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Abstract—Recently, Muralidhar et al. proposed a novel multi-
access system model where each user is connected to multiple
caches in a manner that follows the well-known combinatorial
topology of combination networks. For such multi-access topology,
the same authors proposed an achievable scheme, which stands out
for the unprecedented coding gains even with very modest cache
resources. In this paper, we identify the fundamental limits of
such multi-access setting with exceptional potential, providing an
information-theoretic converse which establishes, together with the
inner bound by Muralidhar et al., the exact optimal performance
under uncoded prefetching.

Index Terms—Coded caching, combinatorial topology, index
coding, information-theoretic converse, multi-access coded caching
(MACC).

I. INTRODUCTION

Coded caching was introduced in [1] as a coding-based com-
munication technique with the purpose of reducing significantly
the amount of data to be transferred from a centralized server
to its cache-aided receiving users. The key idea behind coded
caching involves an accurate joint design of the placement
phase and the delivery phase. During the placement phase,
which happens during off-peak hours, the caches of the users
are preemptively filled without knowing the future requests. The
caching is carefully performed so that, once the requests of the
users are revealed, the amount of bits to be transferred during
the delivery phase, which takes place when the network is
saturated, is minimized. In the standard single-stream broadcast
channel model with K receiving users, each of which is able
to store in its cache a fraction γ of the main library, coded
caching is able to provide a sizeable coding gain equal to
Kγ+1, where such coding gain represents simply the number
of users to which a coded message is useful at the same time.

Current research on coded caching spans several topics such
as the impact of multiple antennas on caching [2]–[4], the
interplay between caching and file popularity [5]–[7], and a
variety of other scenarios [8]–[10]. For a thorough review of
the existing coded caching works, we strongly encourage the
reader to refer to the longer version of this work [11].

A. Multi-Access Coded Caching

Differently from the model in [1] where each user has access
to its own single dedicated cache, it is conceivable that in
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several scenarios each cache serves more than one user, and
that each user can connect to more than one cache. For instance,
in dense cellular networks, the cache-aided access points (APs)
could have overlapping coverage areas, allowing in this way
each user to connect to more than one AP. Such scenario
motivated the work in [7], where the authors introduced a new
parameter λ to keep into consideration the number of caches
that each user can access. The corresponding model defined
by λ as well as by the number of users K, the number of
library files N , and the cache size of M files was referred
to as the multi-access coded caching (MACC) model. Such
model includes Λ caches and K = Λ users, where each of
them is connected to λ > 1 consecutive caches in a cyclic
wrap-around fashion.

Since the introduction of the aforementioned multi-access
model with cyclic wrap-around topology, various works focused
on the design of coding schemes that leverage the multi-access
nature of the problem. For instance, a caching-and-delivery
scheme was first proposed in the original work [7] with a
decentralized (stochastic) cache placement, where this scheme
provided improved local caching gains. Another achievable
scheme preserving both the full local caching gain and the
optimal coding gain of Λλγ +1 was instead presented in [12],
albeit for the rather unrealistically demanding scenario where
λ = (Λ − 1)/Λγ. Another notable work is then [13], where
the authors designed a novel scheme for any λ ≥ 1, which
was proved, for the similarly demanding regime of λ ≥ Λ/2
and Λγ ≤ 2, to be at a factor of at most 2 from the optimal
under the assumption of uncoded placement. Other relevant
works investigated the MACC problem and its connection to
topics such as privacy and secrecy [14], [15], structured index
coding problems [16] and PDA designs [17].

Recently, some interest arose towards new multi-access
models which deviate from the cyclic wrap-around topology
in [7]. For example, a new MACC paradigm was presented
in [18], which involved topologies that are inspired by cross
resolvable designs (CRDs), a special class of designs in
combinatorics. However, a substantial breakthrough came with
the work in [19], where the authors proposed a MACC model
enjoying the same amount of resources λ and Λγ, but where
now the users and the caches are connected following the well-
known combinatorial topology of combination networks [20].
This was a breakthrough because it allowed for the deployment
of a subsequent scheme, presented in [19] as a generalization
of the original Maddah-Ali and Niesen (MAN) scheme in [1],



that achieves the astounding coding gain
(
Λγ+λ

λ

)
far exceeding

Λγ+1 even for small values of λ and Λγ, which is the regime
that really matters.

