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Abstract—Edge computing is one of the critical components
enabling low-latency demanding services in beyond 5G networks.
Indeed, the deployed applications at the edge benefit from their
close position to end-users to guarantee low latency access.
Considering the case of a network slicing enabled network, we
introduce Lightweight edge Slice Orchestration (LeSO) frame-
work, a cloud-native oriented orchestrator that orchestrates and
manages the deployment of micro-services as sub-slices at the
edge. Whilst the existing orchestration frameworks are greedy of
computing resource consumption and fail to integrate with the
Multi-access Edge Computing (MEC) domain, LeSO by design is
very lightweight and integrates a MEC platform-like component
to guarantee traffic steering to automate edge slice deployment.
Experiment results show that LeSO necessities a small amount
of CPU and memory, even when a high number of edge slices
are deployed.

Index Terms—NFV, MEC, CNF, Orchestration, Cloud-native

I. INTRODUCTION

Edge cloud or Multi-access Edge Computing (MEC) [1]
[2] provides a home to low latency demanding applications.
Close placement of MEC to its end users makes it suitable
to deploy emerging 5G services, such as Mission Critical
Services (MCS), Virtual Reality (VR), and Augmented Reality
(AR) based applications, etc. Including MEC in Network
Slicing concept [3] can be an enabler for such applications
in a Network Slice (NS). Applications hosted at the MEC
require traffic redirection or DNS-based redirection rules to
steer traffic to MEC Applications instead of the internet. As
the traffic redirection needs to be done dynamically at the
instantiation of the MEC application, ETSI MEC defined
the traffic redirection as a rule in the Application Descriptor
(AppD) describing the MEC application. Besides, the traffic
redirection is enforced by the MEC Platform element that acts
as an interface between the MEC and 5G domains. The reader
may refer to [4] for more details on the MEC architecture,
including MEP and AppD.

Network Slicing (NS) has emerged from the need to support
heterogeneous 5G services sharing the same physical infras-
tructure. A Network Slice (NS) [5] is considered as an isolated
logical layer on top of a physical infrastructure aiming at
handling a specific type of traffic. According to 3GPP, when
a NS is deployed, it is known as a Network Slice Instance
(NSI). It is composed of one or more Network Slice Subnet
Instances (NSSI), which may be dedicated to a NSI or shared
among other NSI’s. NSSI’s contains either Virtual Network
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Functions (VNFs) or Physical Network Functions (PNFs) or
radio resources or transport resources. NSSIs are deployed
on top of different technological domains (i.e., radio, edge,
transport network, cloud) and are stitched together to build
the end-to-end network slice corresponding to a NSI. Usually,
a Slice Orchestrator (SO) manages the life cycle of a NSI,
which is composed of four steps: preparation, instantiation,
configuration, activation, and decommissioning. Several LCM
steps are delegated to the sub-slice orchestrators that manage
the technological domain where a NSSI is deployed. In this
context, a MEC Application can be considered to be a part
of an edge sub-slice (i.e., NSSI), and the MEC orchestrator
(MEO) [4] can be regarded as the edge sub-slice orchestrator.

The well-known existing orchestration frameworks, such
as Open Network Automation Platform (ONAP)1 and Open
Source Mano (OSM)2, were designed to manage the life
cycle of VNFs or network services, a connected graph of
multiple VNFs and PNFs. Currently, none of them perform
life cycle management of MEC applications. Though they
can instantiate a MEC application at the edge, they do not
communicate to MEP or provide MEP capabilities to interface
with the 5G network and steer traffic to the freshly deployed
MEC application instance. Moreover, these frameworks have a
complex design and high resource consumption, making their
positioning unsuitable for the edge cloud.

In this paper, we propose a novel framework for orchestrat-
ing and managing the life cycle of Edge Sub Slices (ESS)
that are crucial for low latency demanding services. The
architecture of the framework is designed following micro-
services and cloud-native principles [6]. It allows orchestrating
and managing multiple slices at the same time. The paper’s
contributions are:

• A cloud-native Lightweight edge Slice Orchestration
(LeSO) framework that is specifically designed to or-
chestrate micro-services based cloud-native MEC Appli-
cations and deploy them as fully isolated edge-sub-slices

• An Edge Sub-Slice Template (ESST) describing an ESS
to manage cloud-native container-based applications fol-
lowing micro-services design. The template contains a
modified version of AppD.

