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Abstract—Standard Bayesian learning is known to have sub-
optimal generalization capabilities under misspecification and in
the presence of outliers. PAC-Bayes theory demonstrates that
the free energy criterion minimized by Bayesian learning is a
bound on the generalization error for Gibbs predictors (i.e.,
for single models drawn at random from the posterior) under
the assumption of sampling distributions uncontaminated by
outliers. This viewpoint provides a justification for the limitations
of Bayesian learning when the model is misspecified, requiring
ensembling, and when data is affected by outliers. In recent work,
PAC-Bayes bounds – referred to as PACm – were derived to
introduce free energy metrics that account for the performance
of ensemble predictors, obtaining enhanced performance under
misspecification. This work presents a novel robust free energy
criterion that combines the generalized logarithm score function
with PACm ensemble bounds. The proposed free energy training
criterion produces predictive distributions that are able to con-
currently counteract the detrimental effects of misspecification
– with respect to both likelihood and prior distribution – and
outliers.

Index Terms—Bayesian learning, robustness, outliers, misspec-
ification, ensemble models, machine learning.

I. INTRODUCTION

Key assumptions underlying Bayesian inference and learn-
ing are that the adopted probabilistic model is well specified
and that the training data set does not include outliers, so
that training and testing distributions are matched [1]. Under
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these favorable conditions, the Bayesian posterior distribution
provides an optimal solution to the inference and learning
problems. In contrast, optimality does not extend to scenarios
characterized by misspecification [2], [3] or outliers [4]. This
work aims at addressing both problems by integrating the
use of ensemble predictors [5], generalized logarithm score
functions [6], and generalized prior-dependent information-
theoretic regularizers [7] in Bayesian learning.

The proposed learning framework – termed (m, t)-robust
Bayesian learning – is underpinned by a novel free energy
learning criterion parameterized by integer m ≥ 1 and
scalar t ∈ [0, 1]. The parameter m controls robustness to
misspecification by determining the size of the ensemble used
for prediction. In contrast, parameter t controls robustness to
outliers by dictating the degree to which the loss function
penalizes low predictive probabilities. The proposed learning
criterion generalizes the standard free energy criterion un-
derlying Bayesian learning, which is obtained for m = 1
and t = 1 [8], [9]; as well as the m-free energy criterion,
obtained for t = 1, which was recently introduced in [10].
A further generalization of (m, t)-robust Bayesian learning
is also introduced, which aims at ensuring robustness to
prior misspecification by modifying the information-theoretic
regularizer present in the free energy [7].

To illustrate the shortcomings of conventional Bayesian
learning and the advantages of the proposed (m, t)-robust
Bayesian learning, consider the example in Figure 1. In it,
the in-distribution (ID) data generating measure (dashed line)
is multimodal, while the probabilistic model is Gaussian, and
hence misspecified. Furthermore, the training data set, repre-
sented as crosses, comprises an outlying data point depicted
in red. In these conditions, the predictive distribution resulting
from standard Bayesian learning (see the gray curve labeled
as m = 1, t = 1) is unimodal, and it poorly approximates
the underlying ID measure. The predictive distribution re-
sulting from the minimization of the m-free energy criterion
[10], which corresponds to (m, 1)-robust Bayesian learning,
mitigates misspecification, being multimodal, but it is largely
affected by the outlying data point (see the dark blue curve
associated to m = 10, t = 1). Conversely, (m, t)-robust
Bayesian learning for t < 1 mitigates both misspecification
and the presence of the outlier: the predictive distribution
resulting from the minimization of the proposed robust (m, t)-
free energy criterion (see light blue, pink and red curves) is
not only multimodal, but it can also better suppress the effect
of outliers.
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Fig. 1: Ensemble predictive distributions pq(x) obtained via
conventional and robust Bayesian learning based on the data
set represented as crosses. The underlying in-distribution (ID)
measure ν(x) (dashed line – a mixture of Gaussians) produces
the data points in black, while the contaminating out-of-
distribution (OOD) measure ξ(x) produces the data point in
red. Conventional Bayesian learning (m = 1, t = 1) is
shown in gray; the (m, 1)-robust Bayesian learning approach
in [10] with m = 10 and t = 1 is in dark blue; and the
proposed (m, t)-robust Bayesian learning with m = 10 and
t = {0.9, 0.7, 0.5} is displayed in light blue, pink and red.

A. Related Work

Recent work has addressed the problem of model misspeci-
fication for Bayesian learning, using tighter approximations of
the ensemble risk [10], [11], using pseudo-likelihoods [12] or
modeling aleatoric uncertainty [13]. In particular, references
[10], [11] have argued that the minimization of the standard
free energy criterion – which defines Bayesian learning [8],
[9] – yields predictive distributions that do not take advantage
of ensembling, and thus have poor generalization capabilities
for misspecified models.

To mitigate this problem, references [10], [11] introduced
alternative free energy criteria that account for misspecifica-
tion. The author of [11] leveraged a second-order Jensen’s
inequality to obtain a tighter bound on the cross entropy loss;
while the work [10] proposed an m-free energy criterion that
accounts for the performance of an ensemble predictor with
m constituent models. Both optimization criteria were shown
to be effective in overcoming the shortcomings of Bayesian
learning under misspecification, by yielding posteriors that
make better use of ensembling.

The free energy metrics introduced in [10], [11] are de-
fined by using the standard log-loss, which is known to
be sensitive to outliers. This is because the log-loss grows
unboundedly on data points that are unlikely under the model
[14]. Free energy criteria metrics based on the log-loss amount
to Kullback–Leibler (KL) divergence measures between data
and model distributions. A number of papers have proposed
to mitigate the effect of outliers by replacing the classical
criteria based on the KL divergence in favor of more robust
divergences, such as the β-divergences [15], [16] and the γ-

divergence [17], [18]. These criteria can be interpreted as
substituting the log-loss with generalized logarithmic scoring
rules. To optimize such criteria, variational methods have been
proposed that were shown to be robust to outliers, while not
addressing model misspecification [19].

A separate line of work is focused on addressing the
problem of prior misspecification. Prior misspecification refers
to learning scenarios in which the true underlying distribution
may not be well-represented by the chosen prior, causing
Bayesian methods to produce biased or erroneous predictions.
To address this issue, generalized formulations of Bayesian
learning were introduced that aim to mitigate the influence
of misspecified priors by generalizing the standard Bayesian
learning criterion to alternative classes of prior-dependent
information-theoretic regularizers [7], [8], [20]–[22].

B. Contributions

This work extends standard Bayesian learning by concur-
rently tackling model misspecification, with respect to both
likelihood and prior, and the presence of outliers. Specifically,
the contributions of this paper are as follows.

• We introduce the (m, t)-robust Bayesian learning frame-
work, which is underpinned by a novel free energy
criterion based on ensemble-based loss measures and
generalized logarithmic scoring rules. The predictive dis-
tribution resulting from the minimization of the proposed
objective takes full advantage of ensembling, while at the
same time reducing the effect of outliers.

• We generalize the (m, t)-robust Bayesian learning frame-
work to encompass Rényi divergence-based prior regu-
larizers, which allow to mitigate the detrimental effect of
misspecified priors.

• We theoretically justify and analyze the proposed robust
m-free energy criterion within the PAC-Bayesian frame-
work, and we prove its enhanced robustness through the
lens of the influence function [23].

• We present a wide array of experiments that corrobo-
rate the theoretical results, while also highlighting the
enhanced generalization capabilities and calibration per-
formance of the proposed learning criterion under model
misspecification, prior misspecification and with data sets
corrupted by outliers.

C. Paper Organization

The rest of the paper is organized as follows. In Section
II, we review the generalized logarithm function, the asso-
ciated entropy and divergence measures. We also formally
describe the learning setup, providing the definition of model
misspecification and introducing the contamination model
under consideration. After reviewing the standard free energy
criterion and its multi-sample version proposed in [10], we
provide a toy example highlighting the shortcoming of these
two learning criteria when the model class is misspecified
and the training data contains outliers. Then, in Section III,
we introduce the (m, t)-robust Bayesian learning framework
that tackles both model misspecification and the presence of
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outliers, and that overcomes the limitations of the standard
Bayesian learning rule. We theoretically analyze the proposed
learning criterion, providing PAC-Bayesian guarantees for the
ensemble model with respect to the contaminated and the in-
distribution measures. In Sec. IV, we introduce a generalized
form of robust Bayesian learning that addresses also pior mis-
specification. Finally, in Section V, we provide regression and
classification experiments to quantitatively and qualitatively
measure the performance of the proposed learning criterion.

