query
that is sufficiently generic to cover the many possible scenarios for a certain
class of vulnerabilities, we tried to put ourselves in the position of an analyst
who does not know the bug a priori and this explains why the user-defined
rules still generate a number of false positives. 2.

Even though our effort was to produce generic rules, it is unavoidable
to introduce some bias. However, note that this is the only way to include
the two analyzers, that represent the current state-of-the-art w.r.t. SAST.
Making the queries more generic to catch a broader set of vulnerabilities for
a specific class of bugs would also result in a biased result, by increasing the
false positives. The opposite strategy (i.e., extremely dedicated queries that
only capture the bug under testing) would not be representative of rules that
can be used in the real world.

The remaining six analyzers were launched with their own set of rules
and thus they do not introduce any bias in the experiment. In particular,
we decided not to create custom rules for other tools (such as Checkmarx
or Fortify) as they are already shipped with a full set of rules that were
sufficient to detect some of the vulnerabilities in our dataset.

4.3.2 Decompilation

All three decompilers were able to successfully decompile the nine bina-
ries in our dataset, except for RetDec which failed on the largest projects
(Wireshark and OpenCV) due to LLVM errors. To measure the accu-
racy of the generated pseudocode, we draw inspiration from the authors

3queries are presented in our anonymized repository at https://anonymous.4open.
science/r/dael156£4-5332-4a06-a27e-1e7fac2b4d23/


https://anonymous.4open.science/r/dae156f4-5332-4a06-a27e-1e7fac2b4d23/
https://anonymous.4open.science/r/dae156f4-5332-4a06-a27e-1e7fac2b4d23/

4.3. Experiments 65

of [YEGPS15, GDFFA20|, who adopted LOCs and number of GOTO state-
ments to compare the different decompilers outcome in their work. As a
coarse-grained indicator, Table 4.4 reports a comparison of the lines of code.
The output of HexRays was the smallest in most experiments, and in to-
tal resulted in 20.8% more LOCs with respect to the original source files.
Ghidra’s code was not too far (+26.2% over the original), while RetDec was
considerably more verbose (+79.8% in the binaries in which it ran success-
fully).

Previous papers often counted the number of GOTOs to measure the
‘quality’ of the produced code. While quality was often used as a syn-
onym for readability, and it is unclear whether this would have any affect
on SASTs, a lower number of GOTOs could also be considered a sign of a
more advanced decompiler. We noticed that all tools generated code con-
taining many GOTOs, ranging from a minimum of 84 (HexRays on ytnef)
to a maximum of 36,002 (HexRays on Wireshark). In average, HexRays
generated one GOTO every 60.3 LOCs (of the original source), Ghidra one
every 60.7, and RetDec one every 11.2 LOCs.

Finally, we compared the function declarations of the projects source
code against the ones contained in the pseudocodes produced by the three
decompilers in order to measure the difference in the number of input pa-
rameters. On average, HexRays misses 4 parameters, Ghidra 6, and RetDec
7 every 10 function declarations.

4.3.3 Human role

Three among our SAST tools can directly analyze source code files without
any need to compile them: CPPCheck, Joern and Checkmarx. The first
two were able to analyze the output of the decompilers, without any further
manual intervention. Checkmarx instead failed at reconstructing the AST
for five instances of decompiled code.

Furthermore, the remaining five tools require the compilation of the
target application to analyse it. However, as shown by the authors of
[LW20], none of the output produced by the three decompilers was correct
C code, and therefore none of them could be re-compiled out-of-the-box.
This obliged us to look for a suitable solution to continue our experiments.

Therefore, to put ourselves in the position of an analyst, we attempted
to manually fix the produced pseudocode to make it compliant with both
GCC and Clang. We performed this operation on the output of all the three
decompilers considered in our study, to compare different executions of the
static analyzers on different input pseudocodes.



66 66

Overall the manual procedure took from a minimum of 90 minutes to 8
hours (for 1ibyang). However, after spending 24 hours each by trying to fix
the decompiled code of Wireshark and OpenCV (the two largest projects),
we could not obtain a “recompilable” version of the pseudocode. Hence,
for these two applications we adopted an alternative solution, that allowed
us to generate a version of the decompiled applications that preserved the
vulnerabilities and could be processed by our SAST tools. In particular, for
these two cases we fixed the pseudocode of the vulnerable functions and of
all of the procedures they invoked. We then integrated the resulting code
into the the original source code of the vulnerable module — thus resulting
into an hybrid codebase where all code related to the vulnerability came
from the decompiler while the rest was taken verbatim from the original
codebase of the module. This compromise allows us to study whether SAST
tools could still find the vulnerability in the recompilable code, extending
our evaluation of the tools to all the pre-selected vulnerabilities, but not to
measure the impact on the overall number of false positives.

Our manual procedure consisted of a number of repeated steps that in-
volved the proper definition of global variables, the definition of header files,
the correction of function invocations (e.g., often the decompiler declared
a method with N parameters and invoked it with M | = N parameters),
the resolution of mismatching types, and some small syntactic operations to
remove wrong keywords or fix syntax errors with brackets.

Although we are aware of the fact that some bias could be introduced
while manually fixing the pseudocode, we want to underline that this mimics
a realistic setting since currently a human-in-the-loop solution is required for
this approach and alternatives are still missing.

4.3.4 Decompilers variability

The detection outcomes of the SAST tools able to analyze the output of
the three decompilers is presented in the ‘Decompilers Output’ columns
of Table 4.6. These outcomes are not broken down for each of the three
decompilers as, except for the case of CVE-2017-6298 discussed below, the
detection results were always the same regardless of the decompiler.
Indeed we launched the 8 static analyzers for each version of the decom-
piled code (either the raw or the manually fixed one depending on the tool).
Unfortunately, some combinations of analyzer-pseudocode could not pro-
duce an analysis result because the corresponding tool failed with a crash.
Except for an execution of lkos on the Hex-Rays decompilation of CVE-
2019-1010315, the other exceptions affected mostly the output of Ghidra
and Retdec when analyzed by Ikos (3 failures on Retdec, 5 on Ghidra),



4.3. Experiments 67

Fortify (2 failures on Retdec) and Checkmarx (3 failures on Retdec, 2 on
Ghidra). For all the other tools instead, it was possible to compare the
output in terms of detections, finding that no differencies exist between the
HexRays and Ghidra outcome from the SAST perspective.

The same does not hold for the output of RetDec. Overall the code
generated by RetDec was more complex and considerably less readable for a
human analyst. However, readability does not necessarily affect automated
algorithms, and in fact vulnerability CVE-2017-6298 could only be detected
on the RetDec output when using Joern and Code-gl. This is due to the
fact that RetDec adopts a more naive approach and represented the fields of
a struct as if they were separate variables (while both Ghidra and HexRays
reconstructed a struct), before assigning them in the pseudocode represen-
tation of the struct (i.e., an array). As we will explain in more details in
Section 4.4, this helps static analysis tools to more easily track the use of
the individual fields, which in the aforementioned case helped to discover
the vulnerability.

We searched for other cases containing structs to see if they also benefited
from the RetDec decompilation approach, but neither the Use-after-free nor
the Double free bugs that are related to struct usage could be discovered on
the RetDec decompiled code. Note that since RetDec failed to decompile
Wireshark in its entirety, we manually tried to point the tools directly to
the vulnerable functions (which were decompiled by RetDec), but this did
not lead to any detection because in those cases the generated code was
more similar to the HexRays one and it contains some patterns that make
the bug detection harder. As we will explain more in details in 4.4, the
representation of types and structs in the pseudocode is crucial for SAST
tools.

In the rest of the thesis we consider a bug as detected by a static ana-
lyzer on a binary if at least one decompiled code exists such that the tool
can identify the vulnerable flaw when analysing it. Similarly, due to space
limitations, for Table 4.6 (where we evaluate the variation of false positives),
we only report results on the HexRays decompiled code. Moreover, given
the failure conditions that some tools experienced on Retdec and Ghidra,
the false positives evaluation on these would be incomplete.

4.3.5 Summary of Results: True Positives

Table 4.5 presents a summary of the results, both for the tools that we were
able to run on the vanilla output of the decompilers, as well as for the remain-
ing ones that we had to test on the manually curated code. The green marks
represent the cases where the bug was found on the pseudocode, whereas



68 68

Table 4.5: Results of running the SAST tools over decompiled code. An
asterisk (*) signifies that the detection was accomplished through the intro-
duction of an excessive amount of false positives.

Decompilers Output Re-Compilable Code Wrt source

CPPCheck  Joern | Checkmarx Clang Tkos Infer Code-ql Fortify code
CVE-2017-1000249 X 4 v 4 X X 4 X 4/6
CVE-2013-6462 /* v 4 % X X v/* X 5/5
BUG-2012 X X X /* X X X 1/6
CVE-2017-6298 X 4 v X X 4 4 X 4/5
CVE-2018-11360 X X X X v X X X 1/2
CVE-2017-17760 X 4 X 4 X X X X 2/2
CVE-2019-19334 /* v X 4 /* X 4 4 6/6
CVE-2019-1010315 v 4 X 4 X X 4 X 4/4
BUG-2010 X X X X X X X v 1/4
BUG-2018 X 4 X X X X X 4 0/2+2
Wrt source code | 3/4 6/8+1] 3/3 5/8 3/4 1/2  5/9 2/4+1]

the cross marks show a missing detection. Dashes instead indicate that the
bug was not found in both the original source code and the decompiled one.

We must underline that for five executions on the raw HexRays decom-
piled code, Checkmarx failed at building the AST of the analyzed code. For
this reason, we opted to run it on the re-compilable code and to report the
results related to such executions.

Overall, only one of the tools (Chechmarx) was able to re-discover the
same subset of vulnerabilities as when it was applied to the original source
code. However, all tools were still able to discover at least one bug (and
often more than one), thus showing that running SAST tools on decompiled
code is not a useless procedure. In total, the 42 cumulative True Positives on
the original codebase decreased to 30 (71%) after decompilation. However,
not all tools were equally affected, as reported in the last row of the Table.

The three tools that operate on source code without the need to compile
it were less affected by the decompilation process. Moreover, the commercial
tools, while in general less effective at discovering the vulnerabilities in our
dataset, continued to find exactly the same bugs also in the decompiled code,
even though in the case of Fortify, we can observe that a new vulnerability is
uncovered instead of another that is not detected anymore. At the other end
of the spectrum, Clang and Code-ql were the two tools that were affected
the most by the decompilation process.

Another way to look at the data is to group the results in terms of vul-
nerabilities instead of looking at the different tools. In this case (all results
reported in the last column of Table 4.5) the integer overflow (BUG-2012),
the use-after-free (BUG-2010), and the double-free (BUG-2018) clearly stand
out as the most difficult to detect on decompiled code.



4.3. Experiments 69

Table 4.6: False positives, as evaluated on the original source code and the
decompiled source code produced by Hex-Rays. False positive increases of
over 50% are highlighted in red, and decreases are highlighted in green.

Decompilers Output Re-Compilable Code

CPPCheck Joern Checkmarx Clang Tkos Infer Code-gl Fortify

Src Dec ‘ Src Dec ‘ Src  Dec ‘ Src Dec ‘ Src Dec ‘ Src Dec ‘ Src  Dec ‘ Src  Dec
CVE-2017-1000249 68 15 166 144 236 241 88 96 3 9 152 423 174 515 202 583
CVE-2013-6462 106 503 374 296 485 701 | 368 365 | 303 359 | 89 812 | 496 1,177 | 246 1,097
BUG-2012 68 262 253 110 107 358 | 298 178 | 103 541 | 21 827 | 102 341 | 613 453
CVE-2017-6298 16 125 25 39 52 66 15 10 1329 439 | 10 80 18 132 84 137
CVE-2018-11360 3,113 20,548 | 3570 1504 - - - - - - - - - - - -
CVE-2017-17760 475 7668 122 1277 - - - - - - - - - - - -
CVE-2019-19334 833 1072 | 1019 334 | 2295 384 | 185 315 | 13 113 | 128 959 98 176 | 1999 661
CVE-2019-1010315 | 20 143 214 150 173 358 65 45 20 - 295 361 | 428 208 | 1417 806
BUG-2010 69 297 190 11 102 114 2 22 31 32 23 168 37 350 115 525
BUG-2018 3,113 20,548 | 3570 1504 - - - - - - - - - - - -
Total | 7,881 51,211 | 9,503 5,380 | 3460 2223 | 1,021 1,031 | 802 1439 | 718 3630 | 1353 2899 | 4676 4262

At the other end of the spectrum, the division by zero and the stack-
based buffer overflows seemed instead the easiest to detect. For the first,
a manual inspection shows that there are no interesting variations in the
way the decompilers reconstructed the source code. The bug involved two
integer variables which are easier to handle than strings/pointers for decom-
pilers. Thus, after decompiling the corresponding binary, the pseudocode
surrounding the vulnerability was quite similar to the original code, from a
static analysis perspective.

For the three stack-based BOFs, the true positive instead came at the
expense of a much larger number of false positives, as we will describe in
more detail in the following section. For these cases we reported an asterisk
(*) meaning that an high number of buffers’ operations were flagged by the
analyzer, partially explaining the detection for these cases.

4.3.6 Summary of Results: False Positives

The usability of a tool is largely determined by the number of false positives,
since reporting thousands of alarms would make the triaging phase both
difficult and time consuming.

We performed a study of the false positive increment for each project
where we could compare the outcomes of the tools on the decompiled code.
Thus, we decided to focus on the Hex-Rays output, since is the one that was
easier to parse for the SAST tools reporting only one failure for CVE-2019-
1010315 (as explained in Section 4.3.4, 3 tools failed on the Ghidra/Retdec



70 70

output). Moreover, it was not possible to have such a comparison on the
Wireshark and OpenCV projects, because we could not recompile the de-
compiled code.

We report the variation of false alarms in Table 4.6, marking in red the
cases in which there was an increase of more than 50% of false alarms, and
in green when the number decreased. Overall, if we exclude Joern (which
is a special case we describe below) in 78% of the tests the number of false
positives increased. Even worse, in 61% of the tests the false alerts increased
by more than 50%.

We point out that we manually went through the generated alarms that
the static analyzers produced, to assess if they represented actual false pos-
itives. The only assumption that we did to accelerate the procedure, was
that if the use of an API call (e.g., strcpy or memcpy) was safe in the
source code, it could not become vulnerable in the pseudocode. Moreover,
many false positives could be discarded in batch since they were related to
uninitialized variables.

However, in some cases (mainly for Clang and Fortify) the tools gener-
ated less false alarms on the decompiled code. To figure out the reasons
behind this, we checked the reports for those tools that reported a negative
variation. One of the main reasons for this behavior is that many false alarms
in the source code are due to free-related vulnerabilities (UAF, DF, stack
variables freed). However, when analysing the decompilers, the SAST tools
could not apply the same dataflow and, moreover, the decompiler changed
the type of the variable containing the freed memory area, making the job of
the analyzers much more difficult. Furthermore, several warnings reported
the presence of badly terminated strings in the source code (i.e., strings with-
out the proper null-terminated byte). Because of type confusion problems,
the same problem could not be detected in the decompiled code.

To evaluate the Code-ql false positive rate, we adopted the default queries
that are shipped with the installation. This allowed us to obtain unbiased
results, compared to what we would get if we used the custom rules that we
wrote to find the vulnerabilities.

Finally, Joern deserves a separate discussion as the tool does not come
with any predefined rule, and all tests were therefore performed by enabling
our own heuristic checkers for each project scan. Although these are cer-
tainly not a complete and generic set, they allowed us to have a reasonable
evaluation of the false positives also for this static analyzer. Moreover, such
a tool performs a fuzzy parsing of the code. Even if this feature makes Jo-
ern the perfect candidate to analyze decompiled code, we pay for this fact
in some cases where it could not correctly interpret some pieces of code and



4.3. Experiments 71

skipped them without providing a complete analysis. As a result, the inter-
nal representation lacks some parts that could not be correctly parsed, and
thus were not reachable by our queries. This resulted in a decrease of the
query output, as only a portion of the code could be properly analyzed.

4.3.7 Bugs detected *only* on pseudocode

Our initial assumption was that running a SAST tool on decompiled code
can at best detect the same bugs it would detect when it is used to analyze the
original source code of the application (and more likely considerably less than
that). Albeit our experiments show that for the majority of the analyzed
scenarios this hypothesis is correct, we found one interesting case (BUG-
2018) in which tools (both Joern and Fortify) could detect a vulnerability
on the decompiled code, but not on the original codebase.

Compilers can affect the control flow of a program in such a way that
it is impossible to recover exactly the original version. For example, as we
will see in the next sub-section, sometimes compilers remove dead code or
simplify boolean conditions for optimization reasons.

The double free vulnerability present in Wireshark (BUG-2018) is an
inter-procedural problem, which is therefore harder to detect for static anal-
ysis tools. In fact, as reported in Listing 4.1, the vulnerability involves three
separate functions that eventually invoke the g_free two times.

In the original codebase Joern was only able to reconstruct a subset
of the flows that lead to free, thus missing the vulnerability. Similarly,
the internal analysis performed by Fortify was insufficient to uncover the
vulnerable flow in the original source code.

However, after checking the decompiled code, we noticed that, because
of the static keyword, the compiler inlined different functions into a single
body (the decompiled version of val_from_unparsed). This transformed
the inter-procedural bug into an intra-procedural one, largely simplifying the
task of detecting the bug. In fact, it turned out that both Joern and Fortify
succeedeed at revealing the bug on the pseudocodes they could analyse.

1 static void
> string fvalue free(fvalue t xfv)

 {
)
static gboolean

¢ val from string(fvalue t =*fv)

o {

g free(fv—>value.string);



72 72

e e e e e e e o
o o ~ = o

string fvalue free(fv);
return True;

)

A

gboolean
;s val from unparsed(fvalue t *fv, ...)
string fvalue free(fv);
return val from string(fv, ...);
}

Listing 4.1: Double free source code

4.3.8 Compiler Impact

Compilers support different optimization levels that modify the output of
the compilation phase at the assembly level. Therefore, we opted to analyze
how these compiler options can affect the results of the decompilation, and
in particular, if such changes in the pseudocode are meaningful for the SAST
tools.

To verify this, we performed an additional experiment based on the fol-
lowing four phases. (i) Selection: we selected two among our open source
projects, file and libssh2 (CVE-2017-1000249 and BUG-2012). The
choice of the two projects was driven by the average size of their codebase
and the meaningful number of detections. (ii) Compile with optimization
levels: we compiled the selected projects with three different optimization
levels, 00, 02, 04 (00 disables all optimization passes whereas 04 indicates
that the generated code is highly optimized to improve execution speed). It
shall be noticed that all the experiments discussed so far were performed
using the default compiler optimizations specified in each project makefile
(always 02 for our applications). (iii) Decompile: we decompiled the three
versions of the same binary with HexRays. (iv) Analysis: we launched all
SAST tools on each decompiled outcome. This also implies that we had to
manually fix all variants of the decompiled code to generate the recompilable
versions required by many of our tools.

