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Abstract—While static application security testing tools
(SAST) have many known limitations, the impact of coding
style on their ability to discover vulnerabilities remained
largely unexplored. To fill this gap, in this study we experi-
mented with a combination of commercial and open source
security scanners, and compiled a list of over 270 different
code patterns that, when present, impede the ability of
state-of-the-art tools to analyze PHP and JavaScript code.
By discovering the presence of these patterns during the
software development lifecycle, our approach can provide
important feedback to developers about the testability of
their code. It can also help them to better assess the resid-
ual risk that the code could still contain vulnerabilities
even when static analyzers report no findings. Finally, our
approach can also point to alternative ways to transform
the code to increase its testability for SAST.

Our experiments show that testability tarpits are
very common. For instance, an average PHP application
contains over 21 of them and even the best state of
art static analysis tools fail to analyze more than 20
consecutive instructions before encountering one of them.
To assess the impact of pattern transformations over static
analysis findings, we experimented with both manual
and automated code transformations designed to replace
a subset of patterns with equivalent, but more testable,
code. These transformations allowed existing tools to
better understand and analyze the applications, and lead
to the detection of 440 new potential vulnerabilities in
48 projects. We responsibly disclosed all these issues: 31
projects already answered confirming 182 vulnerabilities.
Out of these confirmed issues– that remained previously
unknown due to the poor testability of the applications
code– there are 38 impacting popular Github projects
(>1k stars), such as PHP Dzzoffice (3.3k), JS Docsify
(19k), and JS Apexcharts (11k). 25 CVEs have been
already published and we have others in-process.

I. INTRODUCTION

According to the 2020 Edgescan Security Report, “Web
application security is where the majority of risk still
resides” [13]. This is confirmed by the fact that most of the
recent data breaches took advantage of the poor security

of web applications. From a defensive point of view, there
are two main options to detect vulnerabilities in web
applications: static application security testing (SAST) and
dynamic application security testing (DAST). Dynamic
approaches are sound, but often treat the application as
a black box and are therefore severely limited in the
number of vulnerabilities they can detect. Static tools can
instead reason about the entire behavior of the application,
thus potentially detecting more vulnerabilities. However,
in practice, they are neither sound nor complete, and
often result in very large amounts of false positives.

To mitigate this problem, a large amount of research
has been conducted to improve these two numbers, by
either proposing techniques to increase the ability of
static analysis to discover more vulnerabilities or to
reduce the number of false alarms. Despite the progress
done in both directions, it is undeniable that SAST tools
still struggle to cope with the complexity of real-world
code – which is one of the reasons for the poor security
of today’s web applications.

In this paper, we look at the problem from a different
angle. In particular, we focus on another limitation of
these tools that is often neglected: the fact that it is very
difficult (independently from the tool’s precision) for an
analyst to interpret their results. In the example above,
how can we translate the lack of vulnerabilities reported
by a SAST tool into an actionable insight on the security
of the application?
A key observation that motivates our work is that while
the precision of the results depends on the tool, the level
of “confidence” largely depends on the application. For
instance, if zero vulnerabilities are reported in a small
application with only a handful of untrusted input, the
analyst might be confident that the tool was right and the
codebase could not contain many undetected vulnerabil-
ities. In contrast, if the same result is returned on a very
large and complex application, that confidence might be
much lower, therefore resulting in a higher residual risk
that the code could still contain vulnerabilities.

Our goal is to find a way to capture this residual risk
by proposing a novel approach based on the concept
of testability tarpits. A tarpit is a specific pattern of
code that is known to cause problems for a class of
static analysis tools. Other researchers have reported such
patterns as a way to point out the current limitations
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(and possible venues for improvement) of static analysis
tools. We propose instead to use them as a metric to
capture how testable an application is. The intuition is
that the residual risk of undiscovered vulnerabilities is
lower if the application was easy to analyze, and higher
if it presented many challenges for the analysis tool.

By building upon a comprehensive library of testability
tarpits, we propose a general framework that can support
a more principled understanding of the results of one
(or a composition of) SAST tool(s). Our approach does
not only provide a way to assess the confidence of the
reported results, but it also points to the precise nature
and location of the code that reduces this confidence.
As a result, an analyst can decide to add more tools to
reduce the impact of the existing tarpits, to perform a
manual audit of a poorly testable part of the code, or to
refactor part of the application to increase its testability.

While the methodology we present is general and
independent of the language of the application and the
class of tools used to analyze it, in this paper we focus on
static analysis tools for PHP and Javascript (JS, in short)
code, the two most common languages for web application
development. In particular, we create a library of 122
testability tarpits for PHP and 153 tarpits for JS (cf. III-A),
covering language features, built-in APIs, security-related
functionalities, and static and dynamic operations. We then
selected an arsenal of 11 commercial and open-source
SAST tools (6 for PHP and 5 for JS) and we assessed
them against our tarpits’ libraries (cf. Section III-B). The
best commercial tools were only able to handle 50% of
the PHP and 60% of the JS tarpits, thus potentially leaving
large parts of an application code unexplored. To measure
the impact on those unsupported tarpits, we implemented
automated discovery rules (cf. Section IV) for all our
PHP patterns and used them to scan 3341 open-source
PHP applications. Our experiments (cf. Section V)
demonstrate that these tarpits are very common in the
real world: the average project contains 21 different
tarpits and even the best SAST tool cannot process more
than 20 consecutive instructions without encountering a
pattern that prevents it from correctly analyzing the code.

The ability to automatically discover each tarpit brings
many benefits. First, it can provide immediate and precise
feedback to the developers about the tarpits in their code
(e.g., by integrating the discovery rules into an IDE).
This information can then be used to make an informed
decision about which combination of SAST tools are better
suited to analyze the code, which parts of the application
are blind spots for a static analyzer and thus may require a
more extensive code review process, and which region of
code could be refactored into more testable alternatives.

We conclude our study by performing two experiments
to assess the use of code refactoring as a mean to make
an application more testable for SAST tools. In the first
(Section VI), we manually investigate five PHP and five JS
applications, for which SAST tools were unable to discover
the presence of known vulnerabilities. By transforming

1 / / FILE : c o r e / g p c a p i . php
2 f u n c t i o n g p c g e t ( $name , . . ) {
3 i f ( i s s e t ( $ POST [ $name ] ) ) {
4 $r = g p c s t r i p s l a s h e s ( $ POST [ $name ] ) ;
5 }
6 . . .
7 r e t u r n $ r ;
8 }
9

10 f u n c t i o n g p c g e t s t r i n g ( $name , . . ) {
11 $ a r g s = f u n c g e t a r g s ( ) ;
12 $r = c a l l u s e r f u n c a r r a y ( ’ g p c g e t ’ , $ a r g s ) ;
13 . . .
14 r e t u r n $ r ;
15 }
16

17 / / FILE : b u g a c t i o n g r o u p e x t . php
18 $ a c t = g p c g e t s t r i n g ( ’ a c t i o n ’ ) ;
19 $ a c t f i l e = ’ b u g a c t i o n g r o u p ’ . $ a c t . ’ i n c . php ’ ;
20 r e q u i r e o n c e ( . . . $ a c t f i l e ) ;

Listing 1. Example of a file injection vulnerability in MantisBT

the testability tarpits we enabled the tools to detect the
vulnerabilities. Moreover, over 200 additional bugs were
reported, leading us to the disclosure of 71 confirmed
vulnerabilities, as some of the discovered issues still
applied to the latest version of the tested projects. In
the second experiment (Section VII), we target instead
thousands of popular real-world applications (the same we
used for the prevalence experiment), to which we apply
five pattern transformations in a fully automated fashion.
Our tool modified 1170 applications, by transforming
32,192 occurrences of the five tarpits. By running SAST
tools both before and after the transformations we
could observe the improvement in the overall testability,
supported by the detection of hundreds of previously
unknown vulnerabilities. In particular, we discovered 370
vulnerabilities in 43 different applications, 55 of which
affected very popular projects with more than 1000 stars in
Github. We responsibly disclosed all issues, and we have
received 111 confirmation from the development teams (36
confirmations for the popular projects). These outcomes
confirm the added-value of our approach and the impact
of removing tarpits to increase testability for SAST tools.

All the testability patterns and the resources of this
research (for both PHP and JS) are available in our
(currently anonymized) repository [3].

II. APPROACH OVERVIEW

The source-code excerpt shown in Listing 1, simplified
for presentation, highlights a file injection vulnerability
(CVE-2011-3357) in the popular Mantis Bug Tracker. The
code uses the function require_once to include and
evaluate code from an external file (line 20). Care must
be taken to ensure that users cannot freely choose the
name of the file as this would permit them to execute
arbitrary code. Unfortunately, in the example, the file name
ultimately depends on the value of an unsanitized POST
request-parameter, a value that an attacker fully controls.
The example illustrates the complex interprocedural
assignment chains that a static analyzer must correctly
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Fig. 1. Approach outline

handle in order to identify the vulnerability: the file
name depends on the variable $act that is initialized
via a call to the application-defined utility function
gpc_get_string (line 18-19). This function internally
makes use of the PHP functions func_get_args and
call_user_func_array to dynamically invoke the
variadic function gpc_get (line 12). Finally, gpc_get
accesses the attacker-controlled POST parameter (line 3-5).