II. PRELIMINARIES

A. Generalized Logarithms

The t-logarithm function, also referred to as generalized or
tempered logarithm is defined as

logt(x) :=
1

1− t

(
x1−t − 1

)
for x > 0, (1)

for t ∈ [0, 1) ∪ (1,∞), and

log1(x) := log(x) for x > 0 (2)

where the standard logarithm (2) is recovered from (1) in the
limit limt→1 logt(x) = log(x). As shown in Figure 2, for
t ∈ [0, 1), the t-logarithms is a concave function, and for
t < 1 is lower bounded as logt(x) ≥ −(1− t)−1.

Largely employed in classical and quantum physics, the t-
logarithm has also been applied to machine learning problems.
Specifically, t-logarithms have been used to define alternatives
to the log-loss as a score function for probabilistic predictors
with the aim of enhancing robustness to outliers [6], [24], [25].
Accordingly, the loss associated to a probabilistic model q(x)
is measured as − logt q(x) instead of the standard log-loss
− log q(x). Note that we have the upper bound − logt q(x) ≤
(1− t)−1 for t < 1.

In information theory, the t-logarithm was used by [26] to
define the t-Tsallis entropy

Ht(p(x)) := −
∫
p(x)t logt p(x)dx, (3)

and the t-Tsallis divergence

Dt(p(x)||q(x)) := −
∫
p(x)t[logt p(x)− logt q(x)]dx. (4)

When using the Tsallis divergence (4) as an optimization
criterion in machine learning, the concept of escort distribution
is often useful [27]. Given a probability density p(x), the
associated t-escort distribution is defined as

Et(p(x)) =
p(x)t∫
p(x)tdx

. (5)

Another popular divergence related to the Tsallis diver-
gence, and hence also to the t-logarithm, is the t-Rényi
entropy. For t ∈ [0, 1) ∪ (1,∞), it is defined as

HR
t (p(x)) :=

1

1− t
log

∫
p(x)tdx, (6)

which can be obtained as a monotonically increasing function
of the t-Tsallis entropy as

HR
t (p(x)) =

1

1− t
log (1 + (1− t)Ht(p(x))) . (7)
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Fig. 2: t-logarithm loss, or logt-loss, of a predictive distribu-
tion p(x) for different values of t. For t = 1, the samples x
corresponding to low predictive probability p(x) → 0 have a
potentially unbounded loss value. On the contrary, for t < 1,
the t-logarithm loss is bounded by (1− t)−1 and it limits their
influence.

The associated t-Rényi divergence is defined as

DR
t (p(x)||q(x)) :=

1

t− 1
log

∫
p(x)tq(x)1−tdx, (8)

which is related via a monotonically increasing function to the
t-Tsallis divergence as

DR
t (p(x)||q(x)) =

1

t− 1
log (1 + (t− 1)Dt(p(x)||q(x))) .

(9)

In the limit t → 1, both t-Tsallis and t-Rényi entropies
recover the Shannon (differential) entropy, i.e.,

lim
t→1

Ht(p(x)) = lim
t→1

HR
t (p(x)) = Ep(x)[− log p(x)]. (10)

Furthermore, under the same limit, both t-Tsallis and t-Rényi
divergences recover the Kullback–Leibler (KL) divergence,
i.e.,

lim
t→1

Dt(p(x)||q(x))= lim
t→1

DR
t (p(x)||q(x))=Ep(x)

[
log

p(x)

q(x)

]
.

(11)

We finally note that t-logarithm does not satisfy the distribu-
tive property of the logarithm, i.e., log(xy) = log(x)+log(y).
Instead, we have the equalities [28]

logt(xy) = logt x+ logt y + (1− t) logt x logt y (12)

and

logt

(
x

y

)
= yt−1 (logt x− logt y) . (13)
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TABLE I: Total variation (TV) distance between the ID
measure ν(x) and the predictive distribution pq(x) obtained
from the optimization of the different free energy criteria
described in the text.

m = 1
t = 1

m = 10
t = 1

m = 10
t = 0.9

m = 10
t = 0.7

m = 10
t = 0.5

TV(ν(x)||pq(x)) 0.59 0.35 0.30 0.24 0.19

B. Assumptions and Motivation

We consider a learning setup in which the data distribution
is contaminated by outliers [29], and the assumed parametric
model is misspecified [11]. As in [29], the presence of
outliers is modelled by assuming that the observed vector
x ∈ X follows a sampling distribution ν̃(x) given by the
contamination of an in-distribution (ID) measure ν(x) by an
out-of-distribution (OOD) measure ξ(x).

Assumption 1 (Outliers). The sampling distribution follows
the gross error model proposed by [29],

ν̃(x) = (1− ϵ)ν(x) + ϵξ(x) (14)

where ν(x) is the ID measure; ξ(x) is the OOD measure ac-
counting for outliers; and ϵ ∈ [0, 1] denotes the contamination
ratio.

In order for model (14) to be meaningful, one typically
assumes that the OOD measure ξ(x) is large for values of x
at which the ID measure ν(x) is small.

The learner is assumed to have access to a data set D =
{(xi)}ni=1 ∼ ν̃(x)⊗n drawn from the sampling distribution,
and it assumes a uniformly upper bounded parametric model
family pθ(x) defined by a model parameter vector θ ∈ Θ,
which is generally misspecified.

Assumption 2 (Misspecification). The model class {pθ(·) :
θ ∈ Θ} is misspecified with respect to the ID measure ν(x),
in the sense that there is no model parameter vector θ ∈ Θ
such that ν(x) = pθ(x). Furthermore, it is uniformly upper
bounded, in the sense that there exists a finite constant C such
that pθ(x) ≤ C for all θ ∈ Θ and values of x ∈ X .

In order to account for misspecification, as in [11], we adopt
ensemble models of the form

pq(x) := Eq(θ)[pθ(x)], (15)

where q(θ) is the ensembling distribution on the model param-
eter space Θ. The rationale for considering ensemble models
is that the average (15), which accounts from the combinations
of multiple models pθ(·), may better represent the ID measure
ν(x) in the presence of misspecification (see Assumption 2).

The logt-loss of the ensemble model (15) is given as

Rt(q, x) := − logt pq(x) = − logt Eq(θ)[pθ(x)]. (16)

This contrasts with the average logt-loss obtained by drawing
a model parameter vector θ ∼ q(θ) and then using the resulting
model pθ(x) — an approach known as Gibbs model. The
corresponding logt-loss is

R̂t(q, x) := Eq(θ)[− logt pθ(x)]. (17)

Unlike the standard log-loss with t = 1, the logt-loss is upper
bounded by (1 − t)−1 for any t ∈ (0, 1). This constrains the
impact of anomalous data points to which the model — either
pθ(x) or pq(x) for Gibbs and ensemble predictors, respectively
— assigns low probability.

Since the sampling distribution ν̃(x) is not known, the risk

Rt(q) := Eν̃(x)[− logt Eq(θ)[pθ(x)]] (18)

of the ensemble model cannot be computed by the learner.
However, for t = 1, using Jensen’s inequality and standard
PAC-Bayes arguments, the risk (18) can be upper bounded
using the data set D (and neglecting inessential constants) by
the free energy criterion [1], [30]

J (q) :=
1

n

∑
x∈D

R̂1(q, x) +
D1(q(θ)||p(θ))

β
(19)

where we recall that D1(q(θ)||p(θ)) is the KL divergence with
respect to a prior distribution p(θ), while β > 0 is a constant,
also known as inverse temperature.

The criterion (19), for β = n, is minimized by the standard
Bayesian posterior i.e.,

qBayes(θ) = argmin
q

∑
x∈D

R̂1(q, x) +D1(q(θ)||p(θ)) (20)

∝ p(D|θ)p(θ). (21)

Even disregarding outliers, in the misspecified setting, the
resulting ensemble predictor pqBayes

(x) = EqBayes(θ)[pθ(x)]
is known to lead to poor performance, as the criterion (19)
neglects the role of ensembling to mitigate misspecification
[11].