B. Main Contributions

Our work explores the fundamental limits of this undoubtedly
powerful MACC model by Muralidhar et al., which based
on the findings in [19] has astounding performance. Such
fundamental limits had remained entirely unknown as no
information-theoretic converse has ever been developed. We
here establish the exact optimal performance with the intro-
duction of a novel information-theoretic lower bound on the
optimal worst-case communication load under the assumption
of uncoded placement. Further results are presented in [11],
such as a generalization of the achievable scheme in [19] as
well as novel information-theoretic converses for the topology-
agnostic multi-access setting, i.e., the setting where it is not
known a priori how the K users are connected to the Λ caches
in the system.

C. Paper Outline

The paper is organized as follows. The MACC model
and some preliminary definitions are presented in Section II.
Section III presents the information-theoretic converse, whereas
its general proof is described in Section IV. Section V concludes
the paper. The appendices hold supplementary material.

D. Notation

We denote by Z+ the set of positive integers. For n ∈ Z+,
we define [n] := {1, . . . , n}. If a, b ∈ Z+ such that a < b, then
[a : b] := {a, a+ 1, . . . , b− 1, b}. For sets we use calligraphic
symbols, whereas for vectors we use bold symbols. Given a
finite set A, we denote by |A| its cardinality. We denote by

(
n
k

)
the binomial coefficient and we let

(
n
k

)
= 0 whenever n < 0,

k < 0 or n < k.

II. SYSTEM MODEL

We consider the centralized coded caching scenario where
one single server has access to a library L = {Wn : n ∈ [N ]}
containing N files of B bits each. The server is connected to
K users through an error-free broadcast link. In the system
there are Λ caches, each of size MB bits. In agreement with
the system model in [19], each user is connected exactly and
uniquely to a subset of λ caches for some fixed value of
λ ∈ [Λ], which consequently implies that there are K =

(
Λ
λ

)
users for any given Λ and λ ∈ [Λ]. We denote1 by U ⊆ [Λ] the
user connected to the |U| = λ caches in the set U . We further
assume that the link between the server and the users is the
main bottleneck, whereas we assume that the channel between
each user and its assigned caches has infinite capacity. As is
common, we assume that N ≥ K. Such setting is completely
described by the tuple (Λ, λ,N,M) and we refer to it as the
MACC problem with combinatorial topology.

1For ease of notation, we will often omit braces and commas when indicating
sets. For instance, user {1, 2} in Fig. 1 is denoted as 12.
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Fig. 1. MACC problem with combinatorial topology and Λ = 4 caches, where
each user is connected exactly and uniquely to a subset of λ = 2 caches.

The communication procedure works as follows. During
the placement phase, which typically occurs well before the
delivery phase, the central server fills the caches without any
knowledge of the future requests from the users. The delivery
phase, which typically happens when the network is saturated
and interference-limited, commences when the file-requests
of all users are simultaneously revealed. During delivery, the
server prepares some coded messages which are sent over the
bottleneck shared link, so that each user can retrieve the missing
information from the received transmission. The users cancel
the interference terms that appear in the broadcast transmission,
and do so by means of the cached contents they have access
to, eventually decoding their own messages. As a consequence,
the worst-case communication load R is defined as the total
number of transmitted bits, normalized by the file-size B, that
can guarantee the correct delivery of any K-tuple of requested
files in the worst-case scenario. The optimal communication
load R⋆ is formally defined as

R⋆(M) := inf{R : (M,R) is achievable} (1)

where the tuple (M,R) is said to be achievable if there exists
a caching-and-delivery procedure for which, for any possible
demand, a load R can be guaranteed for a given memory value
M .

We use the notation WdU to denote the file requested by the
user identified by U for some U ⊆ [Λ] with |U| = λ, which
we remind the reader is simply the user connected exactly
and uniquely to the λ caches in the set U . For the sake of
simplicity, we denote by d = (dU : U ⊆ [Λ], |U| = λ) the
demand vector containing the indices of the files requested
by the users in the system, i.e., dU ∈ [N ] for each U ⊆ [Λ]
with |U| = λ. The following example can help familiarize the
reader with the setting.

Example 1 (Λ = 4, λ = 2, N,M ). Consider the MACC
problem with combinatorial topology and Λ = 4 caches in
Fig. 1. Since each set of λ = 2 caches is uniquely assigned to a
user, there are K =

(
Λ
λ

)
= 6 users in total. Recalling that each

user is identified by the set of 2 caches it is connected to and
that for simplicity we omit braces and commas when indicating
sets, we let 12 represent the user connected to cache 1 and
cache 2, we let 13 represent the user connected to cache 1
and cache 3, and so on. The demand vector is given by d =



(d12, d13, d14, d23, d24, d34), where d12 ∈ [N ] is the index of
the file requested by the user 12, d13 ∈ [N ] is the index of the
file requested by the user 13, and so on.