The majority of SAST tools in our selection (see Sec-
tion III) are not able to detect this vulnerability. Through a
manual investigation, we discovered that the dynamic func-
tion invocation (call_user_func_array) prevented
them to connect the user-provided parameter to the name
of the included file. In addition, some tools are also unable
to handle the func_get_args function, which again
affects the data-flow of the application.1 Our finding is con-
firmed by the fact that a simple refactoring of line 12 into
the equivalent $r = gpc_get($args) is sufficient to
enable the tools to report the file injection vulnerability.

The main goal of our research is to build upon this
observation and use the concepts of testability tarpits
to build a new framework to assess the security of web
applications. Our approach, outlined in Figure 1, is
composed of three phases.

Pattern creation. The first objective of our work is to
compile a comprehensive list of testability tarpits, that
is, code patterns that impede the ability of SAST tools
to reason about the code and identify vulnerabilities. The
creation and selection process, which we describe in
detail in Section III, involved an extensive manual effort.
To show the applicability of our approach to different
programming languages, we reviewed the documentation,
the internal specifications, and the APIs of both PHP and
JS and distilled this information into a number of code
snippets that emphasize different functionalities. We then
embedded these patterns in small test cases, which we
tested on a set of commercial and open sources SAST

1Note that both functions are not library APIs, but core features of
PHP.

tools (5 for JS and 6 for PHP) to identify the tarpits that
could impede the testability of an application.

Pattern discovery and developer awareness. In the
second phase of our approach, we implemented a tool
to identify instances of our patterns in the source code
of a program. As we strongly believe that extending
existing production-quality tools trumps re-implementing
basic code analysis from scratch, we base our tool on the
code analysis platform Joern [40]. The platform allows
code patterns to be formulated in a domain-specific query
language that provides access to syntax, control flow, and
data flow properties. While the platform offers built-in
patterns for the discovery of vulnerabilities in C/C++ code,
patterns for Web applications are only scarcely available
and focus entirely on the discovery of vulnerabilities.
Our work performed several improvements to Joern’s
core analysis engine and PHP support and we developed
queries to allow the discovery of testability problems.
Both queries and improvements were contributed back
to the project, enabling Joern to discover not only
vulnerabilities but also testability problems.

Our tool can discover the presence of testability tarpits
and make developers aware of the exact snippets of code
that will confuse the SAST tools in their arsenal. While
until today developers were only aware that a given SAST
tool did not discover any vulnerability in their code, our
approach provides additional information that can be
integrated into a risk assessment methodology or used, for
instance, to select other SAST tools that are more suitable
for a specific application. To evaluate our tool and measure
the overall prevalence of our library of tarpits in real world
applications, in Section IV we present the results of the
experiments we conducted on 3341 PHP applications.

Pattern transformation and impact on vulnerability
discovery. While awareness is very important, in the final
phase of our process we discuss how the identified tarpits
can be removed by transforming the corresponding code.
Our goal is to show that by transforming the code, the testa-
bility improves and SAST tools become capable to uncover
more vulnerabilities. We evaluate this idea by applying
different types of transformation rules in two separate
experiments. In the first (Section VI), we manually inves-
tigated ten applications (five PHP and five JS) for which
SAST tools were unable to discover known vulnerabilities.
In this case, we progressively refactored all testability
tarpits until the tools were able to detect the bugs. By
making the applications more testable, this also allowed the
tools to discover new, previously-unknown vulnerabilities.
In fact, on the refactored code of the ten projects, the SAST
tools in our arsenal reported 503 new alerts, 224 of which
corresponded to true-positive vulnerabilities. In the second
experiment (Section VII), we targeted instead thousands
of popular real-world PHP applications, to which we
apply five pattern transformations in a fully automated
fashion. By running SAST tools both before and after
the refactoring we could observe the improvement in the
overall testability, supported by the detection of hundreds

3



of previously unknown vulnerabilities. In particular, we
discovered 370 security issues in 43 different applications,
with 55 of these vulnerabilities affecting popular projects
with more than 1000 stars in Github.

III. PATTERN CREATION AND SELECTION

The first step of our approach consists of identifying
those code patterns that prevent SAST tools from properly
analyzing an application code. It is important to stress that
in this paper we are only interested in code-related pat-
terns, and not in other forms of architectural or deployment
aspects that can affect testability. For instance, plugin-
based infrastructures are often difficult to analyze statically,
and tools often struggle to deal with application state main-
tained across requests (which could, for instance, lead to
stored vulnerabilities). While these are also very important
aspects, and they constitute possible venues to extend our
work, in the rest of the paper we restrict our focus to source
code patterns only. Because of this, while the approach
we present is completely generic, the actual patterns we
identify vary from one programming language to another.
To show the generality of our approach, we performed our
study on the two most popular programming languages for
web application development: JS (ES11) and PHP (v7.4.9).

On top of their specificity for different languages,
testability tarpits may also differ from one SAST tool to
another. In fact, what constitutes a problem for a testing
tool may be handled correctly by a different product, and
vice versa. Moreover, developers often use a combination
of tools to test their applications, thus making the final
selection of patterns specific to each development and
testing environment.

Therefore, we first selected a representative set of SAST
tools that includes both commercial and open source
solutions. In particular, based on the results reported
by other studies that compared existing tools [5, 8], for
PHP we selected RIPS [12], PHPsafe [33], WAP [36],
and Progpilot [37] as representative of open-source
solutions, and two leading commercial products referred
here as Comm 1 and Comm 2.2 For JS we selected
instead three commercial tools (Comm 1, Comm 2, and
Comm 3)3, and NodeJsScan [4] and LGTM [2] as open
source alternatives.4 While this choice reflects the current
state-of-the-art techniques used to analyze PHP and JS
applications, our approach can be easily applied as-is
to any other set of static analysis tools.

In the rest of this section, we discuss how we built our
library of testability patterns (Section III-A) and present
the experiments we conducted to validate them on our
SAST toolset (Section III-B).

2For legal reasons, we have to anonymize commercial products.
3Comm 1 and Comm 2 are the same commercial tools used for PHP.
4Notice that LGTM is subject to a commercial license when used on

projects that are not open source. This was not the case for our study.

A. Pattern Creation

Given a programming language, we want to identify
code patterns that can affect the ability of SAST tools
to detect vulnerabilities. To this end, it is important to
understand how static analyzers detect web vulnerabilities
in the first place.

While many techniques exist, a common requirement
is the ability to identify how user-provided input is propa-
gated and processed by the application. Static taint analysis
provides this capability and is employed in particular to
uncover injection vulnerabilities such as SQL injections
(SQLi), cross-site scripting (XSS), and code injections
(CODEi). While the actual mechanism used for vulnerabil-
ity detection is orthogonal to our approach, this observation
provides us with a simple way to identify patterns.

The idea is to use a small fragment of code, hereinafter
the stub, designed to receive an input value from the user
(in the form of a GET parameter) and simply write it
back to the output.

1 $a = $_GET["p1"];
2 echo $a;

1 const parsed = route.parse(req.url);
2 const query = querystring.parse(parsed.query);
3 var c = query.name;
4 r.writeHead(200,{"Content-Type":"text/html"});
5 r.write(c);
6 r.end();

These two snippets (respectively for PHP and JS) contain
a very simple form of reflected XSS that is correctly
identified as vulnerable by every SAST tool on the
market. To create our patterns we routinely customized
these stubs by adding new operations – which represent
our candidate tarpits – as part of the data flow between
the source (the GET parameter) and the sink (the echo
and write invocations).

For pattern creation, we systematically inspected all the
chapters of the PHP and JS language documentations. We
also analyzed comments describing special examples and
corner cases and reviewed all the internal language APIs.
For PHP, we also went through the entire instruction set
of its intermediate language and verified that there was
not a single opcode that was not covered by one of our
patterns. By following this procedure, we manually created
hundreds of test cases, each one dedicated to showcase a
different aspect of the language. However, most of these
snippets have no impact on the analysis performed by
SAST tools. Therefore, we filtered the list by retaining
only the problematic examples. For this purpose, we used
our selection of SAST tools as oracles. Each tool was used
to scan all candidate snippets, and for each test we verified
whether the tool was still able to detect the reflected XSS
vulnerability. To be conservative, if at least one of the tools
failed to report the vulnerability, we saved the correspond-
ing test case in our testability tarpits library. Hereafter
we detail the five main dimensions we used to categorize
our patterns and to guide our pattern-generation process.

4



Core language features vs built-in internal APIs:
We started our investigation by studying the language
documentation and, for PHP, the (often undocumented)
list of internal opcodes (i.e., the low-level instructions
that are processed by the Zend engine). For example,
while references are a common concept present in
most programming languages, under the hood PHP
operates on them by using seven different opcodes (e.g.,
ASSIGN_REF creates a reference to a scalar variable and
RETURN_BY_REF returns a reference from a function).

For instance, we integrated the RETURN_BY_REF
opcode 5 in our stub by producing the following snippet:

1 class foo {
2 public $v = 42;
3 public function &getV() {return $this->v;}
4 }
5 $a = $_GET["p1"]; $obj = new foo;
6 $myV = &$obj->getV(); $obj->v = $a;
7 echo $myV;

In line 7, variable $myV$ gets bound to the variable
obj->v returned from getV. As a consequence, setting
obj->v to the source $a in line 8 makes also $myV$
changing, leading to a XSS in line 9.

