
Pyfhel: PYthon For Homomorphic Encryption Libraries
Alberto Ibarrondo
ibarrond@eurecom.fr

IDEMIA & EURECOM, France

Alexander Viand
alexander.viand@inf.ethz.ch
ETH Zurich, Switzerland

ABSTRACT
Fully Homomorphic Encryption (FHE) allows private computation
over encrypted data, disclosing neither the inputs, intermediate
values nor results. Thanks to recent advances, FHE has become
feasible for a wide range of applications, resulting in an explosion of
interest in the topic and ground-breaking real-world deployments.
Given the increasing presence of FHE beyond the core academic
community, there is increasing demand for easier access to FHE
for wider audiences. Efficient implementations of FHE schemes are
mostly written in high-performance languages like C++, posing a
high entry barrier to novice users. We need to bring FHE to the
(higher-level) languages and ecosystems non-experts are already fa-
miliar with, such as Python, the de-facto standard language of data
science and machine learning. We achieve this through wrapping
existing FHE implementations in Python, providing one-click instal-
lation and convenience in addition to a significantly higher-level
API. In contrast to other similar works, Pyfhel goes beyond merely
exposing the underlying API, adding a carefully designed abstrac-
tion layer that feels at home in Python. In this paper, we present
Pyfhel, introduce its design and usage, and highlight how its unique
support for accessing low-level features through a high-level API
makes it an ideal teaching tool for lectures on FHE.

CCS CONCEPTS
• Security and privacy → Usability in security and privacy;
Public key encryption.

KEYWORDS
Fully Homomorphic Encryption; FHE; Python; Abstraction

ACM Reference Format:
Alberto Ibarrondo andAlexander Viand. 2021. Pyfhel: PYthon For Homomor-
phic Encryption Libraries. In Proceedings of the 9th Workshop on Encrypted
Computing & Applied Homomorphic Cryptography (WAHC ’21), November
15, 2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3474366.3486923

1 INTRODUCTION
Misuse of private data not only harms users, but also threatens the
adoption of new technological innovations — e.g., the risks and
complexities associated with sharing medical data are widely con-
sidered as a barrier to advances in personalized medicine. Today,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WAHC ’21, November 15, 2021, Virtual Event, Republic of Korea.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8656-2/21/11.
https://doi.org/10.1145/3474366.3486923

industry best practices require that service providers protect per-
sonal data in-transit and when at rest using encryption. However,
this data must be decrypted before being used for computations,
requiring the service provider to have access to the keying material.
This exposes the data to multiple threats, including abuse by ma-
licious actors. Therefore, demand has increased for solutions that
can protect personal data while preserving the utility of services.

Fully Homomorphic Encryption (FHE) allows a third party to per-
form computations on encrypted data without learning the inputs
or the computation results. In contrast to partially homomorphic en-
cryption, which supports only one type of arithmetic operation (e.g.
only additions), fully homomorphic encryption allows encrypted
multiplications and additions, theoretically allowing private compu-
tation of arbitrary functions. This concept was conceived by Rivest
et al. in the 1970s, but it remained unrealized until Craig Gentry
presented a first feasible FHE scheme in 2009. Since then, FHE has
gone from theoretical breakthrough to practical deployment, drop-
ping the initial 30 minutes required to compute a multiplication
between two encrypted values down to less than 20 milliseconds.
Even then, FHE multiplications are still around seven orders of mag-
nitude slower than native CPU integer multiplication instructions.
Therefore, FHE requires, like other secure computation solutions,
that applications be specifically adapted and optimized.

FHE is starting to be deployed in widely used mainstream soft-
ware. For example,Microsoft’s Edge browser uses FHE in its privacy-
preserving password monitor [8, 9, 23], which compares users’
login information to known leaks without revealing users’ sensi-
tive information to the service. In the medical domain, there has
been significant work on using FHE to enable large-scale genome-
wide association studies (GWAS) [3, 25]. In the domain of machine
learning, FHE has been applied to train logistic regression [6, 24]
models and to run privacy-preserving inference for neural net-
works [7, 14, 15, 20]. FHE-based secure computation solutions have
generated significant commercial interest and Gartner projects [16]
that “by 2025, at least 20% of companies will have a budget for
projects that include fully homomorphic encryption.”

Given the increasing presence of FHE beyond the core academic
community, we must provide easy access to FHE for a wider audi-
ence. While there exists a variety of high-quality open-source im-
plementations of different modern FHE schemes [12, 13, 21, 27, 30],
these are mostly written in C++ or other high-performance systems
languages, in a common approach for cryptographic code seek-
ing maximal performance for heavy-weight operations. However,
languages like C++ are significantly less popular [31], especially
outside of the core computer science community, than higher-level
languages like Python, which has established itself as the de-facto
standard language of data science and especially machine learning.

