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Abstract—A variant of a robust description source coding
framework motivated by goal-oriented semantic information
transmission is studied here. Considering two individual distor-
tion constraints and input and output data that takes values in
finite sets, we prove a general result that provides in parametric
form the various cases of optimal solutions of this problem. Then,
we derive structural properties of the solution when this achieves
the best rates. Capitalizing on these results, we examine the
structure of the solution for one case study of general binary
alphabets under Hamming distortions and solve in closed form
a special case. We also solve another general binary alphabet
case where a Hamming and an erasure distortion are used, as
a means to highlight the importance of selecting the type of the
distortion constraint in the problem.

I. INTRODUCTION

Shannon, in his seminal work [1], has deliberately set
aside the semantic aspects of a message and its impact.
Nevertheless, in [2], he has indirectly provided a means
to study semantic information sources because the coding
aspect determined by the probabilistic model of the source
is dictated by a distortion constraint imposed in the system.
Despite various endeavors [3]–[9], a general, well accepted,
theory of semantic information, with tangible applications to
communication systems, remains elusive. The quest for such
a theory has recently gained new impetus [10]–[12], fueled
by the emergence of networks of autonomous agents with
advanced sensing, learning, and decision-making capabilities.

In this work, we revisit a lossy compression framework,
recently introduced in [13], [14], considering finite alphabet
sources, and we study the effect of multiple individual dis-
tortion criteria in goal-oriented semantic communication. The
objective of this work is twofold. First, we aim at complement-
ing the study of [13], [14], which only considers continuous
alphabet sources (i.e., i.i.d Gaussian sources) and mean square
error (MSE) distortion criteria. Second, we aims at further
emphasizing on the role of the distortion constraints in goal-
oriented communication by showing cases with outcomes that
do not appear through the analysis of [13], [14].

The rate distortion framework introduced in [13], [14] is
a combination of the indirect rate distortion problem [15]–
[17] and the direct rate distortion problem [2], [18] with two
individual distortion criteria. The main results therein include
a characterization for i.i.d Gaussian or linear based models
and its solution; it reveals that the best way to transmit infor-
mation is by choosing the maximum achievable rates obtained

via the interplay between the direct and the indirect lossy
compression problems. The rate distortion framework in [13],
[14] can be seen as a generalization of the robust description
problem for two individual distortion criteria, which in turn
is a special case of the two description coding problem [19].
It should be noted that the rate distortion framework with
two individual distortion criteria has been studied throughout
the years in many papers under various contexts, see, e.g.,
[20]–[23]. Another relevant yet different setup is the recently
introduced rate-distortion-perception representations, see, e.g.,
[24], [25] (and the references therein), in which perception
quality, measured by some divergence between distributions,
is included in addition to the classical distortion criterion. One
major difference between rate-distortion perception problems
and the setup in [13], [14] and ours is that in the former
the characterizations are solved for various examples using
separately each distortion constraint, in the latter, one can
study from an optimization standpoint the joint behavior of
the two distortion penalties.

In this paper, we consider a variation of the robust source
coding model [13], [14] that captures goal-oriented semantic
attributes and intrinsic representation of information (e.g.,
features, structural and qualitative properties, embedding). We
first derive a general theorem, which gives parametrically
the implicit solution of the operational characterization of
the problem for arbitrary finite alphabet sources with two
individual distortion constraints. This theorem is the basis
to create generalized Blahut-Arimoto algorithms to solve the
problem in full generality (Theorem 1). Furthermore, we de-
rive structural properties that characterize the best achievable
rates of the general problem (Lemma 2). Then, we apply these
two general results into two problems (application examples)
using specific setups with general binary alphabets and two
types of distortion measures, namely Hamming and erasure
distortions. For Problem 1 we derive structural properties on
the optimal minimizer (test channel) consistent with Lemma
2 and characterize its solution (Theorem 2). We enhance this
result by solving in closed form a special case to illustrate
the rate distortion surface of the problem (Example 1). For
Problem 2, we characterize and solve in closed form the solu-
tion (Theorem 3). An interesting observation that stems from
Theorem 3 is that depending on the distortion constraint, it is
possible to make the system choose which source (i.e, seman-
tic or observation) to transmit. Simply put, in goal-oriented



communication, selecting the type of individual distortion
measures according to the application/task requirements can
significantly affect the remote reconstruction of the semantic
message.

II. PROBLEM STATEMENT AND PRELIMINARIES

We consider a memoryless source described by the tuple
(x, z) with probability distribution p(x, z) in the product finite
alphabet space X×Z . The semantic information of the source
is in x whereas z is the noisy observation at the encoder side.
The goal is to study how the distortion penalties can affect
goal-oriented communication and source reconstruction using
lossy source coding. The problem setup is similar to the one
proposed in [13, Section II], [14].

Formally, the system model (without the cost penalties)
can be described as follows. As an information source we
consider a sequence of n-length independent and identically
distributed (i.i.d) random variables (xn, zn). At the encoder,
fn, the system observes Zn and describes it by an index
M ∈ {1, 2, . . . , 2nR}. At the decoder, gn, the message set
is mapped into the estimates (x̂, ẑ) drawing values from the
finite set X̂ × Ẑ . This setup is illustrated in Fig. 1.