In total we identified 96 challenging patterns for PHP
and 153 for JS. However not all of our patterns are related
to features of the language, some are instead associated
with the use of core library functions. In fact, internal API
functions are typically written in C for better performance,
and therefore it is difficult for SAST tools to check
their code during the analysis. To mitigate this problem
SAST tools often maintain a set of models that describe
the relationship (in terms of taint propagation) among
the input and output parameters of these functions [12].
For instance, the code snippet below captures the
testability pattern created for extract, an internal PHP
API generating variables dynamically from an array:

1 $aaa = $_GET["p1"];
2 $arr = array("A"=>$aaa,"B"=>"BBB");
3 extract($arr); echo $A . $B;

In this specific case, variables $A and $B are created
and assigned to $aaa and to "BBB", respectively.
This pattern enables evaluating whether a SAST tool
models the extract function and properly propagates the
user-controlled input $aaa into the variable $A. In total,
we identified 26 patterns in PHP and 22 patterns in JS
that target challenging internal APIs.

Security related: We already mentioned that SAST
tools often employ taint-based dataflow analysis to detect
vulnerabilities: when a user-controlled input (referred
to as source) flows into a sensitive operation (referred
to as sink), without being processed by a sanitizer, that
dataflow is reported as a vulnerability. We thus created
some testability patterns to probe how good the SAST

5PHP documentation - Return By Reference: https:
//www.php.net/manual/en/language.references.return.php

tool is in recognizing sources, sinks, and sanitizers.
For instance, the following code snipped captures a
pattern instance evaluating whether a SAST tool supports
the sink PHP operation exit, which terminates the
application execution and passes a message to the user:

1 $a = $_GET["p1"];
2 exit($a);

Similarly to the echo sink, exit can lead to XSS
vulnerabilities. In total, we identified 16 patterns in PHP
and 22 in JS in this category.

Static vs Dynamic features: Developers often rely on
code constructs that cannot be fully analyzed statically,
because their exact behavior can only be determined at
runtime. In some cases, this might be required by the appli-
cation and therefore it might be difficult to rewrite the code
in a different way. But in other cases, these are used just
for convenience, as the result of cut&paste operations, or
to support functionalities that have already been removed
from the code long before. For instance, the motivating
example we discussed in the previous section uses the dy-
namic operation call_user_func_array, a form of
dynamic dispatching. However, the MantisBT developers
hardcoded a constant parameter, thus making the target
function resolvable from a static analysis perspective.

To capture these differences, we define four dynamic cat-
egories for our code snippets targeting dynamic operations:

D1: the core parameter of the dynamic operation (e.g.,
the first parameter in call_user_func_array) is
an hardcoded constant.

1 /* D1 */ call_user_func_array("Func", $b);

D2: the parameter is an expression whose value can be
univocally computed statically via constant propagation.

1 $a = "FuncA";
2 /* D2 */ call_user_func_array($a, $b);

D3: the parameter is an expression whose value can only
be partially computed statically. E.g., in the following
example, only functions starting with "Func" can
be called. This could be used by SAST to reduce the
over-approximation needed to cover all the possible
execution paths.

1 /* D3 */ call_user_func_array("Func" . $v, $b);

D4: the parameter is an expression whose value cannot
be computed statically. While in the general case it is
not possible to handle code belonging to this category
statically, it is still important to measure the prevalence
of these patterns to assess the testability of the code.

1 /* D4 */ call_user_func_array($f, $b);

Evaluating SAST tools against these four dynamic
categories of increasing complexity allows us to measure
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more precisely their behavior against these challenging
dynamic operations. 52 of our PHP patterns and 52 of
our JS patterns involves dynamic features.

Positive vs Negative Test Cases: To deal with dynamic
features that cannot be computed statically, SAST tools
need to choose between two possible approaches: over-
approximate (e.g., by assuming all elements in an array are
tainted when one of them is), or under-approximate (e.g.,
by ignoring all elements altogether). The first can increase
the number of false positives, while the second solution
can miss real vulnerabilities. To better distinguish among
the two cases, we complemented the tests we developed
for dynamic features with special tests that used the same
dynamic functionality but without a vulnerability.

For instance, the following JS pattern (related to
arithmetic operations on an array index) was reported
as vulnerable by Comm 2 but not by Comm 1.

1 const parsed = route.parse(req.url);
2 const query = querystring.parse(parsed.query);
3 var c = query.name;
4 array = [’a’, ’b’, c, ’d’];
5 index = 3; index = index -1 ;
6 r.writeHead(200,{"Content-Type":"text/html"});
7 r.write(array[index]); // print c variable
8 r.end();

This could be due to the fact that Comm 2 can
compute the index value statically, or it could simply
be the consequence of the fact that the two SAST tools
might adopt different strategies to deal with arrays
(over-approximating the first and under-approximating
the other). To answer this question, we created a negative
version of the same pattern, where line 7 is replaced by:

7 res.write(array[index-1]); // print ’b’ char

Since Comm 2 reports a vulnerability also for the
negative version of the pattern, we can conclude that
it was indeed applying an over-approximation to deal
with the array. In total, we retained 7 negative pattern
instances for PHP and 20 for JS, for which the negative
version was still reported as vulnerable by some of the
SAST tools, indicating an excessive over-approximation.

Functional vs Object-Oriented: As we discuss in the
related work (Section IX) several studies conducted by the
software engineering community have discussed the poor
testability of object-oriented code. In general, researchers
have found that when developers use more object-oriented
features, projects become harder to test (even though
this in the literature normally refers to dynamic testing).
Therefore we included 39 PHP and 40 JS patterns
related to classes, methods, static methods, and properties.
These patterns cover different OO aspects, such as object
constructors, encapsulation, overriding, and inheritance.

B. Pattern Selection

Figure 2 and 3 summarize the results of our SAST tools
against our libraries of 122 PHP and 153 JS tarpits. Due to

Fig. 2. SAST measurement over pattern dimensions (PHP)

Fig. 3. SAST measurement over pattern dimensions (JS)

space limitation, the complete list of patterns is presented
in Appendix and is detailed in our public repository [3].

In the graphs, the bars show the percentage of all pat-
terns on which each tool reported the correct answer. First
of all, it is interesting to observe that for PHP, none of the
tools reaches 50% coverage of our patterns. Comm 1 is the
best in terms of overall results, driven by its extensive cov-
erage of PHP static features. However, other tools take the
lead in other categories. For instance, Progpilot has the best
support for the D1-D2 tests (where more sophisticated
static analysis algorithms might be required to propagate
constant and determines the values of program variables),
and Comm 2 has the highest coverage of the PHP APIs.
RIPS is the best tool among the research tools for the
supported APIs, confirmed by the fact that its authors
mentioned in the corresponding paper [12] that they per-
formed an extensive work to model the built-in function of
PHP. On the other hand, Progpilot is the only research tool
that supports object-oriented code, and it achieves the best
results on static features between the open-source tools.

Results are a bit better for JS, where three tools are able
to cover more than 50% of the patterns. However, in this
case, the higher success rate is in part due to the extremely
poor performance of NodeJsScan. Indeed, 24 patterns are
supported by all tools but NodeJsScan, and therefore they
would have been discarded if this tool was not part of our
arsenal. As for PHP, commercial tools are still dominating,
featuring similar performances and emerging as the best
tool for the security dimension. If Comm 1 performs
better on static features, Comm 2 outperforms it on the
internal API support. With respect to dynamic patterns,
we observe the same behavior as for PHP: tools supports
some D1-D2 patterns, but have more troubles against D3-
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D4 patterns. Only Comm 2 is able to correctly analyze
beyond 40% of those D3-D4 instances, though it seems
to apply over-approximation in most of those cases.

Another interesting aspect of our experiments is the
fact that the tarpits are very different among the different
tools. In fact, while tools taken individually have many
limitations, their combination is able to handle around 66%
of the PHP and even 85% of the JS patterns in our library.
Moreover, none of the tools is a superset of any other
in terms of tarpits. Thus, using a combination of SAST
tools to test a web application is, from a testability point
of view, always better than relying on a single product.

IV. PATTERN DISCOVERY

In the previous section, we described how we built our
library containing hundreds of testability tarpits. While
this list can already be used to compare SAST tools
and find a suitable combination that minimizes their
limitations, this is not the main goal of our paper. Our
objective is to support developers to assess which parts
of their code can be effectively tested by SAST tools
and which are not, and provide guidelines to improve
the overall testability by avoiding particular patterns.

For this purpose, we decided to extend each tarpit in
our library with a corresponding discovery rule that can
be executed to discover its presence in the code of a Web
application. While grep-like regular expressions can
be sufficient to identify simple patterns, others require
a more sophisticated taint-based analysis that takes into
account the interplay of multiple program statements, e.g.,
to identify where a variable that is used in an interesting
operation is previously defined. Designing a complete
static analysis framework is beyond the scope of our
paper, and therefore we decided to build our solution by
extending the Joern code querying framework [40]. Joern
constructs code property graphs (CPG, [43]) that combine
the program’s syntax tree, control flow, data dependencies,
and calling relations in a joint representation – thus
already providing most of the information needed for
our analysis. While initially developed for the analysis of
C/C++ code, the framework has recently been extended
to handle PHP opcodes.6 However, at the time of writing
there was no public CPG generator for Node.js compatible
with Joern, and this prevented us from performing a
complete analysis of the prevalence of our JS patterns.
Nevertheless, we scripted some ad-hoc routines to
discover 54 of our JS patterns from the Abstract Syntax
Tree (AST) of a JS application. Though these routines
are not as precise as CPG queries and suffer from false
positives, they have proved to be very helpful in pursuing
initial experiments on real applications (e.g., to identify
patterns before the manual transformation in Section VI).