Example: Consider a Gaussian model class pθ(x) =
N (x|θ, 1) and a prior p(θ) = N (θ|0, 9). We obtain the
standard Bayesian posterior qBayes(θ) by minimizing the free
energy (19) with n = 5 data points sampled from the ID
measure ν(x) = 0.7N (x|2, 2)+0.3N (x|−2, 2), contaminated
by an OOD measure ξ(x) = N (x|−8, 1) with a contamination
ratio ϵ = 0.1. Note that the model is misspecified, since it
assumes a single Gaussian, while the ID measure ν(x) is
a mixture of Gaussians. Therefore, the resulting predictive
ensemble distribution pqBayes

(x) (gray line) is not able to
capture the multimodal nature of the sampling distribution.
Furthermore, the presence of outliers leads to a predictive
distribution that deviates from the ID distribution ν(x) (green
dashed line). ■

C. PACm-Bayes

The limitations of the standard PAC-Bayes risk bound (19)
as a learning criterion in the presence of model misspecifica-
tion have been formally investigated by [11] and [10]. These
works do not consider the presence of outliers, hence setting
the sampling distribution ν̃(x) to be equal to the ID measure
ν(x) (or ϵ = 0 in 14). Here we review the PACm bound
introduced by [10] with the goal of overcoming the outlined
limitations of (19) in the presence of misspecification.

In [10], the free energy criterion (19) is modified by
replacing the Gibbs risk R̂1(q, x) with a sharper bound on
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the ensemble log-loss R1(q, x). For m ≥ 1, this bound is
defined as

R̂m
1 (q, x):=Eθ1,...,θm∼q(θ)⊗m

[
− logEj∼U [1:m][p(x|θj)]

]
(22)

where the inner expectation is over an index j uniformly
distributed in the set [1 : m] = {1, 2, . . . ,m}.

By leveraging the results of [31] and [32], the multi-sample
criterion R̂m

1 (q, x) can be shown to provide a sharper bound to
the ensemble risk R1(q, x) in (16) as compared to the Gibbs
risk R̂1

1(q, x) in (17), i.e.,

R1(q, x) ≤ R̂m
1 (q, x) ≤ R̂1

1(q, x) = R̂1(q, x) (23)

Furthermore, the first inequality in (23) becomes asymptoti-
cally tight as m→ ∞, i.e.,

lim
m→∞

R̂m
1 (q, x) = R1(q, x). (24)

Using PAC-Bayes arguments, [10] show that the log-risk (18)
with t = 1 and ν̃(x) = ν(x) can be upper bounded, for
β > 0, (neglecting inessential constants) by the m-free energy
criterion

Jm(q) :=
1

n

∑
x∈D

R̂m
1 (q, x) +

m

β
D1(q(θ))||p(θ)). (25)

The minimization of the m-free energy Jm(q) produces a
posterior

qm(θ) := argmin
q

Jm(q), (26)

which can take better advantage of ensembling, resulting in
predictive distributions that are more expressive than the ones
obtained following the standard Bayesian approach based on
(19).

Example (continued): This is shown in Figure 1, in which
we plot the predictive distribution pqm(θ) obtained by min-
imizing the m-free energy Jm(q) in (25) for m = 10 for
the same example described in the previous subsection. The
optimized predictive distribution pqm(x) is multimodal; it
covers all data samples; and, as shown in Table I, it reduces
the total variational distance from the ID measure ν(x) as
compared to the predictive distribution obtained minimizing
J (q). ■

III. (m, t)-ROBUST BAYESIAN LEARNING

In the previous section, we reviewed the m-free energy
criterion introduced by [10], which was argued to produce
predictive distributions that are more expressive, providing a
closer match to the underlying sampling distribution ν(x).
However, the approach is not robust to the presence of outliers.
In this section, we introduce (m, t)-robust Bayesian learning
and the associated novel free energy criterion that addresses
both expressivity in the presence of misspecification and
robustness in setting with outliers. To this end, we study the
general setting described in Section II-B in which the sampling
distribution ν̃(x) satisfies both Assumption 1 and Assumption
2, and we investigate the use of the logt-loss with t ∈ [0, 1)
as opposed to the standard log-loss as assumed in [10].

A. Robust m-free Energy

For a proposal posterior q(θ), generalizing (22), we define
the multi-sample empirical logt-loss evaluated at a data point
x as

R̂m
t (q, x):=Eθ1,...,θm∼q(θ)⊗m

[
− logtEj∼U [1:m]p(x|θj)

]
.

(27)

From the concavity of the t-logarithm with t ∈ [0, 1), in a
manner similar to (23), the loss (27) provides an upper bound
on the original logt-loss Rt(q, x) in (16)

Rt(q, x) ≤ R̂m
t (q, x). (28)

Furthermore, the bound becomes increasingly tighter as m
increases, and we have the limit

lim
m→∞

R̂m
t (q, x) = Rt(q, x) (29)

for t ∈ [0, 1). The m-sample logt-loss (27) is used to define,
for β > 0, the robust m-free energy as

Jm
t (q) :=

1

n

∑
x∈D

R̂m
t (q, x) +

m

β
D1(q(θ)||p(θ)). (30)

The proposed free energy generalizes the standard free energy
criterion (19), which corresponds to the training criterion of
(m, t)-robust Bayesian learning for m = 1 and t = 1, and the
m-free energy criterion (25), which corresponds to the training
criterion of (m, t)-robust Bayesian learning for t = 1.

Following similar steps as in [10], the robust m-free energy
can be proved to provide an upper bound on the logt-risk in
(18), as detailed in the following lemma.

Lemma 1. With probability 1−σ, with σ ∈ (0, 1), with respect
to the random sampling of the data set D, for all distributions
q(θ) that are absolutely continuous with respect the prior p(θ),
the following bound on the risk (18) of the ensemble model
holds

Rt(q) ≤Jm
t (q) + ψ(ν̃, n,m, β, p, σ) (31)

where

ψ(ν̃, n,m, β, p, σ) :=
1

β

(
logED,p(θ)

[
eβ∆m,n

]
− log σ

)
(32)

and

∆m,n :=
1

n

∑
x∈D

logtEj∼U [1:m]p(x|θj)

− Eν̃(x)

[
logtEj∼U [1:m]p(x|θj)

]
. (33)

Furthermore, the risk with respect to the ID measure ν(x) can
be bounded as

Eν(x)[Rt(q, x)] ≤
1

1− ϵ
(Jm

t (q) + ψ(ν̃, n,m, β, p, σ))

+
ϵ(C1−t − 1)

(1− ϵ)(1− t)
, (34)

if the contamination ratio satisfies the inequality ϵ < 1.

Lemma 1 provides an upper bound on the logt-risk (18),
which is defined with respect to the sampling distribution ν̃(x)
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corrupted by outliers, as well as on the ensemble logt-risk (16)
evaluated with respect to the ID measure ν(x). Reflecting that
the data set D contains samples from the corrupted measure
ν̃(x), while the bound (31) vanishes as n → ∞, a non-
vanishing term appears in the bound (34).

B. Minimizing the Robust m-free Energy

Using standard tools from calculus of variations, it is
possible to express the minimizer of the robust m-free energy

qmt (θ) := argmin
q

Jm
t (q) (35)

as fixed-point solution of an operator acting on the ensembling
distribution q(θ).

Theorem 1. The minimizer (35) of the robust m-free energy
objective (30) is the fixed point of the operator

T (q):=p(θj) exp

(
β
∑
x∈D

E{θi}i̸=j

[
logt

(∑m
i=1 pθi(x)

m

)])
(36)

where the average in (36) is taken with respect to the i.i.d.
random vectors {θi}i̸=j ∼ q(θ)⊗m−1.

Theorem 1 is useful to develop numerical solutions to
problem (35) for non-parametric posteriors, and it resembles
standard mean-field variational inference iterations [33].

Alternatively, we can tackle the problem (35) over a
parametric family of distribution using standard tools from
variational inference [34].

