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ABSTRACT

Affine Frequency Division Multiplexing (AFDM), which
is based on discrete affine Fourier transform (DAFT), has
recently been proposed for reliable communication in high-
mobility scenarios. Two low complexity detectors for AFDM
are introduced here. Approximating the channel matrix as
a band matrix via placing null symbols in the AFDM frame
in the DAFT domain, a low complexity MMSE detection is
proposed by means of the LDL factorization. Furthermore,
exploiting the sparsity of the channel matrix, we propose a
low complexity iterative decision feedback equalizer (DFE)
based on weighted maximal ratio combining (MRC), which
extracts and combines the received multipath components
of the transmitted symbols in the DAFT domain. Simula-
tion results show that the proposed detectors have similar
performance, while weighted MRC-based DFE has lower
complexity than band-matrix-approximation LMMSE when
the channel impulse response has gaps.

Index Terms— AFDM, affine Fourier transform, doubly
dispersive channels, detector, MMSE, DFE, MRC.

1. INTRODUCTION

Next-generation wireless systems (e.g., B5G/6G) are evolv-
ing to cater to a wide range of applications and services re-
quiring reliable communication in high-mobility scenarios.
This calls for new waveform design able to cope with time-
varying channels. In this setting, existing waveforms, in par-
ticular orthogonal frequency division multiplexing (OFDM),
lose subcarrier orthogonality, thus resulting in inter-carrier in-
terference and deteriorated system performance.

Affine frequency division multiplexing (AFDM) has re-
cently been proposed as a promising waveform for commu-
nication in time-varying channels [1, 2] showing significant
performance gains over OFDM. AFDM employs multiple or-
thogonal information-bearing chirps generated using the dis-
crete affine Fourier transform (DAFT). A key feature is that
its chirp pulse parameters can be adapted to the channel char-
acteristics, making a complete delay-Doppler representation
of the channel in the DAFT domain. This enables AFDM
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to achieve full diversity in doubly dispersive channels [1] as
opposed to existing chirp-based waveforms, for instance [3,
4]. Furthermore, AFDM has similar performance in terms
of bit error rate (BER) with orthogonal time frequency space
(OTFS) [5]. However, AFDM outperforms OTFS in terms of
pilot overhead and multiuser multiplexing overhead [2, 6].

In this paper, we propose two low complexity detection
algorithms for AFDM taking advantage of its inherent chan-
nel sparsity. By placing some null symbols - zero padding the
AFDM frame - in the DAFT domain, the channel matrix can
be approximated as a band matrix. Using the approximated
band matrix and inspired by the equalizer in [7] for OFDM
systems, we first design a low complexity MMSE detector
based on LDL factorization [8]. The overall complexity of the
proposed algorithm is linear in the number of subcarriers and
quadratic in the bandwidth of the band matrix, which in turn
depends on the the maximum delay and maximum Doppler
shift. Second, we propose a low complexity iterative decision
feedback equalizer (DFE) based on weighted maximal ratio
combining (MRC) of the channel impaired input symbols re-
ceived from different paths. The overall complexity of the
second algorithm is also linear in the number of subcarriers
and quadratic in the number of paths. We show that these two
detectors have similar performance between them, whereas
when the channel is sparse in the delay domain, weighted
MRC-based DFE detector exhibits lower complexity.

2. SYSTEM MODEL
The AFDM block diagram is given in Fig. 1. Modulation
is produced by using DAFT at the transmitter and receiver.
DAFT is a discretized version of AFT [1,9–11] and its kernel
is equal to e−ı2π(c2m

2+ 1
N mn+c1n

2) where c1 and c2 are the
AFDM parameters tuned to provide full delay-Doppler rep-
resentation of the channel in the DAFT domain. It has been
shown that tuning c1 using the the maximum Doppler shift
normalized with respect to the subcarrier spacing, and setting
c2 to be an arbitrary irrational number or a rational number
sufficiently smaller than 1/2N , enables AFDM to achieve full
diversity in doubly dispersive channels [1].

2.1. Modulation and Demodulation
Consider a set of quadrature amplitude modulation (QAM)
symbols xk, k = 0, 1, 2, ..., N − 1. AFDM maps xk to sn
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Fig. 1: AFDM modulation/demodulation block diagram.

using inverse DAFT (IDAFT) as follows:

sn =
1√
N

N−1∑
m=0

xmeı2π(c2m
2+ 1

N
mn+c1n

2), n = 0, · · · , N − 1.