Encoder Decoderp(zn|xn)
xn zn M xn̂

ẑn

Fig. 1. System model

We consider a semantic distortion function ds : X ×
X̂ 7→ [0,∞) and an observation or communication distortion
function do : Z × Ẑ 7→ [0,∞), respectively. We also define
their corresponding average per-symbol distortions by

ds(x
n, x̂n) ≜

1

n

n∑
t=1

ds(xi, x̂i) (1)

do(z
n, ŝn) ≜

1

n

n∑
t=1

do(zi, ẑi). (2)

Achievability. We say that the rate distortion triplet
(R,Ds, Do) is achievable if there exists a sequence of
(2nR, n) lossy source codes (fn, gn) such that E [ds(x, x̂)] ≤
Ds and E [do(z, ẑ)] ≤ Do.

A. Characterization of the operational rates

The characterization of the operational rates for the specific
problem is given by the following lemma.

Lemma 1. (Characterization) For a given p(x) and p(z|x),
the rate distortion function of the setup in Fig. 1 is charac-
terized as follows

R(Ds, Do) = inf
q(ẑ,x̂|z)

E[d̂s(z,x̂)]≤Ds

E[do(z,ẑ)]≤Do

I(z; ẑ, x̂) (3)

where d̂s(z, x̂) =
∑

x∈Z p(x|z)ds(x, x̂), Ds ∈ [0,∞], Do ∈
[0,∞] and

I(z; ẑ, x̂) ≜ E

{
log

(
q(ẑ, x̂|z)
p(ẑ, x̂)

)}
(a)
≡ I(p, q)

where (a) demonstrates the functional dependence of the
mutual information on {p(z), q(ẑ, x̂|z)}.

Proof: We omit the proof because it is a combination
of the well-known approach widely used to transform the
indirect rate distortion function [15]–[17] to a direct rate
distortion function formulation and then a re-derivation of the
achievability of a special case of the two description source
coding problem called robust description [19, Theorem 2]. A
sketch of the proof is given in [13, Theorem 1].

In what follows we state some technical remarks related to
the optimization problem in (3).

Remark 1. The following properties of (3) can be obtained
using standard arguments that stem from classical rate dis-
tortion theory, see, e.g., [18].

(i) R(Ds, Do) is a non-increasing function of Ds ∈ [0,∞)
and Do ∈ [0,∞) and (jointly) convex with respect to
(Ds, Do).

(ii) In (3), I(p, q) is a convex functional of q(ẑ, x̂|z) for a
fixed p(z).

(iii) R(Ds, Do) ≥ 0.

We now present some obvious bounds that are always true
(but not necessarily achievable) for (3):

max {R(Ds), R(Do)}
(a)

≤ (3)
(b)

≤ R(Do) +R(Ds), (4)

where (R(Ds), R(Do)) represent the standard rate distortion
functions obtained via their individual distortion criteria. Note
that (b) occurs when we choose a strategy where we decode
independently x̂ and ẑ, which is always allowed. This upper
bound is tight if p(ẑ, x̂) = p(ẑ)p(x̂). On the other hand,
(a) is the best achievable rate because (3) cannot be lower
than the best rate achieved in either less constrained problem
(individual rate distortion problems). We note that the lower
bound in (4) appears to be the solution for i.i.d Gaussian
sources with individual MSE distortion constraints [13], [14].
We conclude this remark by pointing out that the constrained
set in (3) is closed and bounded hence compact (for finite
alphabets) and the objective function in (3) is lower semi-
continuous with respect to q(ẑ, x̂|z). As a result, from the
extreme value theorem, we know that the infimum is attained
by a q∗(ẑ, x̂|z) and we can formally replace it with minimum
in the sequel.

III. MAIN RESULTS

In this section, we present our main results. Before giving
our first result, we note that the constrained problem in



Lemma 1 can be written as an unconstrained problem via
Lagrange duality theorem [26] as follows

R(Ds, Do) =

max
s1≤0
s2≤0

min
q(ẑ,x̂|z)≥0∑
ẑ,ẑ q(ẑ,x̂|z)=1

{
I(z; ẑ, x̂)− s1

(
E
[
d̂s(z, x̂)

]
−Ds

)

− s2 (E [do(z, ẑ)]−Do)

}
. (5)

In view of (5) we can prove the following general result.

Theorem 1. (Optimal parametric solution of (3)) Suppose
that p(x) and p(z|x) are given. Then, the following parametric
solutions for (3) may appear.
(i) If s1 < 0 and s2 < 0, the implicit optimal form of the

minimizer that achieves the minimum in (3) is

q∗(ẑ, x̂|z) = es1d̂s(z,x̂)+s2do(z,ẑ)p∗(ẑ, x̂)∑
ẑ,x̂ e

s1d̂s(z,x̂)+s2do(z,ẑ)p∗(ẑ, x̂)
(6)

where (s1, s2) are the Lagrange multipliers associated
with the individual distortion penalties and p∗(ẑ, x̂) =∑

z q
∗(ẑ, x̂|z)p(z) is the Ẑ × X̂ -marginal of the output

process (ẑn, x̂n). Moreover, the optimal parametric so-
lution of (3) when R(D∗

s , D
∗
0) > 0 is given by

R(D∗
s , D

∗
0) = s1D

∗
s + s2D

∗
o

−
∑
z

p(z) log

∑
ẑ,x̂

es1d̂s(z,x̂)+s2do(z,ẑ)p∗(ẑ, x̂)

