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Abstract—The acquisition of channel state information (CSI)
in Frequency Division Duplex (FDD) massive MIMO has been
a formidable challenge. In this paper, we address this problem
with a novel CSI feedback framework enabled by the partial
reciprocity of uplink and downlink channels in the wideband
regime. We first derive the closed-form expression of the rank
of the wideband massive MIMO channel covariance matrix
for a given angle-delay distribution. A low-rankness property
is identified, which generalizes the well-known result of the
narrow-band uniform linear array setting. Then we propose a
partial channel reciprocity (PCR) codebook, inspired by the low-
rankness behavior and the fact that the uplink and downlink
channels have similar angle-delay distributions. Compared to
the latest codebook in 5G, the proposed PCR codebook scheme
achieves higher performance, lower complexity at the user side,
and requires less feedback. We derive the feedback overhead
necessary to achieve asymptotically error-free CSI feedback. Two
low-complexity alternatives are also proposed to further reduce
the complexity at the base station side. Simulations with the
practical 3GPP channel model show the significant gains over
the latest 5G codebook, which prove that our proposed methods
are practical solutions for 5G and beyond.

Index Terms—Massive MIMO, FDD, reciprocity, covariance
matrix, 5G

I. INTRODUCTION

The large-scale commercialization of 5G cellular sys-
tems gradually brings the concept of massive multiple-input
multiple-output (MIMO) [1] to reality. With a large num-
ber of antennas at the base station, massive MIMO leads
to much higher spectral and energy efficiencies compared
with traditional MIMO. The stronger pair-wise orthogonality
between the channel vectors of different User Equipments
(UEs) allows for higher interference rejection capability for the
base stations. In other words, the narrow beam of the massive
antenna array reduces the leakage of the transmitted signal
towards unwanted UEs, which is one of the main features
of massive MIMO. Nevertheless, the performance of massive
MIMO is primarily determined by the accuracy of the CSI.
In practical cellular systems, there are mainly three reasons of
inaccurate CSI, which are pilot contamination [2], the mobility
problem [3], and the CSI feedback with limited overhead in
FDD [1].

The uplink (UL) and downlink (DL) in FDD occupy
different frequency bands, which are separated by around
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100 MHz in current 5G setups - a gap much larger than
the channel coherence bandwidth. Therefore, unlike in Time
Division Duplex (TDD) mode, the UL and DL channels in
FDD are typically non-reciprocal. As a result, the DL CSI is
mainly obtained by closed-loop feedback methods: The base
station (BS) first transmits reference signals, e.g., Channel
State Information Reference Signal (CSI-RS) as in 5G, then
the UEs estimate their individual channels, and finally the
UEs send back the quantized channel information to the base
station. This traditional CSI feedback scheme suffers from
two problems, 1) the time-frequency resource spent on the
reference signals increases quickly with the number of base
station antennas, leaving less resource for data transmission;
and 2) the CSI feedback is always corrupted by quantization
errors.

In the literature, there have been many proposals to enhance
the performance of FDD massive MIMO. The works in [4]
and [5] indicated that the spatial channel covariance matrix
of the UE channels exhibits a certain low-rankness property,
where the rank is governed by the angular spread of the
multipath. Such a property helps to reject interference from
non-orthogonal training signals of other UEs which have non-
overlapping angular distribution with the desired UE, thus
reducing the training overhead. In some other related works,
an idea of covariance shaping was proposed and studied [6] [7]
[8] [9], where the effective channels with low-dimensionality
were manually created and exploited through precoding. Some
papers proposed to adopt Deep Learning for CSI compression
and reconstruction [10]–[12]. However these learning-based
method generally require training with large datasets.

The possibility of exploiting the reciprocity in angular
domain has been studied in [13]–[16]. In particular, [13]
proposed a scalable CSI feedback method which exploited the
angle and delay reciprocity of the FDD channel. A Fast Fourier
Transform (FFT)-based pilots were used and the UE computed
its low-dimensional feedback based on the DL channel statis-
tics measured by itself or instructed by its serving base station.
The authors found that only a scalar per each DL channel path
was needed for the base station to reconstruct the DL channel.
[14] proposed a dictionary learning approach which relied on
the reciprocity and the sparsity of the multipath angles in UL
and DL channels. [15] proposed a directional training method
which was also motivated by the angular reciprocity. The
authors in [16] utilized the angular reciprocity in designing
an angle-adaptive codebook and proved that the amount of
feedback scales with the number of paths, which was assumed
much smaller than the number of base station antennas.

In Release-16 (Rel-16) of the 5G standards, the Enhanced
Type II Codebook is adopted [17]. Such a codebook capi-
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talizes on the sparsity in both spatial domain and frequency
domain by introducing a 2D Discrete Fourier Transform
(DFT) operation on the wideband channel matrix. Briefly
speaking, the base station first broadcasts non-precoded CSI-
RS to its serving UEs. The UE then estimates its wideband
channel matrix. Afterwards, the UE performs 2D DFT on
the wideband precoding matrix, where each column of this
matrix is a precoder for a certain frequency band. Finally
the UE sends back the non-negligible elements (quantized)
in the transformed matrix to the base station along with their
corresponding positions in the transformed matrix.

In this paper, we propose a novel CSI feedback framework
based on an idea of joint spatial-frequency domain precoded
reference signal. This framework is enabled by the partial
UL/DL reciprocity of angle-delay distributions, which was
recently validated by measurements [18]. In the traditional
methods, the precoding is always performed in spatial domain.
However in this paper, the frequency-domain precoding is
made possible by our scheme, which entails a joint operation
of the BS and the UE. The basic idea is to exploit the channel
sparsity in angle-delay domain by finding the non-negligible
spatial-frequency-domain projections from the wideband up-
link channel estimation, and then design the downlink joint
precoder based on the positions of these projected values. In
this way, we only sample the non-negligible coefficients of the
sparse representation of the channel, which leads to significant
training overhead reduction. In practice, the projection is
realized by either the eigenvectors of the wideband channel
covariance matrix or the 2D DFT matrix.

We show that the amount of feedback coefficients can
be greatly reduced, which is always smaller than the total
number of multipaths. In the meantime, the computational
complexity for the UE is quite low - only several summations
of the estimates of the effective channels will suffice. This
is well-aligned with the commercial interest to simplify the
implementation of the UEs. Different from [13], the UEs do
not need any information about the DL channel statistics or
path delays, nor do they need to perform path aligning process,
and the complexity of our method is much lower.

Compared with the latest Rel-16 codebook, i.e., the En-
hanced Type II Codebook, our proposed PCR codebook
scheme has five main advantages.
• PCR scheme achieves better performance in terms of the

CSI feedback accuracy. It is because of the exploitation
of the second-order channel statistics. Compared to the
DFT-based methods, e.g., the Rel-16 codebook, the di-
mension of the signal subspace of a channel covariance
matrix is smaller than the number of non-negligible DFT
projections. This is because of the spectrum leakage of
DFT projections, particularly when the size of the DFT
matrix is relatively small.

• The PCR method has lower computational complexity.
In fact the Enhanced Type II Codebook entails a 2D
DFT operation, and in some cases, the singular value
decomposition (SVD). While our method only requires
some scalar additions instead of matrix operations.

• The proposed method has a smaller feedback overhead.
There are two reasons of the feedback reduction. 1)

The eigenvector based compression is more effective
than the DFT based compression; and 2) In Rel-16
codebook, apart from feeding back the quantized complex
coefficients, the UE has to feed back the indices of the
corresponding DFT vectors as well. While in our pro-
posed feedback scheme, the UE only needs to feedback
the quantized coefficients.

• The proposed method has a better quality of channel
estimation at the UE side. In the Enhanced Type II
Codebook, the BS broadcasts non-precoded CSI-RS to
all UEs. No beamforming is performed at the base
station. In such cases, the Signal to Noise Ratio (SNR)
of the received CSI-RS might be low. In contrast, our
proposed codebook scheme enables precoded CSI-RS.
In other words, the base station transmits beamformed
reference signals to UEs, which is similar to the dominant
eigen-beamforming. As a result, the receive SNR of the
reference signal is higher.

• The proposed scheme relies on no assumption of the
topology of the BS antenna array. In fact, the Enhanced
Type II Codebook in Rel-16 makes the explicit assump-
tion that the base station is equipped with a Uniform
Planar Array (UPA). When UE performs 2D DFT trans-
formations, the size of the DFT matrix is determined by
the numbers of columns and rows of antenna elements on
the antenna panel. A mismatch will result in obvious per-
formance degradations. However, our proposed method
works with arbitrary antenna topologies, and is therefore
more general.