In the interest of promoting FHE among less technical users, we
need to develop wrappers, which expose interfaces for the under-
lying cryptographic libraries in different languages, e.g., Python.

https://orcid.org/0000-0003-4079-4127
https://orcid.org/0000-0001-5452-1432
https://doi.org/10.1145/3474366.3486923
https://doi.org/10.1145/3474366.3486923

WAHC ’21, November 15, 2021, Virtual Event, Republic of Korea. Alberto Ibarrondo and Alexander Viand

Beyond merely providing a way to access, e.g., functionalities from
a C++ library in a different language, well-written wrappers should
provide idiomatic ways to use the code, respecting best practices
and conventions of the target language. This results in code that
feels familiar to developers and allows them to correctly and effi-
ciently use the library. Additionally, these wrappers should ideally
abstract away the sometimes complex installation process of these
libraries. Most existing FHE implementations require, or strongly
benefit from, dependencies which need to be installed through
properly configured toolchains to make the library work properly.
Wrappers that handle this setup and provide an automatic one-click
installation greatly improve the practical accessibility of FHE.

Contributions. With Pyfhel, we provide a Python wrapper for
the Microsoft SEAL [30] library, extendable to other C++ libraries,
that goes beyond merely exposing the underlying API by adding a
carefully designed abstraction layer that feels at home in Python.
Pyfhel offers (i) one-click installation, including the underlying
libraries, (ii) a high-level Python-first abstraction layer that makes
working with FHE significantly easier, including (iii) high-level
APIs for low-level functionalities not generally exposed. We show
how Pyfhel can not only assist developers in exploring FHE, but
also how it is specifically well suited to use in FHE education.

Related Work. There already exists a plethora of Python wrap-
pers for FHE libraries, many of them unmaintained and outdated.
Most rely on automatic C++wrapping tools like pybind11 [2, 32] or
Boost.Python [27], which requires large parts of the wrapper logic
to be written in C++ to preserve performance. PySEAL [32] is such
a no-longer-maintained pybind11 wrapper. Many require the user
to compile the underlying library themselves, using a Unix-only
toolchain, like the more recent SEAL-Python [22]. TenSEAL [2],
which appeared several years after the initial release of Pyfhel,
shows the most promise. It is pybind11-based and features a one-
click setup, but focuses mostly on high level Machine Learning and
tensor operations. Other approaches (e.g., pyFHE [17]) implement
schemes directly in Python, at the cost of significantly slower oper-
ations. Finally, FHE libraries have also experimented with Python
interfaces, including PALISADE[27], and the EVA compiler [15]
for SEAL. However, both still require non-Python build toolchains.
While TenSEAL and EVA are great for novice users, they do not
offer proper access to the underlying data structures, which is re-
quired to, e.g., understand ciphertext maintenance in educational
settings. We argue that, just as a healthy FHE ecosystem requires
different libraries implementing the same schemes, it also benefits
from different ways to expose this functionality.

2 PRELIMINARIES
A homomorphic encryption scheme allows computation over the
ciphertexts that results in ciphertexts encrypting the result of the
equivalent plaintext operation. An additively homomorphic scheme
holds Dec (Enc(𝑎) ⊕ Enc(𝑏)) = Dec (Enc(𝑎 + 𝑏)), where + is the
addition operation over plaintexts, and ⊕ is an operation over
the ciphertexts. Similarly, a multiplicatively homomorphic encryp-
tion scheme supports Dec (Enc(𝑎) ⊗ Enc(𝑏)) = Dec (Enc(𝑎 × 𝑏))
where × is the multiplication operation over the plaintexts and ⊗
is an operation over the ciphertexts. Fully homomorphic encryp-
tion, i.e., encryption that is both additively and multiplicatively

homomorphic, was conceptually proposed equally early [29] but
the first feasible FHE scheme was developed only in 2009 [19]. Be-
cause multiplication and addition can emulate AND and OR gates,
respectively, over binary plaintexts, fully homomorphic encryption
allows arbitrary computations to be performed.

2.1 FHE Schemes
Virtually all modern FHE schemes are based on (variants of) the
Learning with Errors (LWE) hardness assumption [28] and rely
on a small amount of noise added during encryption to guaran-
tee security. During homomorphic operations, this noise grows.
This effect is negligible for additions, but very significant for multi-
plications. Should the noise grow too large, decryption would no
longer produce correct results. Theoretically, a technique known
as bootstrapping can be used to homomorphically reset the noise in
a ciphertext. However, this can be computationally expensive and
therefore is not frequently used in practice. Instead, schemes are in-
stantiated with parameters large enough to allow the computation
to complete without requiring bootstrapping. In the following, we
briefly introduce the Brakerski/Fan-Vercauteren (BFV) [4, 18] and
Cheon-Kim-Kim-Song (CKKS) [11] schemes implemented in the
SEAL library [30]. We omit formal definitions, referring the reader
to the original papers for more detail.

BFV. The Brakerski/Fan-Vercauteren scheme [4, 18] features pow-
erful Single Instruction Multiple Data (SIMD) parallelism, making
it highly efficient for applications working over larger amounts
of data. Messages are vectors of integers ®𝑚 ∈ Z𝑛 which are en-
coded into plaintext polynomials of degree 𝑛. Simply encoding each
vector element into a coefficient would lead to issues during ho-
momorphic multiplications, and instead the vectors are mapped to
polynomials using the Chinese Remainder Theorem (CRT). This
process is generally transparent to the user, who can simply treat ci-
phertexts as encrypted vectors of integers. Homomorphic addition
and multiplication operate element-wise, giving rise to the SIMD
parallelism. Additionally, rotation operations cyclically rotate the
elements inside the vectors, allowing elements originally stored at
different indices (also known as “slots") to interact.

