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Abstract—The cognitive system of humans, which allows them
to create representations of their surroundings exploiting multiple
senses, has inspired several applications to mimic this remarkable
property. The key for learning rich representations of data
collected by multiple, diverse sensors, is to design generative
models that can ingest multimodal inputs, and merge them in a
common space. This enables to: i) obtain a coherent generation of
samples for all modalities, ii) enable cross-sensor generation, by
using available modalities to generate missing ones and iii) exploit
synergy across modalities, to increase reconstruction quality.

In this work, we study multimodal variational autoencoders,
and propose new methods for learning a joint representation that
can both improve synergy and enable cross generation of missing
sensor data. We evaluate these approaches on well-established
datasets as well as on a new dataset that involves multimodal
object detection with three modalities. Our results shed light
on the role of joint posterior modeling and training objectives,
indicating that even simple and efficient heuristics enable both
synergy and cross generation properties to coexist.

I. INTRODUCTION

Models that learn form multiple sensor modalities have

flourished recently [1, 2, 3, 4], because they yield rich, abstract

and general representations, mimicking the way humans portray

the surrounding environment based on multiple senses.

Multimodal systems, which exploit the combination of multi-

ple inputs, are expected to learn improved data representations,

when compared to unimodal approaches. This is assessed by

measuring their synergy [5], which is defined as a gain in the

quality of the generative model when using multiple modalities,

as opposed to using a single modality alone. In addition, recent

approaches address the challenging task of generating one

modality conditioned on a different input modality, enabling a

vast array of applications in which missing (or costly) sensor

modalities are the norm rather than the exception. For example,

in the medical domain, recent works [3] attempt at generating

MRI portraits of a patient, given as an input a clinical diagnosis

in textual form. In the automotive industry, the development

of multimodal generative models can compensate the presence

of faulty sensors, and allow to construct a rich representation

of the environment despite sensor failures [6].

Although the presence of multiple modalities has the

potential to offer additional information, that models can exploit

to build richer representations, the key challenges to address

revolve around i) the methodology to fuse the multimodal

sensor data to infer a joint multimodal representation, that

exploits the available synergies and obtains a gain in terms of

representation compared to a unimodal model, and ii) efficient

approaches to enable the generation of missing sensor modali-

ties conditioned on the ones that are available, also called cross
generation in the following parts. Recently, such challenges

have attracted an increasing interest in multimodal generative

models, with several variants of joint latent approximation

methods, as well as explicit or implicit techniques to define

training objectives that can account for missing input modalities.

Despite encouraging results of multimodal systems robust to

missing modalities [7], as well as fervid debates [8], there is

no clear understanding, yet, of which method is a sensible

choice to address the aforementioned challenges of multimodal

representation learning.
We aim to fill this gap, and understand what are the

synergy and cross generation properties of the various joint

approximation methods, as well as whether these two properties

can be achieved simultaneously. We do so in light of a series

of objective metrics that help us understand the impact of the

design choices underlying multimodal generative models based

on the variational autoencoder (VAE) [9] structure. A sensible

way to characterize the behavior of multimodal VAE is i) to

measure their ability to generate all modalities, by sampling

from the prior on the latent variables, ii) to measure cross

generation by conditioning the latent representation on available

modalities, and generating the missing ones, and finally iii) to

study the synergy in terms of generative performance gains

that emerge from a joint latent representation, when compared

to unimodal generative variational autoencoders.
Our contributions are as follows:

• We propose a general formulation of the joint approximate

posterior over the latent representation and design a series

of heuristics to produce an approximate, joint latent space

that are both simple to interpret and to implement.

• We propose a novel method to tackle the problem of

modality cross generation. Our approach admits a simple

objective to learn the model parameters, and can be applied

to any existing method. Furthermore, our approach is more

efficient than previous methods from the literature, which

are traditionally combinatorial in the number of input

modalities.

• We define an experimental protocol to assess the prop-

erties of a variety of methods. Our comparative study



involves several datasets of increasing difficulty, and uses

established performance metrics.

II. RELATED WORK

Variational generative models [9, 10] have attracted a lot

of attention from the literature. Recent extensions focus on

multiple modalities that share common information. The joint

multimodal variational autoencoder (JMVAE) [11] marks a

first attempt at modeling explicitly a joint distribution over

a set of common generative parameters using the variational

autoencoder framework. One of the main intent of JMVAE is to

approximate the joint posterior distribution on this parameters

set even when modalities are missing. To this extent, JMVAE

requires as many encoder networks as possible subset of

modalities, hence becoming impractical as the number of

modalities increases.

As a remedy to these issues, the multimodal variational

autoencoder MVAE [1] admits a conditional independence

assumption on each modality with respect to the set of

generative parameter. This assumption allows for a factorization

of the joint posterior distribution over the set of generative

parameters into a product of the unimodal posterior distributions

over the same set. This results in a model that only requires as

many encoders as input modalities and that can adapt to missing

modalities configurations. While the MVAE methodology is

applied in various fields [7, 12], it is found to suffer from low

performance in generating missing modalities.