(1)
To make the channel lie in a periodic domain, a chirp-

periodic prefix (CPP) should be added to the modulated
signal, defined as

sn = sN+ne
−ı2πc1(N

2+2Nn), n = −M, · · · ,−1 (2)

where M is any integer greater than or equal to the value in
samples of the maximum delay spread of the wireless chan-
nel. After transmission over the channel, the received samples
are

rn =

∞∑
l=0

sn−lgn(l) + wn (3)

where wn ∼ CN (0, N0) is an additive Gaussian noise and
gn(l) is the impulse response of the time-varying channel at
time n and delay l, given by

gn(l) =

P∑
i=1

hie
−ı2πfinδ(l − li) (4)

where P ≥ 1 is the number of paths, δ(·) is the Dirac delta
function, and hi, fi and li are the complex gain, Doppler shift
(in digital frequencies), and the integer delay associated with
the i-th path, respectively. We define νi ≜ Nfi, where νi ∈
[−νmax, νmax] is the Doppler shift normalized with respect to
the subcarrier spacing. We assume that the maximum delay
of the channel satisfies lmax ≜ max(li) < N .
The DAFT domain output symbols are obtained by

ym =
1

N

N−1∑
n=0

rne
−ı2π(c2m

2+ 1
N mn+c1n

2). (5)

Discarding the CPP, the input-output relation can be written
in matrix form as

y =Ar = Heffx+Aw (6)

where A = Λc2FΛc1 is the DAFT matrix, F is the discrete
Fourier transform (DFT) matrix with entries e−ı2πmn/N/

√
N ,

Λc = diag(e−ı2πcn2

, n = 0, 1, . . . , N−1), Heff = AHAH,
and H is the matrix representation of the channel. The ele-
ments of y, r, x and w ∼ CN (0,N0I) are similarly related
to yk, rk, xk and wk, respectively. Since A is a unitary
matrix, w̃ = Aw and w have the same statistics. Heff has
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Fig. 2: Truncated parts of x and Heff

sparse structure i.e., there are exactly L = P non-zero en-
tries in each row and column if νi is integer and if we set
c1 = 2νmax+1

2N . Indeed, in this case Heff =
∑P

i=1 hiHi where

Hi(p, q) =

{
eı

2π
N

(Nc1l
2
i−qli+Nc2(q

2−p2)) q = (p+ loci)N

0 otherwise
(7)

where loci = (νi + (2νmax + 1)li)N [1]. For fractional
νi, it can be shown that Hi has in each row and column a
peak surrounded by approximately 2kν non-zero entries de-
creasing rapidly as we move away from it. Hence, if we set
c1 = 2(⌊νmax⌋+kν)+1

2N , Heff can be approximated as having
L = (2kν + 1)P non-zero entries per row and column (i.e.,
each received symbol can be approximately expressed as a
linear combination of only a few input symbols). We pro-
pose below two low complexity detection algorithms leverag-
ing the channel matrix sparsity.

3. DETECTION ALGORITHMS

The first step is to place some null symbols that allow to ap-
proximate the truncated part of Heff as a band matrix. This
also simplifies the input-output relation as the modular oper-
ation is no longer needed, as shown in Fig. 2. Note that these
symbols do not entail extra overhead as they can serve not
only the proposed detection algorithms but also embedded pi-
lot aided channel estimation. Due to the structure of Heff and
Hi, the number of the null guard symbols should be greater
than Q = (lmax +1)(2(αmax + kν)+ 1)− 1. Taking into ac-
count the zero padding, the vector of DAFT domain received
samples writes as

y = Heffx+ w̃ (8)

where x and Heff are the truncated parts of x and Heff , re-
spectively (see Fig. 2). They can be expressed using the ma-
trix T = [IN ]Q−(αmax+kν):N−(αmax+kν)−1,: as x = Tx and
Heff = HeffT