 (7)

where

D∗
s =

∑
z,x̂

d̂s(z, x̂)q
∗(x̂|z)p(z), (8)

D∗
o =

∑
z,ẑ

do(z, ẑ)q
∗(ẑ|z)p(z), (9)

and

q∗(x̂|z) =
∑
ẑ

q∗(ẑ, x̂|z), q∗(ẑ|z) =
∑
x̂

q∗(ẑ, x̂|z).

(10)

(ii) If s1 < 0, s2 = 0 and R(D∗
s , D

∗
0) > 0, we obtain

R(D∗
s , D

∗
o) ≡ R(D∗

s) = s1D
∗
s

−
∑
z

p(z) log

(∑
x̂

es1d̂s(z,x̂)p∗(x̂)

)
, (11)

where D∗
s is given by (8) and

q∗(x̂|z) = es1d̂s(z,x̂)p∗(x̂)∑
x̂ e

s1d̂s(z,x̂)p∗(x̂)
. (12)

(iii) If s1 = 0, s2 < 0, and R(D∗
s , D

∗
0) > 0 we obtain

R(D∗
s , D

∗
o) ≡ R(D∗

o) = s2D
∗
o

−
∑
z

p(z) log

(∑
ẑ

es2do(z,ẑ)p∗(ẑ)

)
, (13)

where D∗
s is given by (9) and

q∗(ẑ|z) = es1do(z,ẑ)p∗(ẑ)∑
ẑ e

s1do(z,ẑ)p∗(ẑ)
. (14)

(iv) If s1 = 0 and s2 = 0, then, R(D∗
s , D

∗
o) = 0.

Proof: A sketch of the proof is given in Appendix A.

Remark 2. (Generalizations) The derivation of Theorem
1 can be extended into more general system models,
which may encapsulate a sequence of remote sources, i.e.,
(xn

1 ,x
n
2 , . . . ,x

n
j ) and/or a sequence of the observations, i.e.,

(zn1 , z
n
2 , . . . , z

n
i ), i ̸= j, each with their corresponding indi-

vidual constraints.

Armed with Theorem 1, we can proceed with constructing
a generalization of the Blahut-Arimoto algorithm [27], which
can optimally solve the optimization problem in (3) for
arbitrary finite alphabet sets and general bounded distortion
functions. In this paper we do not pursue that direction.
Instead, we first focus on finding general structural properties
of the solution when the lower bound in (4) is achievable;
then we study some relevant setups as a means to further
understand the role of the optimal minimizer in the solution
of the problem and the role of the multiple distortions. In other
words, we want to gain further insights for the setup in Fig. 1,
which in turn will help us to better understand of the role of
multiple distortions in goal-oriented communication settings,
modeled as in Fig. 1. We prove the following lemma.

Lemma 2. (Structural properties for achieving the best rates)
The solution of the characterization (3) corresponds to the
lower bound on (4) if and only if the Markov chains z− ẑ− x̂
and z− x̂− ẑ are concurrently satisfied.

Proof: The lower bound in (4) is always true. We break
the proof in three interconnected cases.
(C1) Suppose that for some pair (D∗

s , D
∗
o),

max{R(D∗
s), R(D∗

o)} = R(D∗
s). Then,

R(D∗
s , D

∗
o) = I∗(z; ẑ, x̂)

(a)
= I∗(z; ẑ|x̂) + I∗(z; x̂)

(b)
= I∗(z; x̂) ≡ R(D∗

s) (15)

where (a) follows by the chain rule on mutual information and
(b) holds with equality if and only if I∗(z; ẑ|x̂) = 0, i.e., the
Markov chain z− x̂− ẑ holds. Hence, R(D∗

s , D
∗
o) = R(D∗

s).
(C2) Suppose that for some pair (D∗

s , D
∗
o),

max{R(D∗
s), R(D∗

o)} = R(D∗
o). Then,

R(D∗
s , D

∗
o) = I∗(z; ẑ, x̂) = I∗(z; x̂|ẑ) + I∗(z; ẑ)

(c)
= I∗(z; ẑ) ≡ R(D∗

o), (16)

where (c) holds with equality if and only if I∗(z; x̂|ẑ) = 0,
i.e., the Markov chain z − ẑ − x̂ holds. Hence,
R(D∗

o , D
∗
s) = R(D∗

o).
(C3) Suppose that for some pair (D∗

s , D
∗
o),

max{R(D∗
s), R(D∗

o)} = R(D∗
s) and

max{R(D∗
s), R(D∗

o)} = R(D∗
o), i.e., R(D∗

o) = R(D∗
s).



Then, it is easy to see from (C1), (C2) that both Markov chains
z − x̂ − ẑ, z − ẑ − x̂ should be satisfied concurrently. Since
the latter case includes the cases where R(D∗

o) ≶ R(D∗
s),

the result follows.
In what follows, we utilize both Theorem 1 and Lemma 2

to study the case of binary alphabets, i.e., X = Z = X̂ =
Ẑ = {0, 1} with Hamming distortions.