Following works [2, 4] interpret the factorization derivation

of MVAE called "Product-of-experts" POE to be the origin of

the incapacity to generate missing modalities. They propose to

use a "Mixture-of-experts" MOE combination, which translates

into approximating the joint distribution approximation using

an average of the unimodal distributions, hence replacing

the product operation by a sum. Although outperforming

competitors on several benchmarks, the mixture-of-experts

variational autoencoder (MMVAE) fails to capture the benefits

of the synergy among modalities.

Additional methods using variations of the POE [13, 5]

and MOE [14] approaches, aggregate multiple modalities in

variational autoencoders but they do not address the afore-

mentioned limitations of either methods. Other works [3, 15]

address explicitly cross generation. For instance [15] proposes

to randomly drop modalities during training, and [3] add loss

terms to account for each one-to-one modality cross generation

with many similarities to MMVAE. The recent work of [16]

combines the POE and MOE methods in a single model. While

this method is general, it can prove difficult to scale to many

modalities, due to the need for 2M loss terms, with M the

number of modalities.

In this paper, we present simple and efficient methods that

overcome all the issues affecting prior works, while achieving

comparable and often superior performance.

III. METHOD

Our multimodal generative model extends the VAE

method [9, 10] to M modalities. Let xi ∈ R
di , with

i ∈ {1, · · · ,M} denote observed variables describing the

same phenomenon across M different modalities. Note that

each observed modality may have different dimensions di.
We use latent variables z ∈ R

L to define a generative model

over the joint distribution p(x1, · · · ,xM , z) = p(x[1:M ], z). By
assuming conditional independence of the observed variables

given the latent variable [1], i.e ., xi⊥xj |z, ∀i �= j, the joint

distribution factorizes as:

pΘ(x1, · · · ,xM , z) = p(z)
M∏
i=1

pθi
(xi|z), (1)

where p(z) = N (0, I) is the prior on the latent variables,

which we assume to be an isotropic Gaussian distribution,

and pθi(xi|z) are the likelihoods parametrized by deep neural

networks, with parameters Θ = {θ1, · · · ,θM}. Our objective
is to maximize the marginal likelihood of the data with respect

to the latent variables z:

pΘ(x[1:M ]) =

∫
pΘ(x[1:M ], z)dz (2)

=

∫
p(z)

M∏
i=1

pθi
(xi|z)dz. (3)

Unfortunately, computing the evidence is intractable, as it

requires knowledge of the true joint posterior distribution

p(z|x[1:M ]) that is unknown. Then, we approximate the true

joint posterior with a variational joint posterior qφ(z|x[1:M ]),
and compute a lower bound to the marginal log likelihood,

called the ELBO, as follows:

L(x[1:M ]) =Ez∼qφ(z|x[1:M])

[
M∑
i=1

log pθi
(xi|z)

]

−KL(qφ(z|x[1:M ])||p(z)),
(4)

where the first term corresponds to a model fitting term, with

a likelihood defined according to the modeling assumptions

for a given task, and the second term is a regularization

term that makes sure the approximate joint posterior does

not deviate too much from the prior on the latent variables. In

this work we assume the variational approximate joint posterior

qφ(z|x[1:M ]) ∈ Q to be a “simple” distribution that is easy to

sample from (e.g., a Gaussian distribution).

A. Joint Approximate Posterior

The joint approximate posterior qφ(z|x[1:M ]) is the key to

learn a useful mapping from observed to latent variables. The

approximation of the joint posterior should benefit from the

addition of new modalities, either by the addition of new

information, or in improved reliability where information is

common with other modalities. Joint and cross generation

should be coherent across modalities, which calls for a

training method that allows for missing modalities [1, 2]. A

joint generative model should exploit the synergy across all

modalities, and produce tangible improvements when compared

to unimodal generative models [2, 5].

In this work we introduce three joint approximation methods:

the first can be thought of as a generalization of the POE [17],



whereas the other two are heuristics that have the merit of

being simple and computationally efficient.

Robust Bayesian Committee Machine. We use the con-

ditional independence assumption in the generative model to

derive a relation among joint- and single-modality posteriors

through the robust Bayesian committee machine (RBCM) joint

posterior [18, 19]:

pRBCM(z|x1:M ) ∝
∏M

i=1 p
βi(z|xi)

p−1+
∑

i βi(z)
, (5)

where the coefficients βi add the flexibility of increas-

ing/reducing the importance of experts, and are computed

as the difference in the differential entropy between the prior

and the unimodal posterior. If the true posteriors for each

individual factor p(z|xi) is properly contained in the family

of its variational counterpart, qφi
(z|xi), then we can write:

pRBCM(z|x1:M ) ≈ qRBCM
φ (z|x1:M ) =

∏M
i=1 q

βi

φi
(z|xi)

p−1+
∑

i βi(z)
. (6)

