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Abstract—This paper presents two novel hybrid beamforming
(HYBF) designs for a multi-cell massive multiple-input-multiple-
output (mMIMO) millimeter wave (mmWave) full duplex (FD)
system under limited dynamic range (LDR). Firstly, we present a
novel centralized HYBF (C-HYBF) scheme based on alternating
optimization. In general, the complexity of C-HYBF schemes
scales quadratically as a function of the number of users and
cells, which may limit their scalability. Moreover, they require
significant communication overhead to transfer complete channel
state information (CSI) to the central node every channel coher-
ence time for optimization. The central node also requires very
high computational power to jointly optimize many variables for
the uplink (UL) and downlink (DL) users in FD systems. To
overcome these drawbacks, we propose a very low-complexity
and scalable cooperative per-link parallel and distributed (P&D)-
HYBF scheme. It allows each mmWave FD base station (BS) to
update the beamformers for its users in a distributed fashion and
independently in parallel on different computational processors.
The complexity of P&D-HYBF scales only linearly as the network
size grows, making it desirable for the next generation of large
and dense mmWave FD networks. Simulation results show that
both designs significantly outperform the fully digital half duplex
(HD) system with only a few radio-frequency (RF) chains,
achieve similar performance, and the P&D-HYBF design requires
considerably less execution time.

Index Terms—Parallel and distributed hybrid beamforming,
millimeter wave, full duplex, low-complexity, limited dynamic
range

I. INTRODUCTION

THE revolution in wireless communications has resulted
in ever-increasing data demands and services on our lim-

ited wireless spectrum. This urges the demand for spectrally
efficient communication systems to accommodate future data
growth. Contemporary wireless communication systems rely
on terminals that operate only in half duplex (HD) mode
by splitting the transmission and reception operation. They
can operate by dividing the resources either in time with
time division duplexing or frequency by relying on frequency
division duplexing. Full duplex (FD) communication is a
promising wireless transmission technology offering simulta-
neous transmission and reception in the same frequency band,
which doubles the spectral efficiency. Self-interference (SI)
cancellation is the key enabler for achieving an ideal FD
operation [1]–[3].
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To address the challenge of forthcoming data requirements,
research towards the deployment of communication systems in
the millimeter wave (mmWave) frequency band 30−300 GHz
has started [4], [5]. It offers much wider bandwidths and
200 times greater spectrum [5]. FD is very appealing for the
mmWave band as it can not only double the spectral efficiency
but also enable advanced joint communication and sensing,
minimize the end-to-end latency/delays and can lead to better
management of the mmWave spectrum [6]–[9]. To deal with
the SI in sub−6GHz, digital beamforming served as a powerful
tool due to a limited number of antennas available at the
FD base stations (BSs) [10]–[20]. In mmWave, they will be
operating with a massive number of antennas to overcome the
propagation challenges. Due to hardware cost, mmWave FD
transceivers will rely on a hybrid architecture consisting of a
massive number of antennas and a limited number of radio
frequency (RF) chains. Hybrid beamforming (HYBF) [21]–
[44] is a promising tool for such transceivers, consisting of
large dimensional analog processing and lower dimensional
digital processing, to jointly deal with the SI while meeting
the data traffic demands.