Our Joern-based discovery rules have different complex-
ities, ranging from a simple search for a given instruction

6The extension is in an early development phase and yet to
be released publicly. It was kindly made available to us by its
developer—name removed for anonymity.

to complex queries where we use the control, data, and
call graph dependency. For instance, we use the following
query to count the occurrences of the feature simple refer-
ence (ASSIGN_REF) in the CPG of a target application.

cpg.call(".*ASSIGN_REF.*").size

To find instead the use of objects in which the developer
redefines the __set function, we can use Joern to
search for the NEW opcode used on a class that has the
method __set defined:

def hasSet = cpg.typeDecl
.filter(_.method.name.contains("__set"))
.name.l

cpg.call("NEW")
.argument
.filter{ x =>

hasSet.contains(x.code.toLowerCase)}.size

The ability to automatically discover each tarpit brings
many benefits. For instance, these rules can be integrated
into an IDE to provide immediate and precise feedback
to the developers about the impact of the code they are
writing on the static testability of the application. This
information can be used to make an informed decision
about which parts of the application are blind spots for
a static analyzer and thus may require a more extensive
code review process, and which code patterns could be
refactored into more analyzable alternatives. For instance,
for security-critical services, developers may decide to
limit the use of patterns that are not supported by SAST
tools (e.g., those in the category D3-D4) to minimize
the risk of undiscovered vulnerabilities.

V. PREVALENCE

We now estimate how prevalent our tarpits are in
real-world applications. For this purpose, we use our CPG
queries for PHP against four different datasets. The first
three are composed of PHP projects hosted on GitHub,
chosen according to their popularity (measured by the
number of stars they received). In particular, we cloned
1000 applications of low popularity (between 20 and 70
stars), 1000 of medium popularity (between 200 and 700
stars), and 1000 with high popularity (more than 1000
stars).7 We refer to the three datasets as GL, GM , GH

respectively. The detailed list of the cloned projects is
available in our repository [3]. Finally, the fourth dataset
consists of all applications from the Sourcecodester
website (SC in brief), which hosts open-source PHP
projects [42] that serve as references to other developers
that want to implement their websites.

Due to space limitation, the complete results of
our prevalence measurement are reported in Appendix
(Table V). The whole experiment required 1 week on
a 16-cores machine with 64 GB of memory. On average,
for 1000 lines of code (LOC), generating the CPG took

7We used Github-clone-all tool [1] to clone all these projects.
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Fig. 4. Patterns distribution considering all patterns

Fig. 5. Patterns distribution considering only patterns hard for
Comm 1 and Comm 2

4.03 seconds, while traversing the CPG with our pattern
discovery queries took 7.82 seconds.

The scatter plots in Figures 4 and 5 compactly present
our results. In these plots, each dot represents a PHP
application and its coordinates show the number of
unique tarpits it contains (Y-axis) and the cumulative
number of instances of such patterns normalized by the
number of opcodes in the application (X-axis, plotted in
log scale). We use the number of opcodes instead of the
number of lines of code because it is more accurate as a
line of code can contain multiple instructions and because
opcodes represent only PHP code without considering
other embedded elements such as HTML and JS. It
is also important to note that Figure 4 does not show
four tarpits: simple object (P21), simple array (P58),
conditional assignment (P4) and combined operator (P5).
In fact, these patterns occur with a very high frequency
but only affects a few of our SAST tools.

Figure 4 shows the breakdown of the results by
datasets. Here we can notice two important points. First,
the prevalence of our patterns is very high: the average
project contains 21.15 unique tarpits with an aggregated
frequency of one tarpit every 8-to-50 opcode (the + sign
in the figure represents the average point). Second, the
more popular a project is, the more tarpits it tends to
contain. The main reason is the size of the project that is
higher for more popular projects: by counting the average
number of opcodes in GH , GM , GL, and, SC we have
62,303, 43,782, 21,066, and 17,141, respectively.

If we restrict our analysis to only those patterns
that affect a given SAST tool, we observe marginal
improvements. For instance, Figure 5 shows the results
restricted to patterns that affect Comm 2 and Comm 1
for the three Github datasets. It is interesting to observe
how the dots clearly follow different distributions, with
blue dots closer to the upper-left corner and red dots
closer to the bottom-right. This shows that real-world PHP
applications are more difficult to test with the first tool
than with the second: the average application contains 13.3
unique tarpits for Comm 2 (one every 47 opcodes) and
8.5 unique tarpits for Comm 1 (one every 203 opcodes).

Another interesting point is related to the scale of the
Y-axis. For over 83% of the applications, the number
of tarpits falls between one every 10 and one every 1000
opcodes – with an average of only 21. In other words, on
real-world PHP applications even state-of-the-art SAST
tools cannot process more than 20 consecutive opcodes
without encountering a pattern that prevents them from
correctly analyzing the code.

In the rest of this section we will discuss the prevalence
of different types of patterns. To streamline the discussion,
we only report numbers for the GH dataset, but all
values are available in the appendix for further analysis.

Object Oriented Code - 97% of the projects in the
GH dataset use objects. However, only one out of four
of the open source SAST tools we tested supports object
oriented code – showing a clear disconnection between
research prototypes and real-world applications. By
looking at OOP features that are not supported also
by commercial tools, the magic methods __set (P32),
__get (P33), and __call (P36) are used respectively
by 6.1%, 8.1%, and 6.8% of the projects. This confirms
that object oriented code still presents challenges also
for the best SAST tools on the market.

PHP Features and APIs - If we exclude OOP, among all
our tarpits the most prevalent language feature is the use
of combined operators, which is present in 93.4% of the
projects. However, this only causes problems to PHPSafe
and is correctly handled by all other tools. If we look
instead at those features that are causing problems for all
our SAST tools, the most common are the use of static vari-
ables (71.2% of the projects) and raised exceptions (81%).

Regarding the built-in API functions, array_map,
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which is not supported by any of our SAST tools, is
present in 28% of the projects. Among the security
critical sources and sinks, the use of superglobals (P66)
and the exit function (P56) are the most common, with
a prevalence of respectively 41.3% and 22.6% projects.

Dynamic Features - the dynamic features of a language
are one of the biggest challenges for static analysis
tools but also one of the most commonly used by
developers. The simple case of storing and retrieving vari-
ables from dictionaries (P83), which often requires over-
approximation from a static perspective, is used in 88.3%
of the projects with a median of 32 occurrences each.

Features related to dynamic functions invocation are
also among the most frequently used in our datasets. For
instance, storing the function name in a variable (P82)
is used in 448 projects, dynamic callbacks (P80) in 269
projects, and dynamic function call (P76) in 602 projects.
All these examples belong to the D4 category – and
therefore there is little a static tool can do to properly
resolve these calls statically.

However, some of the dynamic patterns can be trivially
handled by a SAST tool. For instance, the D1 instance
of a dynamic call (P80), which hard-codes the name of
the target to invoke, is present in 20.8% of the projects
with a median of 2.5 instances each. Another simple
example comes from file inclusion. In PHP, when file A
includes file B, it can access the variables of B without
defining them as global variables. The corresponding D1
pattern (P79) causes problems for three of our SAST
tools (phpSAFE, WAP, and Comm 2) and it is present in
63.6% of the projects. The related and more complicated
case where the file name is stored in a variable (D4),
is even more common, with a prevalence of over 75%.

VI.
EXPERIMENT: MANUAL PATTERN TRANSFORMATION

In this section, we will demonstrate the usage of our
patterns on five PHP and five JS open-source projects
selected according to these criteria: (i) the project is
mainly based on PHP or JS, (ii) an injection vulnerability
has been reported in the past for the project as a CVE
precisely pointing to the latest vulnerable codebase version
(VulCode, in short), (iii) some testability patterns occur in
the path connecting the source and the sink of the vulner-
ability in VulCode, and (iv) one of the SAST commercial
tools fails to report the CVE vulnerability on VulCode.

We gathered five projects for each language satisfying
these criteria from the CVE Mitre website [30]. For each
project, we carefully review the CVE and the testability
patterns preventing the SAST tool from detecting the
expected vulnerability. We then manually transformed
these patterns and run again the tool to check if the
vulnerability was detected on the transformed project
code. Table I and Table II present the results of our
experiments. For each project, we specify the CVE, the

vulnerability class, the SAST tool used8, the testability
patterns identified and preventing the SAST tool from
reporting the vulnerability, and the new injections (alerts)
from the tool on the transformed code.

After refactoring the testability patterns, all the
CVEs’ vulnerabilities were detected and many more true
positives were reported by the tools. Some of these true
positives still applied to the latest versions of the projects
and our responsible disclosure lead to three new CVEs9.

In the rest of this section, we present some of the trans-
formations that we applied and we discuss the new alerts
reported by SAST tools. More details about the case study
projects and their results are available in our repository [3].

A. Transformations

During these experiments, we encountered a
combination of 9 unique PHP and 17 unique JS tarpits
that prevented our tools (Comm 1 and/or Comm 2)
from discovering the known vulnerabilities. To refactor
the corresponding code patterns, we applied three types
of transformations. We present hereafter one example
from each type. The details for all transformations are
available in our repository.