The first aspect we wanted to investigate is how the compiler options
affect the number of false positives. All static analyzers ran on all versions
except for Tkos that reported some problems when parsing the code compiled
with the 04 option. Hence, we discarded it, for the computation of the false
positives.

For 1ibssh2, the tools cumulatively produced 850, 2,421 and 1,606 false



4.4. Root Cause Analysis 73

positives for, respectively, 00, 02 and 04. For file we obtained instead
3,085, 2,275 and 2,984 alarms, depending on the compiler optimization. Such
results show that there is no clear trend and it is unclear whether a more
aggressive optimization of the code would cause more or less false alarms.
However, the different amount of false positives for each compilation option
means that the compiler actually has an impact on the generated decompiled
code, and therefore, on the way SAST tools parse it.

We then inspected all reports generated by the tools, to determine if
vulnerability detection is also affected by the compiler optimizations. For
BUG-2012, we could not find any difference between the executions of the
static analysis tools over the different versions of decompiled code. The
only configuration that brought to a detection consisted of executing Ikos
on the 00 and 02 versions of the code. After a manual inspection of the
three flavours of pseudocode, we understood that the compiler optimization
level does not affect the vulnerable function in a significant way except for
a different number of declared variables(29 for 00 vs 99 for 04).

CVE-2017-1000249 instead tells a different story. Indeed, when scanning
the three versions, the tools reported different results depending on the com-
piler optimization. More specifically, with 00 and 02, 4 tools out of 8 could
detect the bug anyway. Surprisingly, the detection dropped to zero with the
04 flag. To understand the reasons behind such a drastic change, we went
through the decompiled code one more time. A first difference is that with
the 04 flag, multiple functions are compiled inline and thus, the vulnerable
function becomes a part of a bigger one, hindering the SAST tools to ana-
lyze the data flow. Moreover, such a modification, affects not only the local
defined functions of the binary, but also some library functions. Among
the others, the memcpy invocation, originally contained in the code and root
cause of the buffer overflow is replaced with an inline implementation that is
ignored by the tools. Finally, an unsafe check on the buffer size that always
evaluates true (because of a programming error) is removed due to the opti-
mization reasons, as described in more details in Section 4.4. Cumulatively,
these three aspects make the life of SAST tools remarkably harder, leading
to an increment of the false negative.

Although this experiment cannot uncover in a systematic way all possi-
ble scenarios where the compiler influences the resulting pseudocode, these
observations indicate that the compiler influences the decompilation phase
w.r.t. both the false positives and false negatives.



74 74

Table 4.7: Decompilation inadequacies that inhibited SAST tool operation
on our dataset, separated into patterns and their effect on analysis results.
Depending on the pattern, these inadequacies can be repaired through im-

provements in decompilation techniques, SAST approaches, or both.

Pattern Effect Project Affected Tool Repairer
(P1) Buffer size FP 1 al all except Joern Both
Checkmarx,
(P2) Integer types FP 1 all Cppcheck SAST
(P3) Unitialized
. Clang, Infer,
variable FP 1 all Tkos, Code-ql Decomp
(P4) Function
pointers TP |  1libssh2 Joern,Code-qgl SAST
ytnef, Joern,Clang
(P5) Pointer as int TP |  wireshark, Checkmarx, Both
libslirp Tkos,Code-ql
(P6) Int wrong
size FP 1  all tkos,Code-al, 5 1}
Infer
(P7) Simplified
. , Cppcheck
expressions TP | file Fortify SAST

4.4 Root Cause Analysis

We investigate now the root causes that resulted in the performance degra-
dation of the SAST tools when executed on the decompiled output. For this
purpose we gradually change the pseudocode by making it more and more
similar to the original codebase, until either the tool reported the missing
vulnerability or until the extra false positive disappeared.

Our findings uncovered seven main root causes, four responsible for false
positives and three for false negatives. For each of them we discuss the
specific elements in the code (hereinafter patterns) introduced by the com-
pilation and decompilation process that degraded the SAST performances.
Our patterns are summarized in Table 4.7, along with the projects and tools
affected by that specific pattern. The column Repairer, indicates which



w

4.4. Root Cause Analysis 75

component of the toolchain (decompiler, SAST tool, or both) is in the best
position to mitigate/address the problematical pattern. In fact, while on the
one hand decompilers could try to infer more information from the binary,
on the other hand SAST tools can be designed with this limitation in mind
and be more permissive when dealing with the pseudocode.

Finally, we underline that our purpose is to illustrate such root causes
that result in the performance degradation of the SAST tools, rather than
proposing potential remediations to these issues that will require future re-
search in both the decompilation and SAST fields to be addressed.

P1 - Inability to Recover the Size of Stack Buffers
Effect: increase false alarms Repairer: Both

A large number of extra warnings in the SAST output was reporting the
presence of BOFs. As an example, we propose the following excerpt from
the file application:

#define PATH MAX 4200

FILE* list = fopen(outfilename+1 "rb");

char listbuff [PATH MAX % 2];

memset (listbuff , 0, sizeof (listbuff));
fread (listbuff , 1, sizeof(listbuff)—-1, list);

Listing 4.2: Source code of a safe buffer access

Looking at this code, it is quite evident that the memset and fread
invocations are safe in this context, thanks to the proper use of sizeof
operator. The decompiled code looks instead quite different:

FILEx v212;

charx s1;

v212 = fopen(dest + 1, "rb");
memset (s1, 0, 0x2000uLL) ;

s fread (s1, 1uLL, Ox1FFFulLL, v212);

Listing 4.3: Pseudocode of a (ex safe) buffer access

The sizeof operator is resolved at compile-time, and therefore the de-
compiler only sees the actual numerical values. Intuitively, one would expect
that this makes the SAST’s job easier because now the tools do not need to
compute themselves the size value. However, the array definition has been
replaced with a scalar variable (s1) declared as a char*, without any infor-
mation about its original size. As a result, when the SAST tools analyze the
decompiled code, they flag the two calls as two potential buffer overflows,
since the memory area pointed by the char* s1 variable has unknown size.

In other examples, different ways to access the buffer (e.g., by index



76 76

buf [i]), resulted in different warning such as NPDs, still because of the
missing size information of a pointer variable.

Discussion: Although the issue is quite evident, a proper solution is not as
simple and it inherently depends on the way compilers generate the assembly
code. In fact, even with a sophisticated stack analysis, the decompiler cannot
infer if a memory area belongs to the same buffer or it represents a group
of distinct variables (in particular when an element of a buffer is accessed
by using an hardcoded index). While some heuristics could be used to infer
the original size, e.g., by looking at loop iterations or initialization routines,
the risk is that by relying on this information the decompiler can hide the
presence of vulnerabilities.

P2 - Signed and Unsigned Integers
Effect: increase false alarms — Repairer: SAST

Many numerical statements were flagged by the SAST tools as poten-
tial IOFs. At a closer analysis, this was caused by two main errors in the
decompiled code.

An example of this pattern are functions that return an integer value,
where a negative value is associated with an error condition. For instance,
this is a snippet of decompiled code from Xorg:

sub_9840( __int64 al) {
~ unsigned int v2;

if (ERROR_CONDITION) { v2 = —1;}
return v2; }

Listing 4.4: Negative return value in the pseudocode

The v2 variable is used to store the return value and it is assigned to
-1 in case of an error condition. However, v2 is erroneously declared by the
decompiler as unsigned int, and thus, assigning a negative value, leads the
SAST checkers to think that an underflow can occur within that variable.

P3 - Integer Operations on Uninitialized Variables
Effect: increase false alarms — Repairer: Decompiler

Mainly due to a more complex and interprocedural data flow in the
decompiled code, we noticed that many SAST tools reported an addition
(or subtraction) as potentially dangerous when they could not determine if
one of the operands has been initialized.

As an example, we fetched the following lines of code from the libyang
pseudocode:

1 sub_12B3E (..) {



oW

4!

1(

1

4.4. Root Cause Analysis 77

v2 = 10; v4 = 1;
a lot of code including GOTOs, etc

sub 129CF (.., &v2, .., v4d);
s sub_129CF (.., unsigned _ intl6 %a2, .., unsigned _ intl6 a4
)
unsigned _ intl6 v9 = a4;
xa2 —= v9;
}

Listing 4.5: Integer underflow due to an uninitialized variable

The subtraction at line 12 is flagged by Infer and Ikos, because such tools
cannot find an initialization statement for the operands. However, after
comparing with the source code, we noticed that both the two variables are
initialized. The key difference is that in the source code those variables are
initialized just before calling the function, while in the pseudocode they are
initialized at the very beginning of the program so that very likely the SAST
tools lose track of their propagation because of complex data flow.

Interestingly, so far decompilation researchers mainly studied variable
types recovery [DC09, LAB11, NLC16| and names generation [LYST19], but
no prior work focused on the “position” of recovered variables in the control
flow.

P4 - Function Pointers
Effect: decrease detection rate  Repairer: SAST

BUG-2012, which affects libssh2, is presented by Yamaguchi et
al. [YGAR] as a use case of Joern, but while such a tool can detect it
on the original codebase, it misses it in the decompilers output. The main
vulnerability consists of an IOF resulting from a sum whose value is used as
input for a dynamic memory allocation. As a consequence, the IOF can pro-
duce an undefined dynamic memory allocation resulting in wrong memory
accesses. For clarity, we report the snippet of code in the following listing:

ssh2_packet_add (SESSION session ,charx data,..){

uint32 t namelen =
libssh2_ ntohu32(datat+9+sizeof ("exit—signal"));

; channelp—exit signal —

LIBSSH2 ALLOC(session , namelen + 1);
memcpy (channelp—>exit signal ,
data+13+sizeof ("exit —signal"), namelen);



78 78

Listing 4.6: libssh2 vulnerable code snippet

The LIBSSH2_ALLOC macro allocates namelen + 1 bytes and returns the
requested memory in the exit_signal buffer, that is eventually accessed.
If data is under the attacker control, it is possible to craft that variable so
that the sum namelen + 1 causes an IOF bug.

Listing 4.7 shows the resulting pseudocode:

vulnerable function (int64 al, int64 a2, ...) {

; int name len = non_vuln function (a2 + 21);

x(_QWORD x) (v24 + 40) =
(x(__int64 ( _ fastcall *x)( QWORD, _ int64))
(al + 8))((int)(name len + 1), al);

memcpy (* (void xx) (v24 + 40),
(const voidx)(a2 + 25), name len);

0}

1

Listing 4.7: libssh2 vulnerable decompiled code

Now we can notice that the macro invocation has been replaced with
its actual value that corresponds to a function pointer stored in the struct
session at offset 8 (namely, the macro is defined as session->alloc(...)).
The decompiler casts the function pointer accordingly to the function def-
inition, resulting in a more complicated structure of the invocation. The
pointer cast is the reason Joern and Code-ql fail at detecting the bug in the
pseudocode. Joern is not able to properly parse it, and thus it entirely skips
the call. In this case no query exist that can reach the vulnerable path.

Code-ql actually parses the code correctly, but because of its internally
used representation, the query used to find the original vulnerability does
not work anymore. It is possible to write a new, and much more generic,
query that still capture the bug — but the more general rule would cause
an increased number of false positives.

Discussion: The root cause of the problem is that the function pointer in-

vocation contains many casting operations, therefore hindering the static

parsing of the code. However, we could easily solve the problem by in-

stantiating a variable that can store the function pointer address, and then

invoking it in a separate line:

__int64 (xfcn_ ptr)( QWORD, _ int64) = (al + 8);

x(_QWORD x)(v24 + 40) = (*fcn_ptr) ((unsigned int)(n + 1),
al)

Listing 4.8: libssh2 vulnerable decompiled code after the fix



4.4. Root Cause Analysis 79

P5 - Pointers as Integers
Effect: decrease detection rate  Repairer: Both

For this pattern, let us focus on the CVE-2017-6298, a null pointer deref
resulting from an unchecked calloc return value.

Reading the following snippet of code the vulnerability looks quite ev-
ident, and in facts different tools can detect it (Joern, Checkmarx, Ikos,
Infer, and Code-ql):

variableLengthx vl;

vl—data = calloc (vl—>size, sizeof (WORD));
temp word=SwapWord ((BYTE«*)d, sizeof (WORD) ) ;
memcpy (vl—>data , &temp word, vl—>size);

Listing 4.9: Null pointer dereference

The first thing is that the variable vl is a pointer to a custom struct
whose definition is unknown for the decompiler. The memcpy invocation itself
is safe because the code writes the correct size into the dynamically allocated
buffer, but the vl->data value is not checked for nullness, potentially leading
to a null pointer dereference if calloc returns a null value.

When the code is decompiled with HexRays and Ghidra, we obtain the
following code:

signed intx v9;
size t v19;
void* v20;

(QWORD x)v9[0] = calloc(v9[2], 2uLL);

v18 = sub_19B0(v4, 2);

v19 = v9[2]; v20 = *(void xx%)v9; v76 = v18;
memcpy (v20, &v76, v19);

Listing 4.10: Null pointer dereference Hexrays pseudocode

We can immediately note that the struct is represented as a signed integer
pointer (identifier v9). The calloc return value is written in v9[0], after
casting it to pointer.

Although the tools comprehend that the return value is written inside a
local variable, they believe that the assignment happens in a variable of type
signed int. Because of such a type confusion problem, from now on the
static analyzers are not interested anymore in the return value, stop to track
the data flow for that path and go on with the analysis of other potentially
vulnerable paths. Overall, they miss the connection between the returned
pointer and its dereferences that occur in the following code.

If we look instead at the code generated by RetDec:



80 80

int64 t % v103; int32 t v105;

int64 t * mem5 = calloc(v102, 2);

*v103 = (int64_t) memb;

int64 t v104 = fun_19b0(v19, 2, v28, vl);
int64 t v108 = v104;

memcpy ((int64 t *x)*x v103, &v108, v105);
Listing 4.11: Null pointer dereference RetDec pseudocode

What makes this output simpler to analyze for static analysis tools is the
fact that the return value of the calloc API is directly stored into a proper
pointer, without any further cast or array access. Thus, tools are able to
track the data flow and can therefore recognize the use of the pointer within
the memcpy.

In this example we discussed the case of a returned pointer assigned to
an integer variable, but the same issue happened several times when decom-
pilers declared parameters as integers instead of pointers in the functions
prototypes (e.g., BUG-2010 and BUG-2018, that are respectively the UAF
and the DF).

Discussion: SAST tools seem to have problems tracking pointers that be-
come integer and later pointer again. Learning from RetDec, the solution is
just to back-propagate the type information. In other words, if a variable is
later casted to a pointer and de-referenced, then this information should be
used to redefine the variable type as a pointer.

For instance, it is sufficient to declare an intermediate variable of type
int* instead of v9 in the HexRays’s output and all tools that were missing
the vulnerability were able to correctly perform their taint analysis until
they reach the memcpy invocation.

P6 - Integers of Wrong Size
Effect: increase false positives — Repairer: Both

Decompilers often declare variables of the wrong size (e.g., double-word
instead of bytes) and then rely on cast operations to ensure the type system
coherency of their output statements. This behavior caused many SAST
tools to generate false alarms due to the potentially erroneous pointer cast-
ing.

As an example we can consider the code snippets in Listing 4.12 (original
code) and Listing 4.13 (decompiled code).

uint8 _t out[SIZE]; uint8_t tmpout[SIZE |;
for(j = 0; j < sizeof(out); j++)



4.4. Root Cause Analysis 81

out[j] "= tmpout[j|;

Listing 4.12: Suspicious cast source code

__int64 v22; int64 v26;
for ( j = OLL; j <= 0x1F; ++j)
x((_BYTE %)&v22+j) "= x((_BYTE %)&v26+j);

Listing 4.13: Suspicious cast decompiled code

In the original code, the elements are of type uint8_t (i.e., one byte
each). In the decompilers output the two variables becomes 64-bit integers,
which are later casted to _BYTE to perform the xor operation. Furthermore,
the retrieval of the j-th element, is done through pointers arithmetic with
type uint8_t.

A similar pattern appears very often in our experiments, with different
source pointer types and using different types to perform the cast. While this
pattern is similar to the Pointers as Integers (in fact, again the decompiler
used integer variables to store pointers) here is the wrong size and the cast
operation that cause false alarms instead of the inability to follow the data
flow as in the previous pattern.

It is also interesting to note how, because of the initial declaration of
the variables representing the arrays (v22 and v26 are integer types and not
integer pointers), the pattern is reported by some SAST tools as a dangerous
cast, rather than a buffer overflow.

On the other hand, if in the previous code, the two variables were defined
as __int64* we would still observe an alert warning for a potentially unsafe
memory access, converging in the case described for P1.

Discussion:

This is again a case of type confusion, less severe than the pointer case
(as it cannot lead to missing real vulnerabilities), but somehow harder to fix.
In fact, back-propagating information to mark variables as pointers is not
sufficient, and correctly sizing all integers requires a more complex analysis
and inference techniques.

P7 - Simplified Expressions
Effect: decrease detection rate  Repairer: SAST

This last pattern is quite unusual, but we report it as it is the cause of
some missed vulnerabilities in the decompiled code. For our discussion we
use the CVE-2017-1000249, a stack BOF present in the file project. The
original source code is depicted in the following snippet:

if (namesz — 4 & ... &



82 82

type =— NT GNU BUILD ID &&

(descsz >= 4 || descsz <= 20)) {
uint8 t desc[20];
memcpy (desc , &nbuf[doff], descsz); }

Listing 4.14: Source code of the BOF

The memcpy is unsafe because of the wrong check that is performed before
its invocation. In fact, the OR operator is used instead of the AND to check if
the size (descsz) is in the appropriate range. The boolean condition always
evaluates to True, and this is detected by some tools (such as CPPCheck)
and reported as potential bug— which in this case it is and leads to a buffer
overflow.

However, compilers are also able to detect that the condition is always
satisfied and they can simplify the code accordingly. This results in the
following decompiled code:
char v58;
> if (v49 4 && ... && v28 — 3) {
memcpy (& v58 , ad + v45, v16);

}

Listing 4.15: Decompiled code of the BOF

The desc buffer is another example of the inability of decompilers to
reconstruct stack-based arrays. But the key element for this pattern is that
the wrong test on the buffer size is not present anymore. Since the compiler
is not generating its corresponding assembly code in the first place, the
decompilers have no way to recover it.

Once the clue that was picked up by static analysis tools (the wrong check
on the buffer size) is removed, some tools failed to detect the vulnerability
altogether.

4.5 Discussion and Conclusions

We can distill the findings of our experiments around four main points,
showing that even though few obstacles still remain, we believe that future
work will be able to overcome these issues focusing on both the decompilation
side and the static analysis part.

1. The main impediment to the use of SAST tools on pseudocode is that
the decompiled code cannot be re-compiled out-of-the-box. The recent
paper by Schulte et al. [SRNT18] make us feel optimistic that this
problem will soon be solved. However, so far, human analysts need



4.5. Discussion and Conclusions 83

to manually fix the decompiled code, a process that can take just few
hours for small applications, but that becomes prohibitively complex
for large codebases made of million of LOC.

