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Abstract—In typical coded caching scenarios, the content of a
central library is assumed to be of interest to all receiving users.
However, in a realistic scenario the users may have diverging
interests which may intersect to various degrees. What happens
for example if each file is of potential interest to, say, 40% of
the users and each user has potential interest in 40% of the
library? What if then each user caches selfishly only from content
of potential interest? In this work, we formulate the symmetric
selfish coded caching problem, where each user naturally makes
requests from a subset of the library, which defines its own file
demand set (FDS), and caches selfishly only contents from its own
FDS. For the scenario where the different FDSs symmetrically
overlap to some extent, we propose a novel information-theoretic
converse that reveals, for such general setting of symmetric FDS
structures, that selfish coded caching yields a load performance
which is strictly worse — in the non-trivial memory regime —
than that in standard coded caching.

Index Terms—Coded caching, file popularity, index coding,
information-theoretic converse, selfish caching.

I. INTRODUCTION

The explosion of network traffic in the recent years has
sparked much interest in new communication techniques with
the purpose of reducing the traffic load. In this context, caching
has always played a key role in bringing contents closer to their
destinations, thus reducing the volume of the communication
problem during peak hours. Coded caching [1] has been
proposed as a clever way to better exploit caching capabilities
of receiving users, where such coded technique represents, in
comparison to traditional prefetching, a key breakthrough in the
way end-user caches are employed to change both the volume
of the communication problem and the structure of the problem
itself. Current research on coded caching encompasses many
topics such as the role of multiple antennas in caching [2]–[4],
the interplay between caching and file popularity [5]–[7], and
a variety of other scenarios [8]–[10]. For a thorough review of
the existing coded caching works, we strongly encourage the
reader to refer to the longer version of this work [11].

A. Heterogeneous User Profiles and Selfish Coded Caching

If on one hand a key ingredient in standard prefetching
systems has commonly been the exploitation of the fact that
some contents are more popular than others, and thus are
generally to be allocated more cache space, on the other we
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are just beginning to explore the interplay between coded
caching, heterogeneous preferences and selfish caching, where
by selfish caching we refer to caching policies where each user
caches only contents from its own set of individual preferences.

Recent works have sought to explore this interplay. For
example, in the context of coded caching with users having
heterogeneous content preferences, the work in [12] analyzed
the peak load of three different coded caching schemes
that account for the user preferences, revealing occasional
performance gains that are similarly dependent on the structure
of these preferences. Related analysis appears in [13], now for
the average load of the same schemes in [12]. On the other
hand, the work in [14] focused on finding instances where
unselfish coded caching outperforms selfish designs. This work
nicely considered the performance of selfish coded caching in
the context of heterogeneous file demand sets (FDSs), cleverly
employing bounds to show that, for the case of K = 2 users
and N = 3 files, unselfish designs strictly outperform selfish
designs in terms of communication load, albeit only by a factor
of up to 14%. In addition, the notable work in [15] established,
under the assumption of selfish and uncoded prefetching, the
optimal average load for the case of K = 2 users and a variety
of overlaps between the two users’ profiles, also providing
explicit prefetching schemes of a selfish nature. In a similar
vein, the recent work in [16] considered the scenario where
users are interested in a limited set of contents depending
on their location. To the best of our knowledge, the above
constitutes the majority of works on selfish coded caching.

B. Main Contributions

First, we propose a novel symmetric FDS structure which
aims to regulate the selfishness effect and to encapsulate the
aspect of overlapping of interests by calibrating the degree
of separation between the interests of the users. Secondly,
we develop an information-theoretic converse on the optimal
worst-case load under the assumption of uncoded and selfish
placement. The interesting outcome of such bound is that
selfish coded caching can be rather detrimental. In [11] we
also provide instances where this bound is found to be tight.

C. Paper Outline

The system model is presented in Section II. Section III
presents the information-theoretic converse, whose main proof
in Section III-A is followed by the clarifying example in Sec-
tion III-B. Section IV concludes the paper.