The paper also provides the placement of the framework in
global network slicing orchestration architecture. Finally, we
provide performance evaluation results of the LeSO framework
to prove its low computing resource consumption as it is as-
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sumed to be deployed at the edge. The performance evaluation
results were obtained via experiments as LeSO is deployed in
EURECOM 5G trial facility [7] deployed in Eurecom, Sophia
Antipolis.
The paper is organized into five sections: background, related
work and motivation, framework and implementation, perfor-
mance evaluation, and conclusion.

II. BACKGROUND: CLOUD-NATIVE

One of the challenges related to deploying a MEC applica-
tion at the Edge sub-slice is the limited computation resources
available at the Edge node. Indeed, the first deployments of
VNF were considering the usage of Virtual Machine (VM)
or virtualization technology, which requires a full operating
system that increases computing resource consumption. Be-
sides, significant software image size constraints the MEC
application design to be monolithic. In this context, replacing
VM with containers and virtualization with containerization
will provide several advantages for MEC application deploy-
ment. First, containers allow designing micro-services-based
(or cloud-native) MEC applications, which bring the benefit
of being more flexible and having faster failure recovery
compared to VM-based MEC applications. Second, containers
require only application-specific packages. They do not need
an entire operating system, which reduces their computational
resource consumption and instantiation time, making them
lighter than VMs. For these reasons, it is more efficient
to consider containerization over virtualization technology to
use for Edge Slice deployment bringing cloud-native network
functions (CNF) to the edge.

Basically, the architecture of cloud native application, by
its definition, follows a micro-service design. Ideally, each
functional component of the application should run in a sep-
arate container, which should run only one single computing
process. Today Kubernetes3 is an industrial de facto standard
for container orchestration. The smallest entity which can be
scheduled by Kubernetes is a Pod, a group of containers.
One of the containers of the Pod contains the function of
the application and rest of the containers are sidecars or
initialization containers i.e, can be used for configuration
management etc. Hence, a cloud native application deployed
on Kubernetes contains multiple Pods which communicate
with each other.

Modern network functions, Container-based Network Func-
tions, or CNFs follow the above-defined design strategy for
Kubernetes. MEC applications are equivalent to CNFs, but
they are less sophisticated and require different life cycle man-
agement and additional traffic redirection rules. To define these
applications using ETSI MEC defined Application Descriptor
AppD [8] is not possible. Originally AppD was designed to
define VM-based MEC applications. It provides the possibility
to define one container or software image.

There is a possibility to use several AppDs instead of one
single AppD to define such a MEC application, but again it

3https://kubernetes.io/

does not allow defining multiple container images inside one
single AppD. To overcome this limitation, we proposed an
Edge Sub Slice Template (ESST) that contains our proposed
modified version of the original AppD. It allows describing a
cloud native MEC application.

III. RELATED WORK AND MOTIVATION

There are several network service orchestrators that function
as slice orchestrators. But none of them were designed for
running MEC applications or network functions at the edge.
Mainly, they were designed to run VM-based VNFs, and later
some have been adapted to CNFs.

• Open Network Automation Platform (ONAP), Initially
designed to manage VM-based VNFs, and with the recent
release, it is following cloud-native principles. ONAP’s
complicated architecture results in high resource con-
sumption. Making it unsuitable for deploying it at the
edge, to be close to its managed edge resources.

• Open Source MANO (OSM) is a network service
orchestrator. Designed to orchestrate VM-based network
services, it supports container-based network functions.
OSM can deploy network functions at the edge cloud but
not MEC Applications, which require MEP support.

ONAP and OSM both have their own CNF or network
service descriptor packages, and apart from that, they need
VIM-specific packages like helm-charts4. This forces the CNF
provider to be infrastructure and platform aware. Besides these
two tools, there is SONATA Service Platform [9], which can
orchestrate CNFs; but again, it does not orchestrate MEC ap-
plications. Finally, in [10] the authors have briefly mentioned
about a MEC orchestrator that orchestrates Linux Container
(LXC) based MEC applications using AppD. To the best of
our knowledge, this work is the only one that mentions about
MEC orchestrators.

The motivation behind our work is the absence of a
lightweight edge slicing orchestration framework. Which pro-
vides the features of MEC, follows cloud-native principles,
is able to orchestrate container-based micro-services appli-
cations, and abstracts the platform and infrastructure-related
information from MEC application or CNF providers. The
providers should only be aware of their own application.

IV. LIGHTWEIGHT EDGE SLICE ORCHESTRATION
FRAMEWORK

This section introduces the LeSO framework highlights its
placement in the global end-to-end network slicing architec-
ture and its design and implementation. It also describes the
skeleton of the proposed ESST.