2. Once the re-compilable issue is solved, existing SAST tools can dis-
cover (in our experiments) 71% of vulnerabilities they were finding
in the original code. While there is still a margin for improvement,
this result already go beyond our initial expectations. On the nega-
tive side, the number of false positives often increased considerably,
making the output of many tools difficult and time-consuming to nav-
igate. However, even even if the FP increase is on average 232%, in
29/61 cases the FPs either decreased or did not significantly increase,
demonstrating how our approach is still promising in many scenarios.

3. Both the compiler and decompiler transformations contribute to the
final result in a complex way. Our experiments show that there is
no linear trend, and in some cases more aggressive optimizations even
simplified the job of the SAST tools. For instance, in two cases static
analyzers were even able to discover one vulnerability they could not
find in the original source code.

4. Today, decompilers are still designed to generate code that is easy to
understand for humans, and SAST tools are still designed to parse
“well-written” code that is not generated by a machine. This human-
centric view could, and should, change in the future. In Section 4.4
we listed 7 root causes that explain the differences we observed in the
results. We believe that many of the entries in our list could be solved,
or at least mitigated, by improvement in either the decompiler or the
SAST analysis (or both).



84

84




Chapter 5

RE-Mind: a First Look Inside
the Mind of a Reverse Engineer

For our last investigation, we move from the vulnerability discovery domain
to the discipline of reverse engineering, a common binary analysis task that
very often requires human experts intervention. As we will see in the follow
up of the chapter, this activity deserves attention as we can imagine binary
reverse engineering as a human-in-the-loop system where the analyst lives
at the last node of the pipeline, in charge of interpreting the representa-
tions obtained by her set of tools, before providing the actual output of the
analysis.

Researchers of different fields have studied, from a cognitive perspective,
how humans perform several relevant activities with the goal of better un-
derstanding, improving, or automating field-related processes. For instance,
in the area of computer science, many experiments have been conducted to
study the mechanisms behind human’s decisions in several tasks, ranging
from program comprehension [Let87, RTKM12| to human-computer inter-
action |Ban, Kap96|, and from problem solving [LKJ*16, CFBS15] to com-
puter security [MBC17, VSRT18|. The crossover between the human mind
and computer science has also resulted in the creation, and in the recent
rapid evolution, of the field of artificial intelligence.

On the one hand, fully autonomous systems have already replaced hu-
mans in several security-related tasks including, among the others, host
and network-based attack detection [OEV™, ZEKAS17, THLL09|, malware
classification [UAB19, MDC17, PHL*15] and phishing detection [MHKOS,
JST13, AA14|. On the other hand, other areas are still mostly human-driven.

85



86 86

For instance, binary reverse engineering (RE) is still performed entirely by
highly skilled security experts. Machines play an essential role in the process
in the form of tools to unpack, disassemble, emulate, and perform binary
similarity. However, humans are still responsible for “understanding” the
code. That is, experts are the last step of an analysis infrastrcture made
of an arsenal of tools that lift and smooth the original machine code and
are in charge of providing the final outcome of the analysis. This requires
considerable expertise, together with a long and tedious manual effort. Un-
fortunately, the limited number of expert reverse engineers in the world
is insufficient to cope with our society’s security needs and the continuous
growth in the amount of released software. The recent DARPA Cyber Grand
Challenge (CGC) drove progress in computers’ ability to reason about pro-
gram binaries autonomously and discover vulnerabilities. However, these
programs are still far from being able to compete against RE experts!.

To overcome this problem, we believe it is fundamental to first under-
stand how humans approach and solve static RE tasks. The comprehension
of the most effective RE strategies used by expert humans can drive fur-
ther research in the development of automated approaches, but it can also
help design tailored training programs that can increase the number and the
effectiveness of our experts.

Let us use a simple analogy to introduce the motivation for our work.
When a professional chess player decides her next move, she has hundreds
of millions of possible combinations to evaluate. However, previous research
on the human brain of chess players has shown that this is not the way she
reasons. Her brain can instead recognize patterns and naturally focus only
on a handful of possible “good” moves. Now think about an expert reverse
engineer. Similarly to a chess master, she also does not “evaluate” every
single line of assembly code in a program, but she just skims through the
code, focusing only on those critical parts to understand the code’s logic. We
believe that her primary skill is not to read faster every single basic block,
but instead that she does not waste time reversing the ones that are not
important for her task. In other words, she can see patterns where others
can only see endless lines of code.

Sadly, today we do not know whether this hypothesis or any other hy-
pothesis about how RE experts think is correct. At the 2020 Usenix Security
conference, Votipka et al. [VRM™20] presented the first human study about

!The 2016 DEF CON CTF final put the best DARPA cyber-reasoning system (May-
hem [DARay|) against human teams. The supercomputer ended up in the last posi-
tion [defay] (even on simplified challenges explicitly written to accommodate the limited
architecture supported by the machine).



87

RE. This work inspired our research, where the main focus is restricted to
static RE (from now on used alternatively with RE) from the perspective of
assembly code comprehension.

Research questions

Our goal is to investigate a set of hypothesis by means of quantitative mea-
surements and statistical tests conducted on fine-grained recordings of real
RE tasks. To recruit a sufficient number of geographically-distributed par-
ticipants, we designed an online platform that mimics the Ul of traditional
interactive disassemblers. We then used our platform to record the fine-
grained behavior of 72 reversers while they solved two different reverse en-
gineering exercises. In total, we collected 272 hours of binary reverse engi-
neering activity, which we then analyzed to identify patterns and strategies
that we can use to model the ‘experience’ of a reverser.

The research questions that drove our study, methodology and experi-
ments are the following:

e What do experts do differently from novices?
e Do experts/novices share particular strategies to explore binary code?

e How are these strategies linked to the binary code elements (e.g., func-
tions, basic blocks)?

e [s any particular strategy correlated with better RE performances?

The results of our experiments allowed us to confirm that experts indeed
visit less basic blocks than beginners, and they are also able to dismiss on
average 22% of the blocks they visit in under two seconds. While novices
tend to re-visit the same parts of the code multiple times, experts gain more
information during their first visit. We also identified several exploration
strategies, both at the basic block and the function level, that seems posi-
tively correlated with experience. For example, beginners are more likely to
explore a binary ‘horizontally,” while more skilled reversers are more likely
to proceed in a vertical way.

These are only a few examples of the many features we investigate in
this last chapter to characterize the static reverse engineering process. We
believe that this fascinating area of system security, where human experience
is highly regarded but little understood, can help our community to better
understand the mechanics behind the cognitive aspects of reverse engineer-
ing.



88 88

5.1 Related Work

To the best of our knowledge, only four studies have been conducted so far
on human behaviors in the context of reverse engineering [SKBMO06, Bry12,
VRM*20, CC19].

One of the first studies was conducted by Sutherland et al. [SKBMO06| in
2006 to demonstrate that the education/technical knowledge and the ability
to reverse engineer simple binary files are positively correlated. In 2012,
Bryant [Bryl2| performed a semi-structured interview with the addition of
in-place observations during the RE sessions to investigate four experts ap-
proaching typical RE scenarios, such as breaking the protection scheme of a
toy binary. The outcome is a precise observation of the skills, mental flows,
and knowledge-based techniques that the subjects exhibit while reversing a
binary. Interestingly this work tries to be the bridge between the source
code comprehension community and the RE one, by studying how reverse
engineers make use of assembly patterns.

In 2018, Claire et al. [CC19| proposed RevEngE, a framework to monitor
reverse engineering from several points of view. The framework is based on
an instrumented virtual machine that registers events such as spawning a
new process, focusing on a window and mouse clicks. The goal of this work
was to describe a system that acts as a base for an observational study but
the paper does not contain any measurements about how reverse engineers
perform their activities. Even though the authors did not perform any ex-
periments, the study still deserves a special attention because it proposes an
approach which is suitable to perform a quantitative study of RE.

Finally, the recent work of Votipka et al. [VRM20] is what we can
consider as the first human study about RE, focusing on what high-level
process reverse engineers follow and what technical approaches they adopt.
The authors’ goal was to improve the design of RE tools to make them more
usable and intuitive. However, due to the lack of prior work outlining REs’
processes and no theoretical basis for building quantitative assessments, the
authors also performed a number of semi-structured interviews in which 16
participants recalled anecdotes of a binary they had reverse engineered in the
past. This provides technical details about their strategy and experience,
including when they switched from a tool to another, which hypothesis they
formulated, and which type of documentation they consulted.

If the literature covering RE is scarce, a vast amount of work has been
performed instead in the program comprehension field. Indeed, RE can be
seen as a program comprehension problem applied to assembly code, with
the goal of recovering the high-level abstractions needed to understand the



5.2. Scope of the study 89

program logic. For this reason, we collect here the most critical human stud-
ies related to program understanding. One of the leading research directions
in program comprehension shows that programmers adopt non-linear ways
to interpret source code, reasoning at a level of abstraction higher than
the code itself [Let87, LGHMO07, AS96, RTKM12, Bro83, AvML98|. A well-
known model about these high-level representations is what researchers refer
to as beacons: beacons are patterns that experienced programmers can rec-
ognize when reading the source code [Hocl4, KMCAOQ6, Pen87]. The utility
of beacons is mainly related to assessing some hypotheses that developers
do about some unknown parts of the program, such as when they need to
maintain some code base, as described by Littman et al. [LPLS87]. Al-
ternatively, Gugerty [GOS86| argues that developers can use debuggers to
verify some behaviors within the source code they are analyzing (e.g., by
checking whether a variable contains the expected value at some point of
the execution). It is also worth mentioning that some of these papers study
program comprehension by performing a comparison between experts and
novices [GO86, FWS93, WFS93]. We believe this to be a critical factor in
understanding the impact of the experience, and this methodology served as
inspiration for the experiments we present in this thesis.

Finally, few studies have investigated the usability of RE tools. For
instance, researchers have looked at improving the usability of decompil-
ers [YEGPS15, JLST 18], showing that better variable naming and a reduced
number of GOTOs affected positively the readability of the pseudocode. In
the context of vulnerability discovery, Do et al. [DALT17] proposed a static
analysis framework that allows the developers to write code and run in paral-
lel the static analyzer to help programmers to better manage the large num-
ber of alerts generated by the tool. In 2017, Shoshitaishvili et al. [SWD™17]
showed that the communication between a fuzzing engine and non-skilled
reverse engineers can increase the rate of discovered vulnerabilities by taking
advantage of human intuition.

5.2 Scope of the study

As introduced in Section 2.3, RE includes a large variety of practices and
approaches, depending on the context, the domain and the goal of the anal-
ysis. In this study, we focus our investigation on the core activity that is
part of any binary RE process: the static code understanding as presented
by interactive disassemblers.

Although this activity represents only one portion of the RE process, we
believe it deserves a special attention for several reasons. First, it is particu-



90 90

larly interesting as the low-level nature of the Assembly language forces the
human mind to make an additional effort when reading the instructions. In
fact, the reverser needs to understand the effects of what she reads on the
machine that will execute the code as well as mentally reconstruct high-level
patterns (such as loops and branch conditions) and data types.

Moreover, this approach mirrors the initial studies of the program com-
prehension community, where various authors initially focused on how users
read source code rather than directly embedding debuggers in their exper-
iments [Let87, LGHMO07, AS96, Bro83, AvML98|. For these reasons, we
decided not to include any decompilers/debuggers in our pipeline, focusing
instead on an in-depth analysis of the static assembly code comprehension
process.

5.3 Methodology

To conduct a detailed investigation of how humans perform a RE task, we
needed to replace the interview format adopted by previous studies with
a fine-grained observation of subjects’ actual behavior when requested to
perform different tasks related to binary reverse engineering.

While the required data could be easily collected in a lab, for in-
stance, by using eye-tracking equipment to monitor the participant behav-
ior [PHG'04, CGO7, TFSL14, BT06], this approach would introduce sev-
eral problems. First of all, skilled reverse engineers are rare and remotely-
accessible experiments are required to collect enough participants with dif-
ferent backgrounds. Second, even simple RE exercises require hours of con-
centration, which is difficult to achieve while under observation in a lab (es-
pecially when the candidate needs to keep her head stable to allow for proper
monitoring). Therefore, we opted for implementing a web-based platform
specifically designed to conduct our experiments.

The platform needs to be capable of extracting many low-level metrics,
such as how much time a person spends looking at each basic block, how
she explores and navigates the binary program, and how she annotates and
manipulate the assembly code (e.g., by renaming functions and variables)
along the way. Moreover, the interface needs to closely resemble the in-
terface of existing reverse engineering tools (such as IDA Pro, Ghidra, and
Binary Ninja) to let the users interact with a familiar environment. Finally,
the system should incorporate special techniques (such as Restricted Focus
Viewer [JBMO03] to blur basic blocks that are not currently selected) and a
variety of instrumentations to collect a rich set of raw low-level information.

The low-level metrics extracted by our online platform act as basic blocks



5.3. Methodology 91

for the subsequent analyses and characterizations. In this second phase, we
manually reviewed the collected data to identify high-level skills starting
from the low-level metrics. In this respect, a significant challenge is that we
did not know a priori which skills were more important than others and in
which context they may become relevant for solving a reverse engineering
task.

5.3.1 Online Platform

Our dedicated online platform provides users with an interface and a set
of functionalities, which mimic common interactive disassemblers. The sys-
tem required users to register an account to allow them to take breaks and
perform different tasks at different points in time. After the registration,
a “Welcome” page described the various tests and guided the participants
through the system’s functionalities. The user could then select one of the
available tests and proceed with it.

A snapshot of the interactive RE interface is presented in Figure 5.1. The
left panel shows the list of the functions that are present in the binary as well
as those imported from external libraries (such as printf). When the user
visits a function, e.g., sub_40089a in Figure 5.1, the system highlights it
with a green bar and displays the list of code cross-references (Xrefs) below
the function name. Xrefs are divided into Xrefs-from (functions containing
a call instruction that transfers the control to the visited function), and
Xrefs-to (functions called within the body of the visited function). The
user can control the application by using the mouse (by panning, zooming,
clicking on links, accessing a contextual menu with the right mouse button)
or the keyboard (by using common shortcuts taken from IDA Pro for moving
back and forward, rename variables and functions). The right panel instead
is in charge of showing the Control Flow Graph (from now on CFG) of the
disassembled function where we decided to resolve library calls with their
symbol name and to replace strings’ addresses with the string itself. Our Ul
also includes a call graph view, where the users can visualize the relationship
between the function inside the binary.

Enabling the user to have a complete view of all basic blocks at the
same time would not allow us to track her progress through the program
at the required granularity. Therefore, by taking inspiration from similar
experiments performed in the code comprehension community to measure
the user attention [JBMO03, BT04], we decided to implement a Restricted
Focus Viewer [JBMO03| (RFV) solution. This technique provides results
comparable with eye-tracking methodologies by dynamically blurring parts
of the screen and letting users control the visible area. In our case, only



92 92

= Functions @

Y

cmp gword ptr [rbp - 8], 0O
jne ©x4008c4
sub_40089a

Xrefs to: !:

Xrefs from:

Figure 5.1: Part of the Ul of our reverse engineering framework in the code
navigation mode showing on the left the functions’ list and on the right the
CFG of the selected function

one basic block at a time is readable while all other ones are blurred. For
instance, on the right side of Figure 5.1, the central basic block (from now
on BB) is unblurred, whereas the ones above and below are blurred. When
the user moves the mouse over a different BB, the system immediately shows
its content and re-sets the previous one in a blurred state.

The main disadvantage of this solution is that it can delay the user
activity and, as discussed in Section 5.5.4, it can also prevent rapid glances
over different parts of the screen. Even though we are aware of the fact
that RFV represents a limitation of our work (as detailed in Section 5.7), it
represents the only solution to precisely measure the basic blocks observed
by each participant, while enabling our experiments to be conducted online
with users located in different countries.

For each action the user performs over the visible element, the frame-
work generates an event and sends it to our backend server. These events
include New function access (when the user clicks on a function name), New
basic block visit (mouse over the new basic block), Function rename (right
click or keyboard shortcut), Variable rename (right click or keyboard short-
cut), Comment (right click or keyboard shortcut), Follow the jump to an
address (double click), Jump to address (double click on the address), Move



5.3. Methodology 93

backward to the previous basic block (keyboard shortcut), Follow Xrefs-to
or Xrefs-from (click on the desired xref), and Solution submission (click on
the dedicated link). For each of the cases mentioned above, the web inter-
face generates a JSON request containing a timestamp, the event type (i.e.,
the action), the position in the binary (i.e., the function address and the
BB), and depending on the action type, the arguments. For example, when
the humans rename a stack variable, the JSON string will contain the new
proposed name and the old stack offset as further arguments.

All the events, along with the user’s changes on the code (such as re-
named objects, comments, and previously accessed locations), are stored in
a database for further analysis.

5.3.2 Challenges Design

The main problem we encountered when designing our tests was to find
a balance between the complexity of the binaries, the amount of data we
could collect from them, and consequently the number of people that we
could recruit.

Modeling the complexity of a RE task is not easy because a binary could
include many features that make the process of understanding its internals
more complex. For instance, obfuscated code would require dynamic analysis
or access to the binary file for implementing a de-obfuscation algorithm, thus
resulting in less data that could be collected by our platform. We also had to
design our tasks to be independent from the domain of the different experts;
for instance a challenge about packing would be easier for malware experts
than for vulnerability researchers. We decided instead to present binaries
that implement common functionalities that can be found in any domain.

That being said, there are many potential strategies to provide a mea-
sure of the complexity of our tasks. A possible way to accomplish this
goal is to rely on the complexity of the source code, as done by |[SKBMO06|
to formally describe the difficulty of their binary challenges. Peitek et
al., [PAPT21] demonstrated, with the use of Functional magnetic resonance
imaging (FMRI), the existence of a correlation between such source code
metrics and the brain activation registered in users that perform code com-
prehension tasks. Therefore, we compute a total of twelve metrics (including
the Halstead metrics, the cyclomatic complexity, and the number of func-
tions and lines of code) and use these values to assess the difficulty of our
assignments. All values for the two assignments are reported in Table 5.1
(in Appendix). When crafting our challenges we used these metrics of the
tasks reported by Sutherland et al. [SKBMO06]| as a lower bound to make
sure that our tasks were sufficiently complicated.



94 94

Table 5.1: Complexity metrics of the two assignments

Metric Test 1 Test 2
Lines of code 146 207
Operators count 426 673
Distinct operators 35 38
Operands count 207 338
Distincst operands 89 87
Program length 633 1011
Program vocabulary 124 125
Volume 4402 7042
Difficulty 39 73
Effort 171678 514095
Cyclomatic complexity 14 19

After some internal experiments among the authors, we settled for three
binaries. Although we understand that three binaries cannot provide a de-
tailed view of the skills that expert reverse engineers acquired after many
years of practice, we believe this choice to be a good tradeoff between the
amount of data we can collect and the time each participants would need to
invest in our exercises.