A. State-of-the-Art and Motivation

Novel HYBF designs for a point-to-point massive multiple-
input-multiple-output (mMIMO) mmWave FD system are
available in [21]–[28]. HYBF for mMIMO mmWave FD
relays is investigated in [29]–[36]. [37] and [38] proposed
HYBF for single-antenna users in a single-cell and multi-cell
mmWave FD systems, respectively. HYBF for an integrated
access and backhaul in a multi-cell mmWave FD system to
serve the multi-antenna uplink (UL) users is proposed in [39].
HYBF for multi-antenna UL and downlink (DL) users served
simultaneously in a mmWave FD system is studied in [40]–
[44]. The contributions [40], [41], [43], [44] are limited to
the case of one UL and one DL multi-antenna user, and in
[42] we proposed HYBF for a single-cell mMIMO mmWave
FD system under the limited dynamic range (LDR) by taking
into account the distortions introduced by non-ideal hardware.
Note that the literature does not contain any contribution for
the multi-cell mMIMO mmWave FD system, i.e., to jointly
serve the multi-antenna UL and DL users. Moreover, no
distributed beamforming for the multi-user FD systems, either
for sub-6GHz [10]–[20] or mmWave [21]–[44], has ever been
proposed. Finally, we remark that no low-complexity HYBF
design for mmWave FD is available in the literature.
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In wireless communications, the multi-cell FD scenario
is the most challenging one as the interference escalates
drastically compared to a multi-cell HD system. Besides the
interference of an HD system and SI, the DL users in FD also
experience UL cross-interference (CI) from all the UL users
transmitting in-cell, i.e., in the same cell, and out-cell, i.e.,
in the neighbouring cells. Moreover, the neighbouring BSs
generate DL BS-to-BS CI towards the receive antennas of
the FD BSs, already affected by the SI and interference. Fig.
1 highlights the difference in the interference contributions
between the multi-cell HD and FD systems. It is also clear
from Fig. 1 that the multi-cell FD systems require significant
channel state information (CSI) compared to a multi-cell HD
system. By shifting the FD paradigm towards the mmWave,
the size of direct, SI, interference and CI channel matrices with
multi-antenna users becomes massive. To manage interference,
centralized HYBF (C-HYBF) schemes will need to transfer
a vast amount of CSI to the central node every channel
coherence time to optimize the beamformers and combiners,
e.g., based on a multi-hop communication if the central node is
located far from the FD network. It results in tremendous com-
munication overhead and the central node also requires a very
high computational power to optimize many variables jointly,
both for the UL and DL users. The optimized variables need to
be communicated back to the FD BSs via feedback and each
FD BS has to also communicate the optimized beamformers
and combiners to its UL and DL users, respectively. For any
C-HYBF design, the whole procedure must be executed at the
millisecond scale. Given the vast amount of CSI and required
computational complexity for FD, it is clearly prohibitive.

Distributed beamforming [20], [45], [46] can eliminate the
problem of transferring CSI to the central node and reduce
computational complexity by decomposing the global opti-
mization problem into per-cell local optimization problems.
Distributed solutions can be implemented in a non-cooperative
fashion [47], or in a cooperative way [48] by exchanging
information among the BSs. Per-link parallel and distributed
(P&D) [49]–[51] beamforming can push further the potential
of distributed designs by decomposing the global optimization
problem into per-link independent local optimization sub-
problems. Therefore, each BS can have the advantage of
solving independent sub-problems associated with its com-
munication links separately and simultaneously on different
computational processors. Such designs can lead to an excep-
tionally computationally efficient implementation as the global
complexity can be decomposed on multiple processors of each
FD BS. If the number of processors available at each BS equals
the number of variables to be updated, then all the variables
could be optimized in one shot at each iteration, thus escaping
the time-consuming alternating optimization. We remark that
the literature does not contain any P&D-HYBF design, neither
for FD nor for HD systems.

B. Main Contributions

We consider the problem of HYBF for weighted sum rate
(WSR) maximization in a multi-cell mMIMO mmWave FD
network. The BSs and users are assumed to be operating
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Fig. 1: Multi-cell mMIMO HD and FD systems with a signif-
icant difference in the interference contributions and therefore
required amount of CSI.

in the FD and HD mode, respectively, and suffering from
the limited dynamic range (LDR) noise due to non-ideal
hardware [42]. The FD BSs are assumed to have a massive
number of antennas and HYBF capability with fully connected
analog beamformers and combiners. Discrete phase-shifters
are assumed for the analog stage at the FD BSs. The users are
assumed to have a limited number of antennas, fully digital
processing capability and are being served with multiple
streams by its hybrid FD BS.

Firstly, we present a novel centralized HYBF (C-HYBF)
scheme based on alternating optimization, which relies on the
mathematical tools offered by the minorization-maximization
(MM) optimization technique [52]. However, being central-
ized, it requires massive computational power to optimize nu-
merous variables jointly. Moreover, complete CSI needs to be
transferred to the central node every channel coherence time,
and the variables can be optimized only at one computational
processor based on alternating optimization. Analysis shows
that its complexity scales quadratically as a function of the
network size and density, which can limit its scalability. To
overcome these drawbacks, we introduce the concept of per-
link parallel and distributed HYBF for mmWave and propose
a very low-complexity and cooperative P&D-HYBF design
for a multi-cell mMIMO FD system. By decomposing the
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global WSR maximization problem into per-link WSR sub-
problems, P&D-HYBF enables each multi-processor FD BS to
update multiple variables simultaneously. Analysis shows that
its complexity is significantly less than the C-HYBF, which
scales only linearly as the network size grows, making it
desirable for the next generation of large and dense mmWave
FD systems.1

Simulation results show that the P&D-HYBF scheme
achieves similar WSR as the C-HYBF, despite being a dis-
tributed design. Both designs converge in a few iterations,
which results in a minimal amount of data exchange for the
P&D-HYBF. Results are reported with different LDR noise
levels, and both designs significantly outperform the fully
digital HD system with only a few RF chains at any level.

