

OPEN

SoK: Secure Aggregation for Federated Learning

Mohamad Mansouri^{1,2} - Melek Önen² - Wafa Ben Jaballah¹ – Mauro Conti³

3rd Year PhD Student

OPEN

CIFRE: Between THALES

Supervisors: Wafa Ben Jaballah and Melek Önen

PhD topic: IoT Security

| Secure Aggregation (SA)

- Definitions
- > Historical Background
- Systematization and Categorization
 - Protocol Phases
 - Encryption-based vs MPC

Secure Aggregation in Federated Learning

- > What is Federated Learning?
- Inference Attacks and solutions
- Challenges in integrating SA for FL
- Categorization and analysis of the 38 published solutions

OPEN

Final Observations and Take-Aways

$$X_{\tau} = \sum_{1}^{n} x_{i,\tau}$$

- $> x_{i,\tau}$ is a **private** input of user *i* at time period τ
- > The goal is to compute the sum X_{τ} of all n users inputs

Example:

➤ Government collecting statistical information from smart electricity meters

OPEN

Parties

- > Users: Hold the private inputs
- > Aggregators: Compute the sum (aggregate)

Security Definitions

HBC Threat Model:

- > The basic threat model for SA
 - **Honest-but-curious parties**: Users and Aggregators follow correctly the protocol but tries to learn information about the private inputs of other users.
 - **Colluding parties**: Subset of the users (corrupted users) share private information with each others and with the aggregators
- > Security Requirement:
 - **Aggregator Obliviousness**: The aggregator cannot learn anything about the non-corrupted users inputs except their sum

OPEN

Malicious Threat Model:

➤ A stronger threat model that is studied more recently for SA

Security Definitions - Continue

HBC Threat Model:

> The basic threat model for SA

Malicious Threat Model:

- ➤ A stronger threat model that is studied more recently for SA
 - Malicious Aggregator: Aggregator can manipulate the final aggregated value
 - Malicious Users: Users can manipulate their own inputs
- > Security Requirement:
 - Aggregator Obliviousness
 - Aggregate Un-forgeability: This notion guarantees that:
 - 1) The malicious aggregator cannot forge a false aggregate of the inputs without being detected.
 - A set of malicious users cannot significantly drift the aggregation result without being detected.

History of Secure Aggregation

Alternative names:

- > Privacy-preserving aggregation
- Privacy-friendly aggregation
- > Private-stream aggregation
- First appeared around 2003 [HE03]
- Applications
 - > 2003 → 2016: WSN / Smart Meters
 - > 2017 → now: Federated Learning

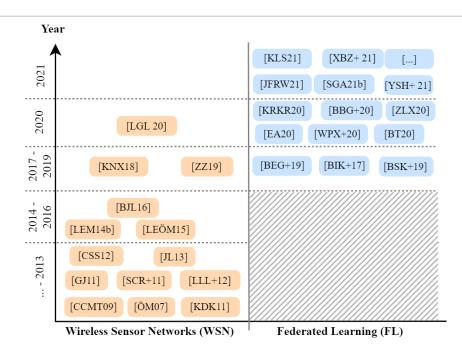
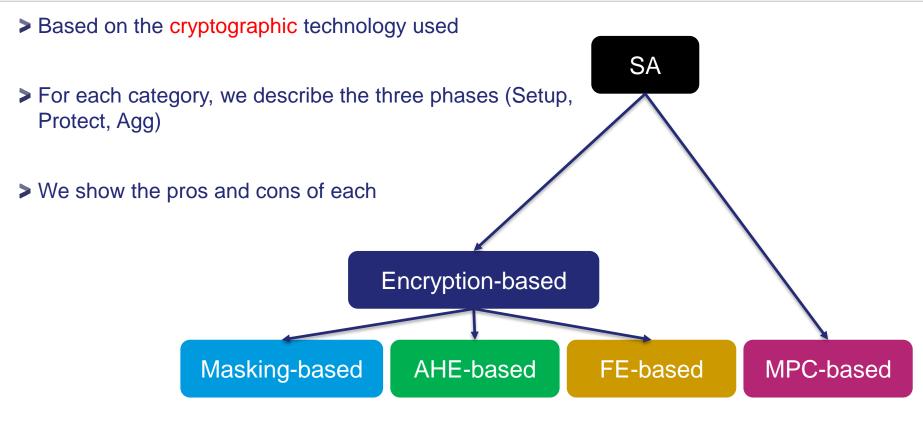


Fig. 1: The publications that used terms "secure aggregation" and "privacy-preserving aggregation" in their title or abstract.