Our goal is to provide a converse bound on the optimal
worst-case load under the assumption of uncoded placement,
whose definition is given in the following.

Definition 1 (Uncoded Cache Placement). A cache placement
is uncoded if the bits of the files are simply copied within the
caches of the users.

Denoting by R⋆
u the optimal worst-case load under uncoded

placement, it trivially holds R⋆
u ≥ R⋆.

III. MAIN RESULT

We present the main contribution of the paper. The derivation
of the converse bound adopts the index coding technique first
proposed in [21]. Our main challenge will be to design the
converse in such a way that it tightly captures the fact that each
user, differently from the original setting in [1], is connected to
λ caches for some λ ∈ [Λ]. The result is stated in the following
theorem.

Theorem 1. Consider the multi-access coded caching problem
with combinatorial topology with parameters (Λ, λ,N,M).
Under the assumption of uncoded cache placement, the optimal
worst-case communication load R⋆

u is a piecewise linear curve
with corner points

(M,R⋆
u ) =

(
t
N

Λ
,

(
Λ

t+λ

)(
Λ
t

) ) , ∀t ∈ [0 : Λ]. (2)

Proof. The proof of achievability comes from the coding
scheme in [19], whereas the proof of the converse bound
is presented in Section IV.

The longer version in [11] of this work provides also
another interesting result that we will simply mention here.
The system model in [19] considers a single value of λ ∈ [Λ]
for a given Λ, although such setting can be extended into a
generalized combinatorial multi-access model which supports
the coexistence of groups of users connected to different
numbers of caches. This extension can be obtained if we
consider a simultaneous coexistence of each model in [19]
for each λ ∈ [Λ]. The quite surprising outcome in [11] is
summarized in the following remark.
Remark 1. For the MACC problem with generalized combina-
torial topology, there is no need to encode over users which are
connected to different numbers of caches, even though there
is abundance of coding opportunities. Instead, applying the
coding scheme in [19] in a TDMA-like manner is sufficient
to achieve the optimal communication load under uncoded
prefetching. An additional powerful insight that comes out of
this is that the basic Λ-cache MAN placement proves to be
extremely effective as it allows for the optimal performance
for any instance of the generalized combinatorial topology.

We now proceed by presenting the converse proof of
Theorem 1.

IV. PROOF OF THE CONVERSE BOUND

The converse relies on the well-known acyclic subgraph
index coding bound, which has been extensively used in various
other settings (see for example [2], [21], [22] to name a few)
in order to derive lower bounds on the optimal worst-case
load in caching under the assumption of uncoded prefetching.
To clarify the connection between this bound and our setting,
we start by providing a brief presentation of the index coding
problem and its connection to coded caching.

A. Definition of the Index Coding Problem

The index coding problem [23] consists of a central server
having access to N ′ independent messages, and of K ′ users
that are connected to the server via a shared error-free broadcast
channel. Each user k ∈ [K ′] has a set of desired messages
Mk ⊆ [N ′], which is called the desired message set, while also
having access to another subset of messages Ak ⊆ [N ′], which
is called the side information set. To avoid trivial scenarios, it is
commonly assumed that Mk ̸= ∅, Ak ̸= [N ′] and Mk∩Ak =
∅ for each k ∈ [K ′].

The index coding problem is usually described in terms of
its side information graph. Let Mi be the i-th message for
some i ∈ [N ′]. Then, such graph is a directed graph where
each vertex is a desired message and where there exists an
edge from a desired message Mi to a desired message Mj if
and only if message Mi is in the side information set of the
user requesting message Mj . The derivation of our converse
is based on the following bound from [24, Corollary 1].

Lemma 1 ([24, Corollary 1]). Consider an index coding
problem with N ′ messages Mi for i ∈ [N ′]. The minimum
number of transmitted bits ρ is lower bounded as

ρ ≥
∑
i∈J

|Mi| (3)

for any acyclic subgraph J of the side information graph.

B. Main Proof

The first step in our converse proof consists of dividing,
in the most generic manner, each file into a maximum of 2Λ

disjoint subfiles as

Wn = {Wn,T : T ⊆ [Λ]} , ∀n ∈ [N ] (4)

where we identify with Wn,T the subfile which is exclusively
stored by the caches in T . Noticing that the bits of the library
files are simply copied within the caches, such placement is
uncoded according to Definition 1.