In summary, the contributions of work are:
• Introduction of the WSR maximization problem formula-

tion for a multi-cell mMIMO mmWave FD system under
LDR.

• Novel C-HYBF scheme for the multi-cell mMIMO
mmWave FD system.

• Introduction to the parallel and distributed approach for
HYBF in mmWave with the P&D-HYBF design.

• Despite being a distributed design, the P&D-HYBF
scheme achieves a similar WSR as the C-HYBF scheme.
It possesses all the characteristics to be implemented in a
real-time, large and dense multi-cell mMIMO mmWave
FD network. It is highly scalable, and converges in a
few iterations, thus requiring a minimal communication
overhead.

• Simulation results show that both designs outperform the
fully digital HD with only a few RF chains at any LDR
noise level.

Paper Organization: The rest of the paper is organized as
follows. Section II presents the system model and problem
formulation for WSR maximization. Section III presents the
MM optimization method. Sections IV and V present the C-
HYBF and P&D-HYBF designs, respectively. Finally, Sections
VI and VII present the simulation results and conclusions,
respectively.

Mathematical Notations: Boldface lower and upper
case characters denote vectors and matrices, respectively,
E{·},Tr{·}, (·)� , (·)) , ⊗, I, and D3 denote expectation, trace,
conjugate transpose, transpose, kronecker product, identity
matrix and the 3 dominant vectors selection matrix, respec-
tively. Vector of zeros of size " is denoted as 0"×1. vec(X)
stacks the column of X into x and unvec(x) reshapes x
into X. ∠X returns the phasors of matrix X on the unit-
circle. Operators Cov(·), and diag(·) denote the covariance
and diagonal matrices, respectively, and SVD(X) returns the
singular value decomposition of X.

II. SYSTEM MODEL

Let B = {1, ...., �} denote the set containing the indices
of � FD BSs serving in � cells. Let D1 = {1, ..., �1} and
U1 = {1, ...,*1} denote the sets containing the indices of �1

1Proposed P&D-HYBF is also applicable to the multi-cell HD or dynamic
time division duplexing scenarios [53]–[56], which are a special case of FD.

DL and *1 UL multi-antenna HD users communicating with
BS 1 ∈ B. The DL user 91 ∈ D1 and UL user :1 ∈ U1
are assumed to have # 91 receive and ":1 transmit antennas,
respectively. The BS 1 ∈ B is assumed to have "'�

1
and #'�

1

transmit and receive RF chains, respectively, and "1 and #1
transmit and receive antennas, respectively. We denote with
V 91 ∈ C"

'�
1
×3 91 and U:1 ∈ C":1×3:1 the digital beamform-

ers for the white unitary variance data streams s 91 ∈ C3 91×1

and s:1 ∈ C3:1×1 transmitted for DL user 91 ∈ D1 and
from UL user :1 ∈ U1 , respectively. Let G'�

1
∈ C"1×"'�

1

and F'�
1
∈ C# '�1 ×#1 denote the fully connected analog

beamformer and analog combiner for FD BS 1, respectively. In
practice, as the analog stage can assume only discrete values,
let P1 = {1, 482c/=1 , 484c/=1 , ..., 482c=1−1/=1 } denote the set
of =1 possible discrete values that the unit-modulus phasors
of G'�

1
and F'�

1
can assume. We also define the quantizer

function Q1 (·) to quantize the infinite resolution unit-modulus
phasors of G'�

1
(F'�
1
) such that Q1 (∠G'�

1
) (Q1 (∠F'�1 )) ∈

P1 .
The users and BSs are assumed to be suffering from the

LDR noise due to non-ideal hardware. The LDR noise for UL
user :1 ∈ U1 and DL user 91 ∈ D1 is denoted as c:1 and
e 91 , respectively, and modelled as [15]

c:1 ∼ CN
(
0":1×1, ::1 diag

(
U:1U�:1

) )
, (1)

e 91 ∼ CN
(
0# 91×1, V 91 diag

(
� 91

) )
, (2)

where ::1 � 1, V 91 � 1,� 91 = Cov(r 91 ) and r 91 denotes
the undistorted received signal by DL user 91 ∈ D1 . Let c1
and e1 denote the transmit and receive LDR noise for BS 1,
respectively, which is modelled as [42]

c1 ∼ CN
(
0"1×1, :1 diag

( ∑
=1 ∈D1

G1V=1V�=1G�
1

) )
, (3)

e1 ∼ CN
(
0# '�

1
×1, V1 diag

(
�1

) )
, (4)

where :1 � 1, V1 � 1,�1 = Cov(r1) and r1 denotes the
undistorted received signal by BS 1 after the analog combiner
F'�
1

. The thermal noise for BS 1 and DL user 91 is denoted
as n1 ∼ CN(0#1×1, f

2
1
I) and n 91 ∼ CN(0# 91×1, f

2
91

I),
respectively.