Secure Aggregation – Systemization

Three Phases:

- > SA.Setup: The users and the aggregator get the secret keys. Keys are generated by either a trusted party or through a distributed mechanism.
- **SA.Protect**: A user locally executes a protection algorithm to protect its input $x_{i,\tau}$ of time period τ .
- **SA.Agg**: The aggregators collaboratively execute an aggregation algorithm to retrieve the sum of user inputs for time period τ . In case a single aggregator exists, the aggregation algorithm is locally executed by the aggregator.



OPEN

Building a future we can all trust

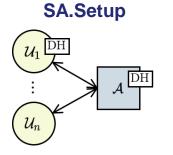
What is Masking?

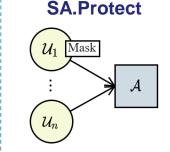
- Masking uses one-time pad encryption
- > It ensures perfect security if the keys is used once
- Consists of two deterministic algorithms:
 - $c \leftarrow Mask(k, m)$: masks an input m using the key k ($c = m + k \mod r$)
 - $m \leftarrow UnMask(k, c)$: unmasks the cipher text c using the same key k ($m = c k \mod r$)

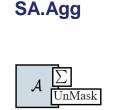
Masking-based SA

Masking

ALES. All rights reserved.



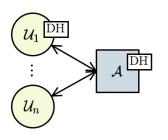




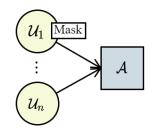
- **> SA.Setup:** each user perform DH key agreement with other user $(k_{(i,j),\tau})$ and with the aggregator $(k_{(i,0),\tau})$
 - The user key is: $k_{i,\tau} \leftarrow \sum_{j=1}^{t-1} k_{(i,j),\tau} \sum_{j=t+1}^{n} k_{(i,j),\tau} k_{(i,0),\tau}$ The aggregator key is: $k_{0,\tau} \leftarrow \sum_{j=1}^{n} k_{(0,j),\tau}$

- **> SA.Protect:** User computes: $c_{i,\tau}$ ← $Mask(k_{i,\tau}, x_{i,\tau})$
- **> SA.Agg:** Aggregator adds all ciphers and unmasks: $X_{\tau} \leftarrow Unmask(k_{0,\tau}, \sum_{i=1}^{n} c_{i,\tau})$

SA.Setup



SA.Protect



OPEN

SA.Agg

Pros

- No need for a trusted party
- No need for pre-established secure communication channels

Cons

- Costly in terms of computation and communication (Because SA.Setup should be repeated for each time period)
- > Cannot support dynamic users.

Multi-user AHE schemes consists of 3 PPT algorithms.

- $(k_0, \{k_i\}_{\forall i \in U}, pp) \leftarrow AHE.Setup(\lambda)$: Generate keys and public parameters
- $> y_{i,\tau} \leftarrow AHE.Enc(pp, k_i, \tau, x_{i,\tau})$: Encrypts a message $x_{i,\tau}$ using key k_i for time period τ
- $X_{\tau} \leftarrow AHE.Agg\left(pp, k_0, \{y_{i,\tau}\}_{\forall i \in U}\right)$: Evaluates the homomorphic operation on the n ciphertexts then decrypts the result using the decryption key k_0
- Not all AHE schemes are multi-user AHE
- **Example of multi-user AHE Joye-Libert Scheme [JL13]**

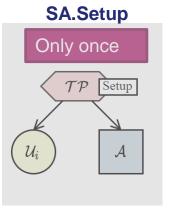
AHE. Setup(λ): choose modulus N, hash H and key k_i for each user s.t. $\sum_i k_i = -k_0$