To further characterize the posterior minimizing the robust
m-free energy criterion, and to showcase the beneficial effect
of the generalized logarithm, we now consider the asymptotic
regime in which m→ ∞ and then n→ ∞. In this limit, the
robust m-free energy (30) coincides with the logt-risk Rt(q).
From the definition of t-Tsallis divergence (4), the logt-risk
can be shown in turn to be equivalent to the minimization of
the divergence

Dt

(
Et(ν̃(x))||pq(θ)(x)

)
(37)

between the t-escort distribution (5) associated to the sampling
distribution ν̃(x) and the ensemble predictive distribution
pq(θ)(x). Therefore, unlike the standard Bayesian setup with
t = 1, the minimizer of the robust m-free energy does not seek
to approximate the sampling distribution ν̃(x). Instead, the
minimizing ensembling posterior q(θ) aims at matching the t-
escort version of the sampling distribution ν̃(x). In the case of
corrupted data generation procedures, i.e., when ν(x) ̸= ν̃(x),
recovering the sampling distribution ν̃(x) is not always the end
goal, and, as shown by [6], escort distributions are particularly
effective at reducing the contribution of OOD measures.

Example (continued): Consider again the example in Figure
1. The minimization of the proposed robust m-free energy
Jm
t (q) for m = 10 and t = {0.9, 0.7, 0.5} is seen to lead

to expressive predictive distributions (35) that are also able to
downweight the contribution of the outlying data point. This
is quantified by reduced total variation distances as seen in
Table I.
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z
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|∂ ∂
φ
R̂
m t

(q
φ
,z

)| φ
=
φ
m
∗

t
(0

) t = 1

t = 0.5

Decreasing t

Fig. 3: Absolute value of the contamination dependent term
∂
∂ϕR̂m

t (qϕ, z) evaluated at ϕm∗
t (0) for different values of t.

The predictive distribution of the ensemble model concentrates
around 1.

C. Influence Function Analysis

In this section, we study the robustness of the proposed
free energy criterion by using tools from classical statistics.
The robustness of an estimator is typically measured by the
means of its influence function [23]. The influence function
quantifies the extent to which an estimator derived from a
data set D changes when a data point z is added to D. We
are specifically interested in quantifying the effect of data
contamination, via the addition of a point z, on the ensembling
distribution qmt (θ) that minimizes the proposed robust m-free
energy objective (30). To this end, given a set D of n data
points {x1, . . . , xn} ∈ Xn, we define the empirical measure

Pn(x) =
1

n

n∑
i=1

δ(x− xi) (38)

where δ(·) denotes the Dirac function, and we introduce its
γ-contaminated version for an additional data point z ∈ X as

Pn
γ,z(x) =

(1− γ)

n

n∑
i=1

δ(x− xi) + γδ(x− z) (39)

with γ ∈ [0, 1].
The following analysis is inspired by [19], which considered

Gibbs models trained using generalized free energy criteria
based on the β-divergence and γ-divergence.

To compute the influence function we consider parametric
ensembling distributions qϕ(θ) defined by the parameter vector
ϕ ∈ Φ ⊆ Rd. We denote the robust m-free energy (30)
evaluated using the empirical distribution (39) as

Jm
t (γ, ϕ)=EPn

γ,z(x)

[
R̂m

t (qϕ, x)
]
+
m

β
D1(qϕ(θ)||p(θ)), (40)

and its minimizer as

ϕm∗
t (γ) = argmin

ϕ∈Φ
Jm
t (γ, ϕ). (41)
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The influence function is then defined as the derivative

IFm
t (z, ϕ, Pn) =

dϕm∗
t (γ)

dγ

∣∣∣∣∣
γ=0

(42)

= lim
γ→0

ϕm∗
t (γ)− ϕm∗

t (0)

γ
. (43)

Accordingly, the influence function measures the extent to
which the minimizer ϕm∗

t (γ) changes for an infinitesimal
perturbation of the data set.

Theorem 2. The influence function of the robust m-free energy
objective (40) is

IFm
t (z, ϕ, Pn)=−

[
∂2Jm

t (γ, ϕ)

∂ϕ2

]−1

×∂
2Jm

t (γ, ϕ)

∂γ∂ϕ

∣∣∣∣∣γ=0
ϕ=ϕm∗

t (0)

,

(44)

where
∂2Jm

t (γ, ϕ)

∂ϕ2
=EPn

γ,z(x)
∂2

∂ϕ2

[
R̂m

t (qϕ, x)
]

(45)

+
∂2

∂ϕ2

[
m

β
KL(qϕ(θ)||p(θ))

]
(46)

and
∂2Jm

t (γ, ϕ)

∂γ∂ϕ
=
∂

∂ϕ

[
EPn(x)

[
R̂m

t (qϕ, x)
]
−R̂m

t (qϕ, z)
]
.

(47)

Theorem 2 quantifies the impact of the data point z through
the contamination dependent term ∂

∂ϕR̂m
t (qϕ, z). We study the

magnitude of this term to illustrate the enhanced robustness
deriving from the proposed robust m-free energy objective.
For ease of tractability, we consider the limit m→ ∞. In this
case, the contamination dependent term can be expressed as

∂

∂ϕ
lim

m→∞
R̂m

t (qϕ, z)=
∂

∂ϕ
logt Eqϕ(θ)[p(z|θ)] (48)

=
[
Eqϕ(θ)[p(z|θ)]

]−t ∂Eqϕ(θ)[p(z|θ)]
∂ϕ

.

(49)

The effect of the t-logarithm function thus appears in the first
multiplicative term, and it is the one of reducing the influence
of anomalous data points to which the ensemble predictive
distribution pq(x) assigns low probability.

Example: To illustrate how the t-logarithm improves the
robustness to outlying data points, we consider again the
example of Figure 1 and we assume a parametrized ensem-
bling posterior qϕ(θ) = N (θ|ϕ, 1). In Figure 3, we plot the
magnitude of the contamination dependent term evaluated at
the parameter ϕm∗

t (0) that minimizes the robust m-free energy
Jm
t (0, ϕ) for m = ∞ and different values of t. For all

values of t, the optimized predictive distribution concentrates
around 0, where most of sampled data points lie. However, as
the value of the contaminated data point z becomes smaller
and moves towards regions where the ensemble assign low
probability, the contamination dependent term grows linearly
for t = 1, while it flattens for t ∈ (0, 1). This showcases the
role of the robust m-free energy criterion as a tool to mitigate
the influence of outlying data points by setting t < 1.

TABLE II: Total variation (TV) distance between the ID
measure ν(x) and the predictive distribution pq(x) obtained
from the optimization of the different free energy criteria for
the setting in Figure 4 (the TV values are scaled by 104).

t = 1
ϵ = 0

t = 1
ϵ = 0.1

t = 0.9
ϵ = 0.1

t = 0.8
ϵ = 0.1

TV(ν(x)||pq(x)) 1.38 2.15 1.88 1.79

IV. GENERALIZED (m, t)-ROBUST BAYESIAN LEARNING

So far, we have addressed the problem of model misspecifi-
cation with respect to the likelihood function pθ(·) as defined
in Assumption 2. When applying Bayesian learning, a further
common concern with regards to misspecification has to do
with the choice of the prior distribution p(θ). In Bayesian
learning, as well as robust Bayesian learning as presented
in this paper, the prior distribution p(θ) is accounted for in
the design problem by including a regularizer D1(q(θ)||p(θ))
on the ensembling distribution q(θ) under optimization on
the free energy objective (see (19) for conventional Bayesian
learning and (30) for robust Bayesian learning). It has been
recently argued that the KL divergence D1(q(θ)||p(θ)) may
not offer the best choice for the regularizer when the prior is
not well specified due to its mode-seeking behavior [7], [9],
[35]. In this section, we extend the generalized Bayesian learn-
ing framework in [7] to incorporate robustness to likelihood
misspecification and outliers.

To this end, we extend the (m, t)-robust Bayesian learning
criterion (30) by replacing the KL divergence D1(q(θ)||p(θ))
with the more general t-Rényi divergence DR

t (q(θ)||p(θ))
in (8). Recall that the Rényi divergence tends to the KL
divergence as t approaches to 1. This extension is motivated by
the fact that, for t < 1, the Rényi divergence exhibits a mass-
covering behavior that has been shown to improve robustness
against ill-specified prior distributions [7], [20], [21].

Accordingly, the generalized (m, t)-robust Bayesian learn-
ing criterion is defined as

Jm
t,tp(q) :=

1

n

∑
x∈D

R̂m
t (q, x) +

m

β
DR

tp(q(θ)||p(θ)). (50)

We emphasize that the parameter tp specifying the Rényi
regularizer need not equal the parameter t used for the loss
function. In fact, parameter tp accounts for the degree of
robustness that the designer wishes to enforce with respect to
the choice of the prior, while parameter t controls robustness
to outliers. The (m, t)-robust Bayesian learning criterion is
a special case of the generalized criterion (50) for tp = 1.
Furthermore, the Bayesian learning objective in [7], [20] is
recovered by setting m = 1 and t = 1.