Problem 1. (Binary alphabets with Hamming distortion)
Suppose in the setup of Fig. 1, the remote source x and the
noisy channel of z given x are modeled as follows

p(x) =

(
p(x = 0)
p(x = 1)

)
=

(
α

1− α

)
,

p(z|x) =
(
p(z = 0|x = 0) p(z = 0|x = 1)
p(z = 1|x = 0) p(z = 1|x = 1)

)
=

(
β γ

1− β 1− γ

) (17)

where (α, β, γ) ∈ [0, 1]× [0, 1]× [0, 1], β ̸= γ and

ds(x, x̂) =

{
0 if x = x̂

1 if x ̸= x̂
, do(z, ẑ) =

{
0 if z = ẑ

1 if z ̸= ẑ
.

The following result is a key contribution of this paper. It
reveals the structural result of Lemma 2 and consequently the
characterization of the best achievable rates in (4).

Theorem 2. (Solution of Problem 1) Consider the setup in
Fig. 1 restricted to the given data of Problem 1. Then, the
following hold:
(i) the structural properties of the solution in Lemma 2 hold;

(ii)
R(D∗

s , D
∗
o) = max {R(D∗

o), R(D∗
s)} . (18)

Proof: See Appendix B.
The general result of Theorem 2 shows that the lower

bound in (4) is achievable for this class of input data under
probability of error distortions. As expected, the result in
Theorem 2 is also consistent with a similar result obtained
(using a different approach) for scalar-valued i.i.d Gaussian
processes with individual MSE distortion constraints in [13,
Corollary 1]. An interesting endeavor is to study whether the
result of Theorem 2 can be extended to larger alphabets of
equal or different alphabet size.

Computation of R(D∗
s , D

∗
o): In what follows, we analyze

the computation of the solution derived in Theorem 2, (18).
We first recall that the problem essentially looks for the
maximum solution between

R(Do) = min
q(ẑ|z)

E{do(z,ẑ)}≤Do

I(z; ẑ), (19)

R(Ds) = min
q(x̂|z)

E{d̂s(z,x̂)}≤Ds

I(z; x̂), (20)

which corresponds to a direct rate distortion problem with
an i.i.d binary source z with probability distribution given
by (30) and to an indirect rate distortion problem with an
i.i.d binary remote source x and a noisy observation z both

described by (17). For the direct rate distortion problem
(19) with binary source, it is relatively easy to see that the
closed form solution will be a straightforward generalization
of the analytical solution derived for instance in [28, Theorem
10.3.1], [18, Example 2.7.1], which yields

R(D∗
o) =

{
Hb(p̄)−Hb(Do), if 0 ≤ Do ≤ min{p̄, 1− p̄}
0, if Do > min{p̄, 1− p̄}

(21)

where p̄ = p(z = 0) is computed in (30) and Hb(·) denotes
the binary entropy function. On the other hand, an optimal
closed form solution of the binary indirect rate distortion
function (20) is not known, in general, and only bounds exist
in the literature, see, e.g., [29]. Nevertheless, one can always
use straightforward generalizations of the classical Blahut-
Arimoto iterative schemes to numerically compute the optimal
solution.

Example 1. (Equiprobable semantic source and binary sym-
metric channel) In the particular case where the semantic
remote source is i.i.d Bernoulli( 12 ), i.e., p(x = 0) = 1

2 , and the
binary channel in (17) is symmetric with crossover probability
p(z = 0|x = 1) = 1− β, β ∈ [0, 1

2 )
1, one can easily infer via

(21) that Hb(p̄) = 1 bit source/sample and

R(D∗
o) =

{
1−Hb(Do), if 0 ≤ Do ≤ 1

2

0, if Do > 1
2

. (22)

Moreover, for the same input data, it can be shown, see e.g.,
[18, Exercise 3.8], that

R(D∗
s) =

{
1−Hb(

Ds−β
1−2β ), if β < Ds ≤ 1

2

0, if Ds >
1
2

. (23)

Substituting (22), (23) in Theorem 2 we obtain

R(D∗
s , D

∗
o) = max

{
[1−Hb(Do)]

+
,

[
1−Hb

(
Ds − β

1− 2β

)]+}
(24)

where [·]+ = max{0, ·}. A display of the rate distortion
surface for β = 0.15 is provided in Fig. 2.

Based on (24), we observe an interesting interplay between
(β,Ds, Do) regarding the choice of the maximum achievable
rates. In particular, it appears that if Do > Ds−β

1−2β , then the
system will benefit more by encoding subject to a Hamming
distortion only the semantic information, therefore the rate is
R(D∗

s); whereas if Do < Ds−β
1−2β the system will benefit more

by encoding subject to its distortion the observable message of
the source with rates R(D∗

o). Clearly, if Do = Ds−β
1−2β , then, by

encoding either the semantic information or the observations
does not offer any advantage for any value of the active
distortion region.