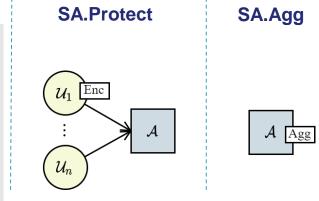
OPEN

AHE. Protect
$$(pp, k_i, \tau, x_{i,\tau})$$
: $y_{i,\tau} = (1 + x_{i,\tau}N)H(\tau)^{k_i} \mod N^2$

AHE.
$$Agg\left(pp, k_i, \left\{y_{i,\tau}\right\}_{\forall i \in U}\right): V_{\tau} = H(\tau)^{k_0} \prod_i y_{i,\tau}$$

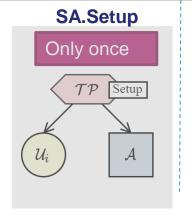
 $X_{\tau} = \frac{V_{\tau}-1}{N}$



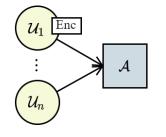


➤ **SA.Setup**: A trusted party runs the *AHE*. *Setup* algorithm and distributed the keys (this is only executed once)

- ➤ SA.Protect: User runs AHE. Enc and sends the protected input to the aggregator
- ➤ SA.Agg: Aggregator runs AHE.Agg



SA.Protect



OPEN

SA.Agg

Pros

- Long-term keys (no need to re-setup)
- No need for pre-established secure communication channels

Cons

- > Costly in terms of computation
- Cannot support dynamic users.

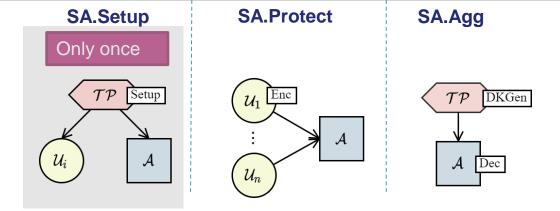
What is FE?

- > Encryption scheme that enables the server to learn a function on a user data
- ➤ A special type is FE for Inner Product (IP)

$$IP(x,y) = \sum_{i} x[i]y[i]$$

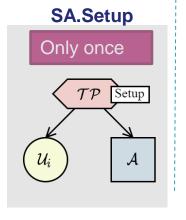
- \triangleright A variant of FE is mult-input FE (MIFE) where inputs are provided by n users.
- > MIFE consists of 4 PPT algorithms:
- $> \{msk, \{k_i\}_{\forall i}, pp\} \leftarrow MIFE. Setup(\lambda) : Generates a master key and all user keys$
- $\gt c_{i,\tau} \leftarrow \textit{MIFE.Enc}(pp, k_i, x_{i,\tau})$: Encrypts a message $x_{i,\tau}$ using key k_i
- $> dk_{\tau} \leftarrow MIFE.DKGen(pp, msk, y_{\tau})$: Generate a decryption key from the master key
- ▶ $IP([x_1, ..., x_n], y_\tau) \leftarrow MIFE. Dec(pp, dk_\tau, [c_{1,\tau}, ..., c_{n,\tau}], y_\tau)$: Computes the inner product of all users inputs with the vector y_τ using the decryption key

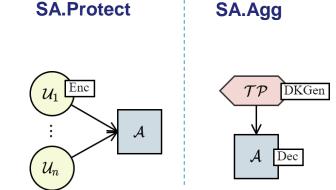
Functional-Encryption-based SA



- ➤ **SA.Setup:** A trusted party runs the *MIFE.Setup* algorithm and distributed the keys (this is only executed once)
- ➤ SA.Protect: User runs *MIFE*. *Enc* and sends the protected input to the aggregator
- **SA.Agg:** The trusteed party runs *MIFE.DKGen* by setting the vector y_{τ} =[1,1,1,1,1] and sends the decryption key to the aggregator which runs Aggregator runs *MIFE.Dec*

Functional-Encryption-based SA





Pros

- Light-weight operations
- No need for pre-established secure communication channels

Cons

OPEN

> Require the trusted dealer to stay online

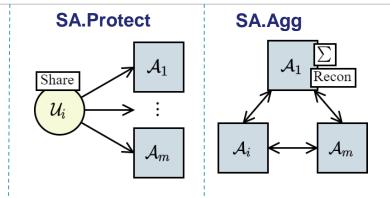
Multi-party-Computation-based SA

Wha

What is MPC?