While BFV supports bootstrapping in theory, it is slow and thus
not commonly used. Instead, the scheme is generally instantiated
with parameters large enough to handle the noise growth. Since
multiplications incur in high noise growth, its number (the mul-
tiplicative depth) should be as small as possible. Even then, an op-
eration known as relinearizaton, which reshapes the ciphertext
without changing the underlying message, should be used between
multiplications to help limit noise growth and ciphertext size.

CKKS. The Cheon-Kim-Kim-Song scheme [11] implements ap-
proximate homomorphic encryption, i.e., Dec (Enc (𝑚)) ≈ 𝑚. In
traditional FHE schemes, should the noise grow large enough to
affect the message, this is considered an invalid ciphertext and de-
cryption fails. In CKKS, in contrast, noise that ends up overlapping
the least significant bits of a message is considered to be part of the
message, leading to the approximate nature of the scheme.

CKKS is designed to be used with vectors of messages ®𝑚 ∈
R𝑛 , i.e., fractional values, and encoding applies a scaling factor, i.e.
computes ⌊𝑚 ∗ Δ⌉, where Δ is a large integer (e.g., 230). While this
type of encoding can be used in other schemes, too, this quickly

Pyfhel: PYthon For Homomorphic Encryption Libraries WAHC ’21, November 15, 2021, Virtual Event, Republic of Korea.

Ciphertext

Central object

𝐻𝐸. 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝐻𝐸. 𝑎𝑑𝑑 𝐻𝐸. 𝑑𝑒𝑐𝑟𝑦𝑝𝑡

PublicKeySecretKey

Context 𝐻𝐸. 𝑘𝑒𝑦𝑔𝑒𝑛𝐻𝐸. 𝑠𝑒𝑡𝑢𝑝parameters

valueCiphertext

EvalKey

Ciphertext
Ciphertext

Ciphertextvalue

𝐻𝐸. 𝑠𝑒𝑡𝑢𝑝parameters Context𝐻𝐸. 𝑠𝑒𝑡𝑢𝑝

𝐻𝐸. 𝑠𝑒𝑡𝑢𝑝𝐻𝐸. 𝑒𝑛𝑐𝑟𝑦𝑝𝑡

𝐻𝐸. 𝑠𝑒𝑡𝑢𝑝𝐻𝐸. 𝑘𝑒𝑦𝑔𝑒𝑛

𝐻𝐸. 𝑠𝑒𝑡𝑢𝑝𝐻𝐸. 𝑎𝑑𝑑

𝐻𝐸. 𝑠𝑒𝑡𝑢𝑝𝐻𝐸. 𝑑𝑒𝑐𝑟𝑦𝑝𝑡

SecretKey
PublicKey

Context

PublicKeyvalue Ciphertext

EvalKey

CiphertextCiphertext
Ciphertext

EvalKey

Ciphertext
SecretKey

value

Figure 1: Example of centralized (top, ours) vs functional de-
sign (bottom) approaches in FHE scheme APIs

leads to issue with subsequent multiplications, as the scale will
grow to Δ2, Δ3, etc. with each multiplication. Since Δ is large, this
will quickly lead to the encoded message being reduced modulo
𝑞, producing incorrect results. CKKS introduces a technique to
combat this growth, introducing the ability to rescale a ciphertext,
essentially homomorphically dividing it by Δ.

While the underlying design of CKKS is closer to the Brakerski-
Gentry-Vaikuntanathan (BGV) scheme [5] than to BFV, using CKKS
is very similar from a developer perspective: homomorphic opera-
tions offer SIMD parallelism, rotations are available, and relineariza-
tion should be used after ciphertext-ciphertext multiplications.

3 DESIGN
3.1 Design principles
The design of Pyfhel adheres to several key principles. In terms of
programming language we rely on C++ to preserve the high effi-
ciency of backend libraries, and Cython [1] (a superset of C/C++
and Python) to bridge the gap with Python, fusing C/C++ perfor-
mance with Python-like expressiveness and dynamic typing. Pyfhel
features a one-click setup that automatically installs all backends
with the library, requiring no knowledge on compilation toolchains:
pip install Pyfhel # Backends inside!

At a high level we opt for a centralized approach (Figure 1 (top)),
where a single central class holds most of the functionalities and
keeps track of the objects that rarely change after setup, includ-
ing contexts and keys. Whereas the functional approach (Figure 1
(bottom)) common in FHE implementations requires the user to
manually understand and keep track of the appropriate context
and order of API calls, the centralized design style of Pyfhel un-
derstands and watches the global state of the FHE scheme and can
raise informative errors to guide users towards the proper way to
use the library, or even infer the missing pieces (e.g., generating a
rotation key if not present when performing rotation).