Next, we study a special case where the problem simplifies
because of the use of mixed distortion constraints (i.e., a
standard erasure distortion [28, Exercise 10.7] and a Hamming

1The result for β ∈ [ 1
2
, 1] can be treated similarly.



Fig. 2. R(D∗
s , D

∗
o) for binary alphabets with an equiprobable semantic

source and binary symmetric channel with β = 0.15.

distortion) as opposed to Problem 1 where we have identical
types of distortion constraints.

Problem 2. (Binary alphabets with mixed distortions) Sup-
pose that in Problem 1, the semantic distortion ds(x, x̂) is
replaced by the standard erasure distortion as follows

ds(x, x̂) =


0 if x = x̂

1 if x = e

∞, x ̸= x̂

, (25)

where X̂ = {0, e, 1}.

Based on the given data of Problem 2, we derive the
following solution for the characterization of (3).

Theorem 3. (Solution of Problem 2) Consider the setup in
Fig. 1 restricted to Problem 2. Then, for the choice of the
semantic distortion penalty in (25), the characterization in (3)
satisfies the Markov chain z−ẑ−x̂ and R(D∗

s , D
∗
o) = R(D∗

o).
Moreover, the solution is given by (21).

Proof: See Appendix C.
Interestingly, the choice of the erasure distortion in

Theorem 3 simplifies the problem into one where
max{R(D∗

s), R(D∗
o)} = max{0, R(D∗

o)} = R(D∗
o). In

fact, from the derivation of Theorem 3, it is clear that the
amended distortion of the remote source allows only the
erasures to be sent, which in turn results into the zero rate
of the indirect rate distortion problem. This result comes as
a rather extreme case of the general result of Theorem 2 and
demonstrates the cardinal role of the distortion penalties into
the solution.

IV. CONCLUSIONS

A variant of a robust description source coding problem
with two individual criteria for finite alphabet messages was
studied in this paper. First, we derived a general theorem,
which is an essential step to construct generalizations of
the Blahut-Arimoto algorithm for this problem. Second, we
proved structural properties that have to be satisfied if the
best rates are achievable. Finally, we analyzed two relevant
scenarios as a means to demonstrate the structural behavior

of the solution and that of the distortion penalties in the
system model. A key takeaway from our results is that the
class of the distortion functions may heavily affects the system
behavior irrespective of its task, and hence it should be chosen
appropriately.

APPENDIX A
PROOF OF THEOREM 1

We give a sketch of the proof due to space limitations. The
fully unconstrained problem of (3) using (5) is as follows

L({si}2i=1, λ(z), µ(z, ẑ, x̂))

=
∑
x,ẑ,ẑ

log

(
q(ẑ, x̂|z)
p(ẑ, x̂)

)
p(ẑ, x̂|z)p(z)

− s1

(
E
[
d̂s(z, x̂)

]
−Ds

)
− s2 (E [do(z, ẑ)]−Do)

+
∑
z

λ(z)

∑
ẑ,x̂

q(ẑ, x̂|z)− 1

−
∑
z,ẑ,x̂

µ(z, ẑ, x̂)q(ẑ, x̂|z),

(26)

where s1 ≤ 0, s2 ≤ 0 are the Lagrangian multipliers associ-
ated with the individual distortion constraints E

[
d̂s(z, x̂)

]
≤

Ds and E [do(z, ẑ)] ≤ Do, respectively, whereas λ(z) ≥ 0
is associated with the equality constraint

∑
ẑ,x̂ q(ẑ, x̂|z) = 1,

and µ(z, ẑ, x̂) ≥ 0 is responsible for the inequality constraint
q(ẑ, x̂|z) ≥ 0.
Due to the convexity of L(·) with respect to q(·, ·|x), a
necessary and sufficient condition for q∗(·, ·|x) to be the
optimal minimizer is when ∂L({si}2

i=1,λ(x),µ(x,ẑ,x̂))
∂q(ẑ,x̂|z)) = 0

when q∗(·, ·|z) > 0 and ∂L({si}2
i=1,λ(x),µ(x,ẑ,x̂))
∂q(ẑ,x̂|z)) ≤ 0 when

q∗(·, ·|z) = 0, ∀(ẑ, x̂) ∈ Ẑ × X̂ . Since there is nothing to
prove for the latter case, we focus on the former case, in
which the derivative of the fully unconstrained problem (26)
is∑
x

[
log

(
q∗(ẑ, x̂|z)
p∗(ẑ, x̂)

)
− s1d̂s(z, x̂)− s2do(z, ẑ) + λ∗(z)

]
= 0, (27)

where we took µ(z, ẑ, x̂) = µ∗(z, ẑ, x̂) = 0 ∀(z, ẑ, x̂) ∈ Z ×
Ẑ × X̂ . Moreover, in (27) we have that λ(z) = λ∗(z) > 0,
∀z ∈ Z because we require

∑
ẑ,x̂ q

∗(ẑ, x̂|z) = 1. Applying
this result in (27) and solving with respect to q∗(·, ·|z) we
obtain

q∗(ẑ, x̂|z) = es1d̂s(z,x̂)+s2do(z,ẑ)−λ(x)p∗(ẑ, x̂). (28)

Leveraging the fact that
∑

ẑ,x̂ q
∗(ẑ, x̂|z) = 1, we average both

sides with respect to (ẑ, x̂) ∈ Ẑ × X̂ and solve to obtain
λ∗(z) > 0, which is given by

λ∗(z) = log

∑
ẑ,x̂

es1d̂s(z,x̂)+s2do(z,ẑ)p∗(ẑ, x̂)

 . (29)

By substituting (29) in (28), we obtain the implicit expression
of (6) for s1 ≤ 0, s2 ≤ 0. Moreover, substituting (6) in (26) we



obtain (7) provided that R∗(D∗
s , D

∗
o) > 0. Clearly, the cases

discussed in (i)-(iv) follow as special cases of the previous
analysis.