A. Channel Modelling

Let H 91 ∈ C# 91×"1 and H:1 ∈ C#1×":1 denote the direct
channels2 from BS 1 ∈ B to DL user 91 ∈ D1 and form UL
user :1 ∈ U1 to BS 1, respectively. Let H 91 ,:1 ∈ C# 91×":1
and H 91 ,:2 ∈ C# 91×":2 denote the in-cell UL CI channel for
DL user 91 ∈ D1 from UL user :1 ∈ U1 and the out-cell
UL CI channel for DL user 91 ∈ D1 from UL user :2 ∈ U2 ,
with 1 ≠ 2, respectively. Let H 91 ,2 ∈ C# 91×"2 and H1,:2 ∈
C#1×":2 denote the interference channels from BS 2 ∈ B
to DL user 91 ∈ D1 and from UL user :2 ∈ U2 to BS 1,
respectively, with 2 ≠ 1. Let H1,2 ∈ C#1×"2 denote the DL
BS-to-BS CI channel from BS 2 ∈ B to BS 1 ∈ B. The

2We assume perfect CSI, which can be obtained as in [57] and it is a part
of the ongoing research for mmWave FD [58].
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SI channel for BS 1 is denoted as H1,1 ∈ C#1×"1 . In the
mmWave frequency band, the direct channel H:1 for UL user
:1 ∈ U1 can be modelled as [42]

H:1 =

√
":1#1

#2,1#?,1

#2,1∑
=2,1=1

#?,1∑
=?,1=1

U
(=?,1 ,=2,1)
:1

aA ,1 (q
=?,1 ,=2,1

:1
)

a)C,:1 (\
=?,1 ,=2,1

:1
),

(5)
where #2,1 and #?,1 denote the number of clusters and
number of paths for BS 1 (Fig. 1 [21]), respectively, and
U
(=?,1 ,=2,1)
:1

∼ CN(0, 1) is a complex Gaussian random
variable with amplitudes and phases distributed according
to the Rayleigh and uniform distribution, respectively. The
vectors aA ,1 (q

=?,1 ,=2,1

:1
) and aC ,:1 (\

=?,1 ,=2,1

:1
) denote the re-

ceive and transmit antenna array response for BS 1 and
UL user :1 , respectively, with the angle of arrival (AoA)
q
=?,1 ,=2,1

:1
and angle of departure (AoD) \=?,1 ,=2,1

:1
. The chan-

nels H 91 ,H 91 ,:1 ,H 91 ,:2 ,H 91 ,2 and H1,:2 can be modelled
similarly as (5). The SI channel H1,1 ∈ C#1×"1 can be
modelled as [42]

H1 =

√
^1

^1 + 1
H!
1 +

√
1

^1 + 1
H'
1 . (6)

The matrices H!
1

and H'
1

denote the line-of-sight (LoS) and
reflected components of the SI channel response, respectively,
and the scalar ^1 denotes the Rician factor. The channel matrix
H'
1

can be modelled as (5) and element of H!
1

at the <-th row
and =-th column can be modelled as [42]

H!
1 (<, =) =

d1

A<,=
4− 92c

A<,=
_ (7)

where d1 is the power normalization constant to assure
E( | |H!

1
(<, =) | |2

�
) = "1#1 , and the scalars A<,= and _ denote

distance and wavelength, respectively. A summary of the
aforementioned notations can be found Table I.