In this work, we assume the unimodal approximate

posteriors to be Gaussian distributed with diagonal

covariance matrix, that is qφi
(z|xi) = N (z;μi(xi),σ

2
i (xi)I)

where i denotes a modality index. Then, by eq. (6),

the joint approximate posterior is also Gaussian

with diagonal covariance matrix, qRBCM
φ (z|x1:M ) =

N (
z;μRBCM(x[1:M ]), (σ

RBCM)2(x[1:M ])I
)
, with:

μRBCM = (σRBCM)2
M∑
i=1

βiσ
−2
i μi, (7)

(σRBCM)−2 =

M∑
i=1

βiσ
−2
i +

(
1−

M∑
i=1

βi

)
σ−2

p , (8)

where σp is the prior variance. Our formulation combines

the flexibility of the generalized POE with an appropriate

Bayesian treatment of the joint posterior. This induces the

term
(
1−∑M

i=1 βi

)
in the posterior precision, which ensures

a proper fallback to the prior. The coefficients βi control the

importance of unimodal approximate posteriors (individual

experts), and how strong the influence of the prior is. As

done in [20], for computational efficiency, we use βi =
1
2 (logσ

2
p − logσ2

i (xi)). In the often used hypothesis of a

Gaussian posterior with diagonal covariance, we can expand

the RBCM method to the latent dimension level using the

independence assumption:

q
βi

φi
(z|xi) =

L∏
j=1

q
βi,j

φi
(zj |xi) (9)

where zj is the element at the jth dimension of the latent vector

z, and βi = (βi,1, ..., βi,L) that is now a vector composed

by βi,j = 1
2 (log σ

2
p − log σ2

i,j(xi)) with σi,j the jth element

of σi. This expansion allows for a fine-grained control of

the importance of any unimodal approximate posterior when

compared to the prior at a certain dimension of the latent.

Joint posterior heuristic approximations. Instead of

searching for complex aggregation schemes, we consider simple

approaches that trade approximation quality for improved

computational efficiency. We build on the key intuition of

RBCM, which gauges the mixing of unimodal components to

produce the joint approximation, and derive two heuristics

where only individual unimodal components contribute to

the joint approximation. The first, called best component
expert (BCE), approximates the joint posterior by choosing the

unimodal approximate posterior that has the lowest variance for

each element of the joint latent space. In the unimodal Gaussian

distribution setting with diagonal covariance matrix, we have

that qBCEφ (z|x1:M ) = N (
z;μBCE(x[1:M ]), (σ

BCE)2(x[1:M ])I
)
,

where

μBCE
j = μi∗,j with i∗ = argmin

i∈[1,M ]

{σi,j}, ∀j ∈ [1, L] (10)

σBCE
j = min

i∈[1,M ]
{σi,j}, ∀j ∈ [1, L] (11)

where σi,j is the jth element of the variance σi associated to

modality i, and L is the size of the latent space. This heuristic

can be interpreted as a special case of RBCM where βi,j = 1
if i = argmin

i
(σi,j) and βi,j = 0 otherwise.

The second heuristic we introduce uses randomization.

Instead of choosing the best unimodal approximate posterior

as done with the BCE heuristic, we choose the unimodal

elements at random among the modalities, without taking into

consideration any confidence indicator. This heuristic is called

random component expert (RCE). Under the same assumptions

for the unimodal approximate posterior distributions we used

so far, the resulting RCE joint posterior approximation is

also a Gaussian distribution with diagonal covariance ma-

trix qRCEφ (z|x1:M ) = N (
z;μRCE(x[1:M ]), (σ

RCE)2(x[1:M ])I
)
.

Each dimension of μRCE(x[1:M ]) and σRCE(x[1:M ]) is inde-

pendently and uniformly sampled from the set of approximate

unimodal means and standard deviations at the same index.

The RCE heuristic can be seen as a generalization of the

MOE presented in [2] that selects instead a unique expert to

contribute to the joint posterior, for all latent dimensions.

B. Missing Modalities and Cross Generation

A key property of multimodal generative models is their

ability to work with missing modalities and to enable cross

generation, that is to use a subset of input modalities to

generate output modalities missing from the input subset.

The ELBO formulation in eq. (4) does not explicitly consider

such requirements. The sub-sampling training paradigm [1],

explicitly modifies the ELBO by introducing unimodal and

multimodal terms, but fails to account for the generation of

missing modalities. The MOE method [2] implicitly defines

an ELBO that accounts for cross generation, but prevents the

synergy between modalities in the latent space.

A novel approach to enable both cross generation and synergy

is thus truly needed. We introduce two new methods.