APPENDIX B
PROOF OF THEOREM 2

Recall that the input data and the distortion functions are
introduced in Problem 1. We first start with some preliminary
calculations. In particular, using (17), we can obtain p(z) as
follows:

p(z) =
∑

x∈{0,1}

p(z|x)p(x),

which gives

p(z) =

(
p(z = 0)
p(z = 1)

)
=

(
αβ + (1− α)γ

α(1− β) + (1− α)(1− γ)

)
.

(30)

Using the fact that p(z, x) = p(z|x)p(x) we obtain

p(z, x) =


p(z = 0, x = 0)
p(z = 0, x = 1)
p(z = 1, x = 0)
p(z = 1, x = 1)

 =


αβ

γ(1− α)
α(1− β)

(1− α)(1− γ)

 . (31)

Moreover, from (30), (31) and the fact that d̂s(z, x̂) =∑
z∈Z p(z|x)ds(z, ẑ) (from the characterization in Lemma 1),

we can obtain d̂s(z, x̂) as follows

d̂s(z, x̂) =

(
p(z=0,x=1)

p(z=0)
p(z=0,x=0)

p(z=0)
p(z=1,x=1)

p(z=1)
p(z=1,x=0)

p(z=1)

)
. (32)

We can now proceed to prove (i).
(i) We will prove this by finding the analytical solutions of
{p∗(ẑ, x̂), (ẑ, x̂) ∈ {0, 1}×{0, 1}} and {q∗(ẑ, x̂|z), (z, ẑ, x̂) ∈
{0, 1} × {0, 1} × {0, 1}}. We first recall, from the general
Theorem 1 that

p∗(ẑ, x̂) =
∑

z∈{0,1}

q∗(ẑ, x̂|z)p(z) (33)

where {q∗(ẑ, x̂|z), (z, ẑ, x̂) ∈ {0, 1}×{0, 1}×{0, 1}} can be
computed via (6).

Writing down (33) results into four third degree polynomial
equations with four unknowns and one extra equation that
ensures {p∗(ẑ, x̂), (ẑ, x̂) ∈ {0, 1} × {0, 1}} results into a
column vector that sum up to one. It can be shown that
the system of non-linear equations has the following trivial
solutions

p∗(ẑ, x̂) =


p∗(ẑ = 0, x̂ = 0)
p∗(ẑ = 0, x̂ = 1)
p∗(ẑ = 1, x̂ = 0)
p∗(ẑ = 1, x̂ = 1)



=



1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 , (34)

which can be excluded from the general solution because they
lead to zero rates, whereas the non-trivial solutions are as
follows

p∗(ẑ, x̂) =




d1(h1−e1)−p(z=0)(a1h1−d1e1)
(a1−d1)(e1−h1)

0
0

p(z=0)(a1h1−d1e1)−a1(h1−e1)
(a1−d1)(e1−h1)

 , (35)


b1(f1−e1)−p(z=0)(a1f1−b1e1)

(a1−b1)(e1−f1)
p(z=0)(a1f1−b1e1)−a1(f1−e1)

(a1−b1)(e1−f1)

0
0

 , (36)


c1(g1−e1)−p(z=0)(a1g1−c1e1)

(a1−c1)(e1−g1)

0
p(z=0)(a1g1−c1e1)−a1(g1−e1)

(a1−b1)(e1−f1)

0

 , (37)


0

c1(g1−f1)−p(z=0)(b1g1−c1f1)
(b1−c1)(f1−g1)

p(z=0)(b1g1−c1f1)−b1(g1−f1)
(b1−c1)(f1−g1)

0

 , (38)


0
0

d1(h1−g1)−p(z=0)(c1h1−d1g1)
(c1−d1)(g1−h1)

p(z=0)(c1h1−d1g1)−c1(h1−g1)
(c1−d1)(g1−h1)

 , (39)


0

d1(h1−f1)−p(z=0)(b1h1−d1f1)
(b1−d1)(f1−h1)

0
p(z=0)(b1h1−d1f1)−b1(h1−g1)

(b1−d1)(f1−h1)