The results presented in previous section extend to the
generalized (m, t)-robust learning criterion as follows. First,
the criterion (50) can be obtained as a bound on the risk (18),
extending Lemma 1, as briefly elaborated in Appendix A. Fur-
thermore, the influence function analysis developed in Section
III-C applies directly also to the generalized criterion (50),
since the derivation therein is only reliant on the properties of
the t-logarithm and it does not depend on the choice of the
prior regularization.
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Fig. 4: Ensemble predictive distribution obtained minimizing different free energy criteria. The samples from the ID measure
are represented as green dots, while data points sampled from the OOD component are in red. The optimized predictive
distributions are displayed in shades of gray. In (a), we plot the predictive distribution associated to (m, 1)-robust Bayesian
learning obtained minimizing the m-free energy criterion Jm of [10] with m = 20 by using only samples from the ID measure
(i.e., there are no outliers). In (b), we show the predictive distribution obtained by minimizing the same criterion when using
samples from the ID measure and OOD measure with a contamination ratio ϵ = 0.1. In (c) and (d) we consider the same
scenario as in (b), but we consider the proposed (m, t)-robust Bayesian based on the robust m-free energy criterion Jm

t with
m = 20, when setting t = 0.9 and t = 0.8, respectively.

V. EXPERIMENTS

In this section, we first describe a simple regression task
with an unimodal likelihood, and then we present results for
larger-scale classification and regression tasks. The main aim
of these experiments is to provide qualitative and quantitative
insights into the performance of (m, 1)-robust Bayesian learn-
ing of [10] and the proposed robust (m, t)-robust Bayesian
learning. All examples are characterized by misspecification
and outliers.

A. Multimodal Regression

For the first experiment, we modify the regression task
studied by [11] and [10] in order to capture not only model
misspecification but also the presence of outliers as in the
contamination model (14). To this end, we assume that the
ID distribution ν(x), with x = (a, b), is given by ν(a, b) =
p(a)ν(b|a), where the covariate a is uniformly distributed in
the interval [−10.5, 10.5] – i.e., p(a) = 1/21 in this interval
and p(a) = 0 otherwise – and by a response variable b that
is conditionally distributed according to the two-component
mixture

ν(b|a) = N (b|αµa, 1), (51)
α ∼ Rademacher, (52)

µa = 7 sin

(
3a

4

)
+
a

2
. (53)

The OOD component ξ(x) = ξ(a, b) = p(a)ξ(b) also has a
uniformly distributed covariate a in the interval [−10.5, 10.5],
but, unlike the ID measure, the response variable b is inde-
pendent of a, with a distribution concentrated around b = 0
as

ξ(b) = N (b|0, 0.1). (54)

The parametric model is given by p(x|θ) = p(a, b|θ) =
p(a)N (b|fθ(a), 1), where fθ(a) is the output of a three-layer
fully connected Bayesian neural network with 50 neurons and
Exponential Linear Unit (ELU) activation functions [36] in

the two hidden layers. We consider a Gaussian prior p(θ) =
N (0, I) over the neural network weights and use a Monte
Carlo estimator of the gradient based on the reparametrization
trick [37] as in [38].

Consider first only the effect of misspecification. The para-
metric model assumes a unimodal likelihood N (b|fθ(a), 1)
for the response variable, and is consequently misspecified
with respect to the ID measure (51). As a result, the standard
Bayesian learning leads to a unimodal predictive distribution
that approximates the mean value of the response variable,
while (m, 1)-robust Bayesian learning can closely reproduce
the data distribution [10], [11]. This is shown in Figure 4a,
which depicts the predictive distribution obtained by mini-
mizing the m-free energy criterion Jm with m = 20 when
using exclusively samples from the ID measure (green dots).
In virtue of ensembling, the resulting predictive distribution
becomes multimodal, and it is seen to provide a good fit to
the data from the ID measure.

Let us evaluate also the effect of outliers. To this end, in
Figure 4b we consider (m, 1)-robust Bayesian learning and
minimize again the m-free energy criterion, but this time
using a data set contaminated with samples from the OOD
component (red points) and with a contamination ratio ϵ = 0.1.
The predictive distribution is seen to cover not only the ID
samples but also the outlying data points. In Figure 4c and
4d, we finally plot the predictive distributions obtained by
(m, t)-robust Bayesian learning with m = 20, when setting
t = {0.9, 0.8}, respectively. The proposed approach is able to
mitigate the effect of the outlying component for t = 0.9, and,
for t = 0.8, it almost completely suppresses it. As a result, the
proposed energy criterion produces predictive distributions that
match more closely the ID measure. This qualitative behavior
is quantified in Table II, where we report the total variation
distance from the ID measure for the setting and predictors
considered in Figure 4.
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Fig. 5: Test accuracy (top) and expected calibration error (ECE) (bottom) as a function of t under the contamination ratio
ϵ = 0.3 for: (i) deep ensembles [39]; (ii) robust Gibbs predictor, which minimizes the free energy criterion J 1

t [25]; and (iii)
(m, t)-robust Bayesian learning, which minimizes the free energy criterion J 10

t .
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0.7 based on the logt-loss with
t = 0.7.

B. MNIST and CIFAR-10 Classification Tasks

We now address the problem of training Bayesian neural
network classifiers in the presence of misspecification and out-
liers. We consider three different experimental setups entailing
distinct data sets and model architectures:

• Classification of MNIST digits [40] based on a fully
connected neural network comprising a single hidden
layer with 25 neurons.

• Classification of Extended MNIST characters and digits
[41] based on a fully connected neural network with two
hidden layers with 25 neurons each.

• Classification of CIFAR-10 [42] images using a convo-
lutional neural network (CNN) with two convolutional
layers, the first with 8 filters of size 3×3 and the second
with 4 filters of size 2 × 2, followed by a hidden layer
with 25 neurons each.

All hidden units use ELU activations [36] except the last,
classifying, layer that implements the standard softmax func-
tion. Model misspecification is enforced by adopting neural
network architectures with small capacity. As in [25], outliers
are obtained by randomly modifying the labels for fraction ϵ
of the data points in the training set. Additional details for the
experiments can be found in the supplementary material.

We measure the accuracy of the trained models, as well
as their calibration performance. Calibration refers to the
capacity of a model to quantify uncertainty (see, e.g., [39]).
We specifically adopt the expected calibration error (ECE)
[43], a standard metric that compares model confidence to
actual test accuracy (see supplementary material for the exact
definition). We train the classifiers using corrupted data sets
with a contamination ratio ϵ = 0.3, and then we evaluate
their accuracy and ECE as a function of t ∈ [0, 1] based on a
clean (ϵ = 0) holdout data set. We compare the performance
of (m, t)-robust Bayesian learning based on the minimization
of the robust m-free energy Jm

t , with m = 10, to: (i) deep
ensembles [39], also with 10 models in the ensembles; and
(ii) the robust Gibbs predictor of [25], which optimizes over
a single predictor (not an ensemble) by minimizing the free
energy metric J 1

t . The inverse temperature parameter β is set
to 0.1 in the (m, t)-robust Bayesian and the Gibbs predictor
objectives.

In Figure 5 we report the performance metrics attained
by the trained models in the three different setups listed
above. From the top panels we conclude that (m, t)-robust
Bayesian learning is able to mitigate model misspecification
by improving the final accuracy as compared to the robust
Gibbs predictor and the deep ensemble models. Furthermore,
the use of the robust loss for a properly chosen value of t
leads to a reduction of the detrimental effect of outliers and to
an increase in the model accuracy performance as compared
to the standard log-loss (t = 1). In terms of calibration
performance, the lower panels demonstrate the capacity of
robust ensemble predictors with t < 1 to drastically reduce
the ECE as compared to deep ensembles. In this regard,
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Fig. 7: Negative log-likelihood computed on a uncorrupted data set for: (i) deep ensembles [39]; (ii) robust Gibbs predictor,
which minimizes J 1

t [25]; and (iii) the (m, t)-robust Bayesian learning, which minimizes J 10
t . The models are trained on

ϵ-contaminated data set for ϵ ∈ {0, 0.1, 0.2, 0.3}

it is also observed that the accuracy and ECE performance
levels depend on the choice of parameter t. In practice, the
selection of t may be addressed using validation or meta-
learning methods in a manner akin to [44]. Additional results
on calibration in the form of reliability diagrams [45] can be
found in supplementary material.