1) Constructing the Index Coding Bound: Assuming that
each user requests a distinct2 file, we consider the index coding
problem with K ′ = K =

(
Λ
λ

)
users and N ′ =

(
Λ
λ

)
2Λ−λ

independent messages, where each such message represents a

2The set of worst-case demands may not include the set of demand vectors
d with all distinct entries. However, since our goal is to derive a converse
bound on the worst-case load, this is not a problem. Indeed, the choice of
treating distinct demands yields a valid converse bound, since such bound
does not need to be, a priori, the tightest bound. In our case, it proves to be
tight.



subfile requested by some user (who naturally does not have
access to it via a cache). Recalling that WdU denotes the file
requested by the user identified by U , the desired message set
and the side information set are respectively given, in their
most generic form, by

MU = {WdU ,T : T ⊆ ([Λ] \ U)} (5)
AU = {Wn,T : n ∈ [N ], T ⊆ [Λ], T ∩ U ≠ ∅} (6)

for each user U with U ⊆ [Λ] and |U| = λ. Here, the side
information graph consists of a directed graph where each
vertex is a subfile, and where there is an edge from the subfile
WdU1

,T1 to the subfile WdU2
,T2 if and only if WdU1

,T1 ∈ AU2

with Uj ⊆ [Λ], |Uj | = λ, Tj ⊆ ([Λ] \ Uj) for j ∈ {1, 2} and
U1 ̸= U2. Since our aim is to apply Lemma 1, we need to
consider acyclic sets of vertices J in the side information
graph. Toward this, we take advantage of the following lemma.

Lemma 2. Let d = (dU : U ⊆ [Λ], |U| = λ) be a demand
vector and let c = (c1, . . . , cΛ) be a permutation of the Λ
caches. The following set of vertices⋃

i∈[λ:Λ]

⋃
Ui⊆{c1,...,ci}:|Ui|=λ,

ci∈Ui

⋃
Ti⊆([Λ]\{c1,...,ci})

{
WdUi ,Ti

}
(7)

is acyclic.

Proof. The proof is provided in Appendix A. An illustrative
example is then described in Appendix B.

Consider a demand vector d and a permutation c of the set
[Λ]. Applying Lemma 2 yields the following lower bound

BR⋆
u ≥ R(d, c) (8)

where R(d, c) is defined as

R(d, c) :=

Λ∑
i=λ

∑
Ui⊆{c1,...,ci}:|Ui|=λ,

ci∈Ui

∑
Ti⊆{ci+1,...,cK}

∣∣WdUi ,Ti

∣∣ .
(9)

2) Constructing the Optimization Problem: Now our goal
is to create several bounds as the one in (8) considering any
vector d ∈ D and any vector c ∈ C, where we denote by D
and C the set of possible demand vectors with distinct entries
and the set of possible permutation vectors of the set [Λ],
respectively. Our aim is then to average all these bounds to
obtain in the end a useful lower bound on the optimal worst-
case load. Considering that |D| =

(
N
K

)
K! and |C| = Λ!, we

aim to simplify the expression given by(
N

K

)
K!Λ!BR⋆

u ≥
∑
d∈D

∑
c∈C

R(d, c). (10)

Toward simplifying (10), we proceed by counting how many
times each subfile Wn,T — for any given n ∈ [N ], T ⊆ [Λ]
and |T | = t′ for some t′ ∈ [0 : Λ] — appears in (10).

Let us focus on the subfile Wn,T for some n ∈ [N ], T ⊆ [Λ]
and |T | = t′ with t′ ∈ [0 : Λ]. Assume that the file Wn is
demanded by user U for some U ⊆ ([Λ]\T ) with |U| = λ and

denote by Dn,U the set of demands such that dU = n. Out of
the entire set D of all possible distinct demands, we find a total
of
(
N
K

)
K!/N distinct demands for which a file is requested by

the same user. Hence, it holds |Dn,U | =
(
N
K

)
K!/N . For each

d ∈ Dn,U and for each c ∈ C there is a corresponding bound
R(d, c). The subfile Wn,T appears only in the bounds induced
by permutation vectors c ∈ C such that the elements in the set
U appear in the vector c before3 the elements in the set T . If we
denote by CU,T the set of such permutation vectors, it can be
verified that |CU,T | = λ!t′!(Λ−λ−t′)!