Exhaustive cross generation. We modify the ELBO in

eq. (4) by introducing terms corresponding to all possible

subsets of inputs of modalities. We label the new ELBO

exhaustive cross generation (ECG), and define it as follows:

LECG(x[1:M ]) = L(x[1:M ])

+
2M−1∑
j=1

Ez∼qφ(z|Xj)

[
M∑
i=1

log pθi
(xi|z)

]

−KL (qφ(z|Xj)||p(z))

(12)

with each Xj being a different subset of x[1:M ] with at least

one modality. This “brute-force” approach is computationally

expensive, as it requires 2M − 1 forward passes to account

for each possible input modality set, but establishes an upper

bound on cross generation quality.

An alternative is to take into account only a subset of all

possible subsets to reduce computational requirements. This

method echoes with some ideas developed by [15] and with

the sub-sampling paradigm presented in MVAE [1] but with

the crucial addition of penalizing also the reconstruction of the

missing modalities.

Latent component dropout. The novel approach we intro-

duce is based on randomization, and draws inspiration from

the information dropout method [21]. The gist of the idea is

to “simulate” missing modalities by inducing randomization

through a dropout mask. We apply a dropout mask to individual

elements of the latent variables, one for each modality, and

revert to a prior expert for those elements selected by the mask.

We call our method latent component dropout (LCD), and

apply it to the joint approximate posterior.

In detail, we define the dropout mask to be a vector of

Bernoulli distributed random variables: mi ∼ B(1− α), ∀i ∈
{1, · · · ,M} with mi ∈ {0, 1}L. When we apply mi to the

i-th approximate unimodal posterior, we obtain qLCDφi
(z|xi) =

N (z; μ̂i, σ̂
2
i I), with moments defined as:

μ̂i = μi 	mi + μp 	 (1−mi), (13)

σ̂2
i = σ2

i 	mi + σ2
p 	 (1−mi), (14)

where μp and σ2
p are the prior mean and variance, and 	

is the Hadamard product. Our method induces a fine-grained

cross generation, whereby means and variances of individual

elements of the latent variables result from a randomized subset

of those elements across all modalities. Latent component

dropout, combined with any joint approximate posterior,

is computationally efficient. Furthermore, it alleviates the

problems of the MOE approach that requires M2 ELBO terms

in the training loss, while admitting any joint approximation

method that can aggregate multiple unimodal approximations.

IV. EXPERIMENTS

We study the impact of the joint posterior formulation on

metrics related to multi-modality, and which variant of the

variational objective better satisfies cross generation require-

ments. We do so by comparing several methods from the

literature to our proposed approaches, using several datasets

and various metrics that measure important criteria related to

multi-modality. The methods we study include: MVAE [1],

MMVAE [2], and JMVAE [11]. We compare three cross

generation methods: exhaustive cross generation (ECG) and

latent component dropout (LCD) that we propose, and random

modality dropout (RMD) [15], which uses a random subset

of modalities at each training step.

For our experiments we use Gaussian priors and approximate

posteriors, we use the Adam optimizer [22] with a learning rate

of 0.001 for MNIST-SVHN and 0.0005 for the other datasets.

All results are reported over 5 runs with different seeds.

A. Datasets

MNIST-SVHN. This is a simple and widely used multimodal

dataset [2, 5]. We train our models using pairs of MNIST and

street view house numbers (SVHN) images, which share the

same class: each MNIST sample is randomly paired with an

instance of the same class from SVHN. We use a convolutional

neural network (CNN) architecture for SVHN, and a fully

connected neural network for MNIST. We align training and

testing splits on MNIST (60000 training and 10000 testing

samples).

Fig. 1: MNIST-SVHN examples of matching modalities.

CUB IMAGE-CAPTIONS. This is a challenging language-

vision multimodal dataset, also used in [2]. We consider

11,788 photos of birds, annotated with 10 fine-grained captions

describing the bird’s appearance. We use 2048 dimensional

image feature vectors extracted using a pre-trained ResNet-

101 [23] and 300 dimensional FastText [24] embedding vectors

for the text modality. The encoder and decoder are fully

connected neural networks for the image modality and CNNs

for the embedded text modality. The train/test split for this

dataset is 75%/25%.

Caption: This white bird has black along

the ends of its wings and a pale, long beak.

Fig. 2: CUB IMAGE-CAPTIONS example image and caption.

MULTIMODAL SHAPES 3D. We introduce a new dataset

inspired from 3D shapes [25] with 3 modalities: image, depth

map and a radar-like modality. This dataset of 17,729 scenes

was generated using Blender [26], and contains scenes with



multiple objects, and their associated bounding boxes obtained

from the depth map. The radar modality is generated as a

post-processing of the depth maps with ground points removal.

We use CNN architectures for encoding and decoding the three

modalities. The train/test split for this dataset is 80%/20%.

B. Metrics

We revisit metrics introduced in [2, 5]. These metrics are

based on the shared information between the various modalities:

digit label for MNIST-SVHN, caption matching the bird

picture for CUB IMAGE-CAPTIONS, and object types and

positions in the scenes for MULTIMODAL SHAPES 3D. For

the MNIST-SVHN dataset the shared information is extracted

with pre-trained digit classifiers while for the MULTIMODAL

SHAPES 3D dataset we use a pre-trained single-shot object

detector for each modality. On the CUB IMAGE-CAPTIONS

dataset we use the similarity metric proposed in [2] directly

on the caption and image. Next, to keep the notation fluid, the

shared information will be referred as “label”.