As shown shown theoretically in Section III-C, the effect
of the logt-loss is to reduce the influence of outliers during
training for t < 1. We empirically investigate the effect of the
robust loss in Figure 6, in which we compare the distribution
of the negative log-likelihood for ID and OD training data
samples. We focus on the CIFAR-10 data set, and we compare
the histogram of the negative log-likelihood under a CNN
model trained based on the m-free energy Jm

1 , with m = 10
and standard logarithmic loss, and a CNN minimizing the
proposed robust m-free energy Jm

t , with m = 10 and t = 0.7.
The (m, 1)-robust Bayesian based on the standard log-loss
tries to fit both ID and OD samples and, as a result, the
two components have similar likelihoods. In contrast, (m, t)-
robust Bayesian learning is able to downweight the influence
of outliers and to better fit the ID component.

C. California Housing Regression Task

We consider the problem of training a robust regressor
based on training data sets corrupted by outliers and in the
presence of model misspecification. We consider the California
housing dataset, which is characterized by response variables
y normalized in the [0, 1] interval, and we fix a unimodal
likelihood p(y|x, θ) = N (y|fθ(x), 0.1), where fθ(x) is the
output of a three-layer neural network with hidden layers
comprising 10 units with ELU activation functions [36]. We
consider a Gaussian prior p(θ) = N (θ|0, I). The model class
is misspecified since the response variable is bounded and
hence not Gaussian. Outliers are modeled by replacing the
label of fraction ϵ of the training sample with random labels
picked uniformly at random within the [0, 1] interval.

We consider training based on data sets with different
contamination ratios ϵ ∈ {0, 0.1, 0.2, 0.3}, and measure the
trained model ability to approximate the ID data by computing
the negative log-likelihood on a clean holdout data set (ϵ = 0).

As in the previous subsection, we compare models trained
using (m, t)-robust Bayesian learning, with m = 5, to: (i)
deep ensembles [39], also with 5 models in the ensembles;
and (ii) the robust Gibbs predictor of [25] minimizing the free
energy metric J 1

t . The inverse temperature parameter β is set
to 0.1 in the (m, t)-robust Bayesian and the Gibbs predictor
objectives.

In Figure 7 we report the negative log-likelihood of an un-
contaminated data set for models trained according to the dif-
ferent learning criteria. The leftmost panel (ϵ = 0) corresponds
to training based on an uncontaminated data set. For this case,
the best performance is obtained for t = 1 – an expected result
due to the absence of outliers – and the proposed criterion
outperforms both the Gibbs predictor and deep ensembles, as
it is capable of counteracting misspecification by the means
of ensembling. In the remaining panels, training is performed
based on ϵ-contaminated data sets, with the contamination ϵ
increasing from left to right. In these cases, learning criteria
based on robust losses are able to retain similar performance
to the uncontaminated case for suitable chosen values of t.
Furthermore, the optimal value of t is observed to increase
with the fraction of outliers in the training data set.

D. Robustness to Prior Misspecification

We finally turn to exploring the robustness of the gener-
alized (m, t)-robust criterion (50) with respect to the choice
of the prior distribution. To this end, we consider the same
regression problem and likelihood model of the previous
subsection, but we allow for a Gaussian prior distribution
p(θ|∆µp) = N (θ|∆µpI, 0.1I) with a generally non-zero
mean ∆µp. In Bayesian neural network training, it is custom-
ary to set ∆µp = 0, favoring posteriors with a small expected
norm, which are expected to generalize better [46], [47]. In
order to study the impact of misspecification, similarly to
[22], we evaluate the performance obtained with different prior
regularizers when choosing a non-zero prior mean ∆µp. Non-
zero values of the prior may be considered to be misspecified
as they do not comply with the actual expectation on the best
model parameters for this problem.
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energy with the Rényi entropy and different different values
of tp. In the left panel, we consider the generalized (m, t)-
robust Bayesian learning for t = 1 and m ∈ {1, 10} using the
standard KL regularizer (in blue) and the Rényi regularizer
for tp = 0.5 (in gray). In the right panel we fix the parameter
∆µp = 1 and evaluate the performance as a function of tp.

In the leftmost panel of Figure 8, we show the negative log-
likelihood obtained by (m, t)-robust Bayesian learning for t =
1 and m ∈ {1, 10}, which uses the standard KL regularizer (in
blue), as well as by generalized robust Bayesian learning with
the Rényi regularizer with tp = 0.5 (in gray). The advantage of
the generalized approach is particularly apparent for m = 10,
in which case generalized (m, t)-robust Bayesian learning with
tp = 0.5 shows a more graceful performance degradation for
increasing values of ∆µp.

To further elaborate on the role of the choice of the
parameter tp, in the rightmost panel, we fix the prior parameter
as ∆µp = 1, and plot the negative log-likelihood as a function
of tp for m = 1 and m = 10. In both cases, we find
that the robustness to a misspecified prior increases as tp
decreases, demonstrating the advantages of the generalized
robust Bayesian learning framework.

VI. CONCLUSION

In this work, we addressed the problem of training ensemble
models under model misspecification and in the presence
of outliers. We proposed the (m, t)-robust Bayesian learning
framework that leverages generalized logarithm score func-
tions in combination with multi-sample bounds, with the goal
of deriving posteriors that are able to take advantage of en-
sembling, while at the same time being robust with respect to
outliers. The proposed learning framework is shown to lead to
predictive distributions characterized by better generalization
capabilities and calibration performance in scenarios in which
the standard Bayesian posterior fails.

The proposed robust Bayesian learning framework can find
application to learning scenarios that can benefit from uncer-
tainty quantification in their decision making processes and are

characterized by the presence of outliers and model misspecifi-
cation. Examples include inference in wireless communication
systems [48], medical imaging [49] and text sentiment analysis
[50], [51].

We conclude by suggesting a number of directions for future
research. The (m, t)-robust Bayesian learning has been shown
to lead to the largest performance gains for properly chosen
values of t. The optimal values of t depend on the particular
task at hand, and deriving rules to automate the tuning of
these parameters represents a practical and important research
question. Furthermore, (m, t)-robust Bayesian learning can
be extended to reinforcement learning, as well as to meta-
learning, for which Bayesian methods have recently been
investigated (see, e.g., [52], [53] and references therein).
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[12] B.-E. Chérief-Abdellatif and P. Alquier, “Mmd-bayes: Robust bayesian
estimation via maximum mean discrepancy,” in Symposium on Advances
in Approximate Bayesian Inference. PMLR, 2020, pp. 1–21.

[13] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?” Advances in neural information
processing systems, vol. 30, 2017.

[14] J. Jewson, J. Q. Smith, and C. Holmes, “Principles of Bayesian inference
using general divergence criteria,” Entropy, vol. 20, no. 6, p. 442, 2018.

[15] A. Basu, I. R. Harris, N. L. Hjort, and M. Jones, “Robust and efficient
estimation by minimising a density power divergence,” Biometrika,
vol. 85, no. 3, pp. 549–559, 1998.

[16] A. Ghosh and A. Basu, “Robust Bayes estimation using the density
power divergence,” Annals of the Institute of Statistical Mathematics,
vol. 68, no. 2, pp. 413–437, 2016.

[17] H. Fujisawa and S. Eguchi, “Robust parameter estimation with a small
bias against heavy contamination,” Journal of Multivariate Analysis,
vol. 99, no. 9, pp. 2053–2081, 2008.

[18] T. Nakagawa and S. Hashimoto, “Robust Bayesian inference via γ-
divergence,” Communications in Statistics-Theory and Methods, vol. 49,
no. 2, pp. 343–360, 2020.

[19] F. Futami, I. Sato, and M. Sugiyama, “Variational inference based on ro-
bust divergences,” in International Conference on Artificial Intelligence
and Statistics. PMLR, 2018, pp. 813–822.