The first challenge binary was the smallest and only served as a warm-up
to make the users comfortable with our tool’s interface. Thus, we did not
collect data from this first assignment. The other two binaries, which from
now on, we will call TEST 1 and TEST 2, were inspired by typical reverse
engineering problems in Capture the Flag (CTF) competitions. CTFs are
popular games designed to challenge their participants to solve computer
security problems. The goal of a RE challenge in a CTF is often to recover
the input that needs to be provided to a given binary to produce a specific
output. This had the advantage that solutions are small and can be easily
verified on our side while still requiring the participants to “understand” the
full logic of the target binary. Both the programs were written in C language
and compiled for a Linux x64 machine with the gcc compiler.

In our tests, all binaries include a target function whose purpose is to
print the string ’Success!!’, and the participants were asked to submit
a description of the input required by the program to print the success
string. To make things more challenging, all binaries were stripped from
their symbols and included several “useless” snippets of codes, which had no
effect on the problem’s solution.

Test 1. The first binary consists of a simple server listening on port 8888 and
accepting new incoming connections. For each connection, the server would



5.3. Methodology 95

main

target

Figure 5.2: Call Graph of Test 1

I) spawn a new process (using the fork() function) to serve as a connection
handler, II) increment a global counter, and III) invoke the target function
that would print the success string if the global counter is equal to three.
Therefore three clients need to connect to the server to trigger the Success!!
string.

The challenge requires the participants to recognize the assembly pat-
terns associated to simple network actions (e.g., the initialization of the
socket structures and bind(), listen(), accept() APIs), and the paren-
t/child relationship during a fork(). For the sake of clarity, we sketch the
call graph of the binary in Figure 5.2. The figure shows in green the three
functions that need to be reversed to solve the exercise, and in red, the three
additional functions that play no role in the solution. Two out of the three
additional functions are responsible for handling error conditions generated
along the binary. The purpose of such procedures is to assess if participants
can easily recognize and ignore functions that only generate error messages.
The third procedure is the one that implements the connection management.

Test 2. The second binary implements a simple list management appli-
cation. The application accepts two parameters, a list of integer numbers,



96 96

main

sort case

setup is sorted length

/ N\

init list is_empty
insert node is number

Figure 5.3: Call Graph of Test 2

and one letter that specifies the required operation: (a) — the application
sums the elements of the list and prints back the result; (r) — the applica-
tion prints the list in a reversed order; (s) — the application checks whether
the list is sorted and contains at least four elements. If both conditions are
satisfied, the program prints the success string.

This second binary is more complicated than the previous one, and all op-
erations are performed over linked lists of custom data structures. To ensure
that the difficulty was higher than TEST 1, we verified that all twelve com-
plexity metrics had higher values than in the previous test. The challenge
requires the participants to be familiar with linked lists in assemblers (i.e., on
the way C structs and pointers are compiled in binaries) and to recognize
list-related operations (including a bubble-sort implementation). Figure 5.3
represents the simplified version of the call graph: as in the previous case, we
label as useless the functions that are not related to the challenge solution.
For all the other functions, we report their self-explanatory name. However,
the symbols’ names were stripped from the binaries, so the participants did
not have this information.



5.4. Participants recruitment 97

Expert
Novice
800
<
£ 600 A
()
£
S
5 400 A
>
°
(73]
2004 ¢ 0 %
0 L T T T T
Never Sometimes Often Usually

How often do you reverse ?

Figure 5.4: Relationships between how often the subject reverse binaries
and the total time spent to solve the exercises.

5.4 Participants recruitment

We ensured that all methods and experiments performed for this work are
in line with our institutions’ research ethics guidelines and our country reg-
ulations on data collection and retention. The participants were recruited
over a period of several months and the invitation was sent from our institu-
tional email address as proof of credibility. The text, reported in Appendix
A1, contained a complete description of the experiment with the link to our
online infrastructure. As we specify in the recruitment email, we did not pro-
vide a compensation for our experiments and we only collected anonymous
data.

In particular, we contacted students who took a binary analysis or reverse
engineering course in three different universities. All students had been
previously trained to reverse binary programs, but while some were still
beginners, others already had experience by playing CTF competitions. We
also contacted nine different top CTF teams, asking for players who usually



98 98

solve complex RE challenges to participate in our experiment. Overall, 95
users responded to our request, but only 72 completed successfully the two
tests.

In order to compare the effectiveness of different approaches to read the
disassembled code, we split our participants into two groups: ezperts and
novices. On the one hand, simply relying on the “reputation” of the partici-
pants could lead to biased results in our data analysis. On the other hand,
self-evaluation questions can also produce biased results because humans
tend to adjust their answers depending on their concerns with the inter-
viewer’s perception [TY07, HGKO03|. Therefore, we decided not to divide
the participants in two a priori groups, but rather to combine their self-
reported experience with the time required to solve the tasks. First, when
visiting the website, the participants were asked how often they reverse en-
gineer binary code on a four-point scale in ascending order of frequency:
never, sometimes, often, and usually. Then, once all experiments had been
completed, we identified the time required by the “worst” participant who
reported to reverse binaries often or usually (i.e., 172 minutes). Finally we
adopted this value as a threshold: participants who took less time than this
threshold are considered experts, otherwise novices. The two groups con-
tained respectively 33 experts and 39 novices. It is worth noting that all
CTF players ended up in the expert group.

Figure 5.4 shows the relationship between the answer to the frequency
question and the time required to complete the two assignments for the two
classes of users whereas the dashed horizontal line represents the threshold
we have inferred.

5.5 Data Analysis

We now discuss the results of the participants who completed the two exer-
cises (39 novices and 33 experts). First of all, as we expected, novices and
experts spent a different amount of time to complete the assignments. In
fact, the two exercises combined took between 24 and 172 minutes (92 on
average) for the subjects in the experts’ group and between 178 and 941
minutes (340 on average) for novices. In other words, even though the ex-
ercises were relatively simple, beginners were, on average, 3.7 times slower
than experts, and the fastest beginner was 7.4 times slower than the fastest
expert.

To avoid bias, we computed the confidence intervals for the two groups
of users, with a confidence value equal to 0.95. In this second scenario we
obtained that the time required was between 75 and 110 minutes for experts



5.5. Data Analysis 99

I main bridge target

1400

1200

2 1000

fsel

& soof i

B of

@ 600

200

10 15
Time (min)

B main bridge target

[ 10 20 30

I main bridge target

1‘|9|Drne (min)ISU 200 250
Figure 5.5: Three distinct RE sessions of Test 1 showing the time spent on
each basic block during the session

whereas it ranged from 289 to 391 for novices.

Moreover the application of a 2-sample t-test over the two groups in
relation with the solution time confirmed us that it is meaningful to separate
the two groups in terms of time needed to accomplish the task (t-test 9.31,
p-value 3.5e-10).

We also analyzed the solution time by splitting the users according to
their answer to the initial question about how often they reverse binaries.

As shown in Figure 5.4, it took on average 301 minutes for users who an-
swered 1 (rarely reverse binaries), 233 for those who answered 2, 86 minutes
for those who answered 3, and finally 40 minutes for the only three experts
who reported to reverse binaries on a daily basis. This shows that while all
participants in our expert group were fast, on average, those who perform
this task more often tend to be faster.



100 100

Mining for Strategies

We started our analysis by manually inspecting the telemetry data collected
from the users’ sessions, looking for macro-differences that could indicate
the use of different strategies. As an example, Figures 5.5 shows a graphic
representation of the behavior of three users during the first exercise (time
is on the X axis and BB addresses on the Y'). The horizontal bands of
different colors represent the three useful functions (those required to solve
the exercise), while the white region indicates the BBs located in other
irrelevant parts of the program. Each dot corresponds to the user focusing
on a given basic block for a certain amount of time (expressed by the size of
the circle). The labels target and bridge respectively indicate the function
that prints the success string and the function that has main as the caller
and target as one of the callees.

The first two graphs belong to experts (the fastest in our test and an
average one), while the bottom depicts a beginner session.

The three graphs clearly show very different approaches to reverse the
same binary. The second expert spent a considerable amount of time on main
(the red band), while the first moved away from it after a few minutes and
returned to its code only after a first overview of the binary. Moreover, the
order of their visits is different. The first started from main while the second
user started the exploration from the target function (where the success
string is printed). However, even if the first approach is more efficient, the
first expert spent more time looking at unrelated code (dots in the white
band) than the second (9 against 4 minutes).

The novice session appears more chaotic. It contains many more points
(i.e., BB visits), reaching a total of 3469 visited blocks, and the user kept
switching back and forth between the three main functions, probably trying
to make sense of the entire program.

Looking at all 72 graphs, it seems like everyone has their own style.
However, we are interested in generalizing these first observations and find-
ing whether the strategies adopted by experts have something in common
that does not appear in the novice sessions. We also notice considerable vari-
ance among the experts themselves, so we want to study possible differences
among users in the same group.

To perform this analysis, we first distilled the collected low-level events
into several high-level features representing observable behaviors that we
could identify in our dataset of participants. We then tested whether each
feature was substantially different between experts and novices and whether
it was positively correlated to the overall solution time. While this second
aspect does not necessarily imply causation, it can still show which set of



5.5. Data Analysis 101

Table 5.2: Prevalence of Function-level Strategies for novices and experts
while approaching the two binaries

Strategy Test 1 Test 2
Novices Experts Novices Experts

Sequential 4 - 8 -
Backward 2 (§ 5 8
Forward 33 27 26 25
Depth-First 0 2 1 6
Breadth-First 11 8 16 12
Hybrid 28 23 22 15

techniques are more commonly used by those reversers who could complete
the exercise in a shorter amount of time. Before performing the statistical
test, we checked if the data distribution (especially for time samples) was
normal and, in negative case, we applied a log-transformation to normalize
it. For each test that we executed, we collected the resulting p-values inside
a vector, and we used the Bonferroni method to correct them with an input
alfa of 0.05 (all additional hypotheses we tested are listed in Appendix 5.7).
The corrected alfa that we obtained is 1.2e-03 and all values that we report
in the chapter already take into account the Bonferroni correction.

5.5.1 Functions Exploration

Function exploration strategies play an important role to discover the path
between the main and the target functions. Once this path has been un-
veiled, users can focus on the BBs that compose the functions in this path
and therefore they abandon their function-level strategy and drive the explo-
ration according to what they found. For example, if we consider the second
expert of Figure 5.5, we can note that she adopts a backward approach,
starting from the target and then reaching the main function. Then, she
focuses with more attention on the BBs of such (and other) functions to
figure out how to craft the proper input to solve the challenge.

Three different ways exist to move across functions: by following Xref, by
direct access (i.e., by clicking on the function name in the sidebar), and by
following the CFG (i.e., by clicking on the call instructions or by using the
ESC key to step backward). Accordingly, we identified three main exploration
strategies: forward (starting from the program’s main and following the
CFG), backward (by first searching the API call that prints the SUCCESS
string and then backtracking the analysis by following Xref references),
and sequential (i.e., by exploring each function independently of its role or



102 102

position in the callgraph).

Whenever a user explores the code of a function and encounters a call
instruction, she can decide to proceed either depth-first or breadth-first. In
the first case, the reverser visits each function vertically until she reaches
a leaf. In the other, she explores the called functions horizontally before
moving deep into each part of the call graph. To discern between the two
strategies we cannot use standard DF and BF detection algorithms, as users
often alternate between the two methods. Therefore, we considered a sliding
window of two visits on the call graph and compared consecutive bi-grams
by looking for typical BF or DF patterns. For instance, a typical window
of a user using a DF approach consists of two visits to different functions
following the direction of the graph’s edges. On the other hand, the bigrams
of a BF strategy contain consecutive bigrams of the same two functions, but
appearing in alternate directions (e.g., f — g followed by g — f).

We say that a participant predominantly uses a given strategy if it em-
ploys it at least 50% more frequently than the other. When this does not
happen, we assign the user to a hybrid category, which means that the re-
verser adopted both exploration strategies at different points in time without
a clear preference. The prevalence of the different exploration techniques is
summarized in Table 5.2 for both novices and experts, and it shows that
experts and novices clearly use different techniques. The sequential explo-
ration is adopted by a non-negligible amount of the beginners (4 in the first
test and 8 in the second one), but none of the more experienced reversers
follow this approach. Users in both categories prefer the forward rather
than the backward exploration. We can also see that BF visits are much
more common than DF, and it is important to note that almost none of the
novices resorted to a DF approach.

So far, we learned that experts tend to use different strategies, but it
is still unclear whether a given strategy impacts the time required to solve
the exercises. We performed an ANOVA test by splitting the participants’
solution time into 3 groups (depth-first,breadth-first or hybrid), and applying
the one way function to these. We ran a separated test for each challenge
because some participants changed their strategy depending on the task, but
all tests failed (p-values for each challenge were 0.17, 0.19 with effect sizes
of 1.8 and 1.6 for the forward-backward-sequential classification and 0.14,
0.2, effect sizes of 2.1 and 1.9 according to the depth-breadth separation). In
fact, as depicted in Figure 5.6, all techniques were used to efficiently solve
the two exercises.



5.5. Data Analysis 103

40k
Novice

35k - Expert

30Kk A

25k

20k A

15K 1

Solution Time (s)

10K 1

5k A

BFS HYBRID DFS
Strategy

Figure 5.6: Time needed to solve Test 2 grouped by strategies.

5.5.2 Code Selection

We now check where the reversers spent most of their analysis time. Ta-
ble 5.3 shows all functions in the second binary, and for each of them, it
reports several metrics. The table is divided into two parts: the top half
lists useful functions, i.e., those involved in the solution of the problem. The
bottom half lists instead the five ‘useless’ functions (the binary accepts three
different commands, but only one is required to print the success string).
However, since also the related functions include irrelevant paths (e.g., to
handle error conditions), in the first two columns we report the total num-
ber of basic blocks in the function and the total number of ‘good’ blocks
(Bgood), which are those that must be reversed to conclude the exercise.
The table also reports how much time (both the absolute median time and
in percentage over their entire session) experts and novices spent on each
function and the overall ratio between the experts and the novice time (last
column) computed as the absolute median time of novices divided by the
absolute median time of the experts for that function.

There are two interesting observations we can make from these results.



104 104

|UUII

ﬂiﬂgﬂﬂﬂ@ﬁﬂ
SR R

M
T U&ﬂw

1

[Tl
I
ngl

Figure 5.7: Average times spent in the BBs of Test 1

First of all, all participants spent most of their time on main (because it was
longer) and on the functions that operate on linked lists. However, beginners
were impacted more by the nature and complexity of the function. For
instance, they spent much more time (4.8x slower than experts) to recognize
that is_number only verifies that all parameters are integer numbers. We
believe that this is due to the fact that similar simple functionalities are

encountered frequently by reversers and therefore are easily recognized by
experts.

Nevertheless, the most striking result is the fact that, in percentage,
novices spent almost the same percentage of their time (8.6% vs 8.3% for
experts) on reversing useless code (even if in absolute terms they still spent



5.5. Data Analysis 105

Table 5.3: Median Time Per Functions for task 2

Function BB BDBgyood Experts Novices Time
min (%) min (%) Ratio
main 16 12 9.1 (15.8%) 29.4 (13.9%) x3.2

sort case 8 6 5.7 (9.6%) 18.2 (8.6%) x3.1
setup 6 4 4.4 (7.8%) 13.4 (6.3%) x3.0
is_sorted 12 10 104 (18.1%) 28.9 (13.7%)  x2.7
init_list 8 7 8.7 (15.1%)  38.7 (18.3%)  x4.4
is_empty 1 1 0.26 (0.4%) 1.0 (0.5%) x3.9
insert node 7 6 5.8 (10.2%)  28.0 (13.4%) x4.8
is _number 9 8 4.7 (8.2%) 22.9 (10.9%) x4.8
length 4 4 3.5 (6.2%)  12.0 (6.0%)  x3.5
useless-0 6 0 1.0 (1.8%) 2.8 (1.3%) x2.8
useless-1 4 0 0.5 (0.9%) 2.9 (1.4%) x5.7
useless-2 7 0 0.9 (1.6%) 2.9 (1.4%) x3.1
useless-3 4 0 1.5 (2.6%) 5.4 (2.6%) x3.6
useless-4 4 0 0.8 (1.4%) 3.9 (1.9%) x4.7
TOTAL 96 58 57.2 (100%) 210.4 (100%)  x3.6

four times more than experts). At first, this seemed counter-intuitive. In
fact, we expected experts to be better at quickly skimming through the code
and ignoring it if it was not related to their task. However, given the numbers
in Table 5.3, we hypothesized that this discrepancy is because novices were
so slow to understand the difficult parts of the code that, in percentage,
they appeared faster in discarding the non relevant ones. We computed the
same values for the first binary and we observed the same trends even if in
that case the number of functions is minor compared to the second challenge
(only 6). Indeed, the main is still the function where users spent most of
their time and the effort dedicated to the useless functions is basically the
same in percentage (13.1% for experts vs. 12.5% for novices). Table 5.4 the
values for the first challenge.

Hence, we decided to measure the total number of basic blocks that were
visited by each participant. In total, the two exercises combined contained
155 basic blocks, but only 94 (61%) of them were actually along the solution
path. To complete the two exercises, the median expert completely skipped
(i.e., never even checked once) 24 basic blocks, while the median novice
skips only 6 of them. Indeed, this fact shows that experts could cut entire
branches (or functions) by only looking at a few of their blocks.

For instance, Fig. 5.7 shows the CFG of Test 1. The green edges point
to interesting BBs while the red ones point to useless BBs. Each node is
split in half: the intensity of the left side represents the amount of time



106 106

Table 5.4: Median Time Per Functions for Task 1

Function BB BBj.d Experts Novices Time Ratio
mins (%) mins (%) Time Ratio
main 23 17 14.6 (44.6%) 65.3 (45.4%) x4.4
bridge 12 9 11.4 (34.9%) 52 3 (36.3%) x4.5
target 3 4 (6.3%) 2 (5.7%) x3.4
useless-0 1 0 0.17 (0.5%)  0.60 (0.42%) x3.5
useless-1 4 0 0 58 (1.8%) 2.07 (1.4%) x3.5
useless-2 16 0 5(10.8%) 15.4 (10.7%) x4.4
TOTAL 59 20 32.6 (100%) 143.8 (100%) 4.4

spent on that BB by the experts (on average); the right side represents
the same for novices. If we consider the noninteresting paths, the blue
intensity is generally higher than the red. Experts mostly recognize that
some code parts lead to useless BBs by just reading the first BBs of that
function and then recovering the correct path to the target function. Novices
instead needed to go through also the noninteresting parts of code before
understanding that they do not need them for their purposes.

Finally, we performed a 2-sample t-test using as an hypothesis the cor-
relation between the group (i.e., expert/novice) and the time spent on non-
useful portions of code. With a p-value of 5.3e-04 and a t-test of 4.86 we
can conclude that indeed there are statistically significant differences in the
way the two groups of participants look at the non-interesting parts of the
binary.

5.5.3 Birdseye Overview

Experiments on code comprehension conducted by Uwano et al. [UNMMO6],
and independently validated by [SFM12], have found that users often per-
form an initial scan of the entire codebase to get a general idea of what the
program is supposed to do. During this initial scan, the authors found that
programmers went through 70% of the code in the first 30% of their analysis.