The contributions of our paper are summarized below:

• We generalize the known low-rankness property of the
channel covariance matrix for a narrowband large-scale
uniform linear array (ULA) to the narrowband UPA array,
and to the wideband UPA array. Closed-form expressions
of the ranks are derived.

• We propose a practical and scalable PCR codebook
scheme, which is a very competitive candidate for the
standards of 5G and beyond. This scheme exploits the
UL and DL channel reciprocity of the statistical signal
subspace in joint spatial-frequency domains, as well as
the proved low-rankness property of the wideband chan-
nel covariance matrix.

• We make performance analysis and give the upper-bound
of the feedback overhead to achieve asymptotically error-
free CSI feedback. We show that the feedback overhead
is smaller than the number of paths.

• Two low-complexity alternatives named PCR-E and PCR-
D are proposed, which further reduce the complexity at
the base station side at the cost of mild performance loss.

We evaluate the performances of our proposed method
under the realistic channel model of 3GPP, which is widely
adopted in industry and the de facto model used for 5G
standardization. Simulation results show that in the wideband
massive MIMO regime, the UE only needs to send back tens
of scalar values to the base station to achieve near optimal
performance, even in the presence of hundreds of multipath.

The organization of this paper is as follows: Sec. II intro-
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Hu,s,m(t) =

[
Frx,u,θ (θm,ZOA, ϕm,AOA)
Frx,u,ϕ (θm,ZOA, ϕm,AOA)

]T [
exp

(
jΦθθm

) √
κ−1
m exp

(
jΦθϕm

)
√
κm−1 exp

(
jΦϕθm

)
exp (jΦϕϕm )

]
[
Ftx,s,θ (θm,ZOD, ϕm,AOD)
Ftx,s,ϕ (θm,ZOD, ϕm,AOD)

]
exp

(
j2π

r̂Trx,md̄rx,u

λ0

)
exp

(
j2π

r̂Ttx,md̄tx,s

λ0

)
exp

(
j2π

r̂Trx,mv̄

λ0
t
) (1)

duces the channel model of 3GPP and the channel reciprocity
modelling for FDD [19]. Sec. III derives the rank of the chan-
nel covariance matrices for a given angle-delay distribution.
Sec. IV shows the proposed PCR codebook scheme and the
asymptotic performance analysis. Sec. V describes the low-
complexity alternatives. The simulation results are shown in
Sec. VI. Finally, the conclusions are drawn in Sec. VII.

Notations: We use boldface to denote matrices and vectors.
Specifically, I denotes the identity matrix. (X)T , (X)∗, and
(X)H denote the transpose, conjugate, and conjugate transpose
of a matrix X respectively. (X)† is the Moore-Penrose pseu-
doinverse of X. tr {·} denotes the trace of a square matrix.
‖·‖2 denotes the `2 norm of a vector. ‖·‖F stands for the
Frobenius norm. E {·} denotes the expectation. X ⊗ Y is
the Kronecker product of X and Y. X � Y denotes the
Hadamard product of X and Y. vec(X) is the vectorization
of the matrix X, and unvec(x) is the corresponding inverse
operation. diag{a1, ...,aN} denotes a diagonal matrix or a
block diagonal matrix with a1, ...,aN at the main diagonal. ,
is used for definition. N and N+ are the set of non-negative
and positive integers respectively.

II. CHANNEL MODELS

We consider an arbitrary UE in a certain cell. The base
station is equipped with a uniform planar array (UPA) of cross-
polarized antenna elements. The total number of multipaths
is M . For a certain path m, we denote the Zenith angle Of
Arrival (ZOA) as θm,ZOA, the Azimuth angle Of Arrival (AOA)
as ϕm,AOA, the Zenith angle Of Departure (ZOD) as θm,ZOD,
and the Azimuth angle Of Departure (AOD) as ϕm,AOD. The
channel impulse response between the s-th BS antenna and
the u-th UE antenna at time t is shown in Eq. (1).
Frx,u,θ (θm,ZOA, ϕm,AOA), Frx,u,ϕ (θm,ZOA, ϕm,AOA),

Ftx,s,θ (θm,ZOD, ϕm,AOD), and Ftx,s,ϕ (θm,ZOD, ϕm,AOD) are
the field patterns defined in Section 7.3 of [20]. κm is the
cross polarization ratio (XPR), which follows a log-Normal
distribution.

{
Φθθm ,Φ

θϕ
m ,Φϕθm ,Φϕϕm

}
are the random initial

phases for four different polarization combinations. These
random phases are uniformly distributed within (−π, π).
λ0 is the wavelength of the center frequency. r̂rx,m is the
spherical unit vector with Azimuth arrival angle ϕm,AOA and
Zenith arrival angle θm,ZOA:

r̂rx,m ,

 sin θm,ZOA cosϕm,AOA
sin θm,ZOA sinϕm,AOA

cos θm,ZOA

 . (2)

Likewise, r̂tx,m is the spherical unit vector defined as:

r̂tx,m ,

 sin θm,ZOD cosϕm,AOD
sin θm,ZOD sinϕm,AOD

cos θm,ZOD

 . (3)

d̄rx,u is the 3D Cartesian coordinate of the u-th UE antenna,
and d̄tx,s is the 3D Cartesian coordinate of the s-th base station
antenna. The exponential term ej(r̂

T
rx,pv̄/λ0)t is the Doppler,

where v̄ is the UE velocity vector with speed v, travel azimuth
angle ϕv , and travel Zenith angle θv:

v̄ , v[ sin θv cosϕv sin θv sinϕv cos θv ]T . (4)

Channel reciprocity is modeled according to [19] and [21],
where the following small-scale parameters are reciprocal:
• The angles θm,ZOA, θm,ZOD, ϕm,AOA, and ϕm,AOD.
• The delay and the power of the path.
• The cross polarization ratio κm.

The non-reciprocal channel parameters are listed below.
• The wavelength of the center frequency λ0 and the related

phase terms in Eq. (1).
• Path loss factors for UL and DL.
• The initial phases

{
Φθθm ,Φ

θϕ
m ,Φϕθm ,Φϕϕm

}
, which are in-

dependent for UL and DL channels.
The topology of the antennas at the base station is a UPA

with Nv rows and Nh columns of antenna elements. The
horizontal and vertical antenna spacings are denoted by Dh

and Dv respectively. The total number of base station antennas
is Nt = NvNhNp, where Np = {1, 2} is the number of
polarizations. For ease of exposition, we assume the antenna
panel is in YZ plane of our coordinate system, with the first
antenna element on the origin. The indices of the antennas are
arranged the same way as in [3], i.e., we order the antennas
column by column. According to the channel model Eq. (1),
we introduce a 3D steering vector, which is corresponding to
a certain path with Azimuth departure angle ϕAOD and Zenith
departure angle θZOD.

a(θZOD, ϕAOD) = ah(θZOD, ϕAOD)⊗ av(θZOD), (5)

where

ah(θZOD, ϕAOD) =


1

ej2πDh sin(θZOD) sin(ϕAOD)/λ0

...
ej2π(Nh−1)Dh sin(θZOD) sin(ϕAOD)/λ0

 ,
(6)

and

av(θZOD) =


1

ej2π
Dv cos(θZOD)

λ0

...

ej2π
(Nv−1)Dv cos(θZOD)

λ0

 . (7)

For notational simplicity, we temporarily assume the UE has
one antenna. However the generalization from single-antenna
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UE to multiple-antenna UE is straightforward. In fact, the
simulations in Sec. VI are mostly carried out with multiple-
antenna UEs. Denote the number of subcarriers in UL and
DL as N (U)

f and N
(D)
f respectively. Let h(U)(f, t) ∈ CNt×1

and h(D)(f, t) ∈ CNt×1 denote respectively the UL and DL
channels between all base station antennas and the UE antenna
at time t and frequency f . We write the UL and DL channels
at all subcarriers in a matrix form:

H(U)(t) , [ h(U)(f1, t) h(U)(f2, t) · · · h(U)(f
N

(U)
f

, t) ],

(8)

H(D)(t) , [ h(D)(f1, t) h(D)(f2, t) · · · h(D)(f
N

(D)
f

, t) ],

(9)

where fi is the frequency of the i-th subcarrier of either UL
or DL channel.