Joint fractional agreement. By generating samples for all

modalities from the prior, we measure the fraction of times

the labels predicted by a pre-trained classifier on the generated

modalities are in agreement with each other.

Cross fractional agreement. By generating samples for a

given missing modality, conditioned on the available modalities,

we measure the similarity between ground truth and predicted

labels associated to the available modalities. When there are

more than 2 modalities, the missing modality is reconstructed

using all other input modalities.

Synergy. Our goal is to quantify the benefits of a multimodal

representation, compared to a unimodal VAE. Thus, we report

the gains obtained by using all modalities compared to an

individual VAE for each modality. The gain G is computed by

G = S−U
U , where S is the synergy score and U the unimodal

VAE score. For MMVAE, we report results based on the

best modality as opposed to a random one, to overcome the

limitations of the MOE approach, and have a fair evaluation.

Note also, that for synergy and cross fractional agreement we

have one score for each modality.

C. Results

MNIST-SVHN: We present quantitative results using

the common digit as the shared information between the

two modalities. We use for all models the same encoders

and decoders architecture except for JMVAE that requires

Fig. 3: MULTIMODAL SHAPES 3D example. On the radar

modality the red square denotes the camera position.

additional encoders and decoders. For all methods the latent

space size is L = 20, we use gaussian priors, and all methods

use importance weighted auto-encoder [27] with the number

of importance samples set to K = 30.
In Tab. I we report joint, cross and synergy metrics.

Concerning the joint metric, it is striking to notice that the

choice of a joint approximate posterior method has negligible

effects on performance, especially when cross generation is

omitted. Instead, the ECG cross generation method has a

positive impact on joint metric, which is surprising as it does

not directly optimize for joint modality generation. Concerning

cross fractional agreement, note that the task of reconstructing

a digit from one modality to the other is more challenging from

SVHN to MNIST because the digits from SVHN are harder

to recognize. In general, by a thorough inspection of the latent

spaces, we notice that when no cross generation method is used

during training, the models we evaluate implicitly prefer one

direction to the other, and exhibit inconsistent performance.

Synergy results in Tab. I compare the digit classification

accuracy of the multimodal VAE architectures when all

modalities are present against two unimodal VAE models

reconstructing independently the two modalities. The mean

digit classification scores for unimodal VAES reconstructions

are 92.9% for MNIST and 36.2% for SVHN. The synergy

gains of a multimodal approach are low on the MNIST

modality because there is little margin of improvement, since

it is an “easy” classification problem. Instead, on the SVHN

modality, synergy gains are high for all methods, with gains

up to +142.7% for BCE with exhaustive cross generation. As

expected, MMVAE is the method struggling the most on the

synergy metric due to the MOE properties.

In the last two rows of Tab. I we compare RMD and LCD

cross generation methods while fixing the joint approximation

to BCE. Despite not reaching results as high as ECG, the cross

and synergy scores of LCD are competitive with RMD while

only requiring a single ELBO term. It is interesting to notice that

our proposed joint posterior approximation method RCE, which

implicitly contributes to cross generation, scores similarly to

models that employ an explicit ELBO for cross generation. This

indicates, that our randomized posterior approximation method

is a good, and simple candidate to be used if the computational

budget is limited.

CUB IMAGE-CAPTIONS. For this dataset, to compute our

metrics, we use the canonical correlation analysis (CCA) [2]

between image and text embeddings computed using a pre-

trained Resnet-101 and FastText [24] models. The same

encoders, decoders, latent size of L = 64 and number of

importance weighted auto-encoder samples of K = 10 are used

for all experiments except for JMVAE. Results are depicted in

Tab. II, where we focus on cross generation and synergy, since

these are the tasks that have been overlooked in the literature,

and because they are relevant from an application point of

view (e.g., the automotive domain).

Results on cross fractional agreement highlight the impor-

tance of cross generation techniques like ECG, RMD and

LCD as they significantly outperform methods without cross



Cross Gen. Joint Approx. Joint Frac. Cross Frac. Agr. Synergy Gain (%)
method method Agr. S ->M M ->S all ->M all ->S

Implicit JMVAE 52.57 (±2.15) 73.83 (±1.39) 59.21 (±9.37) −1.3 +126.9
MMVAE 47.02 (±2.58) 54.42 (±5.12) 77.81 (±4.47) −2.0 +90.7
RCE * 49.43 (±2.90) 67.00 (±5.71) 74.59 (±2.61) −1.4 +133.9

None MVAE 52.92 (±1.16) 15.91 (±0.68) 68.06 (±9.67) −0.4 +126.0
BCE * 53.98 (±0.37) 10.11 (±0.21) 87.06 (±1.08) +0.0 +123.5
RBCM * 52.47 (±0.38) 15.26 (±2.48) 57.71 (±15.31) −0.2 +122.5