T1 - Semantic-preserving Transformations. This
type of transformation can be applied automatically
while preserving the semantic of the code. An example
of this category is the refactoring of the D1 variant
of callback_functions pattern (P78 in Table V)
presented in Section II for the MantisBT PHP project.
By replacing line 12 in Listing 1 with the equivalent
$r = gpc_get($args), the tarpit disappears, the
code semantic is preserved, and the SAST tool becomes
able to understand the code and detect the vulnerability.
Overall, five out of nine (for PHP) and nine out of 17
(for JS) of our transformations belong to this category.

T2 - Over-approximations. Transformations in
this category aim at reducing FNs by increasing the
amount of code that can be analyzed by the SAST tool.
However, they achieve this goal at the price of breaking
the semantic of the program, as the removal of the
tarpit requires to introduce an over-approximation. We
experience this case in the Bakeshop Online Ordering
PHP project where the pattern JS redirect (P57) is used
to redirect the user to index.php:

1 f u n c t i o n r e d i r e c t ( $ l c = Nul l ) {
2 echo ”<s c r i p t >window . l o c a t i o n = ’{ $ l c } ’</ s c r i p t >” ;
3 } r e d i r e c t ( ” i n d e x . php ” ) ;

This pattern is not supported by any of the SAST
PHP tools in our arsenal. To enable the SAST tool
to understand the redirection we rewrote line 2 as
include($lc), thus removing the JS code altogether.

8For PHP projects, Comm 1 is the only tool that we used in this
experiment and thus we avoid adding the Tool column.

9CVE-2021-33557, CVE-2021-33300, and CVE-2021-23342
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TABLE I. IN-DEPTH ANALYSIS ON PHP REAL CASES

Patterns SAST After (TP/FP)
Project CVE Vuln. XSS SQLi FILEi CODEi SUM

MantisBT CVE-2011-3357 FILEi callback functions D1 (P80, T1) 28/88 0/0 18/14 3/0 49/102
Osclass CVE-2012-0974 XSS dynamic include D2 (P79, T1), array variable key D2 (P83,

T2), static instance of a class (P49, T2)
14/0 0/0 0/0 0/0 14/0

Bakeshop Ordering CVE-2020-35272 XSS JS redirect (P57, T2) 15/0 0/0 0/0 0/0 15/0
Bus Booking CVE-2020-25273 SQLi Extract function (P70, T3) 0/0 49/0 0/0 0/0 49/0
Domainmod CVE-2018-11404 XSS Dirname function (P74, T1), Dynamic include D1 (P79,

T1), buffer (P75, T1)
77/118 0/0 0/0 0/0 77/118

9 patterns 134/206 49/0 18/14 3/0 204/220

TABLE II. IN-DEPTH ANALYSIS ON JS REAL CASES

SAST After (TP/FP)
Project CVE Vuln. Tool Patterns XSS CODEi SUM

Docsify CVE-2020-7680 XSS Comm 1 (P87, T1), (P49, T1), (P55, T1), (P79, T1), (P7, T1, T3),
(P99, T2), (P78, T2), (P101, T2), (P21, T1)

5/24 0 5/24

Apexcharts CVE-2021-23327 XSS Comm 2 (P87, T1), (P101, T2) 6/3 0 6/3
Hello.JS CVE-2020-7741 XSS Comm 1 (P24, T1), (P82, T2), (P21, T1) 3/24 0 0
Lazysizes CVE-2020-7642 XSS/ CODEi Comm 2 (P14, T1), (P7, T1), (P83, T1), (P78, T2) 4/0 1/8 5/8
Angular Exp. CVE-2021-21277 CODEi Comm 2 (P87, T1), (P36, T2), (P86, T3), (P90, T2), (P75, T2), (P21,

T1)
1/0 0 1/0

17 patterns 19/51 1/8 20/59

However, this modification changes the semantics of
the code as the redirection via window.location
provides to the new page access only to the session
variables of the previous page, while include provides
access to all variables. For example, if there is a variable
v controlled by the attacker in page A, v will be fully
accessible to page B included in the context of page A. It
is interesting to observe that this transformation introduces
a new tarpit in the code: the dynamic include D2
(P79) is occurring after the transformation as the location
of the PHP file to be included is captured in a variable
($lc). However, this pattern instance is easily refactored
via a T1 transformation. This shows that the refactoring
cannot be performed in one single shot, but it needs to
be repeated until no pattern instances are left in the code.

T3 - Developer-Assisted Transformations. While
both T1 and T2 can be refactored in a fully-automated
fashion, in some cases we noticed that we could not
remove the tarpit without some form of human assistance.
This support can be in the form of code annotations
that specify the propagation of data within complex
code areas. For instance, we encountered this situation
in the Online Bus Booking PHP project. Here the
developers use the extract function—which we explained
in Section III-A—to generate variables dynamically
from an array. SAST tools have trouble computing these
variables statically. A simple annotation, added before
the extract operation, is sufficient to help:

/ / @sast : p r o p a g a t e ( $ POST , [ $username , $password ] )

Notice that this annotation can be added by the developers
once our pattern discovery rules make them aware that
SAST tools will not be able to interpret that pattern in
their code and that some annotations would be helpful to
overcome such SAST limitation. From that annotation is
simple to execute a transformation that simply add to the

code the following instructions to make the extract explicit:

$username = $ POST [ ” username ” ] ;
$password = $ POST [ ” password ” ] ;

Some SAST tools accept in input special annotations
to help them in the analysis – and therefore this type
of transformations could be implemented by using those
annotations. However, we did not explore this direction in
the paper as this approach would make the transformation
tool-specific.

B. Results upon transformations

After running our SAST tools on the refactored code,
we confirmed that they were able to correctly report all ten
known vulnerabilities. Moreover, since the transformations
allowed them to better analyze the application code, they
also additionally reported 503 new potential injection
vulnerabilities. After manual verification, we confirmed
224 of them to be true positives. In some cases, the new
vulnerabilities were similar to the ones already reported
in the CVEs. In other cases, after removing the tarpits
the SAST tools were able to detect new vulnerabilities
of different types. Motivated by the high number of
new true positives, we moved our attention to the latest
versions of the applications (LatestCode, in short). First,
we used our discovery methodology (see Section IV)
to confirm that the testability patterns preventing the
detection of the old CVE were still present in the current
code. Second, we run the testing tool on the latest
versions, both before and after applying our pattern
transformation to the whole project. This allowed us
to discover several previously-unknown vulnerabilities,
which received new CVEs. These include one in the
MantisBT project (CVE-2021-33557), four in the latest
version of Domainmod (CVE-2021-33300 in process),
one in Docsify (CVE-2021-23342) and one in Apexcharts
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TABLE III. LARGE-SCALE TRANSFORMATION EXPERIMENT

SC GL GM GH

occ. prj. occ. prj. occ. prj. occ. prj.

R1 14 9 927 128 2029 160 2116 210
R2 21 3 89 24 155 39 202 53
R3 130 9 1287 125 1929 179 2582 254
R4 130 12 3613 173 8724 263 7043 340
R5 21 7 258 89 524 113 488 149

Total 316 21 6174 281 13361 382 12341 486

Alerts 18 3 7086 19 1019 26 1297 24
TP 18 3 224 13 73 12 55 15

(validated by the developers and rewarded with a bug
bounty, while a CVE will be released soon). Finally, for
both Bakeshop Online Ordering and Online Bus Booking,
all true positives reported in the old versions were still
applicable as we directly worked on their latest version
for the known CVEs experiment. However, in this case,
no new CVE was assigned because the new findings
were considered as variations of the main CVE.

VII. EXPERIMENT:
AUTOMATED PATTERN TRANSFORMATION

In the previous section, we investigated whether
known vulnerabilities could be discovered by SAST
tools once the obstacles related to our testability patterns
are removed from the corresponding applications. After
their code was manually transformed, we discovered that
SAST tools were also able to discover a number of new,
previously-unknown vulnerabilities – thus confirming the
negative impact that our patterns have on static analysis.

Motivated by these results, we decided to develop
a number of fully automated routines to transform the
code of five simple PHP patterns.10 We then applied
these routines to all the applications in our four datasets
(GL, GM , GH , and SC, introduced in Section IV) and
run both the original and the transformed code through
Comm 1 (the top-performer tool in our assessment for
PHP). Finally, we manually compared the alerts reported
by the tool before and after the transformations to
distinguish between false positives and real vulnerabilities.

The five testability tarpits we selected to transform
for this large-scale experiments are:

[R1] Callback functions (D1), P80 – as we described in
Section II, call_user_func can be used to invoke
a function or an object’s method by passing its name as
parameter. For the simple case in which the target func-
tion is constant, we implemented three refactoring rules:

//Before
call_user_func("F",$x);
call_user_func($obj,"method1");
call_user_func_array("F",$args);
//After
F($x); $obj->method1(); F(...$args);

10For this experiment to be done for JS, we need to wait for a CPG
generator to automatically and precisely discover patterns, cf. Section IV.

[R2] Callback functions (D3), P80 – This routine
applies to a variation of the previous pattern in which
the name of the function to invoke is obtained by
concatenating a prefix string to a variable. In this case,
our routine transforms the code by first retrieving all
functions whose name starts with the prefix and then
by invoking them inside if statements:

/*Before*/ call_user_func("Func_" . $x);
/* After */
if($x == "F1") {Func_F1();}
else if($x == "F2") {Func_F2();}
else if ...