Depending on the context, a superscript X = {U,D} is
introduced to simplify the presentation. According to the
multipath model in Eq. (1), we may further write

H(X)(t) = A
(X)
blk C(X)(t)B(X), (10)

where A
(X)
blk = diag{A(X), ...,A(X)} ∈ CNt×NpM is a block

diagonal matrix with A(X) ∈ CNhNv×M composed of M 3D
steering vectors:

A(X) ∆
=
[
a(X)(θ1,ZOD, φ1,AOD) · · · a(X)(θM,ZOD, φM,AOD)

]
,

(11)
and

B(X) ∆
=
[

b(X)(τ1) b(X)(τ2) · · · b(X)(τM )
]T
, (12)

with b(X)(τm), (m = 1, · · · ,M) being the delay response
vector of the m-th path, which is defined as

b(X)(τm) =
[
e−j2πf1τm e−j2πf2τm · · · e

−j2πfN (X)
f
τm

]T
.

(13)
The matrix C(X)(t) ∈ CNpM×M is defined as

C(X)(t) =
[

C1
(X)(t) · · · CNp

(X)(t)
]T
, (14)

where Ci
(X)(t), i = 1, · · · , Np is a diagonal matrix

Ci
(X)(t) = diag{c(X)

i,1 (t), ..., c
(X)
i,M (t)}, (15)

with its m-th diagonal element computed as

c
(X)
i,m(t) =

[
Frx,θ (θm,ZOA, ϕm,AOA)
Frx,ϕ (θm,ZOA, ϕm,AOA)

]T
[

exp
(
jΦθθm

) √
κ−1
m exp

(
jΦθϕm

)
√
κm−1 exp

(
jΦϕθm

)
exp (jΦϕϕm )

]
[
Ftx,θ (θm,ZOD, ϕm,AOD)
Ftx,ϕ (θm,ZOD, ϕm,AOD)

]
exp

(
j2π

r̂Trx,mv̄

λ0
t

)
. (16)

The vectorized channel representation of Eq. (10) is written
as

h(X)(t) , vec
(
H(X)(t)

)
= B(X)T ⊗A

(X)
blk vec

(
C(X)(t)

)
.

(17)

Denote the channel covariance matrix in spatial domain and
frequency domain as

R(X,S) = E
{

H(X)(t)
(
H(X)(t)

)H}
, (18)

and

R(X,F) = E
{(

H(X)(t)
)T (

H(X)(t)
)∗}

. (19)

respectively, where the expectation is taken over time. We also
denote the joint spatial-frequency channel covariance matrix
as

R(X,J) = E
{(

h(X)(t)
)(

h(X)(t)
)H}

. (20)

Note that the base station may obtain the DL channel co-
variance matrix by some existing methods, e.g., the projection
method in a Hilbert space by exploiting the angular reciprocity
of UL and DL channels [22].

III. THE RANK OF THE COVARIANCE MATRIX

In this section, we investigate the ranks of the channel
covariance matrices of a UPA, for the cases of 1) the narrow-
band spatial covariance matrix, 2) the frequency covariance
matrix, and 3) the wideband joint spatial-frequency covariance
matrix. We demonstrate that the channel covariance matrix of
a large-scale UPA with antenna spacing no larger than half
wavelength always exhibits a low-rankness property no matter
what the angular distribution is. This property shows that the
spatial channel vector lives in a reduced space and thus can be
compressed using the second-order channel statistics. For ease
of exposition, we derive the ranks for a single polarization.
The results can be readily generalized to cross-polarization
setting by simply multiplying the expressions of the ranks by
2. We start with a simple setting where the multipath angles
are randomly distributed within a closed region. For notational
simplicity, we drop the subscripts “ZOD” and “AOD” and
do not specify UL or DL in this section. The Zenith angle
of departure θ and the Azimuth angle of departure ϕ are
distributed with an arbitrary probability density function that
is non-zero inside the bounded and convex support ζ(θ, ϕ).
The boundary is defined as follows: θ ∈ [θmin, θmax], and for
a given Zenith angle θ, the bound of the Azimuth angle is
[ϕmin(θ), ϕmax(θ)]. Consider a certain carrier frequency with
wavelength λ. The rank of the spatial covariance matrix R(S)

is characterized in Theorem 1 for massive MIMO regime.

Theorem 1 When Nh and Nv are large, the rank of the
spatial channel covariance matrix R(S) is given by

rank{R(S)}
NhNv

= ρ(S), (21)

where the ratio ρ(S) is defined as

ρ(S),
DhDv

λ2

θmax∫
θmin

sin2(θ)
(
sin (ϕmax(θ))− sin

(
ϕmin(θ)

))
dθ.

(22)

Proof: The proof can be found in Appendix A.
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For the simple case where the ZOD and AOD are mutually
independent and distributed within their own intervals, i.e.,
θ ∈ [θmin, θmax], ϕ ∈ [ϕmin, ϕmax], as shown in Fig. 1, we may
readily obtain the rank ratio of the spatial covariance matrix:

ρ(S) =
DhDv

λ2

(
sin(ϕmax)− sin(ϕmin)

)(
1

2
(θmax − θmin)− 1

4

(
sin(2θmax)− sin(2θmin)

))
.

(23)

z

x

y

max
min

min max

Fig. 1. An example of the bounded angular support.

Furthermore, if the ZOD and AOD spread the full angular
range, e.g., θ and ϕ are distributed with non-zero probability
in all directions, then the rank ratio of the spatial channel
covariance matrix is upper-bounded by

ρ(S) =
DhDv

λ2
π, (24)

or equivalently

rank{R(S)} = LhLvπ, (25)

where Lh and Lv denote the normalized apertures of the UPA
in horizontal and vertical directions respectively:

Lh,DhNh/λ, Lv,DvNv/λ. (26)

Eq. (25) indicates that the rank of the spatial covariance matrix
is determined by the area of the ellipse circumscribing the
rectangle of size Lv × Lh. In the practical cases where the
antenna spacing is no larger than half-wavelength, such an
observation means R(S) always have low-rankness property,
and the rank ratio will never exceed π/4 under arbitrary
angular distributions.

Interestingly, Eq. (24) coincides with the Degrees of Free-
dom (DoF) in [23] for a UPA in an isotropic scattering
environment. In fact, Theorem 1 is a generalized result of
the DoF for the case that the angles have a certain bounded
support instead of unbounded.

Note that Theorem 1 describes the dimensionality of the
signal subspace for a simple setting that the multipath angles

exists inside one bounded support. Corollary 1 is an extension
to the case that the angles are distributed within several disjoint
angular sub-supports, which is more realistic. Denote the
number of disjoint sub-supports as Q, and the boundary of
the q-th sub-support as

ζq,
{

(θ, ϕ)|θ ∈ [θmin
q , θmax

q ], ϕ ∈ [ϕmin
q (θ), ϕmax

q (θ)]
}
. (27)

The sub-supports are mutually disjoint, i.e., ζi∩ζj = ∅,∀i 6= j.
Consider a certain UE with the angular support ζu being the
union of all Q sub-supports, i.e., ζu = ζ1∪ζ2∪, · · · ,∪ζQ, and
we assume the angular power spectrum (APS) is non-zero over
the support ζu.

Corollary 1 When Nh and Nv are large, the rank of the
spatial channel covariance matrix R(S) is given by

rank{R(S)}
NhNv

= ρ(S), (28)

where the ratio ρ(S) is defined as

ρ(S),
DhDv
λ2

Q∑
q=1

θmax
q∫

θmin
q

sin2(θ)
(
sin
(
ϕmax
q (θ)

)
− sin

(
ϕmin
q (θ)

))
dθ.

(29)

Proof: The proof is a simple extension of Appendix A and
thus omitted.

Theorem 1 and Corollary 1 show that the spatial covariance
matrix has a reduced subspace and only a limited number of
eigenvectors have corresponding non-negligible eigenvalues.
As a result, the channel matrix is compressible using the
dominant eigenvectors of R(S).

We then show that the frequency covariance matrix has
a similar low-rankness property, which can be exploited to
reduce the dimensions of the channel in frequency domain.
Suppose the power delay profile (PDP) is strictly non-zero
inside Q delay intervals ξ1, ξ2, · · · , ξQ. The range of the q-
th interval is [τmin

q , τmax
q ], q = 1, · · · , Q. Denote the subcar-

rier spacing as ∆f and the number of subcarriers as Nf .
Proposition 1 describes the rank of the corresponding spatial
covariance matrix R(F).