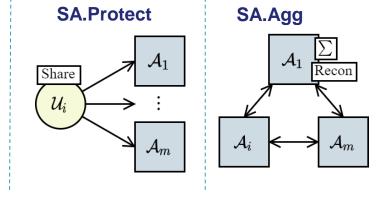
- No need for user keys
- > private messages are split into shares and distributed to multiple servers
- > t of the servers can collaborate to reconstruct the private message
- ➤ a.k.a. t-out-of-n sharing
- > Consists of two algorithms:
 - $-\{[s]_i\}_{\forall i \in [1,...n]} \leftarrow MPC.Share(s,t,n)$: It splits the secret s to n shares
 - $s \leftarrow MPC.Recon(\{[s]_i\}_{i \in U' \subset [1,...,n]})$: It reconstructs the secret s from a subset of more than t shares

SA.Setup



- > SA.Setup: Not required
- ➤ SA.Protect: User runs MPC. Share and sends each share to a different aggregator
- ➤ SA.Agg: Each aggregator sums locally the shares. Then, one of the aggregator collects all the summed shares and execute MPC.Recon

SA.Setup



Pros

- > No need fro trusted dealer
- Light operations

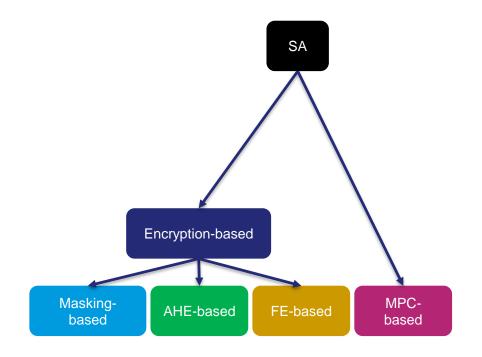
Cons

- Requires pre-established secure communication channels
- > High communication overhead

SA Categorization - Summary

	Schemes	No \mathcal{TP} required	No SC required	Dynamic users	Comp.	Comm.
Encryption	Masking (DC-net) AHE FE	0	•	0	0	0
MPC	n-out-of-n SS t-out-of-n SS	•	0	•	•	0

Table 1. Table comparing the different categories of secure aggregation. \mathcal{TP} stands for trusted third party. **SC** stands for pre-established secure channels. **Dynamic users** property shows wether the aggregation can be performed with only a subset of the users. **Comp.** stands for computation cost on users and aggregators. **Comm.** stands for communication cost between users and aggregators. \blacksquare means that the property is attained.



Federated Learning (FL)

A technique to train a ML model on multiple private datasets without sharing the data

Consists of *n* FL clients and a FL server

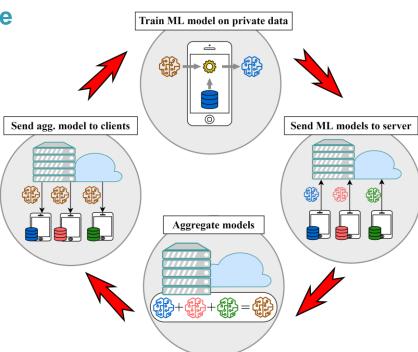
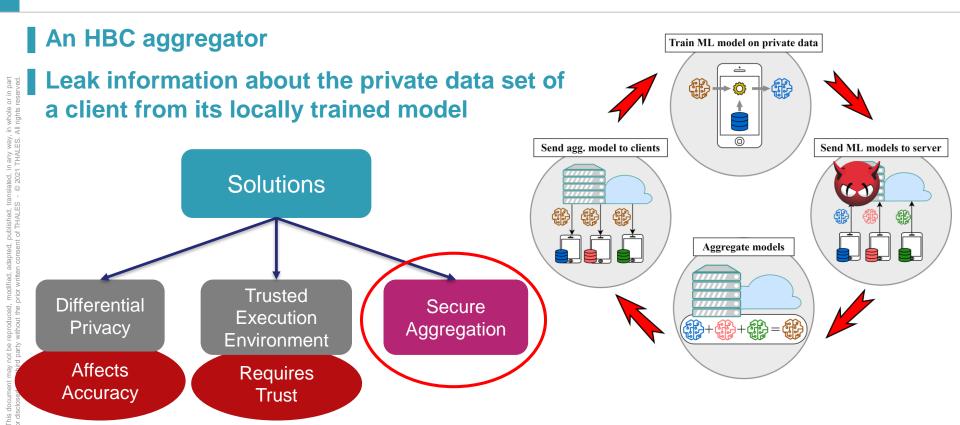


Fig. 2: One FL round with 3 FL clients

Inference Attacks



FL clients are users

FL server is the aggregator (or set of aggregators)

Is this solution practical?