Pyfhel is also designed to cleanly expose the low-level polyno-
mials that make up keys and plaintexts/ciphertexts. While possible

Python Classes

C++ Abstraction

Backend Libraries

PYFHEL
Full FHE functionality

PYCTXT
Ciphertext
wrapper

PYPTXT
Plaintext
wrapper•Setup & Keygen

•Wrapped encode & encrypt.
•Wrapped operations
•Numpy APIs
•Serialization
•Context & key management

•Op. overloads

•Poly indexing

* WIP

AFHEL•Safe memory management
•Uniform backend APIs

•Uniform common errors
•Functional abstraction
•Safe operations
•Safe polynomial access

SEAL •Ciphertexts
•Encoded Plaintexts
•Internal Polynomials
•Serialization

•BFV objs & functions
•CKKS objs & functions
•Keys & Public parameters

P
A
LISA

D
E*

PYPOLY
Internal polynomial

wrapper

•Op. overloads
•Poly conversion

Figure 2: Pyfhel high level layered architecture

in the underlying libraries, this is generally not part of the "porce-
lain" API intended for developers, but rather low-level "plumbing"
that is documented sparingly (if at all). For example, SEAL uses a
combination of custom iterator and pointer classes to deal with the
underlying polynomials, manually tracking the number and sizes
of the individual data elements. Pyfhel instead abstracts it away via
a high-level interface similar to that used for plain- and ciphertexts.

3.2 Architecture
In order to realize these design principles, Pyfhel uses a layered
architecture consisting of three key layers, as seen in Figure 2.

(1) Backend libraries: The unmodified, up-to-date FHE libraries
generally written in C++, automatically loaded from their
official sources. These expose homomorphic operations, keys
and context parameters, ciphertexts & encoded plaintexts,
and serialization features. Using these correctly requires
managing significant amounts of state information in the
application code. Pyfhel currently supports SEAL [30], with
work on PALISADE [27] under way.

(2) Afhel: Our Abstraction for Homomorphic Encryption Libs
acts as a safe and uniform C++ encapsulation of different
backend APIs. In addition, it manages memory, offering
memory-safe versions of low-level APIs, and tracks the state
required to interact with the libraries properly. The encap-
sulation and abstraction offered by Afhel is key in enabling
us to build clean and easy-to-use interfaces.

(3) Python Classes: Pyfhel’s python classes expose all FHE func-
tionalities in a pythonic way, allowing users to work in a
familiar setting, writing code that often looks like pseudo-
code. The Pyfhel class centralizes a variety of functionalities,
including state management, tracking keys and context re-
quired for operations on ciphertexts/plaintexts. The PyCtxt

and PyPtxt classes wrap ciphertexts and plaintexts respec-
tively, allowing users to express arithmetic expressions sim-
ply using operator overloads. These classes also offer access

WAHC ’21, November 15, 2021, Virtual Event, Republic of Korea. Alberto Ibarrondo and Alexander Viand

to the underying polynomials via simple indexing. The poly-
nomials are wrapped by the PyPoly class which offers similar
arithmetic operators and allows seamless conversion to and
from arrays/lists of coefficients.

4 USING PYFHEL
In this section, we demonstrate how to use Pyfhel through a series of
examples. Extended versions and additional examples documenting
further features are available in the Pyfhel repository 1.

4.1 Setup and Parameters
All computations begin by creating a Pyfhel object, initializing a
scheme with chosen parameters and generating/loading keys.
from Pyfhel import PyCtxt , Pyfhel , PyPtxt

HE = Pyfhel ()

HE.contextGen(scheme='BFV', n=16384 , p=65537)

HE.keyGen ()

In terms of parameters, 𝑛 (polynomial degree) determines the
number of slots the plaintext vectors have (𝑛 in BFV and 𝑛/2 in
CKKS). Meanwhile, 𝑝 (plaintext modulus) determines the modulus
of the plaintext space in BFV, which determines how large en-
crypted values can get before wrap-around occurs (e.g., 65537 = 216
which is equivalent to working with 16-bit unsigned integers). One
could also provide the ciphertext modulus 𝑞, which determines how
much noise can accumulate before decryption fails. Larger 𝑞 can
tolerate more noise, and therefore more complex computations, but
also lead to slower homomorphic operations and weaker security
if 𝑛 stays fixed. For BFV, 𝑞 is set using the largest value that still
achieves 128/192/256-bit security for the given polynomial degree
(parameter 𝑠𝑒𝑐). Instead of providing 𝑞, users working with CKKS
must provide a modulus chain of prime sizes 𝑞𝑖 (e.g., qs=[30,30,30,

30,30]). Although not usually required, it is possible to define other
setup parameters, as described in the Pyfhel documentation, for
expert users seeking control over lower-level aspects.

4.2 Encryption & Decryption
In order to encrypt messages, the values must first be encoded into
plaintext objects (PyPtxt). Similar, after decryption, the resulting
plaintext must be decoded. Both BFV and CKKS internally feature
vector-like plaintext spaces. Pyfhel is able to encode a variety of
different datatypes, including lists/numpy arrays and single values,
where Pyfhel repeats the value until all slots are filled.
integer = 45

int_ptxt = HE.encode(integer) # PyPtxt [45, 45 ,...]

int_ctxt = HE.encrypt(int_ptxt) # PyCtxt

import numpy as np

np_array = np.array([6, 5, 4, 3, 2, 1],dtype=np.int64)

array_ptxt = HE.encode(np_array) # Accepts list too

array_ctxt = HE.encrypt(array_ptxt) # PyCtxt

Decrypt and Decode

ptxt_dec = HE.decrypt(int_ctxt) # PyPtxt

integer_dec = HE.decode(ptxt_dec) # 45

One -step encryption/decryption

array_ctxt = HE.encrypt(np_array)