Proposition 1 When Nf is large, the rank of the frequency
channel covariance matrix R(F) is given by

rank{R(F)}
Nf

= ρ(F), (30)

where the ratio ρ(F) is defined as

ρ(F),min

{
Q∑
q=1

∆f
(
τmax
q − τmin

q

)
, 1

}
. (31)

Proof: The proof is readily obtained by applying some mod-
ifications of Lemma 2 in [4], which was originally dedicated to
the rank of the spatial covariance matrix for large-scale ULA.
Thus we skip the detailed proof here.

Proposition 1 indicates that as the bandwidth increases, the
frequency covariance matrix is also rank-deficient due to the
limited delay distributions. As a result, the channel matrix
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can be compressed in frequency domain using the dominant
eigenvectors of the covariance matrix R(F).

We further study the rank of the joint spatial-frequency
covariance matrix R(J). Denoting now the number of angle-
delay sub-supports as Q, the boundary of the q-th angle-delay
sub-support is

ηq,
{

(θ, ϕ, τ)|θ ∈ [θmin
q , θmax

q ], ϕ ∈ [ϕmin
q (θ), ϕmax

q (θ)],

τ ∈ [τmin
q (θ, ϕ), τmax

q (θ, ϕ)]
}
. (32)

The union of all the sub-supports is defined as

ηu = η1 ∪ η2∪, · · · ,∪ηQ. (33)

The probability density function of the multipath is uniformly
non-zero within each sub-support, which is assumed convex
for ease of exposition. We also make an assumption that the
longest delay τmax satisfies τmax ≤ 1/∆f . Taking a 15 kHz
subcarrier spacing for example, it means the paths are not
longer than 20 km, which is reasonable. The rank of R(J) is
shown in Theorem 2.

Theorem 2 When Nh, Nv , and Nf are large, the rank of
the joint spatial-frequency channel covariance matrix R(J) is
given by

rank{R(J)}
NhNvNf

= ρ(J), (34)

where the ratio ρ(J) is defined as

ρ(J) =
DhDv∆f

λ2

Q∑
q=1

θmax
q∫

θmin
q

ϕmax
q (θ)∫

ϕmin
q (θ)

{
sin2(θ) cos(ϕ)

(
τmax
q (θ, ϕ)− τmin

q (θ, ϕ)
)}
dϕdθ. (35)

Proof: The proof can be found in Appendix B.
Note that the rank expressions for the spatial and frequency

covariance matrices may serve as an upper-bound. In practice,
the multipath do not have strictly non-zero APS or PDP over
one or several intervals. In some settings, the angles and
delays are modeled as discrete values that are constant over
a relatively long time period, as in the clustered delay line
(CDL) model of 3GPP [20] for example. In such cases, the
rank ratio ρ(S), ρ(F), and ρ(J) converge to zero for any finite
number of multipaths.

IV. A PARTIAL CHANNEL RECIPROCITY-BASED
CODEBOOK

In this section, we show the details of our proposed par-
tial channel reciprocity-based codebook. Since the multipath
angle-delay distribution of the UL and DL are reciprocal
[19] [18], there exists a partial reciprocity in terms of the
signal subspace for UL and DL wideband channel covariance
matrices. Our method makes use of such a partial reciprocity
and the low-dimensional structure of the statistical channel
information in both spatial and frequency domains. The DL
channel sounding is designed based on the prior knowledge
of the channel covariance matrices in such a way that only
the signal space corresponding to the non-negligible eigen-
vectors of the joint spatial-frequency covariance matrices is

captured and measured by the UE, while the null space of the
covariance matrices is automatically ignored. This will help
reduce the feedback overhead and the complexity at the UE
side. More specifically, the training signal is sent according to
the dominant eigenvectors of the covariance matrices.

For ease of exposition, we drop the superscript (U) or
(D) and consider the downlink by default, unless otherwise
notified. Denote the eigen-value decomposition of the joint
spatial-frequency channel covariance matrices as

R(J) = U(J)Σ(J)U(J)H , (36)

where U(J) contains the eigen-vectors of R(J):

U(J) =
[
u

(J)
1 ,u

(J)
2 , · · · ,u(J)

NtNf

]
. (37)

Σ(J) is a diagonal matrix with its diagonal entries (arranged
in non-increasing order) being the eigenvalues of R(J). As
shown in Sec. III, R(J) has a low-rankness property and only
a small number of its eigenvalues are significant, while the
rest are negligible. We exploit this property and propose the
joint spatial-frequency precoder for CSI-RS, which is aligned
with the dominant eigenvectors of the covariance matrix R(J).
Denote the total number of antenna ports for CSI-RS by Na.
The joint spatial-frequency precoder wn ∈ CNtNf×1 for port
n of CSI-RS is

wn,
(
u(J)
n

)∗
, n = 1, 2, · · · , Na. (38)

Note that the antenna port here is a generalized concept of 5G
[24]. The antenna port n (n = 1, · · · , Na) for CSI-RS corre-
sponds to the specific reference signals with the n-th spatial-
frequency precoder. In order to better illustrate the idea of our
method, we show the joint operation of the base station and
the UE step by step. Here we introduce the subband concept,
which means a group of consecutive subcarriers in frequency
domain. Depending on implementation, the bandwidth of a
subband is equal to the width of one or several Resource
Blocks (RBs), and it is smaller than the coherence bandwidth.
In other words, the frequency response of the channel is flat
within this interval and only one channel estimate is needed
for each subband. With some misuse of notation, Nf denotes
either the number of subcarriers or the number of subbands.

For a certain port n, the precoder wn can be unvectorized
into Nf vectors as below:

Wn,[wn,1,wn,2, · · · ,wn,Nf ] = unvec{wn}, (39)

where wn,k ∈ CNt×1, k = 1, · · · , Nf , is the precoder
of CSI-RS for the k-th subband. For notational simplicity,
we assume the training sequences for each CSI-RS port are
identical in different subbands. Denote the reference signal
for the n-th CSI-RS port as xn ∈ CNx×1, which is distributed
in a set of Nx neighboring Resource Elements (REs). The
reference signals of different antenna ports may share the same
set of REs by code-domain sharing (CDM) with orthogonal
patterns, or Frequency-domain sharing (FDM) with different
subcarriers, or Time-domain sharing (TDM) with different
OFDM symbols. For antenna port n, 1 ≤ n ≤ Na, the
transmitted jointly precoded reference signal is xnwT

n,k at the
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k-th subband. The corresponding received signal of this port
at the k-th subband is

yn,k(t) = xnwT
n,kh(fk, t) + nn,k(t), (40)

where h(fk, t) ∈ CNt×1 denotes the DL channel at subband k,
and nn,k(t) ∈ CNx×1 is the noise. Note that till now we have
only completed part of the precoding, which is the operation
wT
n,kh(fk, t). The joint spatial-frequency precoding needs a

further action from the UE side, which is a summation in
frequency domain shown below:

yn(t) =

Nf∑
k=1

yn,k(t) (41)

= xnwT
nh(t) + nn(t), (42)

where

nn(t) =

Nf∑
k=1

nn,k(t) ∈ CNx×1. (43)

h(t) is the vectorized wideband channel as defined in Eq. (17).
The

∑
operation in Eq. (41) is done by the UE. Rewriting

the received signal for all Na ports in matrix form, we have

Y(t) = Xg(t) + n(t), (44)

where X ∈ CNaNx×Na is a block matrix containing all the
training sequences

X,

 x1

. . .
xNa

 . (45)

g(t) ∈ CNa×1 is the spatial-frequency jointly precoded effec-
tive channel:

g(t),
[
g1(t) g2(t) · · · gNa(t)

]T
, (46)

with the effective scalar channel for port n defined as

gn(t),wT
nh(t). (47)

Note that gn(t) can be regarded as a projection of the wide-
band channel onto the linear space determined by the eigen-
mode u

(J)
n of the joint spatial-frequency covariance matrix

R(J). The UE then obtains an estimate of the projection ĝn(t)
based on the known pilot sequence xn by simply performing
an estimation of the effective channel wT

n,kh(fk, t) of each
subband k and summing them up over all Nf subbands.
Alternatively, the UE may first perform a summation of the
received reference signal as in Eq. (41), and then estimate
the effective scalar channel gn(t), provided that the training
sequence for a certain port is identical for all subbands.