12
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APPENDIX

A. Proofs

Lemma. With probability 1−σ, with σ ∈ (0, 1), with respect
to the random sampling of the data set D, for all distributions
q(θ) that are absolutely continuous with respect the prior p(θ),
the following bound on the risk (18) of the ensemble model
holds

Rt(q) ≤Jm
t (q) + ψ(ν̃, n,m, β, p, σ), (55)

where

ψ(ν̃, n,m, β, p, σ) :=
1

β

(
logED,p(θ)

[
eβ∆m,n

]
− log σ

)
(56)

and

∆m,n :=
1

n

∑
x∈D

logtEj∼U [1:m]p(x|θj)

− Eν̃(x)

[
logtEj∼U [1:m]p(x|θj)

]
. (57)

Furthermore, the risk with respect to the ID measure ν(x) can
be bounded as

Eν(x)[Rt(q, x)] ≤
1

1− ϵ
(Jm

t (q) + ψ(ν̃, n,m, β, p, σ))

+
ϵ(C1−t − 1)

(1− ϵ)(1− t)
, (58)

if the contamination ratio satisfies the inequality ϵ < 1.

Proof: The proof follows in a manner similar to [10]. For
a data set size n, and for an ensemble of models Θ = {θ}mi=1,
we define the quantity

∆m,n(Θ,D) :=
1

n

∑
x∈D

logtEj∼U [1:m]p(x|θj)

− 1

n

∑
x∈D

Eν̃(x)

[
logtEj∼U [1:m]p(x|θj)

]
.

(59)
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From the compression lemma [54], we have that for any
distribution q(θ) which is absolutely continuous with respect
to the prior p(θ), and for any β < 0, the following holds

Eq(θ)⊗m [β∆m,n] ≤D1(q(θ)
⊗m||p(θ)⊗m)

+ logEp(θ)⊗m

[
eβ∆m,n

]
(60)

=mD1(q(θ)||p(θ))
+ logEp(θ)⊗m

[
eβ∆m,n

]
, (61)

where we have used the simplified notation ∆m,n =
∆m,n(Θ,D), and the equality follows from the basic prop-
erties of the KL divergence.

A direct application of Markov’s inequality is then used to
bound the last term of (61) with high probability. Namely,
with probability greater then 1−σ with respect to the random
drawn of the data set D ∼ ν̃(x)⊗n, the following holds

Ep(θ)⊗m

[
e∆m,n

]
≤ Eν̃(x)⊗n,p(θ)⊗m

[
e∆m,n

]
σ

, (62)

or, equivalently,

logEp(θ)⊗m

[
e∆m,n

]
≤ logEν̃(x)⊗n,p(θ)⊗m

[
e∆m,n

]
− log σ.

(63)

Combining (61) with (63), the following upper bound on the
predictive risk holds with probability 1− σ

Rt(q) ≤Eν̃(x),q(θ)⊗m

[
− logtEj∼U [1:m]p(x|θj)

]
(64)

≤Eq(θ)⊗m

[
1

n

∑
x∈D

logtEj∼U [1:m]p(x|θj)
]

+
m

β
D1(q(θ)||p(θ))

+
logEν̃(x)⊗nEp(θ)⊗m

[
e∆m,n

]
− log σ

β
. (65)

Finally, the result above can be translated to a guarantee with
respect to the ID measure ν(x) = ν̃(x)

1−ϵ − ϵ
1−ϵξ(x) via the

sequence of inequalities

Eν(x),q(θ)⊗m

[
− logtEj∼U [1:m]p(x|θj)

]
=

=
Eν̃(x),q(θ)⊗m

[
− logtEj∼U [1:m]p(x|θj)

]
1− ϵ

+ ϵ
Eϵ(x),q(θ)⊗m

[
− logtEj∼U [1:m]p(x|θj)

]
1− ϵ

(66)

≤ Eν̃(x),q(θ)⊗m

[
− logtEj∼U [1:m]p(x|θj)

]
1− ϵ

+ ϵ

(
C1−t − 1

)
(1− ϵ)(1− t)

, (67)

where the last inequality follows by having assumed the
probabilistic model being uniformly upper bounded by C
(Assumption 2).

■

The above result can readily be extended to generalized
robust Bayesian learning by applying the change of measure
inequality presented in [55], namely

tp
1− tp

logEq(θ)⊗mϕ(Θ) ≤DR
tp(q(θ)

⊗m||p(θ)⊗m) (68)

+ logEp(θ)⊗m

[
ϕ(Θ)

tp
1−tp

]
,

(69)

with ϕ(Θ) being the function

ϕ(Θ) := e
tp

1−tp
∆m,n(Θ,D)

, (70)

and by exploiting the tensorization of the Rényi divergence

DR
tp(q(θ)

⊗m||p(θ)⊗m) = mDR
tp(q(θ)||p(θ)). (71)

Finally, with regard to the comparison between the PACm

bound in Theorem 1 in [10] and the guarantee with respect
to the ID measure, we observe that it is not in general
possible to translate a guarantee on the logt-risk to one on
the log-risk. This can be illustrated by the following counter-
example. Consider the following discrete target distribution
parametrized by integer k, which defines the size of its support,
as

νk(x) =

{
1− 1

k , for x = 0
1
k2

−k2

, for x = 1, . . . , 2k
2

,
(72)

and the optimization of the logt-loss over a predictive distri-
bution p(x). The following limit holds

lim
k→∞

min
p

Eνk(x)[logt p(x)] =

{
0, for t ∈ [0, 1)

∞, for t = 1
, (73)

and therefore that an ensemble optimized for a value of t in
the range [0, 1) can incur in an unboundedly large loss when
scored using the log-loss.

Theorem. The minimizer of the robust m-free energy objective

Jm
t (q) :=

1

n

∑
x∈D

R̂m
t (q, x) +

m

β
D1(q(θ)||p(θ)). (74)

is the fixed point of the operator

T (q):=p(θj) exp

(
β
∑
x∈D

E{θi}i̸=j

[
logt

(∑m
i=1 pθi(x)

m

)])
(75)

where the average in (36) is taken with respect to the i.i.d.
random vectors {θi}i ̸=j ∼ q(θ)⊗m−1.
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Proof: The functional derivative of the multi-sample risk
is instrumental to computation of the minimizer of the robust
m-free energy objective (30). This is given as

dR̂m
t (q, x)

dq
=

=
d

dq
Eθ1,...,θm∼q(θ)⊗m

[
− logtEj∼U [1:m]p(x|θj)

]
(76)

= − d

dq

∫
Θm

logtEj∼U [1:m]p(x|θj)
m∏
i=1

q(θi)dθi (77)

(a)
= −

m∑
k=1

∫
Θm−1

logtEj∼U [1:m]p(x|θj)
∏
i ̸=k

q(θi)dθi (78)

(b)
= −m

∫
Θm−1

logtEj∼U [1:m]p(x|θj)
m−1∏
i=1

q(θi)dθi, (79)

= −mEθ1,...,θm−1∼q(θ)⊗m−1

[
logtEj∼U [1:m]p(x|θj)

]
, (80)

where (a) follows from the derivative of a nonlocal functional
of m functions, and (b) holds since the integrand is invariant
under the permutation of {θi}i̸=k.

The functional derivative of the robust m-free energy then
follows as
dJm

t (q)

dq
= (81)

=
dR̂m

t (q, x)

dq
+
m

β

dD1(q(θ)||p(θ)
dq

(82)

= −mEθ1,...,θm−1∼q(θ)⊗m−1

[
logtEj∼U [1:m]p(x|θj)

]
(83)

+
m

β
(1 + log(q(θ))− log(p(θ))) . (84)

Imposing the functional derivative equals to zero function it
follows that the optimized posterior must satisfy

q(θm) =p(θm)· (85)

· exp
{
βEθ1,...,θm−1∼q(θ)⊗m−1

[
logtEj∼U [1:m]p(x|θj)

]}
.

(86)

■

Theorem. The influence function of the robust m-free energy
objective (40) is

IFm
t (z, ϕ, Pn)=−

[
∂2Jm

t (γ, ϕ)

∂ϕ2

]−1

×∂
2Jm

t (γ, ϕ)

∂γ∂ϕ

∣∣∣∣∣γ=0
ϕ=ϕm∗

t (0)

,

(87)

where
∂2Jm

t (γ, ϕ)

∂ϕ2
=EPn

γ,z(x)
∂2

∂ϕ2

[
R̂m

t (qϕ, x)
]

+
∂2

∂ϕ2

[
m

β
KL(qϕ(θ)||p(θ))

]
(88)

and
∂2Jm

t (γ, ϕ)

∂γ∂ϕ
=
∂

∂ϕ

[
EPn(x)

[
R̂m

t (qϕ, x)
]
−R̂m

t (qϕ, z)
]
.