1https://github.com/ibarrond/Pyfhel/tree/master/examples

array_dec = HE.decrypt(array_ctxt , decode=True)

4.3 Homomorphic Operations
The core operations of a homomorphic scheme are the addition
and multiplication operation. However, there are a variety of other
operations, including ciphertext maintenance operations like re-
linearization and rescaling. In addition to ciphertext-ciphertext
operations, FHE schmes also offer ciphertext-plaintext operations
that are faster and lead to noise growth. Pyfhel provides operator
overloads for arithmetic operations (+,−, ∗ and + =,− =, ∗ = for in-
place operations), which automatically select the appropriate type
of operation depending on the operands. One can also use values
directly in computations, with Pyfhel automatically encoding them
into suitable plaintext objects.
ptxt_a = HE.encode(-12)

ptxt_b = HE.encode(34)

ctxt_a = HE.encrypt(56)

ctxt_b = HE.encrypt(-78)

ctxt -ctxt operations

ctxt_s = ctxt_a + ctxt_b # or ctxt_a += ctxt_b (in place)

ctxt_m = ctxt_a * ctxt_b

ctxt -ptxt operations

ctxt_s_p = ptxt_a + ctxt_b # or 12 + ctxt_b

ctxt_m_p = ctxt_a * ptxt_b # or ctxt_a * 34

maintenance operations

HE.relinKeyGen ()

HE.relinearize(ctxt_s) # requires relinKey

rotations (length n)

ctxt_c = HE.encrypt([1,2,3,4])

ctxt_rotated = ctxt_c << 1 # [2,3,4,0,...,0,1]

4.4 IO & Serialization
Pyfhel has full support for serialization, which is not only useful to
store generated keys but can also be used to realize true client-server
computations. In the following example, we create two independent
Pyfhel instances, one representing the client and one representing
the server. Only the client-object has access to the secret keys and
can decrypt messages. For simplicity, we simulate communication
using the file system, but this could easily be exchanged for a real
communication channel.
CLIENT

HE = Pyfhel ()

HE.contextGen(scheme='BFV', n=4096 , p=65537)

HE.keyGen () # Generates public and private key

Save context and public key only

HE.savepublicKey("mypk.pk")

HE.saveContext("mycontext.con")

Encrypt and save inputs

ctxt_a = HE.encrypt(15) # implicit encoding

ctxt_b = HE.encrypt(25)

ctxt_a.to_file("ctxt_a.ctxt")

ctxt_b.to_file("ctxt_b.ctxt")

SERVER

HE_server = Pyfhel ()

HE_server.restoreContext("mycontext.con")

HE_server.restorepublicKey("mypk.pk") # no secret key

Load ciphertexts

https://github.com/ibarrond/Pyfhel/tree/master/examples

Pyfhel: PYthon For Homomorphic Encryption Libraries WAHC ’21, November 15, 2021, Virtual Event, Republic of Korea.

ca = PyCtxt(pyfhel=HE_server , fileName="ctxt_a.ctxt")

cb = PyCtxt(pyfhel=HE_server , fileName="ctxt_b.ctxt")

Compute homomorphically and send result

cr = (ca + cb) * 2

cr.to_file("cr.ctxt")

CLIENT

Load and decrypt result

c_res = PyCtxt(pyfhel=HE, fileName="cr.ctxt")

print(c_res.decrypt ())

5 USING PYFHEL IN EDUCATION
Pyfhel can be used as an excellent tool for integrating FHE into
teaching. Due to its one-click-install, it is much more feasible to
incorporate Pyfhel coursework into a curriculum than with the
underlying C++ libraries. By providing abstractions, syntactic sugar
(e.g., operator overloads) and other conveniences, Pyfhel is consid-
erably more concise and allows students to focus on the task at hand.
Beyond providing ease and accessibility, Pyfhel includes access to
low-level features to enable teaching. Specifically, Pyfhel allows
users to easily access the underlying polynomials that actually
make up plaintexts and ciphertexts. Working with the underlying
polynomials is not generally necessary to employ FHE, but it can be
helpful in teaching situations to be able to dissect ciphertexts and
study elements individually. In the following, we present two case
studies for using Pyfhel in teaching. One focuses on the challenges
of managing scales in CKKS, while the other uses the polynomial
API in Pyfhel to study a key recovery attack on CKKS.

5.1 Exploring common CKKS pitfalls
Implementing applications in FHE can be challenging for novice
users, e.g.,due to failing to properly manage scaling factors through-
out a CKKS-based computation. While higher-level tools and com-
pilers like EVA [15] increasingly provide automated solutions for
these challenges, exploring them in a teaching setting continues to
have value, since it requires transferring theoretical information
about the scheme to practical application.