Finally, the UE feeds back the projections ĝn(t), n =
1, · · · , Na after a proper quantization, e.g., elementwise quan-
tization [17] or more sophisticated schemes like random vector
quantization (with higher complexity), to the base station. The
DL channel is reconstructed as

ĥ(t) =

Na∑
n=1

ĝn(t)w∗n. (48)

We point out the fundamental difference between the classi-
cal precoding and the proposed spatial-frequency joint precod-
ing here. The classical precoding is to apply a beamforming
weight vector (i.e., the precoder) on the base station antennas
while they are transmitting signals. The UE receives the
superimposed signals of all transmit antennas. Such a process
is done by the base station alone. On the contrary, the joint
spatial-frequency precoding functions in a different manner,
as it entails a joint processing of the base station and the
UE. More precisely, the base station performs an elementwise
multiplication, while the UE makes a summation. This is
because in an OFDM system, the signal transmitted in all
subcarriers are orthogonal to one another, which prohibits the
summation of signals with orthogonal frequencies over the
air as in the spatial-domain precoding case. As a result, the
process consists of three steps, 1) Each base station antenna
multiplies the CSI-RS at the pilot-carrying resource elements
by the corresponding entry of wn; 2) Upon receiving the
precoded CSI-RS, the UE estimates the effective channels for
all pilot-carrying subcarriers; 3) the UE sums up these effective
channels over all pilot-carrying subcarriers.

The proposed PCR codebook scheme is summarized in
Algorithm 1.

Algorithm 1 Partial Channel Reciprocity based Codebook
Scheme

1: The base station obtains the joint spatial-frequency pre-
coders wn n = 1, · · · , Na by eigenvalue decomposition
of the covariance matrix R(J);

2: The base station applies the precoders when transmitting
CSI-RS;

3: For each antenna port, the UE estimates the effective
channels in all Nf subbands and sum them up to obtain
an estimate of gn(t);

4: The UE feeds back the scalar values gn(t), n =
1, · · · , Na;

5: The base station reconstructs the DL CSI with Eq. (48);

Note that a prerequisite of this algorithm is that the DL
channel covariance matrix R(J) is known by the base station.
In practice, the UL channel covariance matrices are easily
obtained by channel estimation using UL pilot (SRS, Sounding
Reference Signal). The DL channel covariance matrix may
be obtained by transforming the UL covariance matrix to
DL using the Hilbert space projection method in [22]. Since
the second-order statistics are slow-varying, their eigenvectors
may not have to be updated very frequently. What is more, it
is also possible to replace the DL channel covariance matrices
with the UL ones without any transformation. This only leads
to minor performance drops, which will be shown in Sec. VI.

Overall, this proposed training and feedback scheme greatly
reduces the computation burden at the UE side, as the spatial
and frequency-domain precoders are computed and applied by
the base station alone. Such an operation is transparent to the
UE, which does not have to know the precoders themselves.
In order to obtain the coefficients ĝ(t) for feedback, the UE
only has to perform an estimation of the precoded effective
channels and an addition in frequency domain.
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The complexity of this scheme is now analyzed. The main
operation for the UE is the CSI-RS based channel estimation
and a summation. Since the channel estimation is done by
correlating the received signal with the pilot sequence of
length Nx for all Nf subbands and Na ports, it requires
NxNfNa floating point operations (FLOPs). The summation
in frequency domain takes NfNa FLOPs. Therefore, the total
complexity order for the UE is O(NxNfNa). Given that the
orders of magnitude for Nx, Nf , and Na are all ten for
practical 5G systems, the complexity of our proposed method
is quite low for UEs.

We now analyze the asymptotic performance of our pro-
posed PCR method. We derive the amount of feedback re-
quired by PCR method to achieve asymptotically error-free
CSI feedback. Note that the number of antenna ports for CSI-
RS, Na, is also the number of scalar coefficients needed for
feedback in our scheme for the case of single-antenna UE. The
boundaries of the angle and delay distribution is the same as
in Eq. (32) and Eq. (33). The result is shown in Theorem 3.

Theorem 3 The quantization error of the proposed PCR
scheme yields

lim
Nh,Nv,Nf→∞

∥∥∥Ĥ−H
∥∥∥2

F

‖H‖2F
= 0, (49)

under the condition that the number of scalar coefficients to
feedback satisfies

Na ≥ ρ(J)NhNvNf , (50)

where H is the wideband channel matrix and Ĥ is the
reconstructed channel matrix based on the feedback from the
UE. ρ(J) is the rank ratio defined in Eq. (35).

Proof: The proof can be found in Appendix C.
Theorem 3 demonstrates that our PCR scheme only requires

a small amount of feedback, since the rank ratio ρ(J) � 1. In
fact, ρ(J) is also the CSI compression ratio of our scheme
compared to the method of feeding back the full channel
matrix H. For the case that angles and delays are modeled as
constant over a long period as in the CDL model, the number
of feedback coefficients Na does not scale with the number
of antennas or the bandwidth. It is in fact a finite value that
is always smaller than the number of paths. This is because
in a practical model such as CDL, the multipaths exist in the
form of clusters. And the path angles inside a certain cluster
are close to each other, since they are reflected by one or
several neighboring scatterers. Some examples in Sec. VI will
show that although the total number of paths is up to several
hundreds, the number of feedback coefficients can be as small
as 64 for the whole wideband massive MIMO channel.

V. LOW COMPLEXITY ALTERNATIVES

The PCR codebook scheme in Algorithm 1 of Sec. IV
requires the eigen-decomposition of a large matrix R(J). Al-
though this operation is not done in a real-time manner, the
complexity is still high for a base station. In this section,
we propose two low-complexity alternatives which have mild

performance losses compared with the original PCR codebook
scheme. Note that all the proposed schemes have the same
complexity at the UE side.

A. PCR codebook with spatial/frequency eigen basis

We now propose an alternative - the PCR codebook with
spatial/frequency eigen basis (PCR-E) to mitigate this imped-
iment of high complexity at the base station. It is done by
selecting the eigenvectors of the covariance matrices R(S) ∈
CNt×Nt and R(F) ∈ CNf×Nf separately and then form a
joint spatial-frequency precoder. The design of a joint spatial-
frequency precoder breaks down to a spatial-domain precoder
and a frequency-domain precoder.

The eigen-value decomposition of the spatial and frequency
channel covariance matrices are written as

R(S) = U(S)Σ(S)U(S)H , (51)

R(F) = U(F)Σ(F)U(F)H , (52)

where U(S) and U(F) contain the eigen-vectors of R(S) and
R(F) respectively:

U(S) =
[
u

(S)
1 ,u

(S)
2 , · · · ,u(S)

Nt

]
, (53)

U(F) =
[
u

(F)
1 ,u

(F)
2 , · · · ,u(F)

Nf

]
. (54)

Σ(S) and Σ(F) are diagonal matrices with their diagonal en-
tries (arranged in non-increasing order) being the eigenvalues
of R(S) and R(F) respectively. We once again exploit the low-
rankness properties of R(S) and R(F) in this PCR-E codebook
scheme. We build the spatial-domain precoder of the CSI-
RS such that it is aligned with the dominant eigenvectors
of the spatial-domain covariance matrix R(S). Meanwhile,
the frequency-domain precoder is aligned with the dominant
eigenvectors of R(F). The joint spatial-frequency precoder
wn ∈ C1×NtNf for port n of CSI-RS is given as

wn,fn ⊗ sn, (55)

where fn ∈ C1×Nf is the conjugate transpose of a certain
eigenvector selected from U(F) and sn ∈ C1×Nt is the conju-
gate transpose of a certain eigenvector from U(S). One simple
eigenvector selection method is to choose the eigenvectors
corresponding to the greatest eigenvalues of R(S) and R(F).
However, this method may not lead to the best performance.
The reason is that the multipath distribution of angles is
not independent of the distribution of delays in most cases,
e.g., when the paths are distributed in the form of clusters.
R(S) only contains the multipath distribution information
in angular domain, while R(F) only reflects the multipath
delay distribution. If we choose a set of spatial precoders
independently of the set of frequency precoders and construct
the joint precoders by all the combinations of the two sets, it
will result in excessive consumption of training and feedback
overhead. This is due to the fact that some constructed joint
precoders may lead to very small coefficients, which are not
necessary for feedback. For the sake of overhead reduction,
we propose a selection criterion which selects the spatial
precoders and frequency precoders jointly based on recent UL
channel samples H(U)(t1),H(U)(t2), · · · ,H(U)(tNc).