A. Global Architecture

Network Slice Orchestrator or simply a Slice Orchestrator
(SO) communicates with several sub-slice or domain-specific
orchestrators, which manages the sub-slice of their own do-
main. In terms of basic functionality, SO and other sub-slice

4https://helm.sh/



orchestrators can be considered equivalent to 3GPP Network
Slice Management Function (NSMF) and Network Sub Slice
Management Function (NSSMF), respectively. In this paper,
we will not focus on the placement of these orchestrators, but
we consider that these orchestrators are placed in their domain
or near to their domain close to their managed resources.

Fig. 1: Placement of the LeSO Framework in Global NS LCM

Each of these domains is responsible for managing different
types of network functions (VNFs or PNF) or resources.
For example, the edge domain for latency-sensitive network
functions or vertical applications, the core domain for core
network functions, the transport domain for physical or virtu-
alized transport resources, and the RAN domain for physical
or virtualized RAN resources.

Fig 1 proposes the placement of the LeSO framework in
the global NS LCM architecture. In the figure, we have only
shown edge and cloud sub-slice orchestrators, but for end-to-
end life cycle management, there are also transport and radio
sub-slice orchestrators.

B. Edge Sub-Slice

We consider an ESS to contain multiple MEC Applications
or CNF or both, not connected or connected to each other.
MEC Applications and CNFs consume the services of one
and others via their own service discovery mechanism if
needed. Fig 2 shows an example of an edge slice that contains,
MEC App1 which follows micro-service architecture divided
in MEC App1:1 and MEC App1:2. MEC App2 and CNF are
independent.

Fig. 2: Edge Sub Slice Skeleton

The slice of fig 2 can be described using our proposed Edge
Sub Slice Template (ESST) that contains multiple modified

AppDs. In the previous sections, we defined the limits of
AppD and why it can not be used to describe a micro-services
based container application. Fig3 defines a skeleton of ESST.

Fig. 3: Skeleton of Edge Sub-Slice Template

Multiple AppDs allow defining multiple MEC applications
or CNFs connected or not connected to each other. Below
are the major modifications proposed in the original AppD
to adapt it for the cloud native container world. Definition of
the AppD fields remains the same as described in the original
AppD,

• Array of swImageDescriptor instead of single cardinal-
ity and use it to define multiple container images and
application configuration.

• Included a parameter configuration in swImageDescrip-
tor, to configure application container specific configura-
tion.

• Included a parameter port in swImageDescriptor, to de-
fine networking ports exposed by the container. This pa-
rameter is used to provide the orientation of the exposed
ports. It can be either towards: (i) Mobile Network(MN)
if the application running inside the container needs to
be exposed to MN. This is for edge use cases where user
equipment will use the application deployed at the edge
via traffic redirection rather than going to the internet.
(ii) Container Network (CN) for internal communication
between AppDs of the same ESST, (iii) the Internet (IN),
for container application to expose its GUI towards the
internet.

• Array of virtualComputeDescriptor instead of single car-
dinality to define resource consumption of each container
of a pod.

MEC applications can connect to each other in cloud native
way by communicating with the other application using its CN
exposed port. The service attached to the exposed port can be
accessed using Pods Fully Qualified Domain Name (FQDN)
and the port number. Other important fields of ESST are; (i)
appDInstantiationOrder it is a list of appDId that describes
in which order the AppDs will be treated. This parameter is
important for connected AppDs, which have dependencies on
other AppDs present in the same ESST. (ii) regionId is a list
of edge sites where ESST will be created.

The LeSO framework only requires a ESST to handle
the life cycle management of MEC applications. It does not



require any other package or descriptor which are used by
other VNF or service orchestrators. ESST is designed to be
described by the owners of the MEC applications, who should
be unaware of the underlying platform or infrastructure. ESST
is agnostic to the type of platform or infrastructure MEC
Application will run.

C. LeSO Design

The edge clouds are designed to support latency-sensitive
applications, which do not consume high computational re-
sources. LeSO framework is specifically designed for edge
clouds, where the computation resources are scarce.

Fig. 4: Lightweight edge Slice Orchestration Framework

All the components expose a restful northbound Application
Programming Interface (API) for communication. The design
and deployment follow cloud-native principles. The current
version of the framework can deploy MEC Applications or
simple CNFs on top of container-based clouds, such as Open-
shift5 and Kubernetes. Below is the component description,

• Edge Sub-Slice Orchestrator (ESSO): Manages the life
cycle of ESST and communicates with MEP and SO.