H. Using LMMSE equalization based on (8)
for detection requires O(N3) flops, which can be prohibitive



for large N . We thus propose two detectors with lower com-
plexity. The first is a low-complexity LMMSE based on a
band approximation of Heff . The second is a weighted MRC-
based DFE exploiting the sparse representation of the com-
munication channel provided by AFDM.
3.1. Low complexity MMSE detection

To recover the data symbols x, considering (8), the following
MMSE equalization is used

x̂ = HH
eff(HeffH

H
eff +N0IN )−1y. (9)

Although (9) involves matrix inversion, the matrix M =
HeffH

H
eff + N0IN is a Hermitian band matrix with lower

and upper bandwidth Q. Thus, M−1 can be computed us-
ing LDL factorization. Algorithm 1 can be performed to
efficiently equalize the received signal. The computational

Algorithm 1: Low complexity MMSE detection

1 Construct the matrix Heff = HeffT
H

2 Construct the band matrix M = HeffH
H
eff +N0IN

3 Compute the LDL factorization of M = LDLH

where L is a lower triangular matrix with Q sub
diagonals and D is a diagonal matrix

4 Solve the triangular system Lf = y
5 Solve the diagonal system Dg = f

6 Solve the triangular system LHd = g

7 Calculate x̂ = HH
effd

cost of the proposed detection algorithm is evaluated in terms
of complex additions (CAs), complex multiplications (CMs)
and complex divisions (CDs). The first step does not need
any complex operation since Heff is truncated from Heff .
In step 2, every element of HeffH

H
eff requires at most Q + 1

CMs and Q CAs. Considering that HeffH
H
eff is Hermitian and

neglecting some small terms in the complexity expression,
step 2 requires 1

2 (Q
2+3Q+2)N CMs and 1

2 (Q
2+Q+2)N

CAs. Similar to [7], step 3, the LDL factorization, requires
1
2 (Q

2+3Q)N CMs, 1
2 (Q

2+Q)N CAs, and QN CDs. Steps
4 and 6 can be solved by band forward and backward sub-
stitutions [8] and each of them has QN CMs and QN CAs.
Step 5 can be solved using N CDs since D is a diagonal
matrix and the last step requires (Q + 1)N CMs and QN
CAs. Thus, the algorithm requires (Q2 + 6Q + 2)N CMs,
(Q2 + 4Q + 1)N CAs and (Q + 1)N CDs, which amounts
to (2Q2 + 11Q+ 4)N complex operations in total.
3.2. Weighted MRC-based DFE detection

As mentioned in Section 2, Heff has L non-zero entries per
column. This feature enables us to propose a weighted MRC-
based detector where each data symbol is detected from the
weighted MRC of its L channel-impaired received copies.
Fig. 3 shows an example of this detector for AFDM with
N = 8 and a 3-path channel with Q = 2. The proposed
detector is iterative, where in each iteration, the estimated in-
ter symbol interference is canceled in the branches selected
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Fig. 3: Weighted MRC operation for N = 8 with a 3-path
channel with Q = 2 where W-MRC stands for weighted MRC
and hj

i = Heff(i, j).

for the combining. Considering the structure of Heff , it can
be seen that each received symbol yk is given by

yk =

L−1∑
i=0

Heff(k, p
i
k)xpi

k
(10)

where pik is the column index of the i-th path coefficient in
row k of matrix Heff . Let bik be the channel impaired in-
put symbol xk in the received samples yqik after canceling
the interference from other input symbols, where qik is the
row index of the i-th path coefficient in column k of ma-
trix Heff . In each iteration, assuming estimates of the in-
put symbols xk are available either from the current iteration
(for pj

qik
< k, j = 0, ..., L − 1) or previous iteration (for

pj
qik

> k, j = 0, ..., L− 1), bik can be written as

bik = yqik −
∑

pj

qi
k

<k

HH
eff(q

i
k, p

j
qik
)x̂

(n)

pj

qi
k

−
∑

pj

qi
k

>k

HH
eff(q

i
k, p

j
qik
)x̂

(n−1)

pj

qi
k

(11)

where superscript (n) denotes the n-th iteration. Considering
bik for all paths i = 0, 1, ..., L − 1, weighted MRC (as op-
posed to pure MRC [12]) can be performed. The output of
the weighted MRC for estimating xk is given by

ck =
gk

dk + γ−1
(12)

where
gk ≜

L−1∑
i=0

HH
eff(q

i
k, k)b

i
k, (13)

d ≜
L−1∑
i=0

|HH
eff(q

i
k, k)|2 (14)

and γ is the signal-to-noise ratio (SNR). Let D(.) denote the
decision on the symbol estimate ck, i.e, x̂n

k = D(ck). In this
paper, we consider x̂n

k = ck. The estimated symbols are then



used for the next iteration. The algorithm continues until the
maximum number of iterations is reached or the updated input
symbol vector is close enough to the previous one as summa-
rized in Algorithm 2.