We show how to use Pyfhel to explore several pitfalls in working
with CKKS, using the computation ((𝑥 + 𝑦) ∗ (𝑧 ∗ 5)) + 10, where
𝑥,𝑦 and 𝑧 are (secret) inputs. First, we set up context and keys:
from Pyfhel import PyCtxt , Pyfhel , PyPtxt

HE = Pyfhel ()

HE.contextGen(scheme='CKKS', n=16384 ,qs=[30,30,30,30 ,30])

HE.keyGen ()

Now we can perform the ciphertext-ciphertext addition 𝑥 + 𝑦 and
the ciphertext-plaintext multiplication 𝑧 ∗ 5 before performing the
ciphertext-ciphertext multiplication between those two results.
ctxt_x = HE.encrypt(3.1, scale=2 ** 30) # implicit encode

ctxt_y = HE.encrypt(4.1, scale=2 ** 30)

ctxt_z = HE.encrypt(5.9, scale=2 ** 30)

ctxtSum = ctxt_x + ctxt_y

ctxtProd = ctxt_z * 5

ctxt_t = ctxtSum * ctxtProd

Next, we explicitly encode the constant 10 the same as we en-
coded the inputs 𝑥,𝑦 and 𝑧. This will lead to an error since the
scale of ctxtProd has increased to 260 after the first multiplication,
and multiplying it with ctxtSum which is still at scale 230 (addition

does not change scale) causes ctxt_t to have scale 290. Since, in
fixed-point arithmetic, addition can only performed over numbers
represented at the same scale, the addition will fail.
ptxt_ten = HE.encode(10, scale=2 ** 30)

ctxt_result = ctxt_t + ptxt_ten #error: mismatched scales

Of course, this can be resolved by encoding 10 at the correct scale,
i.e., setting ptxt_ten=HE.encode(10, scale=2**90). Alternatively, we
can use ctxt_result=ctxt_t+10 and Pyfhel will automatically deduce
the correct scale. However, if instead of a constant we have an
input 𝑑 that the user encrypted at the same scale as all other inputs,
this solution no longer applies. Instead, we must use rescaling to
homomorphically decrease the scale of ctxt_t to the initial scale. In
CKKS, each rescaling reduces the scale down by one “step" (hereΔ =

230), so we need to perform two consecutive rescaling operations.
ptxt_d = HE.encode(10, 2 ** 30)

ctxt_d = HE.encrypt(ptxt_d)

HE.rescale_to_next(ctxt_t) # 2^90 -> 2^60

HE.rescale_to_next(ctxt_t) # 2^60 -> 2^30

Surprisingly, multiplying ctxt_t and ctxt_d will still fail, due
to how efficient versions of CKKS implement rescaling [10]. In
essence, rescaling also decreases the ciphertext modulus, and we
need to decrease the ciphertext modulus of ctxt_d to match.
HE.mod_switch_to_next(ctxt_d) # match first rescale

HE.mod_switch_to_next(ctxt_d) # match second rescale

Now, trying to compute ctxt_t+ctxt_d will no longer produce an
error about mismatched moduli. However, even though we rescaled,
it still gives an error about mismatched scales. Due to subtleties
in the the way rescaling works, instead of dividing the scale by
exactly the step size (230), it divides the scale by a prime number
very close, but not exactly equal to, the step size. Therefore, ctxt_t

is now actually at a scale of, e.g., 229.86.. . Since CKKS is inherently
approximate to begin with, we can ignore this difference and simply
accumulate it into the overall approximation error. In order to do
this, we manually override the scaling factor used, which finally
allows the addition to complete successfully.
ctxt_t.set_scale(2** 30)

ctxt_result = ctxt_t + ctxt_d # final result

5.2 Implementing Key-Recovery for CKKS
Allowing low-level access to polynomials enables implementing
a variety of advanced techniques or attacks, including the CKKS
key recovery attack by Li and Micciancio [26]. Their key insight is
that noisy decryption reveals information about the secret key. In a
non-approximate scheme, knowing the input 𝑥 and the function
𝑓 allows one to perfectly simulate the homomorphic computation
and derive 𝑓 (𝑥). However, in an approximate scheme like CKKS,
the decryption will be 𝑦 ≈ 𝑓 (𝑥) and, importantly, the differences
between 𝑦 and 𝑓 (𝑥) depend on the secret key. Interestingly, this
attack does not contradict the security guarantees proven for CKKS,
as the attack is outside the IND-CPA model. We briefly describe the
simplest form of the attack below.

In CKKS, a ciphertext 𝑐𝑡 has two components, i.e., 𝑐𝑡 = (𝑎, 𝑏)
where 𝑏 = 𝑎 ∗ 𝑠 +𝑚 + 𝑒 , for secret key 𝑠 , random mask 𝑎, and noise
term 𝑒 . The decryption of 𝑐𝑡 is 𝑐 := Dec𝑠 (𝑐𝑡) = 𝑏 − 𝑎 ∗ 𝑠 = 𝑚 + 𝑒 .
Here,𝑚 = 𝑓 (𝑥), which we assume is known to the adversary. If
the adversary also gains access to the decryption 𝑐 , they can solve

WAHC ’21, November 15, 2021, Virtual Event, Republic of Korea. Alberto Ibarrondo and Alexander Viand

the linear equation 𝑎 ∗ 𝑠 = 𝑏 − 𝑐 by computing the multiplicative
inverse 𝑎−1 (which exists with high probability), recovering the
secret key. Note that this ignores the encoding and decoding used in
CKKS. Instead of seeing the plaintext, it is more realistic to assume
the attacker only has access to the decoded message. While the
encoding is not actually perfectly reversible, simply re-encoding
the decoded value is frequently sufficient to enable the attack.