By looking at the reverse engineering sessions we collected in our exper-
iments, we can clearly identify some reversers performing such preliminary
scans. However, this behavior is not as typical as one might expect. In fact,
in our data, only 36.0% of the experts visited 70% of the code blocks in the
first 30% of their time. On average, at the 30% mark, expert reversers had
visited only 48.2% of all BBs. The number increases to 53.4% (still well
below the 70% threshold) if we only count the good basic blocks and ignore



5.5. Data Analysis 107

—— Best
1001 — worst

/

60 1

Visited BBs (%)

40 A

201

0 T T T T T T
0 20 40 60 80 100
Time (%)

Figure 5.8: Progression of Top5 and Bottomb experts in the second chal-
lenge.

those that were not relevant for the task. Beginners tended instead to move
through each BB much quicker at first and to return back multiple times
during their sessions to read again the code (we will analyze this aspect in
Section 5.5.4). As a result, 69.4% of them met the 70% threshold at the
30% mark.

But there is more. Figure 5.8 shows the Cumulative Distribution Func-
tion (CDF) of the visited BB over time by comparing the top five experts
(based on their solution time) against the bottom five. It is interesting to
observe that the fastest reversers (in red) progressed more linearly and did
not employ any initial survey strategy.?

This seems to suggest that a preliminary overview of the entire binary
might be useful to get an orientation in large codebases, but it might not
be very useful in smaller exercises. Even more surprising, we found that the
majority of experts did not even ‘try’ to quickly skim through the code of
the various functions, even though they did not know in advance anything

2This trend does not change if, instead of basic blocks, we perform the measurement
at a function granularity (we omit the graph for space reason).



108 108

about the complexity of the task.

Figure 5.8 also confirms what we found in the previous section, i.e.,
that all best reversers were not fastest only because they could read and
understand the code faster, but also because they reversed less code. On
the far right of the CDFs we can see that the red curves terminate between
60% and 80% of the total BBs (remember that only 61% were along the
solution path), while the blue lines fall in the range between 80% and 100%.

5.5.4 Basic Blocks Exploration

After looking at the function granularity, we now focus our attention on
individual basic blocks.

Thanks to the use of the restricted focus viewer, our reverse engineering
platform can accurately track the time spent by each participant on each
individual BB. However, not all these time events are equally important.
For instance, it can occur that when moving the mouse pointer between
two BBs, the user accidentally moves the mouse over an intermediate BB
without being really interested in its content. Our infrastructure would
capture this behavior, generating an event for all three BBs. To remove
the noise introduced by these spurious events, we decided to conservatively
discard all the views with a duration below 500 milliseconds. This threshold
is based on the fact that, according to Rayner et al. [RJP08], while reading
text, the eyes stay upon each single location from 100 ms to over 500 ms.
Given the fact that a BB is often composed by multiple lines, this threshold
ensures that a participant had time to focus on at least one location in
the BB. Anything below that would not provide much information to the
reverser.

It is essential to understand that the time a reverser spends on a single
BB is affected by multiple factors, including the BB complexity, the user
assembly reading skills, the role of the block inside the binary, the navigation
strategy of the user, and the state of the ongoing RE session. We will try
to break down these factors in the rest of the section.

To begin with, for each BB we identify three different time values. First,
the time each user spent on the block the first time she encountered it
(Tfirst). Second, the total cumulative time (7o) each user spent on the BB
over the entire exercise. And finally the longest consecutive time each user
spent on the block (Thnaz)-

By comparing these three time intervals, we can make several interesting
observations. Figure 5.9 shows the distribution of the median time spent by
each user over all the basic blocks of the two exercises. It is interesting to
note how, the first time they encounter a new basic block, both experts and



5.5. Data Analysis 109

Novices

102 - Experts

T |

vedlian 1ime (S)

T 1
==
i e

100 -

First Max Total

Figure 5.9: Comparison of the distribution of Trirst, Thraz, and Ty time
among the users in the two groups.

novices spend only a few seconds on its code: on average 1.3s for beginners
and 1.5s for experts. Instead, the maximum and total time spent on the
blocks are over one order of magnitude higher, often lasting for tens of
seconds (6.8s vs 21.9s for T}4z, and 16.3s vs 73.4s if we compute the median
times for the Tyy). As a confirmation of this aspect, we ran the 2-sample t-
test over the values of T'st, Tinae and Ty collected over each user and then
separated by novices and experts. Indeed, we obtained that the difference
for the first visit (Tf;rs) is not statistically significant (p=0.2) but the time
difference on Tyt and Tppq, are (respectively with p=7.4e-07 and p=1.5e-08).

At first, one might easily dismiss the role of these first short visits, noth-
ing more than a quick glance at a block while the user rapidly moved the
mouse over it. It might seem obvious that the ‘real’ reverse engineering is
performed over the subsequent visits. However, if we compute the fraction
of BB that a user visited only once we see that things are more complex. On
average, experts visit 28% of the BBs only once. In 80% of these cases, the
visit lasted less than two seconds. This means that experts dismiss almost



110 110

8000

7000 A

6000 ~

5000 A

4000 A

Number of Visited BBs

3000 A

2000 ~

1000 A

0 200 400 600 800
Solution Time (min)

Figure 5.10: Solution time w.r.t. number of visited BBs.

22% of the basic blocks in a single glance. On the contrary, inexperienced
users make a single visit only for 10% of the BB, and in total, dismiss only
7% in less than two seconds.

All the remaining BBs are visited by each reverser multiple times. In fact,
even if the two programs combined contained only 155 BBs, to complete the
two exercises, experts visited, on average, 1368 basic blocks and novices 4326
(2-sample t-test=9.7 and p=6.8e-12). Figure 5.10 shows the relationship
between the time required to solve the challenges and the number of visited
blocks.

However, visiting a block multiple times is not always a sign of ineffi-
ciency, and in some instances it is even unavoidable (e.g., those blocks that
contain a function call are often re-visited when the user moves out of the
function and back to the callee). We ran the Pearson correlation to test
if a relationship exists between the number of times the users go through
an already visited BB and the overall solution time and obtained a result
of 0.68 (p-value 1.2e-05) for experts and 0.46 (p-value 2.5e-04) for novices.
Therefore we investigated this aspect in more detail and computed the num-



5.5. Data Analysis 111

50
Experts
Novices
40 A
S 304
il
1l
1
i
= 20 A
!
10 A i
°
0 .
5 10 15 20

T_first == T_max

Figure 5.11: Percentage of Basic Blocks visited only once, or analyzed on
the first visit.

ber of times the first visit to a basic block was not the only one, but it was
the longest (i.e., Tfirst == Tmaz)-

If we assume the most prolonged visit is when the user actually com-
pletely reversed the BB code, we can use this indicator to know whether
this is performed for the first time the reverser encounters a new code. In
this case, the median is 9.6% of the BB for beginners and 14.8% for experts.
Again, it seems that experts tend to fully understand the code the first time
they read it, while beginners go back multiple times, and in 80.6% of the
cases, their first visit is not the one where they reason the longer on the
code.

Finally, it is interesting to test if these short first visits are just a con-
sequence of the fact that a reverser might be simply faster at processing
assembly code. In other words, we wanted to test whether those users that
have shorter first-time visits (T'f;s¢) also spend less time overall on the BBs
(Tiot). However, the Pearson correlation of the 2-time values is —1.2, p-
value=0.5, showing no statistically significant correlation.



112 112

Table 5.5: Correlations between visits duration and BB length

Experts Novices
Hypothesis Pearson p-value Pearson p-value
Trmae and len(BB) 0.29 1.0e-04 0.31 5.8e-04
Tiot and len(BB) 0.30 8.28e-04 0.33 1.6e-04
Ttirst and len(BB) 0.37 1.9e-05 0.37 1.3e-06

Figure 5.11 shows how a scatter plot of the two aforementioned met-
rics (percentage of blocks visited only once, and for which the first visit is
the longest) can clearly separate the majority of the experts from novices
reversers.

5.5.5 Speed Factors

In our final analysis of the different reversers’ speed, we look at which factors
affected the time spent on individual basic blocks.

For this purpose, we limit our analysis to those blocks that actually
needed to be understood in the first place. Thus, we first remove those BB
that are NOT related to the solution of the exercise as well as all headers
and footers of the functions (as it might not always be required to analyze
their behavior carefully). The remaining (which we will refer to as BBcope,
and that account for 47% of all blocks in the two assignments) capture the
code each user had to reverse to reach the correct solution.

The first hypothesis that we wanted to formulate was to study the po-
tential correlation between the time spent on each block and the size of the
block itself. Indeed, we observed that the first, total and max times are pos-
itively correlated to the number of assembly instructions contained in the
basic block. However, the exciting result is that the Pearson correlations are
quite small for T}, and T5,q, while they exhibit an higher value for T;.¢ as
reported in Table 5.5. Moreover, under the same hypothesis, the correlations
are always more elevated for novices.

One way to interpret these results is that the amount of time spent by
reversers on a basic block is only marginally influenced by the time required
to actually read (or ‘parse’) each assembly instruction. The impact is more
visible for inexperienced reversers (who probably spend more time reading
the assembly) and less on experienced users. To understand which other
factors contributed to the reversing time, we extracted the top 5% of the
basic blocks in which each user spent most of her time. Then we compared
all sets to identify those blocks that were problematic for a large percentage



5.5. Data Analysis 113

Table 5.6: Statistical tests w.r.t. the branch selection data (upper part) and
the semantical elements data (lower part)

Hyphothesis Result p-value
Novices true branch & solution time 0.21 0.06
Novices close branch & solution time 0.13 0.2
Experts true branch & solution time 0.42 0.7
Experts close branch & solution time 0.87 0.4
2-sample T-test Comments 0.4 0.6
2-sample T-test Variable Renames 0.8 0.4
2-sample T-test Function Renames 0.7 0.4

of users.

If we look at total or max time, both experts and beginners spent most
of their time (respectively 19% and 18% on average) on blocks that prepared
the function call parameters. While usually straightforward to reverse, all
reversers probably paused to reason about which values were passed to the
function’s parameters. If we look instead at the blocks that frequently ap-
pear among beginners but not among experts, we find a total of 20 BBs
that are shared between a minimum of 3 and a maximum of 11 novices and
that are responsible for an additional 9% of time on average overall. We
analyzed them to unveil the assembly language (ASM) patterns that slowed
down the novices while reading them. In total 6 blocks contain uncommon
instructions (such as setnz, imul, and sar) and 7 include instructions that
operate with in-memory data structures, thus requiring to reason about the
memory layout of the program in that specific moment (e.g., instructions
that access the i-th element of the list of Task 2). We also found 3 BBs
that operate on the static strings contained in the binary. Among these 20
BBs only 4 of them have a number of instructions major than 10 while the
other 16 contains less than 6 instructions (and in 10 cases they were just
3 instructions long). This finally shows that the nature of the instructions
is more relevant than their number to explain the comprehension time for
beginners.

5.5.6 Other Aspects

In the previous sections, we discuss several aspects we believe can capture
subtle but essential characteristics of the behavior of either experienced users
or beginners. We also tested many other hypotheses and tried to isolate
other behaviors (reported in Table 5.7) but for which we could not find any
statistical difference among our users. For these hypotheses that did not find



114 114

Table 5.7: Additional hypothesis (not discussed elsewhere)

Hyphothesis p-value exp p-value nov
First quartile of time spent on a BB and 01 0.6
BB length ’ ’
Interquartile of time spent on a BB and

BB length 0.06 0.07
Average of time spent on a BB and

BB length 0.08 0.1
Mode of time spent on a BB and

BB length 0.4 0.7
TfiTst and T’maw 0.3 0.2
Trirst and Tiop 0.8 0.8
Solution time and number of BBs she

skimmed (i.e., she did a quick look at BB 0.4 0.5

and then a longer one to the same BB)
Solution time and how many times the user
went back to the previous BB instead of 0.1 0.2
going forward

Glanges (i.e., visits of less than 2 seconds)

and BB length 0-1 0-1
Solution time and how many times she went to

0.8 0.1
a true branch
Solution time and how many times she went to 03 0.2

a close branch

a statistical validation we report the p-value that we obtained after running
the Pearson correlation, but we omitted the correlation value itself for space
reasons, since it was not meaningful. However, we want to add two more
short points to our analysis regarding the impact of the user interface in
branch selection and the other events we collected from our platform.

Branch Selection - when visiting a conditional BB for the first time,
beginners choose to explore the true branch first in the 41% of the cases,
whereas experts followed the true branch in the 42%. However, we found that
the physical position (on screen) of the basic block is much more important
than its logical one. In fact, our results show that both experts and novices
tend to simply visit first the closer basic block, respectively in 87% and 88%
of the cases they encounter a branch. Finally we tested the hypothesis that
the choice of either true branch or close branch as a next step has an effect
on the overall time to reverse engineer the binary. However for both experts
and novices we obtained p-value > 0.1 (values are reported in Table 5.6).

Comments and Rename Actions - we also investigated the use of the
other features implemented in our infrastructure: comments, variable re-



5.6. Summary of Findings 115

names, and function renames. On average, we recorded 24 comments among
all the expert sessions, whereas we count only 11 from novices. The same
trend happens for variable renames (19 vs. 7) and function renames (12 vs.
2). One more time we applied the 2-sample t-test for each of the semantical
elements created by the user, divided for experts and novices. The results of
the test (reported in Table 5.6) show no statistical significant relationships
between these features and the users performance. At a first look, this re-
sult looks like surprising as we would expect that a statistical significancy
exists between the usage of semantical elements, the solution time and the
experience level. However our hypothesis for this behavior is that probably
the statistical relationship between the use of semantical text fragments and
the RE performances become more and more evident while observing this
on larger and more complicated codebases (potentially together with other
reversers with the same experience and working in the same team). We will
discuss more carefully about challenge design limitations in Section 5.7.

5.6 Summary of Findings

In this study we quantitatively measured the behavior of 72 reversers, both
experts and novices, over a total of 272 hours of RE activity. By looking
past the individual features discussed in the previous section, we will now
summarize the main findings that emerged from all our results.

First of all, we found that each user is unique and has her strategy and
her way to reverse binary code. However, by looking under the apparent
diversity of actions, we can identify a number of core strategies. To be-
gin with, novices move prevalently forward from the program’s main while
experts mix forward and backward movements. While statistically the dif-
ference is clear, there are notable exceptions in all groups, showing that one
can be very efficient independently from the strategy it adopts (except for
the sequential scan that is only used by the very beginners).

Experts also exhibit a more linear progress, avoiding to jump back and
forth among the same basic blocks they already visited in the past. More-
over, they make every visit count, even the first one. This allow them to
dismiss 22% of the basic blocks in a single observation, which often last less
than two seconds. The 70-30 birdseye scan observed several times in studies
of program comprehension does not seem to apply to binary reversing, at
least at the small scale dictated by our exercises. Instead, the experts’ abil-
ity to quickly identify and ignore the regions that were not relevant for their
task was one of the essential aspects that distinguished experienced users
from beginners. This, which fits the self-reported techniques that Votipka



116 116

et al. [VRM 20| group under the name of subcomponent scanning could, in
fact, be related to the ability of the expert’s brain to recognize code patterns,
but more focused experiments (e.g., with brain EEG sensors) are needed to
investigate further and validate this hypothesis.

Finally, our experiments show that the number of instructions is a very
poor predictor of the time required to understand a piece of code and that
the presence of less common instructions has a more noticeable impact only
on novices.

5.7 Limitations

When we designed our experiments, we had to make many choices to balance
the difficulty of the problems (and, therefore, the time required for complet-
ing the exercises), the amount of data we could collect, and the impact of
our instrumentation on the user experience. These choices might have intro-
duced biases in the results or might have prevented us from observing some
aspects of the users behavior.

Expertise - In our study, we measure the expertise of a user in three ways.
First, based on “reputation”, i.e., by inviting as experts only those users that
can already solve very difficult reverse engineering challenges. Second, by
the frequency on which each user reverses binary files (as reported in the
questionnaire during registration), and finally by the total time required to
solve the two assignments. However, one may argue that a good reverser
does not necessarily need to be fast—but some may prefer instead to be
meticulous and precise in her findings. New experiments should be designed
only for expert reversers to measure this aspect by providing them with
more challenging assignments where precision may be more important than
speed.

Restricted Focus Viewer - The use of a RFV to capture the part of the
code a user is currently focusing on is a standard methodology in compre-
hension experiments. While it allows for remote participation without the
burden of on-site (and uncomfortable) eye-tracking solutions, this choice
also introduces some limitations. First, it impacts each participant’s overall
speed. It also prevents glances, in which users quickly look at a different
basic block, maybe just to check a register or the final instruction. In our
settings, this requires moving the mouse, and therefore users might perform
this task less often than in an unconstrained environment. We can also hy-
pothesize that the issue with the glances affects the order in which basic
blocks are visited. Another potential drawback is that it could technically



5.7. Limitations 117

discourage the participants from using the birdseye overview (Section 5.5.3),
forcing them to rely mostly on their own memory to remember a previously
visited basic block. However, this affects only a reduced number of cases:
moving the mouse back to a previous basic block is “expensive” only if we
want to quickly recall a specific location of that block (e.g., a register, a
single ASM line) as in the case of glances, but it becomes fundamental,
therefore justifying the time “expense,” if the participant wants to entirely
read the BB.

These factors can affect the code comprehension process by distorting
the way it is performed. In absence of RFV, we could expect a higher
number of glances and therefore a shorter time to discard some blocks of
code. Unfortunately the only way to determine how the RFV influences our
findings would be to compare it with some data collected using the same tool
without RFV, which is impossible by design. Thus we can only acknowledge
this limitation and hope that future studies will be able to overcome it with
different technologies or with a different experiments’ design (e.g., smaller
group of experts monitored with eye tracking devices).

Nature/Number of the Exercises - It is possible that the tasks we ask
the participants to perform may affect the ecological validity of the behaviors
we observed in their session. In particular, more difficult problems and larger
codebases could require different strategies or help identify other aspects
that differentiate one expert from the others. However, in this measurement
study, we wanted to include beginners and, therefore, opted for tasks that
could be solved (even if with more significant effort) by non experienced
reversers. While the number of tasks could be extended , this would increase
the time to complete our assignment, especially for some participants who
already spent several hours with the current configuration (and that are not
affiliated to our group). Even if this represents a limitation of our work, it
is probably an inevitable choice given our initial goals, i.e., to involve many
users ranging from the “newbie” to the “elite” hacker and compare them on
the same set of challenges. We hope that future studies will either confirm (or
disprove) our results with larger and more difficult binaries to reverse. For
example, we can hypothesize a more frequent use of the birdseye overview
(described in Section 5.5.3), which in our experiments was used only by a
small percentage of experts. Another aspect that is largely related to the
size of the binaries is the number of functions, and therefore we expect a
more pronounced impact of the different strategies described in Section 5.5.1
on larger programs. For instance, an initial horizontal investigation can be
beneficial when analyzing larger codebases.



118 118

5.8 Conclusions

Drawing inspiration from the first set of interviews conducted by Votipka
in 2020 [VRM™20], the objective of our study was to lay the second brick
towards a solid understanding of the RE process from an assembly code
comprehension perspective.