D. Notation

We denote by Z+ the set of positive integers. For n ∈ Z+,
we define [n] := {1, 2, . . . , n}. If a, b ∈ Z+ such that a <
b, then [a : b] := {a, a + 1, . . . , b − 1, b}. For sets we use
calligraphic symbols, whereas for vectors we use bold symbols.
Given a finite set A, we denote by |A| its cardinality. We
denote by

(
n
k

)
the binomial coefficient and we let

(
n
k

)
= 0

whenever n < 0, k < 0 or n < k. We use m mod n to denote
the modulo operation on m with integer divisor n, letting
m mod n = n when n divides m. For n ∈ Z+, we denote
by Sn the group of all permutations of [n] and by Hn the
group of circular1 permutations of [n]. To simplify, we denote
by πn := (π(1), . . . , π(n)) the vector of elements from [n]
permuted according to π ∈ Sn and we let π−1 denote the
inverse function of π.

II. SYSTEM MODEL

We consider the centralized caching scenario in [1] where
one central server has access to a library L containing N files
of B bits each. This server is connected to K users through a
shared error-free broadcast channel, and each user is equipped
with a cache of size M files or, equivalently, MB bits.

The system works in two phases, i.e., the placement phase
and the delivery phase. During the placement phase, the end-
user caches are filled by the server according to a caching policy
without any knowledge of future requests. During the delivery
phase, after the demands of the users are simultaneously
revealed, the server sends coded messages over the shared
link to deliver the missing information to each user. Assuming
that in the delivery phase each user demands simultaneously
one file, the worst-case communication load R is defined as
the total number of transmitted bits, normalized by the file-size
B, that can guarantee delivery of all requested files in the
worst-case scenario. The optimal worst-case communication
load R⋆ is then formally defined as

R⋆(M) := inf{R : (M,R) is achievable} (1)

where the tuple (M,R) is said to be achievable if there exists a
caching-and-delivery scheme which guarantees, for any possible
demand, a load R for a given memory value M .

To capture the interplay between coded caching, hetero-
geneous interests and selfish caching, we propose an FDS
structure that allows to calibrate the degree of separation
between the interests of the different users.

Definition 1 (The Symmetric (K,α, F ) FDS Structure). Let
α ∈ [K] and F ∈ Z+. The symmetric (K,α, F ) FDS structure
assumes an N -file library L = {WS : S ⊆ [K], |S| = α} to
be a collection of disjoint file classes WS = {Wf,S : f ∈ [F ]},
where each class WS consists of F different files and each
of such files is of interest to the α users in the set S. As a
consequence, the FDS of each user k ∈ [K], which describes
the files this user is potentially interested in, is defined as

Fk = {WS : S ⊆ [K], |S| = α, k ∈ S} . (2)
1This means that no vector (π(1), . . . , π(n)) with π ∈ Hn can be obtained

as a rotation of (σ(1), . . . , σ(n)) for some σ ∈ Hn with σ ̸= π.

We can see from the above that the library is partitioned
into C =

(
K
α

)
disjoint classes of files, each composed of F

files, for a total of N = FC files. Each user k ∈ [K] is then
interested in its own FDS, which is made of F

(
K−1
α−1

)
files for

each k ∈ [K]. Each file class is identified by an α-tuple S,
where S simply tells which α users are interested in the file
class WS . We focus on the regime N ≥ K, which is equivalent
to F ≥ ⌈K/C⌉ for any fixed K and α. The following example
can help familiarize the reader with the notation.

Example 1 (The Symmetric (4, 3, 2) FDS Structure). Consider
the symmetric (K,α, F ) = (4, 3, 2) FDS structure. There are
C =

(
K
α

)
= 4 classes2 W123,W124,W134,W234 and N = 8

files: W1,123 and W2,123 from class W123, then W1,124 and
W2,124 from class W124, and so on. The K FDSs take the
form

F1 = {W123,W124,W134} F3 = {W123,W134,W234} (3)
F2 = {W123,W124,W234} F4 = {W124,W134,W234} (4)

where each FDS consists of 6 files in total. For Fk denoting
the FDS of user k ∈ [4], user 1 is interested in files in F1 =
{Wf,S : S ⊆ [4], |S| = 3, 1 ∈ S, f ∈ [2]}, user 2 is interested
in files in F2 = {Wf,S : S ⊆ [4], |S| = 3, 2 ∈ S, f ∈ [2]},
and so on.