As we can see below, implementing this attack takes only a few
lines of code, using Pyfhel’s support for working directly with
the underlying polynomials. For comparison, an equivalent C++
implementation of this example, targeting SEAL directly, uses over a
hundred lines of code and makes calls to a variety of undocumented
low-level features inside SEAL.

Setup: Encrypt , Decrypt , Decode

ctxt = HE.encrypt(0, scale=2** 40)

ptxt_dec = HE.decrypt(ctxt)

values = HE.decodeComplex(ptxt_dec)

Attack

ptxt_re = HE.encode(values , scale=2** 40)

a = HE.poly_from_ciphertext(ctxt ,1) # PyPoly

b = HE.poly_from_ciphertext(ctxt ,0) # or b = ctxt[0]

m = HE.poly_from_plaintext(ptxt_re) # PyPoly

s = (m - b) * ~a # ~a = inverse of a

6 DISCUSSION & FUTUREWORK
We have presented Pyfhel, explored its design and usage, including
how it can be used as a teaching tool. By providing a python-native
abstraction layer on top of existing FHE implementations, Pyfhel
makes working with FHE accessible to a significantly wider au-
dience. However, even experts can benefit from the convenience
offered by Pyfhel, eliminating potential error sources and reducing
time to solution. In the future, we hope to expand the set of sup-
ported libraries and to continue our work of creating easy-to-use
high-level APIs for low-level features.

REFERENCES
[1] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith. 2011.

Cython: The Best of Both Worlds. Computing in Science Engineering 13, 2 (2011),
31 –39. https://doi.org/10.1109/MCSE.2010.118

[2] Ayoub Benaissa, Bilal Retiat, Bogdan Cebere, and Alaa Eddine Belfedhal. 2021.
TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic
Encryption. arXiv:2104.03152 [cs.CR]

[3] Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, and Shafi Goldwasser. 2020. Se-
cure large-scale genome-wide association studies using homomorphic encryption.
Proceedings of the National Academy of Sciences of the United States of America
117, 21 (26 May 2020), 11608–11613. https://doi.org/10.1073/pnas.1918257117

[4] Zvika Brakerski. 2012. Fully Homomorphic Encryption without Modulus Switch-
ing from Classical GapSVP. In Advances in Cryptology – CRYPTO 2012. Springer
Berlin Heidelberg, 868–886. https://doi.org/10.1007/978-3-642-32009-5_50

[5] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled)
fully homomorphic encryption without bootstrapping. In Proceedings of the 3rd
Innovations in Theoretical Computer Science (Cambridge, Massachusetts) (ITCS
’12). ACM, New York, NY, USA, 309–325. https://doi.org/10.1145/2090236.2090262

[6] Sergiu Carpov, Nicolas Gama, Mariya Georgieva, and Juan Ramon Troncoso-
Pastoriza. 2020. Privacy-preserving semi-parallel logistic regression training
with fully homomorphic encryption. BMC medical genomics 13, Suppl 7 (21 July
2020), 88. https://doi.org/10.1186/s12920-020-0723-0

[7] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel,
and Emmanuel Prouff. 2017. Privacy-Preserving Classification on Deep Neural
Network. IACR Cryptol. ePrint Arch. 2017 (2017), 35.

[8] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. 2018. Labeled PSI from
fully homomorphic encryption with malicious security. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security (Toronto
Canada). ACM, New York, NY, USA. https://doi.org/10.1145/3243734.3243836

[9] Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast Private Set Intersection
from Homomorphic Encryption. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 1243–1255.
https://doi.org/10.1145/3133956.3134061

[10] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
2019. A Full RNS Variant of Approximate Homomorphic Encryption. In Selected
Areas in Cryptography – SAC 2018. Springer International Publishing, 347–368.
https://doi.org/10.1007/978-3-030-10970-7_16

[11] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-
morphic Encryption for Arithmetic of Approximate Numbers. In Advances
in Cryptology – ASIACRYPT 2017. Springer International Publishing, 409–437.
https://doi.org/10.1007/978-3-319-70694-8_15

[12] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.
TFHE: Fast Fully Homomorphic Encryption Over the Torus. Journal of Cryptology.
The Journal of the International Association for Cryptologic Research 33, 1 (1 Jan.
2020), 34–91. https://doi.org/10.1007/s00145-019-09319-x

[13] Ilaria Chillotti, Marc Joye, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap.
2020. CONCRETE: Concrete operates oN ciphertexts rapidly by extending TfhE.
In WAHC 2020 – 8th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography. https://homomorphicencryption.org/wp-content/uploads/2020/
12/wahc20_demo_damien.pdf

[14] Ilaria Chillotti, Marc Joye, and Pascal Paillier. 2021. Programmable Bootstrapping
Enables Efficient Homomorphic Inference of Deep Neural Networks. Cryptology
ePrint Archive, Report 2021/091. https://eprint.iacr.org/2021/091

[15] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine, and
Madanlal Musuvathi. 2019. EVA: An Encrypted Vector Arithmetic Language and
Compiler for Efficient Homomorphic Computation. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation.
http://arxiv.org/abs/1912.11951

[16] Mark Driver. 2020. Emerging Technologies: Homomorphic Encryption for Data
Sharing With Privacy. Technical Report. Gartner, Inc.