9

Define the joint spatial-frequency eigen projection as

G(t),
(
U(S)

)H
H(U)(t)

(
U(F )

)∗
. (56)

Then, the accumulated element-wise power matrix of the
projection above is

G,
Nc∑
i=1

G(ti)� (G(ti))
∗
. (57)

We select the positions of the greatest Na values in G and
denote the row index and column index of the n-th position as
rn and cn respectively. Then, the spatial-domain precoder for
the n-th CSI-RS port is the conjugate of the rn-th eigenvector
of R(S):

sn =
(
u(S)
rn

)∗
. (58)

Similarly, the frequency-domain precoder for this port is

fn =
(
u(F)
cn

)∗
. (59)

Note that among all Na ports, there are always some duplicates
of the spatial-domain precoder or frequency-domain precoder
for different ports. In other words, the following circumstance
may take place:

∃i 6= j, s.t. ri = rj or ci = cj , for i, j = 1, · · · , Na. (60)

This is due to the fact that the accumulated power matrix G
may have some significant entries distributed in the same row
or column. However, two different CSI-RS ports never have
exactly the same spatial precoder and frequency precoder at
the same time. Regarding the antenna port n, 1 ≤ n ≤ Na, the
transmitted jointly precoded reference signal is xn (fn ⊗ sn).
The corresponding received signal at frequency fk, a.k.a., the
k-th subband, is

yn,k(t) = xnfn,ksnh(fk, t) + nn,k(t), (61)

where fn,k is the k-th row of the frequency-domain precoder
fn. After the frequency-domain summation at the UE side, the
combined received signal is

yn(t) =

Nf∑
k=1

(xnfn,ksnh(fk, t) + nn,k(t)) (62)

= xn (fn ⊗ sn) h(t) + nn(t), (63)

where

nn(t) =

Nf∑
k=1

nn,k(t) ∈ CNx×1. (64)

The
∑

operation in Eq. (62) is done by the UE. Based on
the training sequence xn, we may obtain the spatial-frequency
jointly precoded effective channel:

g(t),
[
g1(t) g2(t) · · · gNa(t)

]T
, (65)

with the effective scalar channel for port n defined as

gn(t),fn ⊗ snh(t). (66)

Then, the UE feeds back the quantized scalars ĝn(t), n =
1, · · · , Na to the base station. Finally the DL channel is
reconstructed as

Ĥ(t) =

Na∑
n=1

ĝn(t)sHn f∗n. (67)

The proposed low-complexity alternative, i.e., PCR-E, is
summarized in Algorithm 2.

Algorithm 2 PCR Codebook scheme with spatial/frequency
eigen basis

1: The base station obtains the precoders sn and fn, n =
1, · · · , Na by finding the positions of the Na greatest
values in Eq. (57);

2: The base station applies the precoders when transmitting
CSI-RS;

3: For each antenna port, the UE estimates the effective
channels in all Nf subbands and sum them up to obtain
gn(t);

4: The UE feeds back the quantized gn(t), n = 1, · · · , Na;
5: The base station reconstructs the DL CSI with Eq. (67);

Note that Algorithm 2 assumes the eigenvectors U(S) and
U(F) of the DL channel covariance matrices are known by the
base station. This can be achieved with the UL-DL channel
covariance transformation method in [22].

The complexity of this scheme at UE side is exactly the
same as in the PCR scheme of Sec. IV. As for the base station,
the main complexity comes from the searching of the spatial
and frequency eigenmodes, which has the complexity order of
O(Nc(N

2
t Nf +Nt(Nf )2). Nevertheless, the searching can be

made faster by considering only the dominant eigenvectors, or
even skipped at the cost of some mild performance loss.

B. PCR codebook with DFT basis
The two schemes mentioned above both needs the eigen-

value decomposition of channel covariance matrix. In this
section, we propose an alternative named PCR codebook with
DFT basis (PCR-D) that circumvents such an operation and
thus has even lower complexity at the base station side. The
key ingredient of this scheme is the exploitation of the channel
reciprocity of the multipath angles and delays. Similar to PCR-
E, the joint spatial-frequency precoder again consists of two
components, the spatial precoder and the frequency precoder,
which are DFT-based vectors instead of eigenvectors.

Denote a DFT matrix of size K ×K as

E(K) ,
1√
K


ω0·0 ω0·1 · · · ω0(K−1)

ω1·0 ω1·1 · · · ω1(K−1)

...
...

. . .
...

ω(K−1)·0 ω(K−1)·1 · · · ω(K−1)(K−1)

 ,
where ω , e−2πj/K . According to the UPA antenna array
structure, we construct a DFT-based spatial orthogonal basis
as S,E(Nh)⊗E(Nv). Note that for the case of dual-polarized
antennas, there are two options: we may either construct the
spatial basis as

S = diag{E(Nh)⊗E(Nv),E(Nh)⊗E(Nv)}, (68)
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or process the two polarizations one by one. These two options
are equivalent. Similarly, a frequency basis is defined as
F,E(Nf ).

The spatial precoders are selected from the column
vectors in S, while the frequency precoders are from
F. The selection method is similar to PCR-E scheme,
which relies on the projections of the UL channel samples
H(U)(t1),H(U)(t2), · · · ,H(U)(tNc) on the spatial and fre-
quency basis:

G,
Nc∑
i=1

(
SHH(U)(ti)F

)
�
(
SHH(U)(ti)F

)∗
. (69)

Denote the row index and column index of the n-th greatest
value in G as rn and cn respectively. For the n-th CSI-RS
port, The spatial-domain precoder sn is

sn = (Srn)
H
, (70)

where Srn is the rn-th column of S. The corresponding
frequency-domain precoder fn is the cn-th row of F. The joint
spatial-frequency precoder is fn⊗sn. The remaining operations
are the same as in the PCR-E scheme and thus omitted. This
scheme is summarized in Algorithm 3.

Algorithm 3 PCR Codebook scheme with DFT basis
1: The base station obtains the precoders sn and fn, n =

1, · · · , Na by finding the positions of the Na greatest
values in Eq. (69);

2: The base station applies the precoders when transmitting
CSI-RS;

3: For each antenna port, the UE estimates the effective
channels in all Nf subbands and sum them up to obtain
an estimate of gn(t);

4: The UE feeds back the quantized gn(t), n = 1, · · · , Na;
5: The base station reconstructs the DL CSI by Eq. (67);

VI. NUMERICAL RESULTS

In this section, we show the simulation results of our pro-
posed schemes, primarily under the practical model of 3GPP.
The main parameters are listed in Table I. The configuration
of the antennas, including the base station and the UE, is
expressed by a tuple (Nv, Nh, Np), where Nv, Nh, Np denote
the number of rows, columns, and polarizations of the antenna
elements respectively. We consider a typical parameter set of
5G with the center frequency at 3.5 GHz and the subcarrier
spacing of 30 kHz. We adopt the CDL-A and CDL-D models
in the evaluations. In CDL-A model, the total number of
multipaths is 460, i.e., each UE has 23 multipath clusters and
each cluster contains 20 paths. No Line-of-Sight (LoS) path
exists. While in CDL-D channel model, there are totally 273
paths with one LoS component. The distributions of the paths
in CDL-A model and CDL-D model are defined in Table 7.7.1-
1 and Table 7.7.1-4 of [20] respectively.

The UEs have Nr = 2 antennas in simulations, and for each
UE antenna, a set of Na coefficients are fed back to the BS.
Therefore, the number of feedback coefficients is 2Na for the

TABLE I
BASIC SIMULATION PARAMETERS

Scenario 3D Urban Macro (3D UMa)
DL center fre-
quency

3.5 GHz

UL center fre-
quency

3.4 GHz

Subcarrier
spacing

30 kHz

Bandwidth 20 MHz (51 RBs)
Number of UEs 8
BS antenna
configuration

(Nv , Nh, Np) = (2, 8, 2)/(4, 8, 2), (Dh, Dv) =
(0.5, 0.8)λ, the polarization angles are ±45◦

UE antenna
configuration

(Nv , Nh, Np) = (1, 1, 2, 1, 1), the polarization
angles are 0◦ and 90◦

Channel model CDL-A, CDL-D
Delay spread 300 ns
DL precoder EZF
UE receiver MMSE-IRC
Number of
paths

460, 271

schemes of PCR, PCR-E, and PCR-D. The maximum number
of streams for each UE is two.