• Container Infrastructure Service Management
(CISM) and Container Infrastructure Service (CIS):
Corresponds to container orchestration platform and CIS
to the infrastructure, respectively. Their functioning is
defined in the ETSI GR NFV-IFA 029 specification [11].

• Application/VNF Orchestrator: Manages the life cycle
of MEC applications or CNFs. It is agnostic to the type of
CISM, and it communicates to CISM via CISM plugin.

• Template and Descriptor Repository (TDR): Database
to store ESSTs and application descriptors.

• MEC Platform: Performs traffic redirection or DNS
redirection by communicating with the 5G core and DNS,
respectively.

• External DNS: All the COE/CISM have a DNS running
in their cluster. The cluster DNS relies on this external

5https://www.redhat.com/en/technologies/cloud-computing/openshift

DNS to resolve FQDN that is not present in the cluster
DNS. This DNS is managed by the MEC platform to
perform DNS redirection.

• CISM Plugin: Is an abstraction layer that takes the
information provided by the application orchestrator and
converts it into CISM-specific Yet Another Markup Lan-
guage (YAML) templates. That are needed by CISM to
create objects and workloads.

• Container Image Manager (CIM) manages container
images. It can pull container images from all the public
repositories make them from the source code present
in a git repository. Lastly, it provides the possibility to
download container images in tar format from a secure
link.

ESSO can handle multiple edge sites, where each site has
a specific regionId. ESST use the regionId field of ESST to
define its placement. ETSI MEC in NFV framework or ETSI
NFV-MANO framework proposes to have a dedicated VNF
manager (VNFM) for each VNF or MEC application. This
results in an extra entity that consumes more computational
resources. Instead, we proposed a App/VNF Orchestrator
which manages the life cycle of each MEC Application or
CNF.

The abstraction layer provides the flexibility to include
different CISMs. Northbound of all the CISM plugins is
uniform, and their southbound adapts to the CISM API.

D. Isolation between slices

LeSO framework is slice aware by creating fully isolated
edge slices. All the applications and CNFs of a slice run in an
isolated environment, known as a namespace (corresponding to
Kubernetes namespace). It provides basic isolation in terms of
CISM workloads and objects segregation. The computational
resource isolation is provided by fixing the amount of vCPU,
RAM, and Storage that an application or CNF can use.
Network isolation is provided using Openshift and Kubernetes
networking policies and their Container Network Interface
(CNI). Fig5 depicts isolation between two edge sub-slices.

Fig. 5: Isolation between slices

E. Working

Northbound API exposed by ESSO can be used by SO
or any other entity to perform LCM on ESST. A ESST
goes through three different life cycle phases, creation phase,
modification phase or deletion phase. These phases have four
different stages,



• On-boarding: Gathering and reserving resources. In this
stage, the application orchestrator gathers all the con-
tainer images via CIM, reserves the computational and
network resources required by each container image of
each AppD. Defines required CISM objects needed for
instantiation and stores them in the repository.

• Instantiation: Creates the CISM objects defined earlier
and instantiates the application described by each AppD
in order described by appDInstantiationOrder. Once the
ESST is instantiated and if required, it requests the MEP
for traffic redirection or DNS redirection.

• Termination: Gracefully deleting each application of the
AppD in order as described by appDInstantiationOrder.

• Off-boarding: Removing the stored container images and
un-reserve the computational and network resources for
each application.

Fig 6 shows the phases and stages through which ESST
goes during its LCM.

Fig. 6: LCM of ESST

ESSO via the Application Orchestrator provides the pos-
sibility to modify the computational resources required by an
application or CNF. But it results in terminating the application
and re-instantiating the new application. This behavior is be-
cause it is not possible to change the computational resources
allocated to a container at run time. We consider that the
application is able to preserve its state in a persistent volume
or store it in a database before a graceful termination. The
modification phase includes the termination and instantiation
stages.

V. PERFORMANCE EVALUATION

The 5G trial facility deployed in Eurecom has a production-
grade Openshift cluster with 7 worker nodes and 3 master
nodes to run container-based VNFs. In total there are 320
CPU Cores and 624 GiB of RAM present in the cluster.