Deviating from standard notation practices, we will use the
double-index notation Wfk,Dk

to denote the file requested by
user k. Hence, any demand will be described by the tuple (d,f)
with d = (D1, . . . ,DK) and f = (f1, . . . , fK). Trivially, it
holds that Wfk,Dk

∈ Fk for each k ∈ [K].
Our goal is to provide a converse bound on the optimal

worst-case load under the assumption of uncoded and selfish
placement, whose definition is given in the following.

Definition 2 (Uncoded and Selfish Cache Placement). A cache
placement is uncoded if the bits of the files are simply copied
within the caches of the users and is selfish when it guarantees
for each k ∈ [K] that a subfile of Wf,S can be cached at user
k only if Wf,S ∈ Fk, i.e., only if the file Wf,S is potentially
of interest to user k.

We denote by R⋆
u,s the optimal worst-case load under

uncoded and selfish placement, and by RMAN the load of
the Maddah-Ali and Niesen (MAN) scheme in [1].

III. MAIN RESULTS

The converse bound employs the index coding techniques
of [17] that proved the optimality of the MAN scheme under
uncoded prefetching. Our main challenge will be to adapt the
approach in [17] to reflect the system model in Section II. The
result is stated in the following theorem, whereas the proof is
presented in Section III-A.

Theorem 1. Under the assumption of uncoded and selfish
cache placement, and given the symmetric (K,α, F ) FDS
structure, the optimal worst-case communication load R⋆

u,s is

2For simplicity, we will omit braces and commas when indicating sets, such
that for example W{1,2,3} may be written as W123.



lower bounded by RLB which is a piecewise linear curve with
corner points

(M,RLB) =

(
t
N

K
,

(
α

t+1

)
+ (K − α)

(
α−1
t

)(
α
t

) )
, ∀t ∈ [0 : α].

(5)

The converse bound presented here shows that adding the
selfish cache placement constraint implies a higher optimal
communication load compared to the unselfish scenario. This
is nicely reflected in the following3 corollary.

Corollary 1.1. Given the symmetric (K,α, F ) FDS structure
and α ∈ [2 : K − 1], the converse reveals that

R⋆
u,s(t)

RMAN(t)
≥ 1, ∀t ∈ [0 : α− 1] (6)

R⋆
u,s(t)

RMAN(t)
> 1, ∀t ∈ [α− 2]. (7)

For the (K,α, F ) FDS structure and in the non-trivial range
t ∈ [0 : α−1], selfish coded caching is not better than unselfish
coded caching, while optimal unselfish coded caching, in the
non-extremal points of t and under uncoded placement, strictly
outperforms any implementation of selfish coded caching.

Proof. Due to lack of space, the proof is relegated to the longer
version of this work [11].

Notice that Corollary 1.1 holds under the considered
(K,α, F ) FDS structure. Hence, we cannot state that selfish
caching is detrimental for any conceivable FDS structure and
for any memory point. However, in light of the results in
Theorem 1 and Corollary 1.1, our claim is that selfish caching
can be rather detrimental.

A. Main Proof

The derivation of the converse makes extensive use of the
connection between caching and index coding identified in [1]
and successfully exploited in [17]. Briefly, we recall that an
index coding problem [18] consists of a server wishing to
deliver N ′ independent messages to K ′ users via a basic
bottleneck link. Each user k ∈ [K ′] has its own desired message
set Mk ⊆ [N ′] and has knowledge of its own side information
set Ak ⊆ [N ′]. The index coding problem can be described
by the side information graph, a directed graph where each
vertex is a message Mi for i ∈ [N ′] and where there is an
edge from Mi to Mj if Mi is in the side information set of
the user requesting Mj . The derivation of our converse will
make use of the following result from [19, Corollary 1].