We first visualize the effects of the dimension reduction of
the three proposed methods in Fig. 2. One snapshot of the
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Fig. 2. The element-wise amplitude of the wideband channel matrix and its
projections (a) The channel matrix; (b) the projections onto the bases of the
PCR scheme; (c) the projections onto the bases of the PCR-E scheme; (d) the
projections onto the bases of the PCR-D scheme.

wideband channel H between the base station and the UE
is taken as an example. The antenna configuration at the base
station is (Nv, Nh, Np) = (4, 8, 2), and the number of subband
is 51, as shown in Table I. Fig. 2 (a) shows the amplitude
of the wideband channel coefficient of H ∈ CNt×Nf where
Nt = 64, Nf = 51. Fig. 2 (b) is the amplitude of the projected
channel onto the orthogonal basis Eq. (37) of the proposed
PCR scheme in Sec. IV. We may observe that only a very
small portion of the projected values are significant. Such a
high sparsity allows us to reconstruct the full channel matrix
with only a small number of non-negligible scalar coefficients.
Fig. 2 (c) is the amplitude of the projection onto the basis of
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Eq. (53) and Eq. (54) as in the low-complexity alternative
PCR-E scheme. Fig. 2 (d) is the amplitude when projected
onto the 2D-DFT basis as in the PCR-D scheme. From (c)
and (d) we also observe that the projected channel matrix is
sparse, and the eigen-mode based projection is better than the
DFT-based projection in terms of the sparse representation of
the channel matrix.
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Fig. 3. The spectral efficiency vs. SNR, Nt = 32, Na = 32, CDL-A model.
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Fig. 4. The spectral efficiency vs. SNR, Nt = 64, Na = 32, CDL-A model.

Fig. 3 and Fig. 4 show the spectral efficiency perfor-
mance of the proposed codebook schemes for the settings
that the base station is equipped with 32 antennas and 64
antennas, respectively. The spectral efficiency is computed as∑Nu
n=1 log2(1 + SINRn) averaged over time and frequency,

where SINRn is the Signal and Interference to Noise Ratio
for the n-th UE, and Nu = 8 is the total number of the active
UEs. The number of coefficients to feed back is 2Na = 64 for
each of the schemes proposed by this paper. The benchmark
of Enhanced Type II codebook in Rel-16 also requires 2Na
feedback coefficients, i.e., two sets of Na 2D DFT projections
corresponding to the two UE antennas respectively. However,

the Rel-16 codebook requires the feedback of indices apart
from the 2Na scalar coefficients, to notify the positions of
the selected Na projections of the channel matrix on the 2D-
DFT basis. The curve labeled with “CRNet” is the Deep
Learning-based CSI compression and reconstruction scheme
proposed by [12]. The CRNet consists of an encoder and
decoder, where the encoder performs compression at the UE
and the decoder reconstructs the original CSI at the BS. The
training, validation, and test datasets contain 80000, 20000 and
20000 wideband channel samples respectively. The number of
feedback coefficients for CRNet is also 64. We may notice
that our proposed PCR scheme is very close to the ideal
case where perfect CSI is known at the base station. It is
interesting to note that the wideband massive MIMO channel,
although very large in size, can be effectively represented by
only 2Na = 64 scalar coefficients using our PCR codebook
scheme. The low-complexity alternative of PCR-E has some
mild performance loss compared to the PCR scheme. Nev-
ertheless it has significant gains over the Enhanced Type II
Codebook in the latest Rel-16 standard of 5G. The reason is
that there are more power leakages on DFT basis than eigen-
basis, which is demonstrated in Fig. 2. We may also observe
that the low-complexity alternative of PCR-D scheme has
lower performance than the Rel-16 codebook of 5G when the
numbers of feedback coefficients are equal. However, PCR-D
does not need to feed back indices, and the total amount of
overhead is thus smaller. The complexity of PCR-D is also
much lower. In practice, there is always a trade-off between
complexity and performance, and a substantial complexity
reduction can be achieved at the cost of feeding back several
more scalar coefficients.

TABLE II
COMPARISONS OF THE SCHEMES

Schemes PCR /PCR-E PCR-D Rel-16

UE complexity O(NxNfNa) O(NxNfNa)
O(NxNfNa) +O
(NtNf log(NtNf ))

Overhead 2 Na scalars 2 Na scalars 2 Na scalars +
Na indices

# of ports Na Na Nt
Generality high UPA only UPA only

Table II is the comparison of the proposed schemes and
the Enhanced Type II codebook of the Rel-16 in terms of UE
complexity, feedback overhead, required number of antenna
ports, and generality. Since the Enhanced Type II codebook
adopts non-precoded CSI-RS, the number of antenna ports
is equal to the number of BS antennas Nt. The PCR-D and
Enhanced Type II codebook both rely on 2D DFT for CSI
compression, which limits their applicability to UPA topology
of BS antennas. However, the PCR and PCR-E codebooks are
more general and applicable to other BS antenna topologies
as well.

Then we show the impact of the number of antenna ports
Na on the PCR scheme in Fig. 5. When the value of Na
increases from 10 to 40, the performance grows monotonically
and eventually saturates near the ideal case of perfect CSI.

Now we show in Fig. 6 the performance of the PCR-E
scheme with different feedback overheads, i.e., Na = 32, 16, 8.
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Fig. 5. The spectral efficiency vs. SNR, PCR with different feedback
overhead, Nt = 64, CDL-A model.
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Fig. 6. The spectral efficiency vs. SNR, PCR-E with different feedback
overhead, Nt = 32, CDL-A model.

In order to demonstrate the robustness of our scheme to
inaccurate channel covariance matrices, e.g., R(S) and R(F),
we also show the cases where the DL channel covariance
matrices are replaced by the UL ones. In other words, the
curves labeled with “PCR-E with UL covariance” means the
eigenvectors of the UL channel covariance matrices are used
when computing the precoders. The transformations of the UL
covariance to the DL version are not performed, which further
reduces the computational complexity for the base station. It
is interesting to note that even with such non-ideal channel
covariance matrices, the degradation of the performance is
tolerable. Moreover, the Rel-16 codebook with 64 feedback
coefficients are also plotted as a benchmark. One may observe
that the PCR-E scheme with much fewer feedback coefficients,
i.e., 16 (Na = 8), is comparable with this benchmark.

Then, the CDL-D model is considered and the performance
curves are shown in Fig. 7. Since there are fewer paths and one
of them is an LoS component in CDL-D, the channel matrix
has more sparsity in terms of angles and delays compared
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Fig. 7. The spectral efficiency vs. SNR, Nt = 64, Na = 20, CDL-D model.

to CDL-A. It leads to higher correlation between antennas
and subcarriers, and therefore makes it possible to reconstruct
the DL channel with fewer feedback coefficients. As we may
observe in the figure, the PCR scheme with Na = 20 is already
very close to the perfect CSI setting.

0 5 10 15 20 25 30

SNR [dB]

10

20

30

40

50

60

70

S
pe

ct
ra

l E
ffi

ci
en

cy
 [b

ps
/H

z]

Rel-16 codebook
PCR-D codebook
PCR-E codebook
PCR codebook
Perfect CSI

Fig. 8. The spectral efficiency vs. SNR, Nt = 32, Na = 32, 8 UEs,
COST-2100 model.

Finally, the proposed schemes are evaluated under the
COST-2100 channel model [25] in Fig. 8. The BS antenna
topology is ULA with 32 antenna elements, and all 8 UEs have
single antenna. The bandwidth is 20 MHz, which contains 51
RBs. The total number of feedback coefficients is 32 for all the
schemes. One may observe that the proposed PCR and PCR-E
codebooks outperforms the Enhanced Type II codebook under
COST-2100 channel model.

VII. CONCLUSIONS

In this paper we dealt with the challenge of CSI acquisition
in FDD massive MIMO. We first derived the ranks of the chan-
nel covariance matrices of the wideband large-scale MIMO
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channel for a given angle and delay distribution. The closed-
form expression of the rank indicates that a low-rankness prop-
erty is always valid for a UPA with half-wavelength or smaller
antenna spacing, regardless of the richness of the scattering
environment. We then proposed a PCR codebook scheme
which exploits such a property and the partial reciprocity of
UL/DL channels. It outperforms the latest 5G codebook of
Rel-16 at performance, UE complexity, feedback overhead,
received SNR of CSI-RS, and generality. We also proposed
two alternatives named PCR-E and PCR-D codebook schemes,
aiming at further reducing the complexity at the BS side at the
cost of mild performance loss. Simulation results show that the
proposed methods are very close to the ideal case of perfect
CSI even with only tens of scalar feedback coefficients for the
whole wideband massive MIMO channel.