(89)

The proof of Theorem 2 directly follows from the Cauchy
implicit function theorem stated below.

TABLE III: Total variation (TV) distance between the ID
measure ν(x) and the predictive distribution pq(x) obtained
from the optimization of the different free energy criteria.

t = 1 t = 0.9 t = 0.7 t = 0.5 t = 0.3 t = 0.1

m = 1 0.59 0.42 0.27 0.18 0.16 0.18
m = 2 0.44 0.32 0.22 0.17 0.15 0.15
m = 5 0.34 0.32 0.23 0.18 0.15 0.14
m = 10 0.34 0.30 0.24 0.19 0.15 0.16

Theorem 3 (Cauchy implicit function theorem). Given a
continuously differentiable function F : Rn×Rm → Rm, with
domain coordinates (x, y), and a point (x∗, y∗) ∈ Rn × Rm

such that F (x∗, y∗) = 0, if the Jacobian JF,y(x
∗, y∗) =[

∂F1(x
∗,y∗)

∂y1
, . . . , ∂Fm(x∗,y∗)

∂ym

]
is invertible, then there exists an

open set U that contains x∗ and a function g : U → Y such
that g(x∗) = y∗ and F (x, g(x)) = 0, ∀x ∈ U . Moreover the
partial derivative of g(x) in U are given by

∂g

∂xi
(x) = − [JF,y(x, g(x))]

−1

[
∂F

∂xi
(x, g(x))

]
(90)

Proof: Replacing F (x, y) with ∂Jm
t (γ,ϕ)
∂ϕ and g(x) with

ϕm∗
t (γ) and accordingly rewriting (90), we obtain

dϕm∗
t (γ)

dγ
=−
[
∂2Jm

t (γ, ϕm∗
t (γ))

∂ϕ2

]−1

×∂
2Jm

t (γ, ϕm∗
t (γ))

∂γ∂ϕ
.

(91)

The influence function (87) is then obtained evaluating (91) at
γ = 0.

■

B. Details on the Toy Example of Figure 1

In the toy example of Figure 1, the ID distribution ν(x)
is a two component Gaussian mixture with means {−2, 2},
variance equal to 2, and mixing coefficients {0.3, 0.7}, re-
spectively. The OOD distribution ξ(x) is modelled using a
Gaussian distribution with mean -8 and variance equal to 1.

The probabilistic model is a Gaussian unit variance pθ(x) =
N (x|θ, 1), the ensembling distribution q(θ) is represented by
a discrete probability supported on 500 evenly spaced values
in the interval [−30, 30], and the prior is p(θ) = N (θ|0, 9).
For a given m, β and t, the optimized ensembling distribution
is obtained applying the fixed-point iteration in Theorem 1,
i.e.,

q+(θ) = p(θ) exp

{
β

∑
θ1,...,θm−1

m−1∏
i=1

qt(θi)·

· logt

(∑m−1
j=1 p(x|θj) + p(x|θ)

m

)}
,

(92)

qt+1(θ) = (1− α)qt(θ) + α
q+(θ)∑
θ q

+(θ)
, (93)

for α ∈ (0, 1).
In Figure 9 we report the optimized predictive distributions

produced by the above procedure for β = 1, m = {1, 2, 5, 20}
and t = {1, 0.9, 0.7, 0.5, 0.3, 0.1}. As m grows larger, the
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Fig. 9: Ensemble predictive distribution obtained minimizing different free energy criteria and different values of m. The
samples from the ID measure are represented as green dots, while data points sampled from the OOD component are in
red. The optimized predictive distributions. The predictive distribution obtained minimizing the standard m-free energy is
denoted by Jm, while the predictive distribution yielded by the minimization of the robust m-free energy are denoted by
Jm
0.9,Jm

0.7,Jm
0.5,Jm

0.3 and Jm
0.1 for t = {1, 0.9, 0.7, 0.5, 0.3, 0.1} respectively.
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Fig. 10: Reliability diagram of deep ensembles [39].

multi-sample bound on the predictive risk becomes tighter. As
a result, the predictive distribution becomes more expressive,
and it covers all the data points. The use of generalized
logarithms offers increased robustness against the outlier data
point, and leads to predictive distributions that are more
concentrated around the ID measure. In Table III we report
the total variation distance between the ID measure and the
predictive distribution pq(x). The proposed robust m-free
energy criterion consistently outperforms the standard criterion
by halving the total variation distance form the ID measure for
t = 0.3.

C. Details and Further Results for the Classification Example
in Sec. V-C

In Figure 5, we used expected calibration error (ECE)
[43] to assess the quality of uncertainty quantification of the
classifier. In this section, we formally define the ECE, along
with the related visual tool of reliability diagrams [45], and
present additional results using reliability diagrams.

Consider a probabilistic parametric classifier p(b|a, θ),
where b ∈ {1, . . . , C} represents the label and a the covariate.
The confidence level assigned by the model to the predicted
label

b̂(a) = argmax
b

p(b|a, θ) (94)

given the covariate a is given as [43]

p̂(a) = max
b
p(b|a, θ). (95)

Perfect calibration corresponds to the equality [43]

P(b̂(a) = b|p̂(a) = p) = p, ∀p ∈ [0, 1], (96)

where the probability is taken over the ID sampling distri-
bution ν(a, b). This equality expresses the condition that the
probability of a correct decision for inputs with confidence
level p equals p for all p ∈ [0, 1]. In words, confidence equals
accuracy.

The ECE and reliability diagram provide means to quantify
the extent to which the perfect calibration condition (96) is
satisfied. To start, the probability interval [0, 1] is divided into
K bins, with the k-th bin being interval (k−1

K , k
K ]. Assume that

we have access to test data from the ID distribution. Denote as
Bk the set of data points (a, b) in such test set for which the
confidence p̂(a) lies within the k-th bin, i.e., p̂(a) ∈ (k−1

K , k
K ].

The average accuracy of the predictions for data points in Bk

is defined as

acc(Bk) =
1

|Bk|
∑
a∈Bk

1(b̂(a) = b), (97)

with 1(·) being indicator function, b being the label corre-
sponding to a in the given data point (a, b), and |Bk| denoting
the number of total samples in the k-th bin Bk. Similarly, the
average confidence of the predictions for covariates in Bk can
be written as

conf(Bk) =
1

|Bk|
∑
a∈Bk

p̂(a). (98)

Note that perfectly calibrated model p(b|a, θ) would have
acc(Bk) = conf(Bk) for all k ∈ {1, . . . ,K} in the limit of
a sufficiently large data set.

1) Expected Calibration Error (ECE) [43]: ECE quantifies
the amount of miscalibration by computing the weighted
average of the differences between accuracy and confidence
levels across the bins, i.e.,

ECE =

K∑
k=1

|Bk|∑K
k=1 |Bk|

∣∣∣acc(Bk)− conf(Bk)
∣∣∣. (99)

2) Reliability Diagrams: Since the ECE quantifies uncer-
tainty by taking an average over the bins, it cannot provide
insights into the individual calibration performance per bin. In
contrast, reliability diagrams plot the accuracy acc(Bk) versus
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Fig. 11: Reliability diagrams of robust Gibbs predictor that optimizes J 1
t (top); and proposed robust ensemble predictor that

optimizes J 10
t (bottom) under contamination ratio ϵ = 0.3 for different t = 0, 0.5, 1.

the confidence conf(Bk) as a function of the bin index k, hence
offering a finer-grained understanding of the calibration of the
predictor.

3) Additional Results: For the MNIST image classification
problem considered in Section V-C, Figure 10 plots for
reference the reliability diagrams for deep ensembles [39],
while Figure 11 reports reliability diagrams for the proposed
classifiers with different values of m and t. The figures
illustrate that using the standard log-loss (t = 1) tends to
yield poorly calibrated decisions (Figure 10 and Figure 11
(right)), while the proposed robust ensemble predictor can
accurately quantify uncertainty using t = 0.5 (Figure 11
(bottom, middle)). It is also noted that setting t = 1 is seen
to yield underconfident predictions due to the presence of
outliers, while a decrease in t leads to overconfident decision
due to the reduced expressiveness of t-logarithms. A proper
choice of t leads to well-calibrated, robust prediction.