Lemma 1 ([19, Corollary 1]). In an index coding problem
with N ′ messages Mi for i ∈ [N ′], the minimum number of
transmitted bits ρ is lower bounded as

ρ ≥
∑
i∈J

|Mi| (8)

3Notice that we do not consider α ∈ {1,K} in the corollary. Indeed, when
α = 1 the comparison is trivial, whereas for α = K the converse expression
naturally matches that of unselfish coded caching.

for any acyclic subgraph J of the side information graph.

We provide the proof for the non-trivial range4 α ∈ [2 :
K−1] and for the range t ∈ [0 : α]. Indeed, for t = α we have
M = αN/K = F

(
K−1
α−1

)
, so the point (M,R) = (αN/K, 0)

is trivially achievable as a consequence of each user being able
to store the entirety of its FDS.

Since each file is of interest to α users, the first step toward
the converse consists of splitting each file in a generic manner
into a maximum of 2α disjoint subfiles as

Wf,S = {Wf,S,T : T ⊆ S} (9)

for each S ⊆ [K] with |S| = α and for each f ∈ [F ], where
Wf,S,T is the subfile of Wf,S cached exactly and only by
users in T . Such generic splitting satisfies the uncoded and
selfish placement constraint as defined in Definition 2.

1) Constructing the Index Coding Bound: Assuming that
each user requests a distinct file, we can now identify the
index coding problem with K ′ = K users and N ′ = K2α−1

messages, such that for any tuple (d,f) the desired message
set and the side information set are respectively given by
Mk = {Wfk,Dk,T : T ⊆ Dk, k /∈ T } and Ak = {Wf,S,T :
f ∈ [F ],S ⊆ [K], |S| = α, T ⊆ S, k ∈ T } for each user
k ∈ [K]. To apply Lemma 1, we are interested in acyclic sets
of vertices J in the side information graph of the problem. In
the spirit of [17], we know that the set⋃

k∈[K]

⋃
T ⊆(([K]\{u1,...,uk})∩Duk

)

{
Wfuk

,Duk
,T

}
(10)

does not contain any directed cycle for any demand (d,f) and
any vector u, where u = πK for some π ∈ SK . Consequently,
applying Lemma 1 yields the following lower bound

BR⋆
u,s ≥ R(d,f ,u) (11)

where R(d,f ,u) is defined as

R(d,f ,u) :=
∑

k∈[K]

∑
T ⊆(([K]\{u1,...,uk})∩Duk

)

∣∣∣Wfuk
,Duk

,T

∣∣∣ .
(12)

2) Constructing the Optimization Problem: Our goal is to
create several bounds as the one in (11) and eventually average
all of them to obtain a useful lower bound on the optimal
worst-case load. We aim to create a bound for a set C of
properly selected demands and for a set U(d,f) of properly
selected permutations for each demand (d,f) ∈ C. Hence, we
aim to simplify the expression given by∑

(d,f)∈C

∑
u∈U(d,f)

BR⋆
u,s ≥

∑
(d,f)∈C

∑
u∈U(d,f)

R(d,f ,u). (13)

Remark 1. The careful selection of the demand set C and
permutation set U(d,f) for each (d,f) ∈ C is a pivotal

4When α = 1 the proof is trivial, since for such case we have only two
integer points corresponding to t ∈ {0, 1}: when t = 0 the load is equal to
K, and when t = 1 each user has enough memory to cache entirely its own
FDS and the load is equal to 0. The case α = K corresponds to the standard
MAN scenario already considered in [17].



difference with respect to the procedure in [17]. Indeed, if one
develops a converse bound following the exact same procedure
in [17], then the resulting bound is looser than the one presented
in this paper. Finding the good set of demands and permutations
becomes the key to obtaining a tighter bound while keeping
the problem analytically tractable.