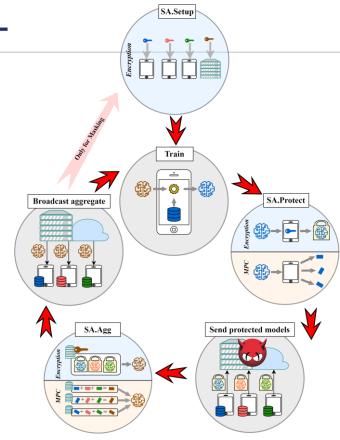


Fig. 3: SA integrated in FL. One FL round with 3 FL clients

SA for FL Challenges

Chall1: Clients Dropouts

Chall2: Inputs have high dimension

Chall3: Huge number of clients

Chall4: Privacy Attacks that Bypass SA

Chall5: Malicious Users

OPEN

Chall6: Malicious Aggregator

SA for FL Chall1: Clients Dropouts

If users drop, aggregation cannot be performed

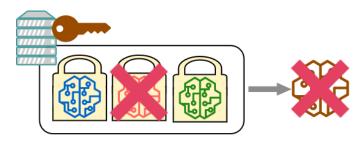
- Masking-based SA
- > AHE-based SA
- Sum of the keys equals to aggregator key

Solutions: Fault-Tolerant SA

- ➤ Masking-based SA: [BIK+17], [SSV+21], [YSH+21]
- ➤ Use secret sharing to share the DH secret keys of users

OPEN

If user failed, generate its masks



SA for FL - Chall2: Inputs have high dimension

The inputs are the trained model parameters

- > Vectors of high dimension
- Leads to large communication overhead

Solutions:

- ➤ AHE-based SA: packing and batch encryption [PAH+18], [LCV19], [ZLX+20]
- ➤ Masking-based SA: Auto-tuned quantization by changing the modulo [BSK+19], [EA20]

- FE-based SA: All or nothing transformation [WPX+20]
- All category techs: Ternary FL [DCSW20]

- New large scale apps: Gboard [YAE+18]
- Tens of thousands of clients
- How to synchronize the aggregation

Solutions:

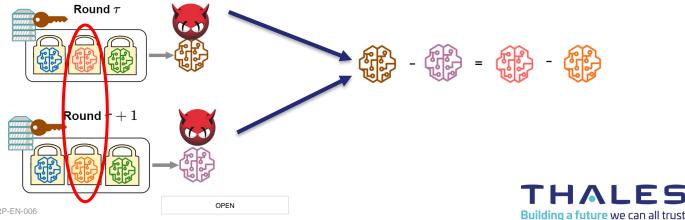
➤ Group clients into multiple groups and run multiple SA instances [BEG+19], [BBG+20], [SGA21b], [SMH21], [JNMALC22]

OPEN

➤ Adapt SA for asynchronous FL [SAGA21]

- The aggregated model is public information!
- SA is not designed to protect the aggregate
- Adversaries can infer information from the aggregate
 - Inference attacks: infer data samples
 - Multi-round attacks: Bypasses SA

- Solution
 - Distributed Differential Privacy (DDP) [TBA+19], [SSV+21]
 - ➤ Batch Partitioning [SAG+21]



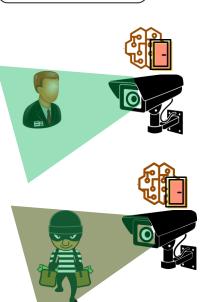
SA for FL - Chall5: Malicious Users

Malicious users perform poisoning attacks

Manipulates the input to install a backdoor [STS16]