[17] Saroja Erabelli. 2020. pyFHE-a Python library for fully homomorphic encryption.
Ph. D. Dissertation. Massachusetts Institute of Technology.

[18] J Fan and F Vercauteren. 2012. Somewhat Practical Fully Homomorphic Encryp-
tion. IACR Cryptology ePrint Archive (2012). https://eprint.iacr.org/2012/144

[19] Craig Gentry. 2009. A fully homomorphic encryption scheme. Ph. D. Dissertation.
Stanford University. https://crypto.stanford.edu/craig

[20] Laurent Gomez, Alberto Ibarrondo, Marcus Wilhelm, José Márquez, and Patrick
Duverger. 2018. Security for Distributed Machine Learning Based Software. In
International Conference on E-Business and Telecommunications. 111–134.

[21] Shai Halevi and Victor Shoup. 2020. Design and implementation of HElib: a
homomorphic encryption library. Cryptology ePrint Archive, Report 2020/1481.
https://eprint.iacr.org/2020/1481

[22] Huelse. 2020. SEAL-Python. https://github.com/Huelse/SEAL-Python
[23] Sreekanth Kannepalli, Kim Laine, and Radames Cruz Moreno. 2021.

Password Monitor: Safeguarding passwords in Microsoft Edge. https:
//www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-
passwords-in-microsoft-edge/ Accessed: 2021-7-5.

[24] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon.
2018. Logistic regression model training based on the approximate homomorphic
encryption. 11-s4 (11 Oct. 2018), 83. https://doi.org/10.1186/s12920-018-0401-7

[25] Miran Kim, Arif Harmanci, Jean-Philippe Bossuat, Sergiu Carpov, Jung Hee
Cheon, Ilaria Chillotti, Wonhee Cho, David Froelicher, Nicolas Gama, Mariya
Georgieva, Seungwan Hong, Jean-Pierre Hubaux, Duhyeong Kim, Kristin Lauter,
Yiping Ma, Lucila Ohno-Machado, Heidi Sofia, Yongha Son, Yongsoo Song, Juan
Troncoso-Pastoriza, and Xiaoqian Jiang. 2020. Ultra-Fast Homomorphic Encryp-
tion Models enable Secure Outsourcing of Genotype Imputation. bioRxiv (2020).
https://doi.org/10.1101/2020.07.02.183459

[26] Baiyu Li and Daniele Micciancio. 2021. On the Security of Homomorphic Encryp-
tion on Approximate Numbers. In Advances in Cryptology – EUROCRYPT 2021.
Springer International, 648–677. https://doi.org/10.1007/978-3-030-77870-5_23

[27] Yuriy Polyakov, Kurt Rohloff, and Gerard W Ryan. 2017. PALISADE lattice
cryptography library user manual. Technical Report. NJIT. https://git.njit.edu/
palisade/PALISADE/wikis/resources/palisade_manual.pdf

[28] Oded Regev. 2005. On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography. In In STOC. ACM Press, 84–93.

[29] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. 1978. On Data
Banks and Privacy Homomorphisms. Foundations of secure computation 4, 11
(1978), 169–180. https://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-
OnDataBanksAndPrivacyHomomorphisms.pdf

[30] SEAL 2020. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA..

[31] Stack Overflow. 2020. Stack Overflow Developer Survey 2020. https://insights.
stackoverflow.com/survey/2020 Accessed: 2021-7-5.

[32] Alexander J. Titus, Shashwat Kishore, Todd Stavish, StephanieM. Rogers, and Karl
Ni. 2018. PySEAL: A Python wrapper implementation of the SEAL homomorphic
encryption library. arXiv:1803.01891 [q-bio.QM]

https://doi.org/10.1109/MCSE.2010.118
https://arxiv.org/abs/2104.03152
https://doi.org/10.1073/pnas.1918257117
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1186/s12920-020-0723-0
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/s00145-019-09319-x
https://homomorphicencryption.org/wp-content/uploads/2020/12/wahc20_demo_damien.pdf
https://homomorphicencryption.org/wp-content/uploads/2020/12/wahc20_demo_damien.pdf
https://eprint.iacr.org/2021/091
http://arxiv.org/abs/1912.11951
https://eprint.iacr.org/2012/144
https://crypto.stanford.edu/craig
https://eprint.iacr.org/2020/1481
https://github.com/Huelse/SEAL-Python
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://doi.org/10.1186/s12920-018-0401-7
https://doi.org/10.1101/2020.07.02.183459
https://doi.org/10.1007/978-3-030-77870-5_23
https://git.njit.edu/palisade/PALISADE/wikis/resources/palisade_manual.pdf
https://git.njit.edu/palisade/PALISADE/wikis/resources/palisade_manual.pdf
https://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf
https://people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf
https://github.com/Microsoft/SEAL
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020
https://arxiv.org/abs/1803.01891

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 FHE Schemes

	3 Design
	3.1 Design principles
	3.2 Architecture

	4 Using Pyfhel
	4.1 Setup and Parameters
	4.2 Encryption & Decryption
	4.3 Homomorphic Operations
	4.4 IO & Serialization

	5 Using Pyfhel in Education
	5.1 Exploring common CKKS pitfalls
	5.2 Implementing Key-Recovery for CKKS

	6 Discussion & Future Work
	References