A deep understanding of the topic can help us from different points
of view and has a few interesting implications that should be taken into
account. With our work, we hope to provide a valuable input for future
research in a field that, so far, was poorly explored.

In the spirit of open science, we release 3 the source code of our web
RE framework together with the challenges and the test scripts, to allow
the community to continue further studies in this direction. Lastly, our
measurements are summarized in Table 5.8.

*nttps://github.com/elManto/REmind


https://github.com/elManto/REmind

5.8. Conclusions 119

Table 5.8: Individual Experts Features

User Solution Time Function Exploration (Testl ; Test2) Transitions Tfirst=Ttot Tfirst=Tmax Skipped BB

Exp.1 169 Forward,Hybrid;Forward, DFS 2997 16.7% 14.8% 18
Exp.2 137 Forward;Hybrid;Forward, BFS 2551 15.4% 8.3% 19
Exp.3 120 Forward,BFS;Forward,DFS 1662 29.6% 12.9% 24
Exp.4 120 Backward,Hybrid;Backward, BFS 978 29.8% 16.7% 30
Exp.5 163 Forward,Hybrid;Forward, BFS 1654 35.6% 17.2% 4
Exp.6 137 Forward,Hybrid;Forward,Hybrid 2359 18.7% 14.1% 15
Exp.7 134 Forward,Hybrid;Forward, DFS 2845 22.5% 8.3% 21
Exp.8 119 Forward,Hybrid;Forward,Hybrid 1750 29.6% 7.7% 30
Exp.9 156 Forward,Hybrid;Forward,Hybrid 2070 13.5% 21.2% 4
Exp.10 162 Backward,Hybrid;Backward,Hybrid 2141 25.1% 9.6% 24
Exp.11 37 Forward,Hybrid;Forward,Hybrid 450 46.4% 14.8% 31
Exp.12 34 Backward,Hybrid;Backward,Hybrid 727 35.4% 16.7% 25
Exp.13 118 Forward, BFS;Backward;Hybrid 1546 9.6% 18.7% 2
Exp.14 119 Forward,BFS;Forward, BFS 1842 11.6% 14.8% 4
Exp.15 96 Forward,BFS;Forward,BFS 1564 19.3% 17.4% 23
Exp.16 154 Forward,Hybrid;Forward, BFS 2547 10.9% 14.8% 1
Exp.17 80 Forward,BFS;Forward, DFS 1321 23.8% 16.7% 13
Exp.18 48 Forward,Hybrid;Forward, BFS 761 34.8% 10.9% 41
Exp.19 81 Forward,BFS;Backward,BFS 746 40.0% 13.8% 3
Exp.20 48 Forward,Hybrid;Forward, DFS 818 22.5% 21.2% 34
Exp.21 38 Forward,BFS;Forward, BFS 483 47.7% 6.4% 27
Exp.22 43 Backward,DFS;Backward,Hybrid 627 41.2% 20.0% 29
Exp.23 44 Forward,Hybrid;Forward,Hybrid 673 39.3% 16.7% 32
Exp.24 27 Backward,Hybrid;Backward,DFS 462 46.4% 20.6% 30
Exp.25 29 Forward,Hybrid;Forward,Hybrid 634 36.1% 23.8% 45
Exp.26 45 Forward,Hybrid;Forward,Hybrid 789 35.4% 18.0% 27
Exp.27 64 Forward,Hybrid;Forward,Hybrid 835 45.1% 11.6% 21
Exp.28 70 Forward,Hybrid;Forward, BFS 1478 31.6% 10.9% 24
Exp.29 32 Forward,Hybrid;Forward,Hybrid 820 38.7% 14.1% 23
Exp.30 89 Backward,DFS;Backward, Hybrid 1415 14.1% 15.4% 8
Exp.31 171 Forward,Hybrid;Forward, BFS 2115 10.9% 10.9% 26
Exp.32 56 Forward,BFS;Forward,BFS 517 45.8% 14.8% 44
Exp.33 106 Forward,Hybrid;Forward,Hybrid 988 38.0% 17.4% 24
Nov.1 266 Forward,Hybrid;Backward,Hybrid 3330 5.8% 10.3% 2
Nov.2 329 Forward,Hybrid;Forward, BFS 5114 7% 6.4% 7
Nov.3 304 Forward,BFS;Forward, BFS 5025 14.1% 8.3% 13
Nov 4 208 Forward,Hybrid;Forward, BFS 3793 12.9% 9.0% 9
Nov.5 260 Forward,Hybrid;Forward,Hybrid 3560 20.0% 51% 19
Nov.6 257 Forward,Hybrid;Forward, DFS 4136 8.3% 8.3% 4
Nov.7 264 Forward,Hybrid;Backward,Hybrid 3433 5.1% 9.0% 1
Nov.8 331 Forward,Hybrid;Forward, Hybrid 3805 3.2% 10.9% 0
Nov.9 303 Forward,Hybrid;Forward,Hybrid 3892 16.1% 9.6% 20
Nov.10 415 Forward,Hybrid;Forward, BFS 7602 12.2% 3.8% 10
Nov.11 371 Forward,BFS;Forward,BFS 4796 9.6% 10.3% 8
Nov.12 381 Forward,Hybrid;Backward,Hybrid 4514 16.1% 9.1% 17
Nov.13 258 Forward,Hybrid;Forward, BFS 2374 1.2% 10.3%

Nov.14 458 Sequential, Hybrid;Sequential, Hybrid 6955 4.5% 6.4% 1
Nov.15 251 Forward,Hybrid;Backward, BF'S 3067 24.5% 14.8% 22
Nov.16 409 Forward,BFS;Forward,BFS 5656 4.5% 9.6% 2
Nov.17 481 Forward,BFS;Sequential BFS 6270 8.3% 4.5% 9
Nov.18 560 Backward,Hybrid;Sequential, Hybrid 6976 5.1% 71% 1
Nov.19 194 Forward,Hybrid;Forward,Hybrid 2791 7.7% 13.5% 1
Nov.20 351 Forward,Hybrid;Forward,Hybrid 3685 4.5% 10.3% 1
Nov.21 301 Forward,Hybrid;Forward,Hybrid 5020 10.3% 10.9% 3
Nov.22 228 Backward,BFS;Backward,Hybrid 2841 16.1% 12.2% 19
Nov.23 300 Forward,BFS;Forward,Hybrid 3091 7.7% 12.3% 6
Nov.24 195 Forward,Hybrid;Forward,Hybrid 2592 6.4% 14.1% 0
Nov.25 261 Forward,Hybrid;Forward, BFS 2510 11.6% 13.5% 3
Nov.26 240 Forward, BFS;Forward, BFS 3050 15.4% 9.6% 11
Nov.27 740 Sequential Hybrid;Sequential, Hybrid 7879 6.4% 13.1% 8
Nov.28 543 Forward,Hybrid;Sequential, Hybrid 6641 2.5% 7.7% 0
Nov.29 941 Sequential,Hybrid;Sequential, Hybrid 8150 0.0% 1.9% 0
Nov.30 320 Forward, BFS;Forward, BFS 2912 12.5% 71% 16
Nov.31 316 Forward,Hybrid;Forward, BFS 2886 18.7% 10.9% 13
Nov.32 234 Forward,Hybrid;Forward, BFS 4048 7.7% 6.4% 3
Nov.33 181 Forward,BFS;Forward, BFS 3445 12.2% 8.3% 10
Nov.34 207 Forward,Hybrid;Forward,Hybrid 2202 29.0% 9.6% 26
Nov.35 513 Forward,BFS;Sequential;Forward, BFS 6233 0.0% 4.5% 0
Nov.36 199 Forward,Hybrid;Forward,Hybrid 3408 18.7% 6.4% 17
Nov.37 178 Forward,BFS;Forward,Hybrid 1618 5.8% 19.3% 3
Nov.38 441 Forward,Hybrid;Sequential , Hybrid 5946 6.4% 8.3% 1
Nov.39 253 Forward,Hybrid;Forward,Hybrid 3486 21.9 10.9% 7




120 120




Chapter 6

Future Work and Conclusion

121



122 122

6.1 Future Work

One of the main takeaways of this thesis is that while complex binary analysis
tasks can already be fully automated, some form of human effort is still
needed at different points of the pipeline. This raises a number of challenges
that fall into two main lines of research, one focusing on the human side and
the other attempting to improve the current automation of binary analysis.

6.1.1 Human studies and Binary Analysis

The first area that is directly influenced by this thesis is teaching. More
specifically, we believe that by leveraging some of the aspects presented in
the last chapter, other researchers could propose novel methods to improve
the learning phase, especially w.r.t. reverse engineering. Several features we
identified correlate with experience, but this does not mean that we cannot
improve them by performing specific exercises. As of now, the learning phase
is mainly driven by the solution of binary challenges of increasing complex-
ity [CN15]. A possible implication of our findings could be to design binary
analysis exercises more focused on a few basic blocks to stimulate a student
to match and memorize specific patterns. Similarly, this aspect can influence
the formation of experts that work in other domains of binary analysis. For
instance, in malware analysis, we could propose specific training exercises
to refine the skill of distinguishing between malicious and benign files.

A different line of work could instead focus on improving the knowl-
edge about the RE mental process as performed by human analysts. Fu-
ture research, therefore, might study the many aspects that remained un-
investigated, thus offering a broader range of findings and insights on the
way experts binary analysts work. For instance, an interesting follow-up
of our work would be to design a set of experiments specifically for expert
participants, thus including more complex tasks and challenges.

Besides that, another branch of research could focus on other aspects of
a more specific domain, such as malware analysis or vulnerability discovery.
Indeed, we believe that each expert develops a unique set of skills linked to
the specific task that she faces every day. Also, the methodology will play a
fundamental role, preferring remotely accessible solutions for studies over a
large group or eye-tracking devices for smaller groups.

6.1.2 Machines and Binary Analysis

This thesis demonstrates that machines still lack the needed skills to “com-
prehend” the code, thus requiring the help of humans to perform this task.



6.1. Future Work 123

This suggests that augmenting modern tools and approaches with this single
capability could be a promising road for the future of binary analysis.

Indeed, if teaching binary analysis to humans is essential to form new
experts in the domain, training computers to mimic human behavior would
be fundamental to scale over the large amount of software (both benign and
malicious) released every day. We believe that studying the techniques used
by humans is the first step to discovering new ways to train machine learn-
ing models to perform similar tasks. Psychologists have learned that many
activities are inherently linked to the ability to recognize previously seen
patterns [WUF97, FM98, LS91| and that the experts are those who learned
a significant number of patterns over several years of experience. Since learn-
ing to recognize patterns is what ML algorithms can do well, in this thesis,
we also studied which aspects human experts focus their attention on to
provide the building block for further studies on such topics. Extending
the concept, we could even introduce semantic awareness in the classifier.
For instance, many experts in our experiments could easily recognize non-
standard implementations of list operations or discard branches/functions
by just reading a subset of their basic blocks. This suggests that ML clas-
sifiers could be trained to mimic this behavior and to automate the pattern
recognition phase both for useful and useless portions of code.

Another possibility instead is to focus on binary analysis tools that are
more robust w.r.t. binary code. For instance, as we show in Chapter 4,
the main weakness of current static analyzers is that they are designed to
analyze only well-formed source code. However, we believe that with the
constant enhancement of modern decompilers, their adoption could repre-
sent an opportunity to automate other security-related approaches, different
from static software testing, once proper tools are implemented to deal with
pseudocode. Similarly, in the future, decompilers should be projected to
allow different analysis paradigms and thus not to assume a-priori that their
output is only designed to increase readability for humans.

On the other hand, we may never be able to replace humans with au-
tomated machines completely. Thus, another research line will consist of
usability studies for binary analysis interfaces. So far, this area has been
mostly ignored, but even if our studies do not explicitly speak about us-
ability concepts, we believe this last point deserves its own discussion. For
instance, the last chapter 5, shows how most of the participants choose the
branch depending on the position on the screen, demonstrating how the
visual component affects the RE session.



124 124

6.2 Conclusion

In this thesis, we proposed a snapshot of the current binary analysis ap-
proaches and demonstrated how standard techniques are still heavily based
on human intervention. For each of the proposed methodologies, we empha-
sized what the human activity is and how this is fundamental to help the
automated components to achieve a certain goal. Our categorization showed
that analysts could have different positions in the analysis pipeline, and this
requires different roles and skills depending on the scenario. We believe that
future research should spend more effort on this human-centric view because
this could deliver essential benefits to the entire field of binary analysis.

To conclude, we hope that our work can shed light on this poorly investi-
gated aspect that surrounds the binary analysis world and that future work
will consider our findings to increase the understanding of the binary analysis
ecosystem and the implementation of novel, more automated methodologies.



Appendices

125






Appendix A

REmind

127



128 128

A.1 Text of the invitation email

Experiment purpose

A study about how humans coming from different backgrounds and ex-
pertise levels (from the 'noob’ to ’expert’) perform the process of Reverse
Engineering and which are the main differences between these categories.

Before starting

The test is completely anonymous, the registration is mandatory but it
is quick (just a self-evaluation question). The system will give you a token
which is needed for the login, so please preserve it until the end of the test.

The test

For the test, you can find our web-UI at this link (https://reverse.s3.
eurecom.fr): it supports some of the main features for RE (commenting
code, rename, Xref, ...). After accessing it, the first page comes with a
further description of the experiment and of the interface (we invite you to
read for the details) and with a list of 3 challenges that you have to solve
with our web-UI. The first challenge ("Warmup’) is just a warmup one so
it is optional and we created it just to make the user become more familiar
with the tool. The second and the third challs (namely "Test 1’ and "Test 27)
represent the core part of the experiment. Clicking on one of the two tests
starts the RE interface. From now on, your job consists of understanding
what the binary does and then submitting a solution in the proper form. You
can solve the 2 tests in separate moments and you can stop a RE session
and then re-start it (even if we think the best thing is that you stop the RE
session after submitting a solution).

Submitting a solution

Note that for the two tests (Test 1 and Test 2), the solution is not
required in a specific format (like the flags in a CTF), but it is supposed
to be a short description in your own words (just 1 or 2 lines) about the
needed steps that make the binary to print the string ’Congratulations’ or
"Success!”. Alternatively, also a command line that triggers the correct path
in the binary is fine.

Notes

e The interface is not supposed to be a new competitive product, but it is
just a tool for the data collection. This does NOT aim to be a “realistic
scenario”, but a “scenario for which we capture some interesting data”.
It’s an experiment! Please bear with it :-)

e The experience could result a bit painful because basic blocks are
blurred when the ’onmouseover’ event is captured on another BB. Al-


https://reverse.s3.eurecom.fr
https://reverse.s3.eurecom.fr

. Text of the invitation email 129

though we fully understand this makes the RE process slower, this is
needed for some aspects we are trying to collect. So, yes, this is NOT
your IDA experience you are looking for... it’s an experiment! Please
bear with it #2 :-)

For the tests ("Test 1’, and "Test 2’), we disabled the 'Strings’ view.
Also in this case, the reason is linked with our models and the data
we need to collect. So do not worry if you cannot access the ’Strings’
view, there is no bug, it is just a design choice.

In general, we are interested in static analysis, not dynamic one. This
explains why we did not add a debugger to the tool. If you are used to
reverse with a debugger, that’s good! But for this experiment we are
interested to know how you would approach a purely static analysis
task!

There is no ranking or prize, this is just an experiment: so please do
not cheat.

Thanks a lot for your time/help!



130 130




References

[AA14]

[ACCT17]

[AM14]

[aptay]

[AS96]

[ASPE13]

[avaay|

[AVMLOS]

Andronicus A Akinyelu and Aderemi O Adewumi. Classifica-
tion of phishing email using random forest machine learning
technique. Journal of Applied Mathematics, 2014, 2014.

A. Arusoaie, S. C., V. Craciun, D. Gavrilut, and D. Lucanu.
A comparison of open-source static analysis tools for vulnera-
bility detection in c/c++ code. In IEEE SYNASC, 2017.

H.H. AlBreiki and Q.H. Mahmoud. Evaluation of static anal-
ysis tools for software security. In IIT, 2014.

Apt and cybercriminal campaign collection. https:
//github.com/CyberMonitor/APT_CyberCriminal _
Campagin_Collections, Accessed April 20, 2022.

Vairam Arunachalam and William Sasso. Cognitive processes
in program comprehension: An empirical analysis in the con-
text of software reengineering. Journal of Systems and Soft-
ware, 1996.

Rohit Arora, Anishka Singh, Himanshu Pareek, and
Usha Rani Edara. A heuristics-based static analysis approach
for detecting packed pe binaries. International Journal of Se-
curity and Its Applications, 7(5):257-268, 2013.

Avast retargetable decompiler ida plugin. https:
//blog.fpmurphy.com/2017/12/avast-retargetable-
decompiler-ida-plugin.html, Accessed April 20, 2022.

A Anneliese von Mayrhauser and Steve Lang. Program com-
prehension and enhancement of software. In In Proceedings
IFIP World Computing Congress-Information Technology and
Knowledge Engineering, 1998.

131


https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://blog.fpmurphy.com/2017/12/avast-retargetable-decompiler-ida-plugin.html
https://blog.fpmurphy.com/2017/12/avast-retargetable-decompiler-ida-plugin.html
https://blog.fpmurphy.com/2017/12/avast-retargetable-decompiler-ida-plugin.html

132

132

|Ban]|

[BB10]

[BCCO16]

[BK]

[bloayal

[bloayb|

[BLSW13]

[BMOS]

[Bro83]

|Bry12]

[BT04]

Liam J Bannon. From human factors to human actors: The
role of psychology and human-computer interaction studies in
system design. In Readings in human—computer interaction.
Elsevier.

Jan Berdajs and Zoran Bosni¢. Extending applications us-
ing an advanced approach to dll injection and api hooking.
Software: Practice and Ezxperience, 40(7):567-584, 2010.

C. Barria, D. Cordero, C. Cubillos, and R. Osses. Obfuscation
procedure based in dead code insertion into crypter. In 2016

6th International Conference on Computers Communications
and Control (ICCCC), pages 23-29, May 2016.

Dirk Beyer and M Erkan Keremoglu. Cpachecker: A tool for
configurable software verification. In International Conference
on Computer Aided Verification.

C and c++ source code analysis tools. https://www.
codeanalysistools.com/7cplusplus, Accessed April 20,
2022.

What are the best sast tools? https://
cybersecuritykings.com/2020/02/16/11-tips-on-
sast-tool-selection/, Accessed April 20, 2022.

D. Brumley, J. Lee, E.J. Schwartz, and M. Woo. Native x86
decompilation using semantics-preserving structural analysis
and iterative control-flow structuring. In { USENIX}, 2013.

Jean-Marie Borello and Ludovic Mé. Code obfuscation tech-
niques for metamorphic viruses. Journal in Computer Virol-
0gy, 4(3):211-220, Aug 2008.

Ruven Brooks. Towards a theory of the comprehension of
computer programs. International journal of man-machine
studies, 1983.

Adam R Bryant. Understanding how reverse engineers make
sense of programs from assembly language representations.
PhD thesis, Air Force Institute Of Technology, 2012.