(
Λ

t′+λ

)
. Hence, the subfile

Wn,T is counted a total of λ!t′!(Λ− λ− t′)!
(

Λ
t′+λ

)(
N
K

)
K!/N

times when considering the bounds R(d, c) with d ∈ Dn,U
and c ∈ CU,T . Since the same reasoning follows for each
U ⊆ ([Λ] \ T ) with |U| = λ, the subfile Wn,T is counted a
total of

at′ =

(
Λ− t′

λ

)
λ!t′!(Λ− λ− t′)!

(
Λ

t′ + λ

)(N
K

)
K!

N
(11)

times, which gives us the number of times this same subfile
appears in (10). The same reasoning follows for any n ∈ [N ]
and for any T ⊆ [Λ] with |T | = t′. Thus, the expression
in (10) can be rewritten as

R⋆
u ≥ 1(

N
K

)
K!Λ!

Λ∑
t′=0

Nat′xt′ (12)

=

Λ∑
t′=0

(
Λ

t′+λ

)(
Λ
t′

) xt′ (13)

=

Λ∑
t′=0

f(t′)xt′ (14)

where f(t′) and xt′ are defined as

f(t′) :=

(
Λ

t′+λ

)(
Λ
t′

) (15)

0 ≤ xt′ :=
∑

n∈[N ]

∑
T ⊆[Λ]:|T |=t′

|Wn,T |
NB

. (16)

At this point, we seek to lower bound the minimum worst-
case load R⋆

u by lower bounding the solution to the following
optimization problem

min
x

Λ∑
t′=0

f(t′)xt′ (17a)

subject to
Λ∑

t′=0

xt′ = 1 (17b)

Λ∑
t′=0

t′xt′ ≤
ΛM

N
(17c)

where (17b) and (17c) correspond to the file-size constraint
and the cumulative cache-size constraint, respectively.

3Indeed, the subfile Wn,T appears in the acyclic graph chosen as in
Lemma 2 for all those permutations c = (c1, . . . , cΛ) for which U = Ui and
T = Ti for some i ∈ [λ : Λ] such that Ui ⊆ {c1, . . . , ci} with |Ui| = λ
and ci ∈ U i, and such that Ti ⊆ {ci+1, . . . , cΛ}, i.e., this happens whenever
the elements in T are after the elements in U in the permutation vector c.



3) Lower Bounding the Solution to the Optimization Prob-
lem: Since the auxiliary variable xt′ can be considered as a
probability mass function, the optimization problem in (17)
can be seen as the minimization of E[f(t′)]. Moreover, the
following holds.

Lemma 3. The function f(t′) is convex and decreasing in t′.

Proof. The proof is relegated to the longer version of this
work [11], where the proof is provided for a generalization of
the function here denoted by f(t′).

Taking advantage of Lemma 3, we can write E[f(t′)] ≥
f(E[t′]) using Jensen’s inequality. Then, considering that f(t′)
is also decreasing with increasing t′ ∈ [0 : Λ], we can further
write f(E[t′]) ≥ f(ΛM/N) taking advantage of the fact that
E[t′] is upper bounded as in (17c). Consequently, E[f(t′)] ≥
f(ΛM/N), and thus for t := ΛM/N the optimal worst-case
load R⋆

u is lower bounded by RLB which is a piecewise linear
curve with corner points

(M,RLB) =

(
t
N

Λ
,

(
Λ

t+λ

)(
Λ
t

) ) , ∀t ∈ [0 : Λ]. (18)

This concludes the proof.

V. CONCLUSION

In this work, we derived the fundamental limits of a coded
caching scenario with exceptional potential. We proposed a
novel information-theoretic converse that manages to capture
the topological properties of the multi-access model in Sec-
tion II. The lower bound matches the achievable performance
of the coding scheme in [19], so allowing us to identify the
exact optimal performance of multi-access caching with combi-
natorial topology under uncoded prefetching. Interestingly, our
information-theoretic converse can be seen as a generalization
of the lower bound in [21], which similarly proved the exact
optimality of the MAN placement-and-delivery scheme.

As already mentioned, the longer version of this work
in [11] provides a variety of interesting extensions. Indeed,
the work in [11] not only provides a generalization of the
combinatorial topology that allows for the coexistence of users
connected to different numbers of caches, but also provides
very interesting results regarding the topology-agnostic multi-
access problem, offering novel lower bounds on the average
worst-case performance when it is not known a priori how the
K users are connected to the Λ caches in the system.