For a permutation π ∈ HK , we consider the demands (d,f)
where Dk = {k, π((π−1(k) + 1) mod K), . . . , π((π−1(k) +
α − 1) mod K)} and fk ∈ [F ] for each k ∈ [K]. There is a
total of FK such demands. Considering that the order of HK is
(K − 1)! and that we take FK demands for each π ∈ HK , we
consider (K−1)!FK distinct5 demands in total, denoting by C
the set of such demands. Since the vector d depends on some
circular permutation π ∈ HK , we will identify from now on
each demand with (dπ,f) ∈ C to highlight such dependency.
For a demand (dπ,f) ∈ C, we let U(dπ,f) be the set containing
the K circular shifts of πK .

Toward simplifying the expression in (13), we count how
many times each subfile Wf,S,T — for any f ∈ [F ], S ⊆ [K]
with |S| = α, T ⊆ S and |T | = t′ with t′ ∈ [0 : α] — appears
in (13). To this end, we need the following lemma.

Lemma 2. Let π ∈ SK be a permutation of the set [K].
Consider k1, k2 ∈ [K] such that k1 ̸= k2. Consider

ℓ = (π−1(k2)− π−1(k1)) mod K. (14)

Then, out of the K circular shifts of πK , there is a total of
(K − ℓ) of them such that k1 appears before k2.

Proof. Due to lack of space, the proof is relegated to the longer
version of this work [11].

The counting argument proceeds as follows. First, we focus
on some subfile Wf,S,T and we assume that the file Wf,S
is requested by some user k ∈ (S \ T ). Next, we count the
number of demands (dπ,f) ∈ C for which k and right-most
element included from T are at distance ℓ in πK . Then, we
evaluate how many times the subfile appears in the index
coding bounds associated to such demands. After that, noticing
that ℓ ∈ [t′ : α− 1], we repeat the procedure for each value of
ℓ. Finally, since the same procedure can be repeated for each
k ∈ (S \ T ), we multiply the end result by |S \ T | = (α− t′).

Let us focus on the subfile Wf,S,T for some f ∈ [F ],
S ⊆ [K] with |S| = α, T ⊆ S and |T | = t′ for some
t′ ∈ [0 : α]. For some user k ∈ (S \T ) and for ℓ ∈ [t′ : α−1],
there is a total of aℓ := t′!(α− 1− t′)!(K − α)!

(
ℓ−1
t′−1

)
FK−1

demands (dπ,f) ∈ C such that the file Wf,S is requested by
such user k ∈ (S \ T ) and there are exactly ℓ elements in πK

between k and the right-most element included from T . Let
Ck,ℓ be the set of such demands. Considering how the acyclic
set of vertices in (10) is built, the subfile Wf,S,T appears in the
index coding bound induced by each (dπ,f) ∈ Ck,ℓ whenever
all the elements in T appear after k in u ∈ U(dπ,f). Since for
each demand (dπ,f) ∈ Ck,ℓ there are exactly ℓ elements in

5Letting π ∈ HK be a circular permutation ensures that no d vector is
repeated for any specific f vector.

πK separating k and the right-most element from T , we know
from Lemma 2 that there are (K − ℓ) vectors u ∈ U(dπ,f)

where all the elements in T appear after k. Observing that
ℓ ∈ [t′ : α− 1] and that such reasoning applies whenever the
file Wf,S is requested by any of the (α− t′) users in S \ T ,
the specific subfile Wf,S,T appears (α− t′)

∑α−1
ℓ=t′ aℓ(K − ℓ)

times in (13). Since the same reasoning applies to any other
subfile, the expression in (13) can be rewritten as

R⋆
u,s ≥

1

BK!FK

∑
(dπ,f)∈C

∑
u∈U(dπ,f)

R(dπ,f ,u) (15)

=

α∑
t′=0

f(t′)xt′ (16)

where f(t′) and xt′ are defined as

f(t′) := N
(α− t′)

FKK!