ECG * MVAE 58.91 (±1.05) 73.77 (±1.60) 81.90 (±1.15) +1.5 +141.7
BCE * 58.87 (±1.26) 73.50 (±2.78) 77.27 (±3.26) +1.5 +142.7
RBCM * 58.82 (±1.31) 70.38 (±2.59) 81.81 (±1.78) +1.0 +141.5

RMD BCE * 55.44 (±1.37) 63.00 (±2.57) 67.28 (±9.82) +0.5 +136.4
LCD * BCE * 52.96 (±1.73) 70.04 (±1.85) 65.32 (±8.37) +0.0 +138.3

TABLE I: Digit classification accuracy (%) on joint, cross fractional agreement and synergy. Our methods are marked with (*).

Cross Gen. Joint Approx. Cross Frac. Agr. Synergy Gain (%)
method method C ->I I ->C all->I all->C

Implicit JMVAE 0.14 (±0.01) 0.04 (±0.03) −50.2 +32.3
MMVAE 0.17 (±0.01) 0.04 (±0.01) −39.4 +21.0
RCE * 0.45 (±0.01) 0.17 (±0.01) +27.5 +214.2

None MVAE −0.01 (±0.01) 0.09 (±0.01) +1.8 +80.7
BCE * 0.03 (±0.01) 0.08 (±0.02) +4.6 +103.2
RBCM * 0.01 (±0.01) 0.09 (±0.01) +3.4 +93.5

ECG * MVAE 0.44 (±0.02) 0.15 (±0.03) +24.7 +163.6
BCE * 0.47 (±0.01) 0.10 (±0.02) +36.5 +137.3
RBCM * 0.40 (±0.02) 0.11 (±0.02) +21.8 +121.8

RMD BCE * 0.40 (±0.02) 0.12 (±0.01) +27.5 +171.1
LCD * BCE * 0.44 (±0.01) 0.08 (±0.00) +34.1 +174.2

TABLE II: CCA coefficients on CUB IMAGE-CAPTIONS for

cross fractional agreement and synergy gain, compared to an

image-only VAE with a CCA of 0.276 and a caption-only

VAE with a CCA of 0.062.

generation and state of the art methods for cross generation

such as JMVAE and MMVAE. It is worth noticing on this

dataset that RCE is as efficient as other cross generation

techniques. In addition, a clear gain in synergy is apparent for

all methods except for MMVAE due to the MOE formulation,

and, more surprisingly for JMVAE, probably due to the more

challenging nature of this dataset combined to the complexity of

JMVAE architectures. As the CCA metric between image and

caption puts an emphasis on the match between reconstructed

modalities and the other modality ground truth, synergy gains

are best for models trained with cross generation techniques

compared no cross generation. The gap in synergy gain also

denotes the improvement in representation quality gained

through the use of cross generation technique. As for the

comparison between cross generation techniques, LCD is

performing slightly better than RMD and achieves results

comparable to the exhaustive (thus costly) ECG method, even

surpassing it on the synergy reconstruction of caption. Similarly

to what is discussed for the MNIST-SVHN dataset, our

proposed RCE method appears to be a viable and simple

choice, in that it achieves competitive performance both in

terms of cross generation and synergy.

MULTIMODAL SHAPES 3D: The three modalities of this

dataset share the information of the objects type and position

in the 3D scenes. We pre-train the the YOLOv3 [28] object

detector on images and depth maps to detect the objects

and infer their class along with their 2D bounding boxes.

To evaluate the image and depth map reconstruction quality

we compute a mean Average Precision (mAP) between the

bounding box of the shapes detected on a reconstructed

modality and their ground truth positions. We use this score to

evaluate the synergy and cross fractional agreement metrics on

the image modality by measuring the mAP scores obtained on

the image reconstructions. The image, depth map, and radar

samples are encoded and decoded by 2D CNNs models. We

use the same encoders, decoders, latent size L = 256 for all

models, and use classical VAE instead of importance weighted

VAE. Also, we omit JMVAE, due to its poor scalability, since

it requires 7 different encoders to cover for all possible input

modality configurations.

Cross Gen. Joint Approx. Cross Frac. Agr. Synergy Gain (%)
method method D+R ->I I+R ->D all->I all->D

Implicit MMVAE 0.51 (±0.02) 0.52 (±0.07) −32.6 −40.2
RCE * 0.93 (±0.01) 0.88 (±0.01) +3.7 +2.5

None MVAE 0.70 (±0.03) 0.01 (±0.01) +5.6 +6.7
BCE * 0.76 (±0.01) 0.02 (±0.01) +5.6 +6.4
RBCM * 0.75 (±0.01) 0.01 (±0.00) +5.6 +6.6

ECG * MVAE 0.95 (±0.00) 0.91 (±0.00) +5.3 +6.1
BCE * 0.93 (±0.01) 0.87 (±0.01) +4.0 +3.4
RBCM * 0.95 (±0.00) 0.91 (±0.01) +5.2 +5.9

LCD * MVAE 0.94 (±0.00) 0.90 (±0.01) +4.6 +4.5
BCE * 0.93 (±0.01) 0.90 (±0.01) +4.3 +4.5
RBCM * 0.94 (±0.01) 0.90 (±0.00) +4.7 +4.8

TABLE III: Object detection scores (mAP) on MULTIMODAL

SHAPES 3D for cross fractional agreement and synergy (D:

depth, I: image, R: radar). Unimodal VAE performance is:

depth VAE mAP= 0.87, image VAE mAP= 0.91.