Roman Bednarik and Markku Tukiainen. Visual attention
tracking during program debugging. In Proceedings of the third
Nordic conference on Human-computer interaction, 2004.


https://www.codeanalysistools.com/?cplusplus
https://www.codeanalysistools.com/?cplusplus
https://cybersecuritykings.com/2020/02/16/11-tips-on-sast-tool-selection/
https://cybersecuritykings.com/2020/02/16/11-tips-on-sast-tool-selection/
https://cybersecuritykings.com/2020/02/16/11-tips-on-sast-tool-selection/

References

133

[BT06]

[BZRL12]

[capay]

[CC19]

[CFBS15]

[CGl

[CGOT]

[cheay]

|CK11]

Roman Bednarik and Markku Tukiainen. An eye-tracking
methodology for characterizing program comprehension pro-
cesses. In Proceedings of the 2006 symposium on Eye tracking
research € applications, 2006.

M. Baig, P. Zavarsky, R. Ruhl, and D. Lindskog. The study of
evagion of packed pe from static detection. In World Congress
on Internet Security (WorldCIS-2012), pages 99-104, June
2012.

Capstone. http://www.capstone-engine.org/, Accessed
April 20, 2022.

Taylor Claire and Christian Collberg. Getting revenge: A
system for analyzing reverse engineering behavior. 2019.

Jill Cao, Scott D Fleming, Margaret Burnett, and Christopher
Scaffidi. Idea garden: Situated support for problem solving by
end-user programmers. Interacting with Computers, 2015.

C. Cifuentes and K. J. Gough. Decompilation of binary pro-
grams. Software: Practice and Experience.

Edward Cutrell and Zhiwei Guan. What are you looking for?
an eye-tracking study of information usage in web search. In
Proceedings of the SIGCHI conference on Human factors in
computing systems, 2007.

Checkmarx. https://www.checkmarx.com/, Accessed April
20, 2022.

G. Chatzieleftheriou and P. Katsaros. Test-driving static anal-
ysis tools in search of ¢ code vulnerabilities. In IEEE COMP-
SAC, 2011.

[CkKOcRO08| Yang-Seo Choi, Ik kyun Kim, Jin-Tae Oh, and Jae cheol Ryou.

Pe file header analysis-based packed pe file detection technique
(phad). International Symposium on Computer Science and
its Applications, pages 28-31, 2008.

B. Chess and G. McGraw. Static analysis for security. 200/
IEEE S&P.


http://www.capstone-engine.org/
https://www.checkmarx.com/

134

134

|CMF*18]

|CN15]

[codayal

[codayb]

[covay]

[cppay]

[CTLOS|

[cweay]

[DAL*17]

[DARay|

Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun Peng, Ting
Chen, Xiaosong Zhang, and Jean-Yves Marion. Towards
paving the way for large-scale windows malware analysis:
generic binary unpacking with orders-of-magnitude perfor-
mance boost. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, pages
395-411. ACM, 2018.

Tom Chothia and Chris Novakovic. An offline capture the
flag-style virtual machine and an assessment of its value for
cybersecurity education. In {USENIX} (8GSE 15), 2015.

Code-ql. https://securitylab.github.com/tools/
codeql, Accessed April 20, 2022.

Code-ql queries examples. https://help.semmle.com/QL/
learn-ql/cpp/ql-for-cpp.html, Accessed April 20, 2022.

Coverity. https://scan.coverity.com/, Accessed April 20,
2022.

Cppcheck. http://cppcheck.sourceforge.net/, Accessed
April 20, 2022.

Christian Collberg, Clark Thomborson, and Douglas Low.
Manufacturing cheap, resilient, and stealthy opaque con-
structs. In Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL
'98, pages 184-196, New York, NY, USA, 1998. ACM.

Cwe checker. https://github.com/fkie-cat/cwe-checker,
Accessed April 20, 2022.

Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric
Bodden, Justin Smith, and Emerson Murphy-Hill. Just-
in-time static analysis. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and
Analysis, 2017.

DARPA. Darpa celebrates cyber grand challenge win-
ners. https://www.darpa.mil/news-events/2016-08-05a,
Accessed April 20, 2022.


https://securitylab.github.com/tools/codeql
https://securitylab.github.com/tools/codeql
https://help.semmle.com/QL/learn-ql/cpp/ql-for-cpp.html 
https://help.semmle.com/QL/learn-ql/cpp/ql-for-cpp.html 
https://scan.coverity.com/
http://cppcheck.sourceforge.net/
https://github.com/fkie-cat/cwe-checker
https://www.darpa.mil/news-events/2016-08-05a

References

135

[DBXP20]

[DCO9|

|defay|

[detay]

[DGHH 15

[DN12|

[DPY18]

[DQQY19]

[DR14]

[ENOS]

[ESKKO8]

Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias
Payer. Retrowrite: Statically instrumenting cots binaries for
fuzzing and sanitization. In 2020 IEEE Symposium on Secu-
rity and Privacy (SP), pages 1497-1511. IEEE, 2020.

E.N. Dolgova and A.V. Chernov. Automatic reconstruction of
data types in the decompilation problem. Programming and
Computer Software, 2009.

Defcon ctf final scores. https://www.defcon.org/html/
defcon-24/dc-24-ctf.html, Accessed April 20, 2022.

Detect-it-easy signatures. https://github.com/horsicq/
Detect-It-Easy, Accessed April 20, 2022.

Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim
Leek, and Ryan Whelan. Repeatable reverse engineering with
panda. In Proceedings of the 5th Program Protection and Re-
verse Engineering Workshop, page 4. ACM, 2015.

Dhruwajita Devi and Sukumar Nandi. Pe file features in detec-
tion of packed executables. International Journal of Computer
Theory and Engineering, 4(3):476, 2012.

Y. David, N. Partush, and E. Yahav. Firmup: Precise static
detection of common vulnerabilities in firmware. ACM SIG-
PLAN Notices, 2018.

Ali Davanian, Zhenxiao Qi, Yu Qu, and Heng Yin. Decaf+-+:
Elastic whole-system dynamic taint analysis. In 22nd Inter-

national Symposium on Research in Attacks, Intrusions and
Defenses ({RAID} 2019), pages 31-45, 2019.

A. Dinaburg and A. Ruef. Mcsema: Static translation of x86
instructions to llvin. In ReCon, 2014.

P. Emanuelsson and U. Nilsson. A comparative study of in-
dustrial static analysis tools. FElectronic notes in theoretical
computer science, 2008.

Manuel Egele, Theodoor Scholte, Engin Kirda, and Christo-
pher Kruegel. A survey on automated dynamic malware-

analysis techniques and tools. ACM computing surveys
(CSUR), 44(2):1-42, 2008.


https://www.defcon.org/html/defcon-24/dc-24-ctf.html
https://www.defcon.org/html/defcon-24/dc-24-ctf.html
https://github.com/horsicq/Detect-It-Easy
https://github.com/horsicq/Detect-It-Easy

136

136

[Fat04]

[FBH18]

[FCL*19]

|[Haay]

[FMOS)

[FMB*19]

[FMEH20]

|For07]

[foray]

[fraay]|
[fri]
[FWS03]

Holy Father. Hooking windows api-technics of hooking api
functions on windows. CodeBreakers J, 1(2), 2004.

A. Fatima, S. Bibi, and R. Hanif. Comparative study on static
code analysis tools for ¢/c++. In IEEE IBCAST, 2018.

C. Fu, H. Chen, H. Liu, X. Chen, Y. Tian, F. Koushanfar, and
J. Zhao. Coda: An end-to-end neural program decompiler.

In Advances in Neural Information Processing Systems, pages
3708-3719, 2019.

flawfinder. https://github.com/david-a-wheeler/
flawfinder, Accessed April 20, 2022.

Lev Finkelstein and Shaul Markovitch. Learning to play chess
selectively by acquiring move patterns. ICGA Journal, 1998.

J. Feist, L. Mounier, S. Bardin, R. David, and M. Potet.
Finding the needle in the heap: combining static analysis

and dynamic symbolic execution to trigger use-after-free. In
SSPREW, 2019.

Andrea Fioraldi, Dominik Maier, Heiko FEifsfeldt, and Marc
Heuse. Afl+4: Combining incremental steps of fuzzing re-
search. In 1/th {USENIX} Workshop on Offensive Technolo-
gies ({WOOT} 20), 2020.

Behrouz A Forouzan.  Cryptography & network security.
McGraw-Hill, Inc., 2007.

Fortify  sca. https://www.microfocus.com/en—
us/products/static-code-analysis-sast, Accessed
April 20, 2022.

framac. https://frama-c.com/, Accessed April 20, 2022.

Frida analysis framework. https://www.frida.re.

Vikki Fix, Susan Wiedenbeck, and Jean Scholtz. Mental rep-
resentations of programs by novices and experts. In Proceed-
imngs of the INTERACT’93 and CHI’93 conference on Human
factors in computing systems, 1993.

Gdb: the gnu project debugger. https://www.gnu.org/
software/gdb/current/.


https://github.com/david-a-wheeler/flawfinder
https://github.com/david-a-wheeler/flawfinder
https://www.microfocus.com/en-us/products/static-code-analysis-sast
https://www.microfocus.com/en-us/products/static-code-analysis-sast
https://frama-c.com/
https://www.frida.re
https://www.gnu.org/software/gdb/current/
https://www.gnu.org/software/gdb/current/

References

137

|GDFFA20)

[ghiay]
[GJCT03]

[GOS6]

|greay]

[IDWY06]

[hexay|

[HGKO03]

[HLO09]

[Hocl4]
[HPO7]

[HPY+14]

A. Gussoni, A. Di Federico, P. Fezzardi, and G. Agosta. A
comb for decompiled ¢ code. In ACM AsiaCCS, 2020.

Ghidra. https://ghidra-sre.org/, Accessed April 20, 2022.

V. Ganapathy, S. Jha, D. Chandler, D. Melski, and David V.
Buffer overrun detection using linear programming and static
analysis. In ACM CCS, 2003.

Leo Gugerty and Gary Olson. Debugging by skilled and novice
programmers. In Proceedings of the SIGCHI conference on
human factors in computing systems, 1986.

The new malicious software grayenergy. https://cert.gov.
ua/news/45, Accessed April 20, 2022. Accessed April 20, 2022,
Ukrainian language.

B. Hackett, M. Das, D. Wang, and Z. Yang. Modular checking
for buffer overflows in the large. In ICSFE, 2006.

Hex-rays decompiler. https://wuw.hex-rays.com/
products/decompiler/, Accessed April 20, 2022.

Allyson L Holbrook, Melanie C Green, and Jon A Krosnick.
Telephone versus face-to-face interviewing of national prob-
ability samples with long questionnaires: Comparisons of re-
spondent satisficing and social desirability response bias. Pub-
lic opinion quarterly, 2003.

Seung-Won Han and Sang-Jin Lee. Packed pe file detection for
malware forensics. The KIPS Transactions: PartC, 16(5):555—
562, 2009.

J-M Hoc. Psychology of programming. Academic Press, 2014.

D. Hovemeyer and W. Pugh. Finding more null pointer bugs,
but not too many. In ACM SIGPLAN-SIGSOFT PASTE,
2007.

Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xun-
chao Hu, Xujiewen Wang, Rundong Zhou, and Heng Yin.
Make it work, make it right, make it fast: building a platform-
neutral whole-system dynamic binary analysis platform. In
Proceedings of the 201/ International Symposium on Software
Testing and Analysis, pages 248-258, 2014.


https://ghidra-sre.org/
https://cert.gov.ua/news/45
https://cert.gov.ua/news/45
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/

138

138

[HSPO5)

lidaay|

[ikoay|

[infay|

[TBMO3]

[JCN+12

[JLS*18]

[joeayal

[joeayb]

[JRWM15]

[JST13]

D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and
tuning a static analysis to find null pointer bugs. In ACM
SIGPLAN-SIGSOFT PASTE, 2005.

Ida pro. https://www.hex-rays.com/products/ida/, Ac-
cessed April 20, 2022.

Ikos. https://github.com/NASA-SW-VnV/ikos, Accessed
April 20, 2022.

Infer. https://fbinfer.com/, Accessed April 20, 2022.

Anthony R Jansen, Alan F Blackwell, and Kim Marriott. A
tool for tracking visual attention: The restricted focus viewer.
Behavior research methods, instruments, & computers, 2003.

Grégoire Jacob, Paolo Milani Comparetti, Matthias
Neugschwandtner, Christopher Kruegel, and Giovanni
Vigna. A static, packer-agnostic filter to detect similar
malware samples. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment,
pages 102-122. Springer, 2012.

A. Jaffe, J. Lacomis, E. J. Schwartz, C. L. Goues, and
B. Vasilescu. Meaningful variable names for decompiled code:
A machine translation approach. In IEEE/ACM ICPC, 2018.

Joern. https://joern.io/, Accessed April 20, 2022.

Joern  queries  examples. https://github.com/
ShiftLeftSecurity/joern/tree/master/joern-
cli/src/main/resources/scripts/c, Accessed  April
20, 2022.

Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie
Michielin. Obfuscator-llvin—software protection for the
masses. In Software Protection (SPRO), 2015 IEEE/ACM
1st International Workshop on, pages 3-9. IEEE, 2015.

Joby James, L Sandhya, and Ciza Thomas. Detection of phish-
ing urls using machine learning techniques. In ICCC. IEEE,
2013.


https://www.hex-rays.com/products/ida/
https://github.com/NASA-SW-VnV/ikos
https://fbinfer.com/
https://joern.io/
https://github.com/ShiftLeftSecurity/joern/tree/master/joern-cli/src/main/resources/scripts/c
https://github.com/ShiftLeftSecurity/joern/tree/master/joern-cli/src/main/resources/scripts/c
https://github.com/ShiftLeftSecurity/joern/tree/master/joern-cli/src/main/resources/scripts/c

References

139

| Kap96|

[KKK*20]

[KLHC10]

[KMCAO6]

[KMZ17]

[KOGY19]

[KPY07]

[Kra05]

[KRS18]

[LAO4|

[LAB11]

Victor Kaptelinin. Activity theory: Implications for human-
computer interaction. Context and consciousness: Activity
theory and human-computer interaction, 1996.

M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim.
Firmae: Towards large-scale emulation of iot firmware for dy-
namic analysis. In ACSAC, 2020.

Y. Kim, J. Lee, H. Han, and K. Choe. Filtering false alarms
of buffer overflow analysis using smt solvers. Information and
Software Technology, 2010.

Andrew J Ko, Brad A Myers, Michael J Coblenz, and
Htet Htet Aung. An exploratory study of how developers seek,
relate, and collect relevant information during software main-
tenance tasks. IEEE Transactions on software engineering,
2006.

J. Kfoustek, P. Matula, and P. Zemek. Retdec: An open-
source machine-code decompiler, 2017.

0. Katz, Y. Olshaker, Y. Goldberg, and E. Yahav. Towards
neural decompilation. arXiv preprint arXiv:1905.08525, 2019.

Min Gyung Kang, Pongsin Poosankam, and Heng Yin. Ren-
ovo: a hidden code extractor for packed executables. In In
Proc. ACM Workshop Recurring Malcode (WORM, pages 46—
53. ACM, 2007.

K.J. Kratkiewicz. Evaluating static analysis tools for detecting
buffer overflows in ¢ code. Technical report, HARVARD UNIV
CAMBRIDGE MA, 2005.

D. S. Katz, J. Ruchti, and E. Schulte. Using recurrent neural
networks for decompilation. In IEEE SANER, 2018.

Chris Lattner and Vikram Adve. Llvm: A compilation frame-
work for lifelong program analysis & transformation. In In-
ternational Symposium on Code Generation and Optimization,
2004. CGO 2004., pages 75-86. IEEE, 2004.

J. Lee, T. Avgerinos, and D. Brumley. Tie: Principled reverse
engineering of types in binary programs. 2011.



140

140

[Laf04]

[LAHR10]

[LC10]

[LCM05)

[Let87]

[LGHMO7]

[LHO7|

[LKO09]

[LKJ*16]

Eric Lafortune. Proguard. https://sourceforge.net/
projects/proguard/, 2004. Accessed April 20, 2022.

Michael Ligh, Steven Adair, Blake Hartstein, and Matthew
Richard. Malware analyst’s cookbook and DVD: tools and tech-
niques for fighting malicious code. Wiley Publishing, 2010.

Peng Li and Baojiang Cui. A comparative study on soft-
ware vulnerability static analysis techniques and tools. In 2010
IEEE international conference on information theory and in-
formation security, pages 521-524. IEEE, 2010.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil,
Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood. Pin: building customized pro-

gram analysis tools with dynamic instrumentation. Acm sig-
plan notices, 40(6):190-200, 2005.

Stanley Letovsky. Cognitive processes in program comprehen-
sion. Journal of Systems and software, 1987.

Thomas D LaToza, David Garlan, James D Herbsleb, and
Brad A Myers. Program comprehension as fact finding. In
Proceedings of the the 6th joint meeting of the European soft-
ware engineering conference and the ACM SIGSOFT sympo-
stum on The foundations of software engineering, 2007.

Robert Lyda and James Hamrock. Using entropy analysis to
find encrypted and packed malware. IEEFE Security € Privacy,
5(2), 2007.

Timea Laszlo and Akos Kiss. Obfuscating ¢+ + programs via
control flow flattening. Annales Universitatis Scientiarum Bu-
dapestinensis de Rolando Eétués Nominatae. Sectio Computa-
torica, 30:3-19, 08 20009.

Dastyni Loksa, Andrew J Ko, Will Jernigan, Alannah Oleson,
Christopher J Mendez, and Margaret M Burnett. Program-
ming, problem solving, and self-awareness: effects of explicit
guidance. In CHI Conference on Human Factors in Comput-
ing Systems, 2016.


https://sourceforge.net/projects/proguard/
https://sourceforge.net/projects/proguard/

References

141

[LLZW17]

[LPLS87]|

[LRK*19]

[LS91]

[LSCL12|

[LW20]

[LYST19]

[manay]|

[MBC17]

[MC06]

[McL12|

H. Liang, S. Liu, Y. Zhang, and M. Wang. Improving the
precision of static analysis: Symbolic execution based on gcc
abstract syntax tree. In SNPD, 2017.

David C Littman, Jeannine Pinto, Stanley Letovsky, and El-
liot Soloway. Mental models and software maintenance. Jour-
nal of Systems and Software, 1987.

Charles Lim, Kalamullah Ramli, Yohanes Syailendra Kotu-
alubun, et al. Mal-flux: Rendering hidden code of packed
binary executable. Digital Investigation, 28:83-95, 2019.

Robert Levinson and Richard Snyder. Adaptive pattern-
oriented chess. In Machine Learning Proceedings 1991. El-
sevier, 1991.

Bingchang Liu, Liang Shi, Zhuhua Cai, and Min Li. Software
vulnerability discovery techniques: A survey. In 2012 fourth

international conference on multimedia information network-
iy and security, pages 152-156. IEEE, 2012.