To analyze the resource consumption of the LeSO frame-
work, we replicated a real trial scenario by creating four
different edge slices using four ESST. Each ESST contains

a different number of container images and AppDs. The con-
tainer images of ESST ES1, ES2 and ES3 were already present
in the cluster image repository. Hence their on-boarding time
was shorter. One of the images of ESST ES4 was present in
the public image repository, and the remaining were present
locally in the cluster. Table I describes the time taken to create
and delete each ESST. Table II describes the time spent on
each stage of the LCM of the slice, the runtime of each edge
slice was 30 mins.

ESST Creation
Time (s)

Deletion
Time (s)

AppD SwImage

ES1 20.42 10.32 1 6
ES2 15.26 10.32 1 1
ES3 30.52 15.29 2 6,1
ES4 50.43 20.4 3 1,1,1

TABLE I: Time spent (in seconds) in LCM of 4 slices

ESST On-
boarding
Time (s)

Instantiation
Time (s)

Termination
Time (s)

Off-
boarding
Time (s)

ES1 15.26 5.16 5.17 5.15
ES2 5.16 10.1 5.16 5.16
ES3 20.17 10.35 10.1 5.19
ES4 25.31 25.12 15.24 5.16

TABLE II: Time spent (in seconds) in each stage of ESST LCM

Fig. 7: Computational Resource Consumption for 4 Edge Slices

Fig 7 shows the computational resources consumed by the
LeSO framework in a time span of 1 hour when the trial
was conducted. CPU core consumption is in milli (m) CPU,
1000m CPU is one CPU core. Black triangles indicate the time
at which the slice creation request was received, and orange
triangle indicates the ending of the slice. Time span between
CX and EX indicates the life span of a slice. All Xε[1, 4]. The
peak in CPU and RAM consumption is due to the use of CIM
for pulling an image for ES4 for other slices the image was
locally present. CIM is using Podman6 for image management;
hence its resource consumption behavior is not controlled by

6https://podman.io/



this framework. From the tables and the figure below analysis
can be drawn,

• The composition of ESST affects the time spent in each
LCM stage.

• Slice creation is a computationally expensive task than
slice deletion

• Resource consumption before C1 and after 22:20 is the
same. Hence, the framework does not consume resources
until a new slice creation request or modification request
is received

To analyze the multi-tenancy of the proposed framework,
we created and deleted multiple slices at the same time.
This allowed us to understand how the framework handles
parallel requests. We started with creating 10 slices, and after
30 seconds of runtime, we deleted them. This pattern was
continued for handling 10, 20 up to 50 edge sub-slices. All
the slices used the same ESST A, and the container image was
already present in the cluster image repository. We performed
the same experiment 100 times for each data point, using
Monte Carlo simulation. These data points were collected in a
period of 4 days. Fig 8 only shows the creation time of these

Fig. 8: Parallel Slice Creation Time

slices. The figure proves that the framework handles parallel
requests and it immediately starts processing the request once
received. Slice creation is the most time-consuming process
where the CISM has to pull or build software images, schedule
the CNF, attach a network interface and assign an IP address.
The mean and median time needed to create a slice varies
between 25 and 28 seconds on our Openshift cluster. The
absolute value of creation time depends on the cluster design,
its hardware configuration, and ESST design. To create 50
slices, the framework consumed 226m CPU Core and 1.19
GiB memory.

To summarize, our performance analysis LeSO framework
requires 1 vCPU and 2 GiB of RAM for deployment and
management of Edge Sub-Slices. Table III compares the
resource requirement of LeSO, OSM and ONAP, referred from
[12], [13]. It should be noted that other frameworks require

much higher computational resources, and they do not provide
the capability to instantiate MEC applications. Hence, the low
resource consumption of LeSO framework makes it suitable
to be deployed at the edge cloud and handle LCM of MEC
applications.

Orchestrator vCPU Memory
(GiB)

OSM-11 2 6
ONAP (Honolulu) 112 224
LeSO 1 2

TABLE III: Resource Requirement Comparison

VI. CONCLUSION

In this paper, we introduced LeSO a cloud-native orchestra-
tor that handles LCM of edge slices. LeSO encloses a MEP
element that allows dynamic deployment of edge slices. LeSO
framework has a nominal resource consumption and requires
1 CPU and 2 GiB of RAM for installation. The multi-tenancy
feature allows performing LCM on multiple slices at the same
time. The ESST abstracts the platform and infrastructure-
related information from the MEC Application providers and
allows describing a cloud-native MEC Application which was
not possible using the original AppD. In the future releases
of LeSO, we will work on allowing the creation of partially
isolated and shared slices. The source code of LeSO will be
released soon as part of the OpenAirInterface (OAI) alliance.
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