APPENDIX

A. Proof of Theorem 1:

In order to prove Theorem 1, we need to first prove that non-
overlapping angular supports lead to additive dimensionality
of the signal subspace of the spatial channel covariance matrix.

Lemma 1 Consider two angular supports ζ1 and ζ2. The
boundaries are defined as

ζ1 =
{

(θ, ϕ)|θ ∈ [θmin
1 , θmax

1 ], ϕ ∈ [ϕmin
1 (θ), ϕmax

1 (θ)]
}
, (71)

ζ2 =
{

(θ, ϕ)|θ ∈ [θmin
2 , θmax

2 ], ϕ ∈ [ϕmin
2 (θ), ϕmax

2 (θ)]
}
. (72)

The spatial covariance matrices corresponding to the angular
supports are denoted as R1 and R2 respectively. Define
the linear space spanned by the 2-D steering vectors with
corresponding angles inside the angular support ζ as

B,span
{

a(θ, ϕ)√
NhNv

, (θ, ϕ) ∈ ζ
}
. (73)

If the two angular supports are non-overlapping, i.e., ζ1 ∩
ζ2 = ∅, then the null space of R1 includes the linear space
B2 when Nh and Nv are large:

null(R1) ⊃ B2, as Nh, Nv →∞. (74)

Proof: We denote the joint angular power spectrum of the
multipath as pi(θ, ϕ), which is finite and uniformly non-zero
inside the angular support ζi, for i = 1, 2. Without loss of
generality, we normalize the total power to 1, such that(∫ θmax

i

θmin
i

∫ ϕmax
i (θ)

ϕmin
i (θ)

pi(θ, ϕ)dϕdθ

)
= 1. (75)

For ease of exposition, we use pi to represent pi(θ, ϕ) in the
proof below.

The covariance matrix corresponding to the angular support
ζi, i = 1, 2 is written as

Ri = E{a(θi, ϕi)(a(θi, ϕi))
H} (76)

=

∫ θmax
i

θmin
i

∫ ϕmax
i (θ)

ϕmin
i (θ)

a(θ, ϕ)(a(θ, ϕ))
H
pidϕdθ. (77)

Taking an arbitrary angle (θ2, ϕ2) ∈ ζ2, then we have

(a(θ2, ϕ2))
H

√
NhNv

R1
a(θ2, ϕ2)√
NhNv

=
1

NhNv

∫∫
p1(a(θ2, ϕ2))

Ha(θ, ϕ)(a(θ, ϕ))Ha(θ2, ϕ2)dϕdθ

=
1

NhNv

∫∫
p1

(
(ah(θ2, ϕ2)⊗ av(θ2))

H (ah(θ, ϕ)⊗ av(θ))
)2

dϕdθ

=
1

NhNv

∫∫
p1

(
(ah(θ2, ϕ2))

H

ah(θ, ϕ)(av(θ2))
Hav(θ)

)2

dϕdθ

=
1

NhNv

∫∫
p1

((
Nh−1∑
n=0

e
j2πnDh

λ
(sin(θ) sin(ϕ)−sin(θ2) sin(ϕ2))

)
(
Nv−1∑
n=0

e
j2πnDv

λ
(cos(θ)−cos(θ2))

))2

dϕdθ. (78)

Since the angle pair (θ2, ϕ2) is outside the boundary
of the double integral ζ1, we readily have that the terms
sin(θ) sin(ϕ)− sin(θ2) sin(ϕ2) and (cos(θ)− cos(θ2)) never
take the value zero at the same time. Thus the expression
(78) converges to zero as Nh and Nv go to infinity. Therefore
Lemma 1 is proved.

Note that the linear space Bi defined in Eq. (73) is equiv-
alent to the signal subspace of the spatial channel covariance
matrix Ri, i = 1, 2, i.e.,

Bi = span
{

u(i)
n : n = 1, · · · , ri

}
, (79)

where u
(i)
n is the eigenvector of Ri corresponding to its

n-th greatest eigenvalue and ri denotes the rank of Ri.
According to Lemma 1, the signal subspaces of R1 and R2

are asymptotically orthogonal when Nh and Nv are large:

B1⊥B2, as Nh, Nv →∞. (80)

We define the angular support ζu as the union of ζ1 and ζ2:

ζu,ζ1 ∪ ζ2, (81)

and the spatial channel covariance matrix Ru corresponding to
the multipath angular support ζu. Then the rank of the spatial
channel covariance Ru, denoted by ru, satisfies

ru = r1 + r2, as Nh, Nv →∞. (82)

The above observation implies that the rank of the spatial
channel covariance matrix can be computed by summing up
the contributions of all non-overlapping angular sub-supports
that forms the entire range. More precisely, consider a spatial
covariance Ru of a certain user that has an angular support
ζu. Such a support is composed of K non-overlapping sub-
supports:

ζu = ζ1 ∪ ζ2 · · · ∪ ζK , (83)
ζi ∩ ζj = ∅, i, j,= 1, 2, · · · ,K,∀i 6= j. (84)

Then the rank of Ru yields:

ru =

K∑
i=1

ri, as Nh, Nv →∞, (85)

where ri is the rank of the spatial covariance matrix with
angular support ζi. Therefore, finding the rank of the spatial
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covariance matrix is equivalent to computing the size of the
angular support ζu, which could be done by a double integral
over the boundary of the angular support, that is

lim
Nh,Nv→∞

rank{R(S)}
NhNv

(86)

=

cos(θmin)∫
cos(θmax)

sin(ϕmax(θ))∫
sin(ϕmin(θ))

DhDv

λ2
sin(θ)d (sin(ϕ)) d (cos(θ))

=
DhDv

λ2

θmax∫
θmin

ϕmax(θ)∫
ϕmin(θ)

(sin(θ))
2

cos(ϕ)dϕdθ

=
DhDv

λ2

θmax∫
θmin

sin2(θ)
(
sin (ϕmax(θ))− sin

(
ϕmin(θ)

))
dθ.

Thus, Theorem 1 is proved.

B. Proof of Theorem 2:

Based on the additive dimensionality of the signal subspaces
proved in Lemma 1, we only derive the rank of the joint
spatial-frequency channel covariance matrix R(J)

q with a certain
sub-support ηq . In a way similar to prove Theorem 1, we
may compute the rank by a triple integral over the three-
dimensional range of the sub-support.

lim
Nh,Nv,Nf→∞

rank{R(J)
q }

NhNvNf
= (87)

DhDv∆f

λ2

cos(θmin)∫
cos(θmax)

sin(ϕmax(θ))∫
sin(ϕmin(θ))

τmax(θ,ϕ)∫
τmin(θ,ϕ)

sin(θ)

d (sin(ϕ)) d (cos(θ)) dτ

=
DhDv∆f

λ2

θmax
q∫

θmin
q

ϕmax
q (θ)∫

ϕmin
q (θ)

τmax
q (θ,ϕ)∫

τmin
q (θ,ϕ)

sin2(θ) cos(ϕ)dϕdθdτ

=
DhDv∆f

λ2

θmax
q∫

θmin
q

ϕmax
q (θ)∫

ϕmin
q (θ)

sin2(θ) cos(ϕ)

(
τmax
q (θ, ϕ)− τmin

q (θ, ϕ)
)
dϕdθ

Thus, Theorem 2 is proved.

C. Proof of Theorem 3:

The operation of the joint spatial-frequency beamforming
with Na dominant eigen-vectors of R(J) is equivalent to the
following matrix multiplication

cs = (U(J)
s )Hh, (88)

where the columns of U(J)
s are the dominant eigenvectors

corresponding to the Na largest eigenvalues of R(J):

U(J)
s =

[
u

(J)
1 u

(J)
2 · · · u

(J)
Na

]
, (89)

where cs ∈ CNa×1 are the coefficients that UE feeds back to
the base station. Thus the reconstructed CSI at the base station
side is

ĥ = U(J)
s (U(J)

s )Hh. (90)

The expression above is equivalent to projecting the vector h
to the column space of U(J)

s . As proved in Theorem 2, the rank
of R(J), denoted by r(J), is no larger than ρ(J)NvNhNf . We
have that h lives in the signal subspace of R(J):

h ∈ span
{

u(J)
n : n = 1, · · · , r(J)

}
. (91)

As a result, when the number of feedback coefficients Na ≥
r(J), we have

lim
Nh,Nv,Nf→∞

∥∥∥ĥ− h
∥∥∥2

F

‖h‖2F
= 0, (92)

which proves Theorem 3.
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