Z. Liu and S. Wang. How far we have come: testing decom-
pilation correctness of ¢ decompilers. In SIGSOFT ISSTA,
2020.

J. Lacomis, P. Yin, E. Schwartz, M. Allamanis, C. Le Goues,
G. Neubig, and B. Vasilescu. Dire: A neural approach to
decompiled identifier naming. In IEEE/ACM ASE, 2019.

Manalyze.  https://github.com/JusticeRage/Manalyze,
Accessed April 20, 2022.

Philip Menard, Gregory J Bott, and Robert E Crossler. User
motivations in protecting information security: Protection
motivation theory versus self-determination theory. Journal
of Management Information Systems, 2017.

Ginger Myles and Christian Collberg. Software watermarking
via opaque predicates: Implementation, analysis, and attacks.
Electronic Commerce Research, 6(2):155-171, Apr 2006.

R. K McLean. Comparing static security analysis tools using
open source software. In IEEE SERE, 2012.


https://github.com/JusticeRage/Manalyze

142

142

[MDC17]

[MHH*19]

[MHKOS]

[Mic]

[MJZ*15

[MM18]

[MP10]

[NLC16]

[NNTH*21]

[OEV+]

Nikola Milosevic, Ali Dehghantanha, and Kim-Kwang Ray-
mond Choo. Machine learning aided android malware classi-
fication. Computers & FElectrical Engineering, 61, 2017.

Valentin Jean Marie Manés, HyungSeok Han, Choongwoo
Han, Sang Kil Cha, Manuel Egele, Edward J Schwartz, and
Mayverick Woo. The art, science, and engineering of fuzzing:
A survey. IEEE Transactions on Software Engineering, 2019.

Daisuke Miyamoto, Hiroaki Hazeyama, and Youki
Kadobayashi. ~ An evaluation of machine learning-based
methods for detection of phishing sites. In International
Conference on Neural Information Processing. Springer, 2008.

Microsoft. Microsoft store top free apps. https://www.
microsoft.com/en-us/store/top-free/apps/pc. Accessed
April 20, 2022.

S. Ma, M. Jiao, S. Zhang, W. Zhao, and D.W. Wang. Prac-
tical null pointer dereference detection via value-dependence
analysis. In IEEFE ISSREW, 2015.

R. Mahmood and Q.H. Mahmoud. Evaluation of static anal-
ysis tools for finding vulnerabilities in java and c/c++ source
code. arXiv preprint arXiv:1805.09040, 2018.

Maik Morgenstern and Hendrik Pilz. Useful and useless statis-
tics about viruses and anti-virus programs. In Proceedings of
the CARO Workshop, 2010.

M. Noonan, A. Loginov, and D. Cok. Polymorphic type infer-
ence for machine code. In ACM SIGPLAN PLDI, 2016.

Stefan Nagy, Anh Nguyen-Tuong, Jason D Hiser, Jack W
Davidson, and Matthew Hicks. Breaking through bina-
ries: Compiler-quality instrumentation for better binary-only
fuzzing. In 30th {USENIX} Security Symposium ({ USENIX}
Security 21), 2021.

Mete Ozay, Inaki Esnaola, Fatos Tunay Yarman Vural, San-
jeev R Kulkarni, and H Vincent Poor. Machine learning meth-
ods for attack detection in the smart grid. IEEF transactions
on neural networks and learning systems.


https://www.microsoft.com/en-us/store/top-free/apps/pc
https://www.microsoft.com/en-us/store/top-free/apps/pc

References

143

[OMNER19| Ori Or-Meir, Nir Nissim, Yuval Elovici, and Lior Rokach. Dy-

[OSM11]

[PAP*21]

[pefay]

[peiay]

[Pen87]

[PF20]

[PGG+15]

[PHGT04]

[PHL*15]

[PLL0Sa]

namic malware analysis in the modern era—a state of the art
survey. ACM Computing Surveys (CSUR), 52(5):1-48, 2019.

P. OKane, S. Sezer, and K. McLaughlin. Obfuscation: The
hidden malware. [EEE Security Privacy, 9(5):41-47, Sep.
2011.

Norman Peitek, Sven Apel, Chris Parnin, André Brechmann,
and Janet Siegmund. Program comprehension and code com-
plexity metrics: An fmri study. In ICSE. IEEE, 2021.

pefile. https://github.com/erocarrera/pefile, Accessed
April 20, 2022.

Peid. https://www.aldeid.com/wiki/PEiD, Accessed April
20, 2022.

Nancy Pennington. Stimulus structures and mental represen-
tations in expert comprehension of computer programs. Cog-
nitive psychology, 1987.

S. Poeplau and A. Francillon. Symbolic execution with symcc:
Don’t interpret, compile! In { USENIX}, 2020.

J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz.
Cross-architecture bug search in binary executables. In IEEE
SEP, 2015.

Bing Pan, Helene A Hembrooke, Geri K Gay, Laura A Granka,
Matthew K Feusner, and Jill K Newman. The determinants
of web page viewing behavior: an eye-tracking study. In Pro-
ceedings of the 2004 symposium on Eye tracking research &
applications, 2004.

Radu S Pirscoveanu, Steven S Hansen, Thor MT Larsen,
Matija Stevanovic, Jens Myrup Pedersen, and Alexandre
Czech. Analysis of malware behavior: Type classification us-
ing machine learning. In CyberSA. IEEE, 2015.

R. Perdisci, A. Lanzi, and W. Lee. Mchoost: Boosting scala-
bility in malware collection and analysis using statistical clas-

sification of executables. In 2008 Annual Computer Security
Applications Conference (ACSAC), pages 301-310, Dec 2008.


https://github.com/erocarrera/pefile
https://www.aldeid.com/wiki/PEiD

144

144

[PLLO8D|

[PSDV06]

[ratay]

[RBP17]

[RHD*06]

[RJPOS]

[RM13]

[RSCCO4]

[RTKM12|

[RV15]

Roberto Perdisci, Andrea Lanzi, and Wenke Lee. Classifica-
tion of packed executables for accurate computer virus detec-
tion. Pattern recognition letters, 29(14):1941-1946, 2008.

D. Pozza, R. Sisto, L. Durante, and A. Valenzano. Comparing
lexical analysis tools for buffer overflow detection in network
software. In COMSWARE, 2006.

Rats. https://code.google.com/archive/p/rough-
auditing-tool-for-security/, Accessed April 20, 2022.

B. Rahbarinia, M. Balduzzi, and R. Perdisci. Exploring the
long tail of (malicious) software downloads. In 2017 /7th An-
nual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN), pages 391-402, June 2017.

P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee.
Polyunpack:  Automating the hidden-code extraction of
unpack-executing malware. In 2006 22nd Annual Computer
Security Applications Conference (ACSAC’06), pages 289—
300, Dec 2006.

Keith Rayner, Barbara J. Juhasz, and Alexander Pollatsek.
Eye Movements During Reading. John Wiley and Sons, Ltd,
2008.

Kevin A. Roundy and Barton P. Miller. Binary-code ob-
fuscations in prevalent packer tools. ACM Comput. Surv.,
46(1):4:1-4:32, July 2013.

Vijay Janapa Reddi, Alex Settle, Daniel A Connors, and
Robert S Cohn. Pin: a binary instrumentation tool for com-
puter architecture research and education. In Proceedings
of the 2004 workshop on Computer architecture education:
held in conjunction with the 31st International Symposium on
Computer Architecture, pages 22—es, 2004.

Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid
Maalej. How do professional developers comprehend software?
In 34th ICSE. IEEE, 2012.

Jithu Raphel and P. Vinod. Information theoretic method for
classification of packed and encoded files. In Proceedings of
the 8th International Conference on Security of Information


https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://code.google.com/archive/p/rough-auditing-tool-for-security/

References

145

[sasay|

[scaay]

[SEHM13]

[SFM12]

[SH12|

[SKBMO6|

[SMM15]

[SOA1S]

[SRKC16]

[SRN*18]

and Networks, SIN "15, pages 296-303, New York, NY, USA,
2015. ACM.

Awesome static analysis. https://github.com/analysis-
tools-dev/static-analysis, Accessed April 20, 2022.

Scan-build. https://clang-analyzer.llvm.org/, Accessed
April 20, 2022.

E. Séderberg, T. Ekman, G. Hedin, and E. Magnusson. Ex-
tensible intraprocedural flow analysis at the abstract syntax
tree level. Science of Computer Programming, 2013.

Bonita Sharif, Michael Falcone, and Jonathan I Maletic. An
eye-tracking study on the role of scan time in finding source
code defects. In Proceedings of the Symposium on Eye Track-
ing Research and Applications, 2012.

Michael Sikorski and Andrew Honig. Practical malware anal-
ysis: the hands-on guide to dissecting malicious software. no
starch press, 2012.

Iain Sutherland, George E Kalb, Andrew Blyth, and Gaius
Mulley. An empirical examination of the reverse engineering
process for binary files. Computers & Security, 2006.

S. Shiraishi, V. Mohan, and H. Marimuthu. Test suites for
benchmarks of static analysis tools. In IEEE ISSREW, 2015.

Rami Sihwail, Khairuddin Omar, and Khairul Akram Zainol
Ariffin. A survey on malware analysis techniques: Static, dy-
namic, hybrid and memory analysis. International Journal on

Advanced Science, Engineering and Information Technology,
8(4-2):1662, 2018.

Marcos Sebastian, Richard Rivera, Platon Kotzias, and Juan
Caballero. Avclass: A tool for massive malware labeling. In
International Symposium on Research in Attacks, Intrusions,
and Defenses, pages 230-253. Springer, 2016.

E. Schulte, J. Ruchti, M. Noonan, D. Ciarletta, and A. Logi-
nov. Evolving exact decompilation. In BAR, 2018.


https://github.com/analysis-tools-dev/static-analysis
https://github.com/analysis-tools-dev/static-analysis
https://clang-analyzer.llvm.org/

146

146

|SRX14|

[Ste05]

[STF09]

[STMF09]

[SUPS*11]

[SWD+17]

[SYS+08]

[TFSL14]

M. Saleh, E. P. Ratazzi, and S. Xu. Instructions-based detec-
tion of sophisticated obfuscation and packing. In 201 IEEE
Military Communications Conference, pages 1-6, Oct 2014.

Adrian E Stepan. Defeating polymorphism: beyond emula-
tion. In Proceedings of the Virus Bulletin International Con-
ference, 2005.

Muhammad Zubair Shafiq, S. Momina Tabish, and Muddassar
Farooq. Pe-probe : Leveraging packer detection and structural
information to detect malicious portable executables. 2009.

M. Zubair Shafiq, S. Momina Tabish, Fauzan Mirza, and Mud-
dassar Farooq. Pe-miner: Mining structural information to de-
tect malicious executables in realtime. In Engin Kirda, Somesh
Jha, and Davide Balzarotti, editors, Recent Advances in In-
trusion Detection, pages 121-141, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

Igor Santos, Xabier Ugarte-Pedrero, Borja Sanz, Carlos Laor-
den, and Pablo G Bringas. Collective classification for packed
executable identification. In Proceedings of the 8th Annual
Collaboration, Electronic messaging, Anti-Abuse and Spam
Conference, pages 23-30. ACM, 2011.

Yan Shoshitaishvili, Michael Weissbacher, Lukas Dresel,
Christopher Salls, Ruoyu Wang, Christopher Kruegel, and
Giovanni Vigna. Rise of the hacrs: Augmenting autonomous
cyber reasoning systems with human assistance. In ACM

SIGSAC CCS, 2017.

Monirul Sharif, Vinod Yegneswaran, Hassen Saidi, Phillip
Porras, and Wenke Lee. Eureka: A framework for enabling
static malware analysis. In Sushil Jajodia and Javier Lopez,
editors, Computer Security - ESORICS 2008, pages 481-500,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Rachel Turner, Michael Falcone, Bonita Sharif, and Alina
Lazar. An eye-tracking study assessing the comprehension
of ¢++ and python source code. In Proceedings of the Sympo-
stum on Eye Tracking Research and Applications, 2014.



References

147

|THLLO9|

[TY07]

[TZ09)]

[UAB19]

[UNMMOG6]

[UPBSB15]

[UPSGF*14]

[UPSS+12]

[VBKM]

[veray]

Chih-Fong Tsai, Yu-Feng Hsu, Chia-Ying Lin, and Wei-Yang
Lin. Intrusion detection by machine learning: A review. ezpert
systems with applications, 2009.

Roger Tourangeau and Ting Yan. Sensitive questions in sur-
veys. Psychological bulletin, 2007.

Scott Treadwell and Mian Zhou. A heuristic approach for
detection of obfuscated malware. pages 291-299, 01 2009.

Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. Survey
of machine learning techniques for malware analysis. Comput-
ers & Security, 81, 2019.

Hidetake Uwano, Masahide Nakamura, Akito Monden, and
Ken-ichi Matsumoto. Analyzing individual performance of
source code review using reviewers’ eye movement. In Pro-
ceedings of the 2006 symposium on Eye tracking research &
applications, 2006.

Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and
Pablo G Bringas. Sok: Deep packer inspection: A longitu-
dinal study of the complexity of run-time packers. In 2015
IEEE Symposium on Security and Privacy (SP), pages 659—
673. IEEE, 2015.

Xabier Ugarte-Pedrero, Igor Santos, Ivan Garcia-Ferreira, Ser-
gio Huerta, Borja Sanz, and Pablo G Bringas. On the adoption
of anomaly detection for packed executable filtering. Comput-
ers & Security, 43:126-144, 2014.

Xabier Ugarte-Pedrero, Igor Santos, Borja Sanz, Carlos Laor-
den, and Pablo Garcia Bringas. Countering entropy measure
attacks on packed software detection. In Consumer Commu-
nications and Networking Conference (CCNC), 2012 IEEE,
pages 164-168. IEEE, 2012.

J. Viega, J. Bloch, Y. Kohno, and G. McGraw. Its4: A static
vulnerability scanner for ¢ and c¢++ code. In 2000 ACSAC.

Veracode. https://www.veracode.com/products/binary-
static-analysis-sast, Accessed April 20, 2022.


https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast

148

148

|viray]|

[VRM*20]

[VSR*18]

[WEBAOO]

[WFS93]

[WUF97]

[XGMOS]

[yar]|

[YDGPS16]

[YEGPS15]

[YGAR]

Virus total. https://www.virustotal.com/, Accessed April
20, 2022.

Daniel Votipka, Seth Rabin, Kristopher Micingki, Jeffrey S
Foster, and Michelle L, Mazurek. An observational investiga-
tion of reverse engineers’ processes. In 29th { USENIX}, 2020.

Daniel Votipka, Rock Stevens, Elissa Redmiles, Jeremy Hu,
and Michelle Mazurek. Hackers vs. testers: A comparison of
software vulnerability discovery processes. In IEEE SP. IEEE,
2018.

D. A. Wagner, J. S Foster, E. A. Brewer, and A. Aiken. A
first step towards automated detection of buffer overrun vul-
nerabilities. In NDSS, 2000.

Susan Wiedenbeck, Vikki Fix, and Jean Scholtz. Character-
istics of the mental representations of novice and expert pro-
grammers: an empirical study. International Journal of Man-
Machine Studies, 1993.

Andrew J Waters, Geoffrey Underwood, and John M Find-
lay. Studying expertise in music reading: Use of a pattern-
matching paradigm. Perception & psychophysics, 59(4), 1997.

R. Xu, P. Godefroid, and R. Majumdar. Testing for buffer
overflows with length abstraction. In ISSTA, 2008.

Yara rules. https://github.com/Yara-Rules.

K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith.
Helping johnny to analyze malware: A usability-optimized de-
compiler and malware analysis user study. In IEEE S€P, 2016.

K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith.
No more gotos: Decompilation using pattern-independent
control-flow structuring and semantic-preserving transforma-
tions. In NDSS, 2015.

F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and
discovering vulnerabilities with code property graphs. In 201/
IEEE SEP.


https://www.virustotal.com/
https://github.com/Yara-Rules

References

149

[YLR12]

[YSCX17]

[YSCX18]

[Yurl3]
[YZAOS]

[YZH14]

|ZEKAS17|

F. Yamaguchi, M. Lottmann, and K. Rieck. Generalized vul-
nerability extrapolation using abstract syntax trees. In AC-
SAC, 2012.

H. Yan, Y. Sui, S. Chen, and J. Xue. Machine-learning-guided
typestate analysis for static use-after-free detection. In AC-
SAC, 2017.

H. Yan, Y. Sui, S. Chen, and J. Xue. Spatio-temporal con-
text reduction: A pointer-analysis-based static approach for
detecting use-after-free vulnerabilities. In JCSE, 2018.

Dennis Yurichev. Reverse engineering for beginners, 2013.

W. Yan, Z. Zhang, and N. Ansari. Revealing packed malware.
IEEFE Security Privacy, 6(5):65-69, Sep. 2008.

J. Ye, C. Zhang, and X. Han. Poster: Uafchecker: Scalable
static detection of use-after-free vulnerabilities. In ACM CCS,
2014.

Marwane Zekri, Said El Kafhali, Noureddine Aboutabit, and
Youssef Saadi. Ddos attack detection using machine learn-

ing techniques in cloud computing environments. In 3rd
CloudTech. IEEE, 2017.



	List of Publications
	Introduction
	Contributions
	Thesis Outline

	Background
	Malware Analysis
	Dynamic techniques
	Static techniques
	Packing

	Vulnerability Discovery
	Reverse Engineering approaches and tools
	Disassemblers
	Decompilers


	Prevalence and Impact of Low-Entropy Packing Schemes in the Malware Ecosystem: 
	Background
	Entropy of Executable Files
	Entropy and XOR Encryption

	Prevalence of Low-Entropy Packing
	Dataset
	Analysis
	Results

	Low Entropy Packing Schemes
	Schemes Taxonomy
	Schemes in action
	Scheme Classifier
	Results

	Human Role
	Signature and Rule-based Packer Detection
	ML-based packing detection
	Feature Extraction
	Evaluation of Static Features on Low-entropy Packers

	Case studies
	Case I: Simple XOR Encryption
	Case II: Transposition Scheme
	Case III: Custom Encoding

	Conclusions

	The Convergence of Source Code and Binary Vulnerability Discovery – A Case Study: 
	Related Work
	SAST
	Decompilers

	Experiment Design
	Vulnerability and Application Selection
	SAST Tools Selection
	Decompiler Selection

	Experiments
	Source code analysis
	Decompilation
	Human role
	Decompilers variability
	Summary of Results: True Positives
	Summary of Results: False Positives
	Bugs detected *only* on pseudocode
	Compiler Impact

	Root Cause Analysis
	Discussion and Conclusions

	RE-Mind: a First Look Inside the Mind of a Reverse Engineer: 
	Related Work
	Scope of the study
	Methodology
	Online Platform
	Challenges Design

	Participants recruitment
	Data Analysis
	Functions Exploration
	Code Selection
	Birdseye Overview
	Basic Blocks Exploration
	Speed Factors
	Other Aspects

	Summary of Findings
	Limitations
	Conclusions

	Future Work and Conclusion
	Future Work
	Human studies and Binary Analysis
	Machines and Binary Analysis

	Conclusion

	Appendices
	REmind
	Text of the invitation email