[R3] Get arguments, P17: In PHP it is possible to
define a function to receive an arbitrary number of
arguments and then retrieve them from the code
by invoking the func_get_args function. We
transform this pattern to use the PHP variadic function
instead (less problematic for SAST tools):

/*Before*/function F(){$y=func_get_args();}
/*After*/ function F(...$x){$y = x;}

[R4] Foreach with array, P58: PHP provides an
internal function called array_keys which returns
the keys of an associative array. Our routine transforms
the use of this function in foreach loops as follow:

/*Before*/foreach(array_keys($arr) as $key){}
/*After*/ foreach($arr as $key => $value){}

[R5] Exit, P55: the exit function terminates the
program and prints to the user the message it receives
as a parameter. Therefore, if the message is controlled
by the user and not properly sanitized, this can result
into a XSS vulnerability. SAST tools do not take this
potential sync into account. Our routine makes this
explicit by performing the following change:

/*Before*/exit($value);
/*After*/ echo($value); exit();

Table III reports the results of our experiment. For each
of the five tarpits, we counted the number of occurrences
(which were transformed by our automated routines) and
the number of projects that were affected. In total, our
tool modified 1170 applications, by refactoring 32,192
occurrences of the five tarpits. As a result of these
transformations, Comm 1 raised 9420 additional alerts
for 72 of these applications (an average of 130.8 alerts per
application). For 17 of these applications the new alerts
related to more than one vulnerability class. Specifically,
the new alerts applied to 103 pairs of application and
vulnerability class, referred to as (app, vuln).

The verification of the new alerts required an intensive
manual effort. If the pair (app, vuln) featured less than 50
new alerts (in total, 82 pairs), then all were inspected and
classified as either true positive or false positive (587 alerts
were classified in this phase). Otherwise, we sampled 20%
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of the new alerts related to the pair (app, vuln), ensuring
that alerts with different source-sync combinations were
included. This resulted in the manual verification of
21 pairs and their 8833 new alerts. Finally, if any true
positive was identified in this step, then the entire set of
new alerts of the corresponding pair was inspected (this
resulted in three pairs for which we inspected 425 new
alerts). In total, we manually inspected 2700 new alerts.

Overall, this process allowed us to confirm 370
vulnerabilities in 43 applications, all of which were
responsibly disclosed to the respective developers.
However, not all maintainers answered our messages.
For instance, out of the 55 vulnerabilities discovered in
15 popular GitHub projects, 36 (from 10 projects) were
confirmed. In the GM dataset, developers acknowledged
while we received only two answers from the low popular
projects GL after we disclose 224 vulnerabilities in 13
applications. Based on these discoveries, three CVEs
(CVE-2021-43673, CVE-2021-43682, and CVE-2021-
43687) have already been assigned and many more have
been reserved and will be published soon.

We also discovered 18 unique vulnerabilities (CVE-
2021-44280) in demo code applications (SC dataset)
used to showcase functionalities for other developers
and, thus, suitable to be copied&pasted to speed up
code implementation, with the subtle risk of porting the
vulnerabilities in other applications.

False Positives Discussion

Table III shows that a large fraction of the new alerts,
(approximately 2300 over 2700 alerts we manually
inspected) are false positives. However, it is important to
understand that this does not mean that our transformations
are the cause for those false positives. Our transformations
increase the amount of code that can be analyzed and
tested by SAST tools. The more code is analyzed, the
more likely the tool is to report findings, most of which
are unfortunately false positives. Without our refactoring,
the SAST tools are simply blind to those code areas.

Those blind code areas may be many and their impact
on false-negatives significant. For instance, by inspecting
the MantisBT project—part of the GH dataset and
presented in Listing 1—we identified other 9 functions
that, as gpc_get_string, suffer from the callback
functions (P80, D1) tarpit and invoke gpc_get in a
(useless) dynamic fashion. These functions are called 769
times in 182 files.

A second important point is that all the five automated
transformations applied in our experiment are semantic-
preserving (T1) and as such they do not add any over-
approximation. Thus, the large numbers of false-positives
emerging in that experiment is essentially due to the ability
of SAST tools to better understand the application code.
To confirm this observation, we performed an additional
experiment in which we manually inspected a few popular
projects (in GH ) for which we received answers (and

TABLE IV. FALSE POSITIVES EXPERIMENTS

Project Before (TP/FP) Transf. After (TP/FP)

MantisBT (1.4k) 0/90 73 1/207
Cloudflare-CNAME-Setup (1.3k) 42/46 16 10/10
Librenms (2.4k) 49/135 144 1/2

confirmed vulnerabilities) from developers. Our goal was
to demonstrate that there is no direct relation between
our transformations and the false-positives rate. Table IV
shows the results. For each project, we indicate the ratio
TP/FP before transformations, the number of transforma-
tions, and the ratio TP/FP of the new alerts raised on the
refactored code. We can see that the ratio between the num-
ber of transformations and the new alerts is very diversified.
Note that these results were validated with the development
teams to improve the projects’ quality. For instance, we
submitted a pull request for Librenms (2.4k stars) that
was promptly accepted to fix the detected vulnerability.

While the above discussion is true for the
transformations we used in our large-scale experiments,
not all possible transformations have no impact on
false-positives. For instance, T2 transformations could, as
a side effect, increase the number of false-positives and as
such they should be used with parsimony. We foresee the
developers playing a key role in our approach deciding
whether those transformations should be applied or not.

VIII. LIMITATIONS

Pattern Discovery. In Section IV we explained how our
discovery rules first perform a static analysis of the applica-
tion code. However, since the patterns we want to discover
are by definition those that are problematic for static
analyzers, this might seem a contradiction. In reality, the
fact that our rules can discover the presence of a tarpit (e.g.,
the use of a given instruction in a certain context) does not
necessarily imply that the underlying static analysis engine
is able to correctly handle the pattern. For instance, our
rules can detect that a piece of code performs a string oper-
ation even though the static analysis framework the rule is
built upon cannot reconstruct the actual value of the string.

It is important to note that, while implementing
sufficiently precise static taint analysis is simpler on
an intermediate language, such as PHP opcode, some
information (such as class inheritance) is lost in the
compilation process or optimized out by the JIT compiler.
In case our rules need access to this information (five
patterns in total) we had to implement a simple ad-hoc text
processing script to detect the tarpits at a syntactic level.

In other cases, our queries might under-count the
number of instances of a pattern due to the difficulties of
static taint analysis, in particular when tracking taint that
is not passed from function to function via a method call.
Similarly, patterns in the D3 category (where only part of a
value is constant) could be implemented in many possible
ways, but we only count when they rely on string concate-
nation and not, for instance, on sub-strings substitutions.

12



Because of these limitations, it is important to
understand that the number of times a pattern is reported
by our rules is a lower bound over the actual number
of times it can be present in the code.

New Patterns. We tried to be comprehensive in our
pattern catalogs by systematically inspecting all the
chapters of the language documentation (for both PHP
and JavaScript) and by including development community
comments about language corner cases. However, we
reckon that new features (e.g., from new widely used
libraries) may emerge and result in new patterns. For this
reason, we designed our approach to be extensible towards
the addition of new patterns and we are developing
an open-source framework where the community can
add patterns by following a well-defined format. The
procedure is described in detail in our repository [3].11

Once a developer has identified a new challenging code
fragment, adding the corresponding pattern is a matter of
a few hours of work. The most challenging part is coding
the pattern discovery rule, which requires some knowledge
in Scala and Joern. However, the developer can count on
many examples in our catalog as well as on a broad and
active community [40], which is another advantage of
building our system on top of a popular framework.

For example, if a user suspects that the use of the
PHP API function substr could be a potential tarpit
for SAST tools, she will first adapt the pattern stub
(cf. Section III-A) by adding a call to substr between
the source and the sink:

1 $a = $_GET["p1"];
2 $b = substr($a,0,15);
3 echo $b; // XSS

Second, she would initiate the SAST tools validation
scan (an operation fully supported by our framework) to
collect the impact on the new pattern. Third, if one tool
fails to discover the vulnerability on the stub, the pattern
will be added to our collection and a discovery rule will
need to be created. This can be easily done by tuning
any of the discovery rule created for other API patterns
(e.g., P59-P65 in Table V) via a simple replacement of
the API function name with substr:12

cpg.call(".*INIT_FCALL.*
").argument.order(2).code("substr").size

Beyond Injection Vulnerabilities. While we focused on
injection vulnerabilities (XSS, SQLi, Code Injection, File
injection, Command Injection, and Path Manipulation),
other types of vulnerabilities can be covered as a future
work (e.g., Information leakage and/or improper error-
handling attacks [41]). In fact, even though our tarpits

11https://github.com/enferas/TestabilityTarpits/tree/main/Docs/
AddingPatternProcess.md

12INIT_FCALL opcode is used to call internal functions and the
name of the function is the second argument.

focus on data flow-related challenges, many of them are
quite general and also impact the analysis of the control
flow of the application. A complete set of tarpits related to
control flow can be an interesting follow-up for our work.

IX. RELATED WORK

Over the past two decades, researchers have developed
many tools and techniques [see e.g., 16, 27, 28, 31, 35]
to statically identify vulnerabilities in source code. Our
research does not introduce a new vulnerability discovery
techniques but rather focuses on the difficulties these
tools face. The three research areas most closely related
to our work are: software testability, studies of the
limitations of static analysis, and comparisons of web
SAST tools. In the following, we discuss related work
in each of the three areas.