Algorithm 2: Weighted MRC-based DFE detection

Data: Heff , d, y, x̂0 = 0
1 for n = 1 : niter do
2 for k = 0 : N-Q-1 do
3 for i = 0 : L-1 do

4

bik = yqi
k
−

∑
p
j

qi
k

<k

HH
eff(q

i
k, p

j

qi
k

)x̂
(n)

p
j

qi
k

−
∑

p
j

qi
k

>k

HH
eff(q

i
k, p

j

qi
k

)x̂
(n−1)

p
j

qi
k

5 end
6 gk =

∑L−1
i=0 HH

eff(q
i
k, k)b

i
k

7 ck = gk
dk+γ−1

8 x̂
(n)
k = ck or x̂(n)

k = D(ck)

9 end
10 if ||x̂(n) − x̂(n−1)|| < ϵ then EXIT;
11 end

Computing the complexity of Algorithm 2 is straightfor-
ward as it has only scalar operation. From step 3 to step 11, it
requires L2 CMs, L2 CAs and 1 CD. Therefore, its total com-
plexity is niter(2L

2+1)(N−Q). In simulations, we observed
that the algorithm typically converges within 15 iterations. In
the longer version of the article, convergence of x̂(n) to the
LMMSE estimate x̂ defined in (9) is proved.

The complexity of the two proposed algorithms is re-
markably smaller than maximum likelihood (ML) and linear
MMSE detectors, which have exponential O(|A|N ) and cu-
bic O(N3) complexity, respectively, with A representing the
QAM alphabet. Moreover, Algorithm 2 has lower complexity
than Algorithm 1 when the channel impulse response has
gaps. This is due to the fact that its complexity only depends
on the number of non-zero elements in each column of Heff ,
i.e L, instead of Q ≥ L.

4. SIMULATION RESULTS

In this section, we simulate the uncoded BER performance of
AFDM over doubly dispersive channels. The following pa-
rameters are used: carrier frequency fc = 4 GHz, number
of subcarriers N = 128, and AFDM frame length 330 µs.
Path delays are fixed, and considering Jakes Doppler spec-
trum for each channel realization, the Doppler shift of the i-th
path is generated using νi = νmaxcos(θi), where θi is uni-
formly distributed over [−π, π] with 4-QAM signaling. The
maximum Doppler shift is νmax = 1, which corresponds to a
maximum speed of 810 km/h. Fig. 4a shows the BER perfor-
mance of AFDM using the proposed weighted MRC-based
DFE detector for different values of ϵ at SNR = 20 dB. We
can see that below ϵ = 0.01, the performance remains almost
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Fig. 4: BER variation and the average number of iterations
versus ϵ for the weighted MRC-based DFE detector for 4-
QAM, N = 128 and SNR = 20 dB.
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constant, and the algorithm converges within 14 iterations, as
shown in Fig. 4b. In Fig. 5, we plot the BER performance of
AFDM and OFDM for LMMSE, low-complexity MMSE [7]
and weighted MRC-based DFE detectors. First, we observe
that AFDM outperforms OFDM, thanks to achieving full di-
versity and as every information symbol is received through
multiple independent non-overlapping paths. Second, we ob-
serve that both proposed detection algorithms have similar
performance between them, while conventional MMSE de-
tection has slightly better performance at the cost of higher
complexity.

5. CONCLUSION

We proposed two low complexity detection algorithms for
zero-padded AFDM. First, a low complexity MMSE detector
which makes use of band LDL factorization was derived.
Second, an iterative weighted MRC-based DFE detector,
which exploits the channel sparsity, was proposed. Our
results showed that both detectors have comparable perfor-
mance as exact LMMSE while their complexity order is
linear, instead of cubic, in the number of subcarriers.
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