 , (40)

where a1 = es1d̂s(0,0), b1 = es1d̂s(0,1), c1 = es1d̂S(0,0)+s2 ,
d1 = es1d̂s(0,1)+s2 , e1 = es1d̂s(1,0)+s2 , f1 = es1d̂s(1,1)+s2 ,
g1 = es1d̂s(1,0), h1 = es1d̂s(1,1). Since we found analytically
the marginal on the i.i.d output process in (35)-(40), we subse-
quently proceed to find the corresponding explicit expressions
of the optimal minimizer for each of the explicit expressions
in (35)-(40). We only give the explicit solution of the optimal
minimizer q∗(ẑ, x̂|z) that corresponds to the solution (35); the
other cases, e.g., (36)-(40), follow by simply substituting in
(6). By substituting (35) in (6) we obtain

q∗(ẑ, x̂|z) =
q(ẑ = 0, x̂ = 0|z = 0) q(ẑ = 0, x̂ = 0|z = 1)
q(ẑ = 0, x̂ = 1|z = 0) q(ẑ = 0, x̂ = 1|z = 1)
q(ẑ = 1, x̂ = 0|z = 0) q(ẑ = 1, x̂ = 0|z = 1)
q(ẑ = 1, x̂ = 1|z = 0) q(ẑ = 1, x̂ = 1|z = 1)

 (41)



where

q∗(ẑ = 0, x̂ = 0|z = 0) =

a1d1(h1 − e1) + a1p(z = 0)(a1h1 − d1e1)

p(z = 0)(a1h1 − d1e1)(d1 − a1)

q∗(ẑ = 0, x̂ = 1|z = 0) = p(ẑ = 1, x̂ = 0|x = 0) = 0

q∗(ẑ = 1, x̂ = 1|z = 0) =

a1p(z = 0)(a1h1 − d1e1)− a1d1(h1 − e1)

p(z = 0)(a1h1 − d1e1)(d1 − a1)

q∗(ẑ = 1, x̂ = 0|z = 0) = p(ẑ = 1, x̂ = 0|x = 1) = 0

q∗(ẑ = 0, x̂ = 0|z = 1) =

d1e1(h1 − e1) + e1p(z = 0)(a1h1 − d1e1)

p(z = 1)(a1h1 − d1e1)(e1 − h1)

q∗(ẑ = 0, x̂ = 1|z = 1) = p(ẑ = 1, x̂ = 0|x = 1) = 0

q∗(ẑ = 1, x̂ = 1|z = 1) =

h1p(z = 0)(a1h1 − d1e1)− a1h1(h1 − e1)

p(z = 1)(a1h1 − d1e1)(e1 − h1)

q∗(ẑ = 1, x̂ = 0|z = 1) = p(ẑ = 1, x̂ = 1|x = 1) = 0.

The general explicit solution of the optimal minimizer allows
to find the information structure of {q∗(ẑ|x̂, z), (z, ẑ, x̂) ∈
{0, 1}× {0, 1}× {0, 1}} and {q∗(x̂|ẑ, z), (z, ẑ, x̂) ∈ {0, 1}×
{0, 1} × {0, 1}}, respectively, via the following expressions

q∗(ẑ|x̂, z) = q∗(ẑ, x̂|z)p(z)∑
ẑ∈{0,1} q

∗(ẑ, x̂|z)p(z)
, (42)

q∗(x̂|ẑ, z) = q∗(ẑ, x̂|z)p(z)∑
x̂∈{0,1} q

∗(ẑ, x̂|z)p(z)
. (43)

Surprisingly, the closed form expressions in both (42), (43)
admit the following simple structure

q∗(ẑ|x̂, z) =
(
1 1 0 0
0 0 1 1

)
(44)

where

q∗(ẑ = 0|x̂ = 0, z = 0) = q∗(ẑ = 0|x̂ = 0, z = 1) = 1

q∗(ẑ = 0|x̂ = 1, z = 0) = q∗(ẑ = 0|x̂ = 1, z = 1) = 0

q∗(ẑ = 1|x̂ = 0, z = 0) = q∗(ẑ = 1|x̂ = 0, z = 1) = 0

q∗(ẑ = 1|x̂ = 1, z = 0) = q∗(ẑ = 1|x̂ = 1, z = 1) = 1.

and

q∗(x̂|ẑ, z) =
(
1 1 0 0
0 0 1 1

)
(45)

where

q∗(x̂ = 0|ẑ = 0, z = 0) = q∗(x̂ = 0|ẑ = 0, z = 1) = 1

q∗(x̂ = 0|ẑ = 1, z = 0) = q∗(x̂ = 0|ẑ = 1, z = 1) = 0

q∗(x̂ = 1|ẑ = 0, z = 0) = q∗(x̂ = 1|ẑ = 0, z = 1) = 0

q∗(x̂ = 1|ẑ = 1, z = 0) = q∗(x̂ = 1|ẑ = 1, z = 1) = 1.

The structure in both (44), (45) reveals the conditional in-
dependence q∗(ẑ|x̂, z) = q∗(ẑ|x̂) and q∗(x̂|ẑ, z) = q∗(x̂|ẑ)
or, in other words, the fact that ẑ is conditionally indepen-
dent of z given x̂ and x̂ is conditionally independent of

z given ẑ. We note that the previous information structure
of {q∗(ẑ|x̂, z), (z, ẑ, x̂) ∈ {0, 1} × {0, 1} × {0, 1}} and
{q∗(x̂|ẑ, z), (z, ẑ, x̂) ∈ {0, 1} × {0, 1} × {0, 1}} can be
observed if we pick any {p∗(ẑ, x̂), (ẑ, x̂) ∈ {0, 1} × {0, 1}}
from (36)-(40) hence we omit the re-derivation. This proves
(i).
(ii) is a consequence of (i) (or Lemma 2), because under the
previous conditional independence constraints imposed in the
optimal solution of (3), we may obtain R∗(Ds, Do) = R(D∗

s),
R∗(Ds, Do) = R(D∗

o) or R∗(Ds, Do) = R(D∗
o) = R(D∗

s).
However, from the Lagrange duality theorem [26] the chosen
solution is the one for which the Lagrangian, i.e., s1 or s2
in our case, yields the greater rates hence R∗(Ds, Do) =
max{R(D∗

o), R(D∗
s))}. This completes the proof.