α−1∑
ℓ=t′

aℓ(K − ℓ) (17)

0 ≤ xt′ :=
∑

S⊆[K]:|S|=α

∑
T ⊆S:|T |=t′

∑
f∈[F ]

|Wf,S,T |
NB

. (18)

At this point, we seek to lower bound the minimum worst-
case load R⋆

u,s by lower bounding the solution to the following
optimization problem

min
x

α∑
t′=0

f(t′)xt′ (19a)

subject to
α∑

t′=0

xt′ = 1 (19b)

α∑
t′=0

t′xt′ ≤
KM

N
(19c)

where (19b) and (19c) correspond to the file-size constraint
and the cumulative cache-size constraint, respectively.

3) Bounding the Solution to the Optimization Problem: The
function f(t′) can be simplified as

f(t′) =

(
α

t′+1

)
+ (K − α)

(
α−1
t′

)(
α
t′

) (20)

by means of the hockey-stick identity and after some algebraic
manipulations. We encourage the reader to refer to [11] for
the technical passages. Then, xt′ can be considered as a
probability mass function and so the optimization problem
in (19) can be seen as the minimization of E[f(t′)]. Since
we know from [11, Lemma 3] that f(t′) is convex and
strictly decreasing for increasing t′, the sequence of inequal-
ities E[f(t′)] ≥ f(E[t′]) ≥ f(KM/N) holds by Jensen’s
inequality and the memory-size constraint in (19c). Finally, for
t := KM/N the converse bound is a piecewise linear curve
with the corner points in (5), concluding the proof.

B. A Detailed Example for the Converse Bound

Consider the symmetric (4, 3, 1) FDS structure which in-
volves a file library L = {W1,S : S ⊆ [4], |S| = 3} consisting
of C =

(
K
α

)
=
(
4
3

)
= 4 classes of files. Since there is only



F = 1 file per class, there is a total of N = FC = 4 files,
so in this example we make no distinction between files and
classes of files. For simplicity, we will here refer to file W1,S
directly as WS , which means that each file is entirely described
by a 3-tuple S ⊆ [4], and each demand instance is entirely
defined by the d = (D1, . . . ,D4) vector only. The FDS of each
user k ∈ [4] is given by Fk = {WS : S ⊆ [4], |S| = 3, k ∈ S}
and it consists of F

(
K−1
α−1

)
= 3 files. This example considers

t ∈ [0 : 3], simply because having M = tN/K = 3 implies
that the point (M,R) = (3, 0) is trivially achievable being
each user able to preemptively cache the entirety of its FDS.

Assuming the most general uncoded and selfish cache
placement, each file WS is split into a total of 2α = 8 disjoint
subfiles as

WS = {WS,T : T ⊆ S}, ∀S ⊆ [4] : |S| = 3 (21)

where again WS,T is the subfile of WS cached by users in T .
1) Constructing the Index Coding Bound: For any given

demand d = (D1, . . . ,D4) where the k-th user asks for a
distinct file WDk

for each k ∈ [4], we consider the index coding
problem with K ′ = K = 4 users and N ′ = K2α−1 = 16
messages, where each user k ∈ [4] has a desired message set
Mk = {WDk,T : T ⊆ Dk, k /∈ T } and a side information set
Ak = {WS,T : S ⊆ [4], |S| = 3, T ⊆ S, k ∈ T }.

If we identify again in the side information graph of the
problem the acyclic set of vertices as in (10), applying Lemma 1
yields the following lower bound

BR⋆
u,s ≥ R(d,u) (22)

where now we define

R(d,u) :=
∑
k∈[4]

∑
T ⊆(([4]\{u1,...,uk})∩Duk

)

∣∣∣WDuk
,T

∣∣∣ . (23)

Recall that (22) holds for any demand d and any u = π4 for
some π ∈ S4.