Comparing the cross fractional agreement results on the

MULTIMODAL SHAPES 3D dataset presented in Tab. III we

notice that methods without cross generation are unsuccessful at

generating a coherent depth modality from image and radar. On

the other hand there is a significant performance increase when

using a cross generation, both implicit or explicit, but not for

MMVAE. Indeed, MMVAE is underperforming compared to

previous experiments because two modalities (depth and radar)

are available to reconstruct the image modality, while MOE

fusion can only exploit a single modality randomly sampled

from the two available ones. The ECG method is the best

performing on cross fractional agreement although it requires



the computation of 7 loss terms at each training iteration.

Efficient methods such as LCD or RCE are performing almost

on par with ECG, but are more computationally efficient.

On the synergy gain, we notice improvements for all methods

except for MMVAE that, as stated before, only exploits a

single randomly chosen modality. Methods trained without

cross generation or with ECG can reach up to +6.7% synergy

gain for "None" cross generation method with MVAE, which

corresponds to a mAP of 0.93 for the depth modality. The

slightly better synergy gains from using no cross generation

method can be explained by the "None" cross generation

method being entirely focused on synergy with a single ELBO

term taking into account the entire set of modalities. Instead,

ECG has 7 ELBO terms to account for missing modality cases

with only a single ELBO corresponding to the case when all

modalities are present. As a result, the contribution of the

single ELBO term related to synergy score of ECG is slightly

weakened in the global objective. This minor loss in synergy

compared to "None" cross generation is compensated by the

substantial improvement gained on cross fractional agreement.

We show qualitative results in Fig. 4 with samples of the

image modality generated from depth and radar, and the depth

modality generated from image and radar. We notice the

weakness of MVAE without cross generation that cannot obtain

a coherent reconstruction from image and radar modalities to

depth. For MMVAE, we remark that the object position is

maintained, but shapes are often blurry and difficult to identify.

The quality of the reconstructions from RBCM and RCE

methods is comparable, with clearly defined shapes in both

generated modalities. It is interesting to notice how images

generated from depth and radar modalities deal with object

coloring, with MMVAE, for instance, coloring objects in dull

colors and MVAE with no cross generation often coloring the

shapes with more than a single color.

V. CONCLUSION

In this paper, we studied multimodal VAES that are promis-

ing models for their application to sensor fusion in multi-sensor

systems. Indeed, these models can exploit synergy between

sensing data and are robust to missing or faulty sensors.

With the aim to improve over current multimodal VAES mod-

els on synergy and cross generation properties, we proposed a

range of candidate joint approximation and cross generation

methods. In addition, to evaluate these methods, we introduced

a new dataset that acts as a proxy to multimodal sensor systems

applied to autonomous driving as it contains images, depth

maps and radar-like modalities. Through extensive experiments

on various multimodal datasets, we remarked that existing

state-of-the-art methods often cannot reach satisfying results

on both synergy and cross generation. In order to design

multimodal systems that combine both such properties, we

showed that even simple heuristic to approximate a joint

latent representation can be a viable alternative to existing

methods and their generalization. We also proposed three cross

generation methods that are compatible with any approximate,

joint latent representation methods. We assessed the trade-off

(a) Ground truth image, depth and radar modality.

(b) MVAE cross reconstructions without cross generation method

(c) MMVAE cross generation

(d) RBCM with LCD cross generation

(e) RCE cross generation

Fig. 4: Cross generated samples on MULTIMODAL SHAPES 3D

(D: depth, I: image, R: radar). (a) Ground true samples. (b)-(e)

cross generation samples for various model configurations, top

row: D+R → I, bottom row: I+R → D.

between scalability and performance of these cross generation

methods: in cases where the computational cost is not an issue,

our proposed ECG method often provides the best results on

both synergy and cross generation. However, when the number

of input sensors grows, our proposed LCD heuristic achieves

excellent performance while being extremely efficient. Finally,

we also showed that our randomized heuristic RCE, that learns

a joint latent space and caters to cross generation in a single,

simple objective, was on par with other methods in a variety

of settings.

The methods we proposed in this work open the doors to the

application of multimodal VAES to large multimodal systems,

making them both efficient at merging information into a

common latent representation, and resilient to faulty or missing



sensor inputs. The ability of our methods to generate missing

modalities paves the way for sensor virtualization, whereby

a sensor that has been used to train a model is intentionally

removed or disabled (e.g., because it is costly), while being

reconstructed through the other available modalities.