APPENDIX C
PROOF OF THEOREM 3

We start the proof by noting that {p(z), p(z|x) : (x, z) ∈
{0, 1} × {0, 1}} are given by (30) and (31), respectively.
Moreover, from (25), we obtain

d̂s(z, x̂) =(
d̂s(z = 0, x̂ = 0) d̂s(z = 0, x̂ = e) d̂s(z = 0, x̂ = 1)

d̂s(z = 1, x̂ = 0) d̂s(z = 1, x̂ = e) d̂s(z = 1, x̂ = 1)

)

=

(
∞ 1 ∞
∞ 1 ∞

)
. (46)

Using (46) and the input data, we obtain that the optimal
minimizer has the following structure

q∗(ẑ, x̂|z) =
q∗(ẑ = 0, x̂ = 0|z = 0) q∗(ẑ = 0, x̂ = 0|z = 1)
q∗(ẑ = 0, x̂ = e|z = 0) q∗(ẑ = 0, x̂ = e|z = 1)
q∗(ẑ = 0, x̂ = 1|z = 0) q∗(ẑ = 0, x̂ = 1|z = 1)
q∗(ẑ = 1, x̂ = 0|z = 0) q∗(ẑ = 1, x̂ = 0|z = 1)
q∗(ẑ = 1, x̂ = e|z = 0) q∗(ẑ = 1, x̂ = e|z = 1)
q∗(ẑ = 1, x̂ = 1|z = 0) q∗(ẑ = 1, x̂ = 1|z = 1)

 =



0 0
p∗(ẑ=0,x̂=e)

p∗(ẑ=0,x̂=e)+es2p∗(ẑ=1,x̂=e)
es2p∗(ẑ=0,x̂=e)

es2p∗(ẑ=0,x̂=e)+p∗(ẑ=1,x̂=e)

0 0
0 0

es2p∗(ẑ=1,x̂=e)
p∗(ẑ=0,x̂=e)+es2p∗(ẑ=1,x̂=e)

p∗(ẑ=1,x̂=e)
es2p∗(ẑ=0,x̂=e)+p∗(ẑ=1,x̂=e)

0 0


,

(47)

where each of p∗(ẑ = 0, x̂ = e) and p∗(ẑ = 1, x̂ = e) can
take the trivial solutions 0 or 1 and a non-trivial solution of
the form

p∗(ẑ = 0, x̂ = e) =
p(z = 0)(1 + es2)− es2

1− es2

p∗(ẑ = 1, x̂ = e) =
1− p(z = 0)(1 + es2)

1− es2
.

(48)

The explicit structure of (47) reveals that the optimal solution
for this problem is parametrized only by the Lagrangian
multiplier s2 < 0, which further means that this solution



should be R(D∗
s , D

∗
o) = R(D∗

o) (from Theorem 1). The
latter implies that the Markov chain z − ẑ − x̂. A way to
compute R(D∗

s , D
∗
o) is the following. Find s∗2 < 0 from

(8) using the explicit expressions (47) and (48). This will
give s∗2 = log

(
D∗

o

1−D∗
o

)
. Then, by substituting all the pieces

together in

R(D∗
s , D

∗
o) = E

{
q∗(ẑ, x̂|z)
p∗(ẑ, x̂)

}
,

we obtain (21).

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[2] C. Shannon, “Coding theorems for a discrete source with a fidelity
criterion,” IRE Conv. Rec., pp. 142–163, 1993.

[3] Y. Bar-Hillel and R. Carnap, “Semantic information,” British Journal
for the Philosophy of Science, vol. 4, no. 14, 1953.

[4] F. I. Dretske, Knowledge and the flow of information, 1st ed. MIT
Press Cambridge, Mass., 1981.

[5] L. Floridi, “Semantic Conceptions of Information,” in The Stanford
Encyclopedia of Philosophy, Winter 2005.

[6] B. Juba and M. Sudan, “Universal semantic communication I,” in Proc.
of the 40th Annual ACM Symposium on Theory of Computing, ser. STOC
’08, New York, NY, USA, 2008, p. 123–132.

[7] J. Bao, P. Basu, M. Dean, C. Partridge, A. Swami, W. Leland, and
J. A. Hendler, “Towards a theory of semantic communication,” in IEEE
Network Science Workshop, 2011.

[8] F. M. Willems and T. Kalker, “Semantic coding: Partial transmission,”
in 2008 IEEE Intern. Symp. on Information Theory (ISIT), 2008, pp.
1617–1621.
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