Software Testability. While testability of software
artifacts has been the subject of a large body of research
in the software engineering community, its definition
remains unclear. In a recent survey, Garousi et al. [15]
collected 33 different definitions of testability from
different sources, finding the most common to be that
given by ISO, which defines testability as the “attributes
of software that bear on the effort needed to validate the
software product”. This captures a common interpretation
accepted by software engineers, which sees testability
as a measure of the number of test cases needed to test a
program and/or of the difficulty of generating those cases.

In this paper, we instead use the term testability to mea-
sure the ability of static analysis tools to “understand” the
code, with the goal of discovering security vulnerabilities.
As such, our definition captures not the effort required to
generate test cases, but the challenge of analyzing the code.

Despite the difference in scope, our work shares
similarities with other studies in which the authors
focused on either improving or measuring testability. In
the first category, researchers have mainly studied source
code transformations to improve automated test data
generation [7, 9, 18, 19, 20, 22, 23].

On the measurement side, Garousi et al. [15] discuss
35 papers that present metrics to deal with testability. For
instance, Gupta et al. [17] propose three fuzzy metrics for
object-oriented software testability: Depth of Inheritance
Tree, Coupling Between Objects, and Response For a
Class. More recently (in 2020), Oluwatosin et al. [34]
list 20 publications that measure testability of software
design and categorize them based on whether they were
related to Encapsulation, Coupling, Cohesion, Inheritance,
Polymorphism, or Complexity.

While no previous study has systematically looked at
patterns that prevent static tools from discovering vulner-
abilities in web applications, previous work has already
covered some of the aspects that can affect testability
of programs written in dynamic languages. For example,
Alshahwan et al. [6] list three categories that affect the
testability of web applications (1) Forms, (2) Client-side
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validation, and (3) Server-side manipulation. Bures [11]
instead define two types of patterns that affect testability,
the first one represents the anti-patterns, and the second
represents the functional features of the front-end applica-
tion. The same author also introduced a semi-automated
framework to collect metrics for automated testability [10].

Challenges for Static Analysis. Our work also shares
similarities with research on the limitations of static code
analysis. For example, Landman et al. [26] analyzed the
main challenges to perform static analysis on programs that
use Java reflection. The authors’ experiments show that for
78% of the projects in their dataset, reflection could not
be resolved statically. They also provided suggestions for
developers to analyze reflection code as well as improve-
ments for static tool builders. Sui et al. [39] compared
three tools that had difficulties in discovering vulnera-
bilities in JAVA applications because of the presence of
dynamic features and reflection. Other papers discussed
the challenges in analyzing dynamic proxy API [14].

In general, the use of dynamic features is the main
challenge for static analyzers. Kyriakakis et al. [25]
defined a number of patterns of PHP dynamic features
and they counted their frequency in 10 projects, while
Hills et al. [21] proposed a categorization of the PHP
features and counted them in 19 projects. The authors
also counted the prevalence of dynamic features and how
many times they could be resolved statically, finding that
78% of the dynamic includes and 61% of the variable
variables are statically computable.

Medeiros and Neves [29] recently published the first
work that looked at the impact of coding styles on the
accuracy of SAST tools (RIPS, WAP, and phpSAFE)
applied to web applications. The authors define six
scenarios of coding styles, with three vulnerabilities each.
In all cases, they found that the tools identify true positives
when the query source is defined closer to the sink and
false negatives when it is defined farther from the sink.

Comparison of SAST Tools. Several studies have
compared the accuracy and effectiveness of SAST tools.
Nunes et al. [32] proposed a benchmark to compare
five popular tools on their ability to discover SQL
injections and XSS vulnerabilities in 149 WordPress
plugins. Kupschs and Miller [24] studied the ability
of two popular commercial applications, Fortify and
Coverity, to discover 15 vulnerabilities in the Condor
project. Each vulnerability was validated by hand, and
classified by the authors according to its difficulty to
discover (8 Difficult, 1 Hard, 5 Easy). Finally, Spoto et
al. [38] uses object-sensitive taint analysis to build their
static taint analysis for web applications in JAVA and
compare their results with ten static analyzing tools.

Novelty. While other researchers have performed
similar studies (but limited to only a handful of patterns)
to identify challenges for crawlers and dynamic testing, to
the best of our knowledge this paper is the first to evaluate
web applications based on how easy they are to analyze

for SAST tools. By using our approach developers can
get a precise indication of the fraction of the application
that a SAST tool will not be able to cover. This helps to
put the results of static testing into context and to suggest
which SAST tool is better suited to analyze the application.
Finally, our study is the first to show the impact of code
refactoring on vulnerability discovery for web applications.

Previous works (Kyriakakis et al. [25] and Medeiros and
Neves [29]) provided inspiration for some of our tarpits,
in particular for the dynamic patterns. On the other hand,
our tarpits provide new metrics to compare between static
security tools, and provide a number of novel findings
which were never discussed in the state of the art. Finally,
previous papers have compared SAST tools based on
their accuracy of discovering vulnerabilities in real-world
applications, while in our work we compare them based on
the types of code patterns they are able to handle correctly.

X. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated that specific code
patterns, which we call testability tarpits, are a major
impediment for static analysis of real world web
applications. In particular, we assembled a library of
testability tarpits for the two most used web programming
languages (PHP and JS) and we validated them by using a
mix of state of the art open-source and commercial SAST
tools. By defining discovery rules for these tarpits and
applying them on thousands of open-source applications,
we showed that these tarpits are widely used, indicating
that nowadays static analysis has plenty of blind-spots.
Finally, we performed two sets of experiments to to show
that refactoring the code to remove tarpits has a significant
impact on the alerts reported by SAST tools, leading to
the discovery of many previously-unknown vulnerabilities.

We believe the framework discussed in the paper
introduces a novel way to think about security testing.
By shifting the focus from the testing tools to the code
of the application, our solution allows to better assess the
residual risk that a vulnerability is still present in the code
after static testing. We contributed all our discovery rules
to the popular Joern community, in the hope that other
researchers and developers will extend our library of tarpits
and adopt to assess the security testing of web applications.
All other results and resources we developed about our
research are available in our public repository [3].
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APPENDIX

A. Testability patterns for PHP

The testability patterns for PHP are presented in Table V. This table groups together (by using horizontal lines)
pattern instances which address similar aspects of the language and have the same response from SAST tools. For each
instance (tarpit), the table reports its name, its properties with respect to the dimensions introduced in Section III-A,
and the tools that are affected by it (by using a sequence of letters, R for RIPS, S for PHPsafe, W for WAP, P for
Progpilot, X for Comm 1 and Y for Comm 2). When a tool handles the pattern by means of an over-approximation,
we mark its name with an overline. For instance, the string −−−−XY means that a tarpit is handled correctly only
by Comm 1 and via over-approximation by Comm 2. The last fours sets of columns report the prevalence of each
pattern instance in our four datasets – as expressed by the number of affected projects (prj column) and by the
median number of occurrences of the pattern (med column).

Finally, when the same pattern has multiple instances (e.g., to describe tests belonging to different dynamic
categories) that lead to the same result, we group them and report their number in the number of instances (#i) column.

TABLE V: Patterns

ID Pattern #i API SEC Dyn OOP Neg Tools SC GL GM GH
prj med prj med prj med prj med

1 static variables 1 S −−−−−− 50 13 443 4 635 7 712 14.0
2 global variables 1 S −S−−XY 89 10 203 7 213 10 210 12.0
3 global array 1 S −−WP−Y 33 6 138 4.0 162 5.0 179 7
4 conditional assignment 1 S R−WPXY 221 74 795 18 890 31.5 908 59.0
5 combined operator 1 S R−WPXY 335 170 919 33 942 64.0 934 97.5
6 coalesce 1 S RS−−XY 0 0 0 0 280 6.0 433 11
7 string arithmetic operations 1 D S RSW−XY 277 10 523 6 636 9.0 707 11

8 simple reference 1 S −−−−X− 42 39 163 9 231 5 292 6.0
9 reference argument 1 S −−−−XY 208 14 387 7 399 10 486 9.0
10 return by reference 1 S −−−−−− 19 11 83 4 95 4 132 4.0
11 foreach with reference 1 S −−−−−− 41 7 182 3.0 238 4.0 321 4
12 make ref 2 S D −−−P−Y 25 6 116 6.0 134 4.0 180 4.0
13 assign static prop ref 1 S −−−PX− 9 1.0 19 1 10 1.0 17 1
14 object assigned by reference 1 S −−−−X− 22 21 100 6.5 107 7 155 5