2) Constructing the Optimization Problem and Bounding its
Solution: As described in Section III-A, we let C be the set of
distinct demands where we have a dπ vector for each circular
permutation π ∈ H4. The number of such permutations is
(K − 1)! = 6. For simplicity, we denote by πi the i-th circular
permutation for i ∈ [6], where such circular permutations are
given by

π4
1 = (1, 2, 3, 4) π4

4 = (1, 3, 4, 2) (24)

π4
2 = (1, 2, 4, 3) π4

5 = (1, 4, 2, 3) (25)

π4
3 = (1, 3, 2, 4) π4

6 = (1, 4, 3, 2). (26)

None of the above permutations can be obtained as a rotation
of any of the others. Hence, this ensures to have in C the
following distinct demand vectors

dπ1
= (123, 234, 134, 124) dπ4

= (134, 123, 234, 124) (27)
dπ2

= (124, 234, 123, 134) dπ5
= (124, 123, 134, 234) (28)

dπ3
= (123, 124, 234, 134) dπ6

= (134, 124, 123, 234) (29)

with Udπi
containing the 4 circular shifts of π4

i . For instance,
it is Udπ1

= {(1, 2, 3, 4), (2, 3, 4, 1), (3, 4, 1, 2), (4, 1, 2, 3)}.

Now, we create a bound as in (22) for each dπi
with i ∈ [6]

and for each u ∈ Udπi
for a given dπi , we sum all such bounds

and we obtain the expression given by∑
i∈[6]

∑
u∈Udπi

BR⋆
u,s ≥

∑
i∈[6]

∑
u∈Udπi

R(dπi
,u). (30)

We simplify (30) by counting how many times each subfile
WS,T — for any S ⊆ [4] with |S| = 3, T ⊆ S and |T | = t′

with t′ ∈ [0 : 3] — appears in (30).
For example, let us focus on the subfile W123,2. First of all,

we notice that such subfile may appear to the RHS of (22)
whenever W123 is requested by any user k ∈ (S \T ) = {1, 3}.
Assume that W123 is requested by user 1, which means we
consider the bounds with demands dπ1 and dπ3 . Denoting by ℓ
the distance6 between user 1 and user 2 in π4

i for i ∈ {1, 3}, we
notice that ℓ ∈ {1, 2}. We see that there is only π4

1 for ℓ = 1, so
W123,2 appears (K − ℓ) = 3 times in the bounds with demand
dπ1

and permutations in Udπ1
. Similarly, there is only π4

3 for
ℓ = 2, so W123,2 appears (K−ℓ) = 2 times in the bounds with
demand dπ3 and permutations in Udπ3

. Thus, summing over
the possible values of ℓ, the subfile W123,2 appears 3 + 2 = 5
times in the bounds with demands dπ1

and dπ3
, and their

relative permutations of users. The same rationale follows for
the bounds built with dπ2

, dπ6
and their relative permutations,

i.e., the bounds where file W123 is requested by user 3. Hence,
the subfile W123,2 appears in (30) a total of 2× (3 + 2) = 10
times. The same holds for any other subfile cached at only one
user and a similar counting argument can be made for arbitrary
|T | = t′ with t′ ∈ [0 : 3], as described in Section III-A. Thus,
we can formulate an optimization problem as in (19), bounding
its solution by means of Jensen’s inequality and convexity of
f(t′). The resulting bound is a piecewise linear curve with
corner points (M,RLB) = (t, (3− t)/(1 + t) + 1− t/3) for
each t ∈ [0 : 3].

IV. CONCLUSION

In this work, we investigated the effects that selfish caching
can have on the optimal worst-case communication load in
the coded caching framework. We proposed for a general FDS
structure, which seeks to capture the degree of intersection
between the interests of the different users, a novel information-
theoretic converse on the minimum worst-case communication
load under uncoded and selfish prefetching. Such bound
definitively resolves the question of whether selfish caching
is generally beneficial or not. Indeed, since for the proposed
symmetric FDS structure Corollary 1.1 reveals that any non-
zero load brought about by symmetrically selfish caching is
always (with the exception of the extreme points of t) strictly
worse than the optimal load guaranteed in the unselfish scenario,
we can claim that selfish coded caching can cause serious
unbounded7 performance deterioration in caching systems.

6We remind that such distance represents the number of elements which
separate index 1 and index 2, including the latter.

7This is proved in the longer version of this work [11].
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