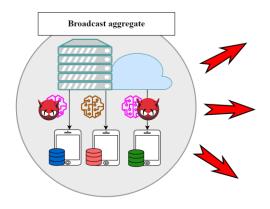
Solution

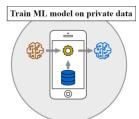
- Verify user input before including it
- > But isn't it protected?!
- ➤ MPC-based SA: computed and compare cosine distance over protected inputs [KTC20], [NRY+21]
- Masking-based SA: Hierarchal aggregation to verify intermediate results [ZLYM21],[VXK21]
- > AHE-based SA:
 - Using OPPRF to compare with threshold[KOB21]
 - Using commitments scheme to compute the distance [BLV+21]

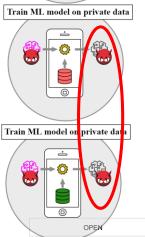


SA for FL - Chall6: Malicious Aggregator

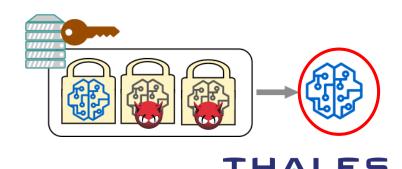
- A malicious aggregator can send a false aggregation results
- > Force users to learn back doored ML model
- Impact privacy also: bypass SA [PFA21]







- Solutions: Aggregator generate a proof of the result using:
 - ➤ Homomorphic hash functions (HHF) [ZFW+20], [XLL+20]
 - ➤ Commitment scheme [GLL+21]



Building a future we can all trust

SA for FL – Systematization

	$\mathbf{FT} \\ \mathbb{C}_1$	Comm. \mathbb{C}_2	Scale \mathbb{C}_3	$\begin{array}{c} \textbf{Privacy} \\ \mathbb{C}_4 \end{array}$	Mal. users \mathbb{C}_5	Mal. agg. \mathbb{C}_6
Masking	[BIK+17] Google	[BSK+19]	[BEG+19] [BBG+19]	[KLS21]	[ZLYM21]	[GLL+21]
	[SSV+21]		[SMH21] [JNMALC22]	[FMLF21] [SSV+ 21]	[VXK21]	[XLL+20]
	[YSH+21] University of Sou	uthern California	[SGA21b] [SAGA21]	[SAG+21]	[SGA21a]	
EE	[XBZ+19] IBM					
AHE		[LCV19] [PAH+ 18] [ZLX+ 20]		[TBA+19]	[BLV+ 21] [KOB21]	[ZFW+20]
MPC	[KRKR20]	[BT20] [DCSW20]			[KTC20] [NRY+ 21]	

SA for FL – Our observations

- O1: 20 masking-based SA solutions that tackles different challenges. Combining them?
- O2: AHE-based SA is not well explored
- O3: Non-secure aggregation AHE-based solutions [PAH+18, LCV19, ZLX+20, ZFW+20]
- ➤ O4: SA need additional privacy mechanism (DDP, multi-round privacy)
- ➤ O5: Scalable (w.r.t. # users) solutions in the malicious user model are open problem
- ➤ O6: Scalable (w.r.t. the #of model parameters) solutions in the malicious aggregator model are open problem

Extended definition of Secure Aggregation for FL

The extended SA.Protect phase:

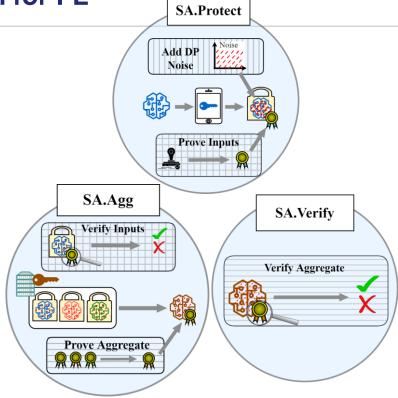
- First users add DP noise to the input
- Then perform the basic protection algorithm
- Finally, generate a proof of the input

The extended SA.Agg phase:

- First, aggregator verifies the protected input and decide whether to accept it
- Then performs the basic aggregation algorithm
- > Finally, generate a proof of the aggregation

A new SA. Verify phase:

Users verify the aggregated value and decide weather to accept it



Question?