APPENDIX A
PROOF OF LEMMA 2

Consider the set of vertices⋃
i∈[λ:Λ]

⋃
Ui⊆{c1,...,ci}:|Ui|=λ,

ci∈Ui

⋃
Ti⊆([Λ]\{c1,...,ci})

{
WdUi ,Ti

}
(19)

in Lemma 2. We can show that such set is guaranteed to be
acyclic by following the same reasoning as in the proof of [21,
Lemma 1].

For a specific permutation of caches c = (c1, . . . , cΛ), we
will say that the subfile WdUi ,Ti belongs to the i-th level4, which
will mean that U i ⊆ {c1, . . . , ci} with |U i| = λ and ci ∈ U i,
and that Ti ⊆ ([Λ]\{c1, . . . , ci}) with i ∈ [λ : Λ]. As one may
see, no user in the i-th level has access to the subfiles in its
level, since indeed U i∩Ti = ∅ for each U i ⊆ {c1, . . . , ci} with
|U i| = λ and ci ∈ U i, and for each Ti ⊆ ([Λ] \ {c1, . . . , ci}).
Moreover, no user in the i-th level has access to the subfiles in
higher levels, since U i∩Tj = ∅ for each U i ⊆ {c1, . . . , ci} with
|U i| = λ and ci ∈ U i, and for each Tj ⊆ ([Λ] \ {c1, . . . , cj})
with j ∈ [i+ 1 : Λ]. Consequently, we can conclude that the
set in (19) is acyclic. This concludes the proof.

APPENDIX B
ILLUSTRATIVE EXAMPLE

To illustrate the main idea in Lemma 2, we provide in the
following a simple example where we explicitly construct the
acyclic set of vertices for two different permutations of caches.

Consider the setting where there are Λ = 4 caches and
each user is connected to λ = 2 caches, which implies
K = 6 users under the combinatorial topology. Assume the
arbitrary demand vector d = (d12, d13, d14, d23, d24, d34) and
consider the permutation of caches c = (1, 4, 3, 2). According
to Lemma 2, when i = 2, for the user identified by the set {1, 4}
we pick all the subfiles Wd14,T2 where T2 ⊆ {2, 3}, i.e., we pick
{Wd14,∅,Wd14,2,Wd14,3,Wd14,23}. When i = 3, for each user
U3 ∈ {{1, 3}, {3, 4}} we pick all the subfiles WdU3 ,T3

where
T3 ⊆ {2}, i.e., we pick {Wd13,∅,Wd13,2,Wd34,∅,Wd34,2, }.
When i = 4, for each user U4 ∈ {{1, 2}, {2, 4}, {2, 3}} we
pick all the subfiles WdU4 ,T4 where T4 = ∅, i.e., we pick
{Wd12,∅,Wd24,∅,Wd23,∅}. Hence, for the permutation vector
c = (1, 4, 3, 2) the acyclic set of vertices from Lemma 2 is
given by the set

{Wd14,∅,Wd14,2,Wd14,3,Wd14,23,Wd13,∅,Wd13,2,

Wd34,∅,Wd34,2,Wd12,∅,Wd24,∅,Wd23,∅}.
(20)

Consider now the cache permutation c = (2, 3, 1, 4). When
i = 2, for the user identified by the set {2, 3} we pick
all the subfiles Wd23,T2 where T2 ⊆ {1, 4}, i.e., we pick
{Wd23,∅,Wd23,1,Wd23,4,Wd23,14}. When i = 3, for each user
U3 ∈ {{1, 2}, {1, 3}} we pick all the subfiles WdU3 ,T3

where
T3 ⊆ {4}, i.e., we pick {Wd12,∅,Wd12,4,Wd13,∅,Wd13,4}.
When i = 4, for each user U4 ∈ {{2, 4}, {3, 4}, {1, 4}}, we
pick all the subfiles WdU4 ,T4 where T4 = ∅, i.e., we pick
{Wd24,∅,Wd34,∅,Wd14,∅}. Hence, for the permutation vector
c = (2, 3, 1, 4) the acyclic set of vertices from Lemma 2 is
given by the set

{Wd23,∅,Wd23,1,Wd23,4,Wd23,14,Wd12,∅,Wd12,4,

Wd13,∅,Wd13,4,Wd24,∅,Wd34,∅,Wd14,∅}.
(21)

4The term level carries the same meaning as in the proof of [21, Lemma
1], and its impact here is described mathematically in compliance with our
setting.
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