Our next steps concern empirical validation of our models

using more realistic datasets from the automotive domain,

which also call for additional work to include temporal

sequences of sensor data. On the methodological side, we will

explore disentanglement properties of the joint latent spaces,

to enable interpretation of the learned representations, and the

study of generalization properties of our models.

VI. ACKNOWLEDGMENTS

This work was granted access to the HPC resources of IDRIS

under the allocation 2020-AD011012166 made by GENCI.

REFERENCES

[1] M. Wu and N. Goodman, “Multimodal generative models

for scalable weakly-supervised learning,” 2018.

[2] Y. Shi, N. Siddharth, B. Paige, and P. H. S. Torr,

“Variational mixture-of-experts autoencoders for multi-

modal deep generative models,” 2019.

[3] L. Antelmi, N. Ayache, P. Robert, and M. Lorenzi,

“Sparse multi-channel variational autoencoder for the

joint analysis of heterogeneous data,” in International
Conference on Machine Learning. PMLR, 2019, pp.

302–311.

[4] R. Kurle, S. Günnemann, and P. Van der Smagt, “Multi-

source neural variational inference,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, 2019, pp. 4114–4121.

[5] Y. Shi, B. Paige, P. H. S. Torr, and N. Siddharth, “Relating

by contrasting: A data-efficient framework for multimodal

generative models,” 2020.

[6] C. Cadena, A. R. Dick, and I. D. Reid, “Multi-modal

auto-encoders as joint estimators for robotics scene

understanding.” in Robotics: Science and Systems, vol. 5,
2016, p. 1.

[7] R. Dorent, S. Joutard, M. Modat, S. Ourselin, and T. Ver-

cauteren, “Hetero-modal variational encoder-decoder for

joint modality completion and segmentation,” in Inter-
national Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, 2019, pp. 74–

82.

[8] S. Kutuzova, O. Krause, D. McCloskey, M. Nielsen, and

C. Igel, “Multimodal variational autoencoders for semi-

supervised learning: In defense of product-of-experts,”

2021.

[9] D. P. Kingma and M. Welling, “Auto-encoding variational

bayes,” 2014.

[10] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic

backpropagation and approximate inference in deep

generative models,” 2014.

[11] M. Suzuki, K. Nakayama, and Y. Matsuo, “Joint multi-

modal learning with deep generative models,” 2016.
[12] M. Baruah and B. Banerjee, “A multimodal predictive

agent model for human interaction generation,” in Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2020, pp.
1022–1023.

[13] Y.-H. H. Tsai, P. P. Liang, A. Zadeh, L.-P. Morency,

and R. Salakhutdinov, “Learning factorized multimodal

representations,” in International Conference on Learning
Representations, 2018.

[14] T. Sutter, I. Daunhawer, and J. E. Vogt, “Multimodal

generative learning utilizing jensen-shannon divergence,”

in Workshop on Visually Grounded Interaction and
Language at the 33rd Conference on Neural Information
Processing Systems (NeurIPS 2019), 2019.

[15] M. Vasco, F. S. Melo, and A. Paiva, “Mhvae: a

human-inspired deep hierarchical generative model for

multimodal representation learning,” arXiv preprint
arXiv:2006.02991, 2020.

[16] T. M. Sutter, I. Daunhawer, and J. E. Vogt, “Generalized

multimodal elbo,” arXiv preprint arXiv:2105.02470, 2021.
[17] G. E. Hinton, “Training products of experts by minimizing

contrastive divergence,” Neural computation, vol. 14,

no. 8, pp. 1771–1800, 2002.

[18] V. Tresp, “A bayesian committee machine,” Neural
computation, vol. 12, pp. 2719–41, 12 2000.

[19] M. P. Deisenroth and J. W. Ng, “Distributed gaussian

processes,” 2015.

[20] Y. Cao and D. J. Fleet, “Generalized product of experts

for automatic and principled fusion of gaussian process

predictions,” 2015.

[21] A. Achille and S. Soatto, “Information dropout: Learning

optimal representations through noisy computation,” 2017.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” 2017.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learn-

ing for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition,
2016, pp. 770–778.

[24] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov,

“Enriching word vectors with subword information,” Trans-
actions of the Association for Computational Linguistics,
vol. 5, pp. 135–146, 2017.

[25] C. Burgess and H. Kim, “3d shapes dataset,”

https://github.com/deepmind/3dshapes-dataset/, 2018.

[26] Blender Online Community, “Blender - a 3d modeling

and rendering package,” Blender Foundation, Blender

Institute, Amsterdam, 2020. [Online]. Available: http:

//www.blender.org

[27] Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance

weighted autoencoders,” 2016.

[28] J. Redmon and A. Farhadi, “Yolov3: An incremental

improvement,” 2018.