15 nested function 1 S −SWPX− 66 3.5 166 4.0 222 4.0 283 5
16 variadic functions 1 S −−−−XY 1 12 59 3 143 3 239 3
17 get arguments 1 S R−−−−Y 23 5.0 106 4.0 137 4 191 4
18 send unpack 1 S RS−−X− 1 31 73 3 146 3.0 264 4.0
19 closures 2 D2 −−−−XY 36 1 543 7 733 11 782 25.5
20 use with closures 2 D2 D −−−−XY 25 1 321 4 524 5.0 614 12.0
21 simple object 1 S D −−−PXY 336 199 968 350.5 977 863 974 1536.5
22 assign object 1 S D −−W−X− 30 3 138 4.0 212 4.0 325 4
23 object argument 1 S D −−−−X− 119 30 591 23 718 53.5 804 79.5
24 new self 1 S D −−−−X− 41 6 162 2.0 249 3 351 3
25 clone 1 S D −−−PX− 41 6 147 3 238 5.0 338 5.0
26 late static binding 2 D2 D D −−−−X− 13 1.0 165 4 279 5 386 8.0
27 get called class 1 D2 D −−−−−− 0 0 16 1.0 28 1.0 34 2.0
28 static methods 1 S D −−−PX− 119 17 792 29.0 865 61 898 126.5
29 static properties 1 S D −−−PX− 93 48 406 12.0 498 14.0 615 20
30 anonymous classes 1 S D −−−−XY 1 6 30 2.0 81 3 174 3.0
31 static method variable 2 D2,D4 D −−−−−− 1 1 23 1 51 2 68 2.0
32 set overloading 1 S D −−−−X− 0 0 44 6.0 50 7.0 61 8
33 get overloading 1 S D −−−−−− 1 1 56 6.5 70 7.0 81 8
34 isset overloading 1 S D −−−−−− 1 1 32 6.5 34 7.0 49 7
35 unset overloading 1 S D −−−−X− 0 0 24 5.5 23 8 29 7
36 call overloading 1 S D −−−−−− 6 1.0 47 4 59 7 68 7.5
37 callstatic overloading 1 S D −−−−−− 3 22 12 35.0 20 141.0 26 41.0
38 invoke 1 S D −−−−X− 1 21 6 1.5 9 3 11 4
39 serialize unserialize 1 S D −−−P−− 42 1.5 135 5 143 8 188 6.0
40 trait 1 S D −−−−XC 87 6 800 13.0 881 26 907 43
41 self methods 1 S D −−−PX− 68 35 360 12.0 482 15.0 602 22.5
42 destructor 1 S D −−−−−− 102 1 59 4 78 5.5 88 7.0
43 tostring echo object 1 S D −−−−XY 9 12 76 14.5 86 25.0 108 16.0
44 verify return type 2 S D −−−PX− 41 32 454 9.0 607 21 713 44
45 static method from variable 1 D2 D −−−P−Y 23 3 98 2.0 166 4.0 235 4

46 object to array 1 D2 D −−−−−− 50 13 290 4.0 405 4 475 5
47 Overriding 1 S D −−−PXC 62 11 569 16 698 24 750 49
48 construct with inheritance 1 S D −−−PX− 64 4.5 471 7 590 11 680 17
49 static instance 1 S D −−−−−− 9 3 103 1 114 3 161 2
50 throw exception 1 D2 −−−−−− 84 24 610 9.0 739 13 810 21.0
51 catch exception 1 S RS−−−C 95 6 466 4.5 612 6.0 687 11
52 try catch finally 2 D2 D R−−−XY 3 6 39 2 86 2.0 197 2
53 track error 1 S −−−P−− 135 20 333 5 407 6 521 7
54 generators 1 S R−−−X− 5 1.0 57 2 113 3 204 5.0
55 goto 1 S −−−−X− 3 8 68 8.0 95 4 155 5
56 exit 1 D S RSWP−− 261 3 182 2.0 185 4 226 4.0
57 JS redirect 1 S −−−−−− 151 8 27 3.0 115 3 137 4.0
58 simple array 2 D1 D R−−PXY 338 336.5 973 120 970 224.5 963 439
59 foreach with array 1 D S R−−−−Y 68 9.5 208 4.0 237 5 297 4

foreach with array 1 S R−−PXY 262 21 831 10 883 21 917 29
60 array walk 2 D D2,D4 −−−−−− 19 1.0 43 1 60 2.0 74 2.0
61 array map 2 D D2,D4 −−−−−− 41 12 167 3 214 5.0 280 4.0
62 parse str function 1 D D4 R−−−−− 17 4.0 76 1.0 88 3.0 112 2.0
63 substring replace function 1 D S RS−−−Y 38 4.0 80 3.0 97 3 118 3.0
64 preg match 1 D S R−−−X− 100 6.0 277 6 279 9 355 6
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65 system (system) 1 D D S R−−PXY 1 1 20 3.0 37 3 41 2
system (exec) 1 D D S R−−PXY 20 3 78 2.0 100 3.0 130 3.0
system (unlink) 1 D D S R−−PXY 101 3 159 4 181 6 237 5

66 superglobals 1 D S −SWPX− 177 7.0 331 4 355 6 413 6
superglobals 1 D S R−W−X− 323 19 112 4.0 133 8 148 5.0
superglobals 1 D S −S−−X− 9 1 58 1.5 81 2 102 2.0
superglobals 1 D S RSWP−Y 240 9 90 4.0 120 4.0 124 4.0

67 odbc 1 D D S RS−PXY 1 1 48 2.0 60 2.0 63 2
68 compact 2 D D2-D4 −−−−−− 1 1 48 2.0 60 2.0 63 2
69 create function 1 D D1 −−−−−− 1 3 49 2 38 4.0 44 2.0
70 extract 1 D D2 −−−−−− 117 15 80 2.5 100 3.0 89 2
71 array functions 1 D S −−−−−Y 23 1.0 86 2.0 114 2.0 155 3

array functions 1 D S R−−−−Y 10 1.0 23 2 37 1 40 2.0
72 procedural queries 1 D D S R−−PXY 187 26 30 2.5 33 4 24 4

procedural queries 2 D D S −−−−XY 73 4 43 3 38 4 38 2.0
73 wrong sanitizers 2 D D S RS−PX− 174 5 242 3.0 303 5 332 5.0
74 dirname 1 D D D1 −−−−−− 23 3.0 101 4 111 4 131 4
75 buffer 1 D S −−−−−− 27 2 150 2.5 190 3.0 181 4
76 function variable 2 D2,D4 −−−−−− 40 2.5 315 3 465 4 602 7.0
77 object callable 2 D2,D4 −−−−−− 12 6 89 2 141 3 252 4.0
78 autoloading classes 1 D D2 D −−−P−− 50 1 123 1 138 1.0 150 2.0
79 dynamic include 1 D1 D R−−PX− 337 44 549 5 600 5.0 636 6.0

dynamic include 1 D2 D R−−PX− 7 2 14 2.0 19 1 27 2
dynamic include 2 D3 −−−−−− 137 2 155 5 190 4.5 219 4
dynamic include 1 D4 −−−−−− 337 85.0 665 6 712 7.0 754 7.0

80 callback functions 1 D1 −−−P−Y 41 2 128 3.0 159 3 208 2.5
callback functions 2 D2 −−−P−− 5 2 11 2 15 2 31 2
callback functions 1 D3 −−−−−− 8 7 17 2 29 1 38 1.5
callback functions 1 D4 −−−−−− 65 6 180 4.0 188 4.5 269 5

81 new from variable 1 D2 D −−−−−− 12 7 90 5.0 122 3.0 127 3
new from variable 1 D3 D −−−−−− 0 0 0 0 0 0 0 0
new from variable 1 D4 D −−−−−− 39 8 394 4.0 503 5 600 6.0

82 methods variable 1 D2 D −−−−−− 14 4.0 99 4 163 4 211 4
methods variable 1 D4 D −−−−−− 46 3 223 3 351 3 448 4.0

83 array variable key 2 D2 D R−−−XY 74 8.0 173 8 255 8 277 5
array variable key 2 D4 D −−−−XY 238 21 763 12 831 18 883 32

84 variable variables 1 D2 −−−−−− 24 5.0 20 5.0 27 5 47 5
variable variables 1 D4 −−−−−− 123 5 81 4 108 4.5 147 3
Total 122 26 16 39 7 7623 1716 22687 1031 27875 2004.5 32572 3097.5
Average 74 16.66 220.2 10 270.6 19.5 316.23 30.07

Legenda for column Tools: RIPS (R), phpSAFE (S), WAP (W), Progpilot (P), Comm 1 (X), Comm 2(Y)

B. Testability patterns for JS

The JS testability patterns are listed and detailed for the community in our repository [3]. 34 of these patterns
resemble their PHP siblings, targeting basic language constructs and operators (OOP, functions and variables). All
the others focus on JS peculiarities such as specific data structure handlers (e.g., Proxy, WeakSet) or web operations
(e.g., Ajax requests). We classified each pattern instance according to the same dimensions introduced in Section III-A
for PHP: over 153 patterns instances, 40 are about OOP, 20 capture negative test cases, 22 are security related, and
22 refer to internal API (recall that these dimensions overlap between each other). For what concerns the Static
vs Dynamic features dimension, 101 instances are static (S) and the rest are dynamic (17 belong to D1, 17 to D2, 10
to D3 and 8 to D4). Table VI presents a selection of the patterns, with an emphasis on those mentioned in the paper.

TABLE VI: JS Patterns

ID Pattern #i API SEC Dyn OOP Neg Tools
7 array unshift 1 S L−−X−

14 template literals 1 D S L−ZXY
21 new target 1 S L−ZX−
24 finite 1 S L−ZXY
36 returned function 1 S L−ZX−
49 arrow function 1 D2 L−Z−Y
55 inheritance 1 S D −−−−Y
75 functions in object 1 D1 D −−−−Y
78 asynchronous event handler 1 D D2 L−Z−Y
79 inline function 1 D1 L−Z−Y
82 location assign with search 1 D D S L−Z−Y
83 getAttribute 1 D D S −−−−Y
86 type juggling 1 D3 −−−−−
87 modules 1 D2 −−−−Y
90 simple array 1 S L−ZXY
99 GET ajax 1 D D D2 L−ZXY
101 innerHTML outerHTML 2 D D S L−−−Y

Total 153 22 22 40 20

Legenda for column Tools: LGTM (L), NodeJsScan (N), Comm 3 (Z), Comm 1 (X), Comm 2(Y)
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