B. Problem Formulation

Let y 91 and y:1 denote the received signal by DL user
91 ∈ D1 and from UL user :1 at the FD BS 1 after the analog
combiner F'�

1
, respectively. By using the aforementioned

notations, they can be written as

y 91 = H 91

( ∑
=1 ∈D1

G'�
1 V=1 s=1 + c1

)
+ e 91 + n 91

+
∑
:1 ∈U1

H 91 ,:1

(
U:1 s:1 + c:1

)
︸                               ︷︷                               ︸

UL Interference in cell 1
+

∑
2∈B,2≠1

H 91 ,2

( ∑
=2 ∈D2

G'�
2 V=2 s=2 + c2

)
︸                                              ︷︷                                              ︸

DL Interference from neighbouring BSs

+
∑

2∈B,2≠1

∑
:2 ∈U2

H 91 ,:2

(
U:2 s:2 + c:2

)
︸                                         ︷︷                                         ︸

UL Interference from neighbouring cells

.

(8)

TABLE I: Notations

"'�
1

# of transmit RF chains for BS 1
# '�
1

# of receive RF chains for BS 1
"1 # of transmit antennas for BS 1
#1 # of receive antennas for BS 1
":1 # of transmit antennas for UL user :1
# 91 # of receive antennas for DL user 91
U:1 Digital beamformer for UL user :1
V 91 Digital beamformer for DL user 91
G'�
1

Analog beamformer for BS 1
F '�
1

Analog combiner for BS 1
c:1 Transmit LDR noise from UL user :1
c1 Transmit LDR noise from BS 1
e1 Receive LDR noise for BS 1
e 9 Receive LDR noise for DL user 91
n1 Thermal noise for BS 1
n 91 Thermal noise for DL user 91
H1 SI channel for BS 1
H:1

Channel between BS 1 and UL user :1
H 91

Channel between BS 1 and DL user 91
H 91 ,:1

CI channel between DL user 91 and user :1 .
H 91 ,:2

CI channel between DL user 91 and user :2 .
H1,2 CI channel between BS 1 and BS 2.
H 91 ,2

Interference channel between DL user 91 and
BS 2.

y:1 = F'�1
� ( ∑

:1 ∈U1

H:1

(
U:1 s:1 + c:1

)
+ n1

+H1,1

( ∑
91 ∈D1

G'�
1 V 91 s 91 + c1

)
︸                                  ︷︷                                  ︸

SI
+

∑
2∈B,2≠1

H1,2

( ∑
92 ∈D2

G'�
2 V 92 s 92 + c2

)
︸                                            ︷︷                                            ︸

BS to BS interference
+

∑
2∈B,2≠1

∑
:2 ∈U2

H1,:2

(
U:2 s:2 + c:2

)
︸                                        ︷︷                                        ︸

UL Interference from neighbouring cells

)
+ e1 .

(9)
Let :1 and 91 denote the indices in sets U1 and D1 without
the elements :1 and 91 , respectively. Let 1 denote the indices
in set B except the element 1. Let T:1 and Q 91 denote the
transmit covariance matrices transmitted from UL user :1 ∈
U1 and for DL user 91 ∈ D1 by the BS 1 ∈ B, respectively,
defined as

T:1 = U:1U�:1 , ∀:1 ∈ U1 , (10a)

Q 91 = G1V 91V�91G�
1 , ∀ 91 ∈ D1 . (10b)

The received (signal plus) interference and noise covariance
matrices by BS 1 ∈ B from the UL user :1 ∈ U1 and at the
DL user 91 ∈ D1 are denoted as (R:1 ) R

:1
and (R 91 ) R 91

,
respectively, and can be written as (11a)-(11b), given at the
top of the next page. The matrices S 91 and S:1 in (11a)-(11b)
denote the useful signal covariance matrices received by the
DL user 91 ∈ D1 and FD BS 1 ∈ B from the UL user :1 ∈ U1 ,
respectively. The undistorted received covariance matrices � 91

(2) and �1 (4) can be recovered from (11a)-(11c) without the
receive LDR noise, i.e., with V 91 = 0 and V1 = 0, respectively.
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R 91 =H 91Q 91H�
91︸        ︷︷        ︸

,S 91

+H 91

( ∑
=1 ∈D1
=1≠ 91

Q=1

)
H�
91
+H 91 :1diag

( ∑
=1 ∈D1

Q=1

)
H�
91
+

∑
:1 ∈U1

H 91 ,:1

(
T:1 + ::1diag

(
T:1

) )
H�
91 ,:1

+
∑
2∈B
2≠1

H 91 ,2

( ∑
=2 ∈D2

Q=2 + :2diag
(
Q=2

) )
H�
91 ,2
+

∑
2∈B
2≠1

∑
:2 ∈U2

H 91 ,:2

(
T:2 + ::2diag

(
T:2

) )
H�
91 ,:2
+ V 91diag

(
Φ 91

)
+ f2

91
I# 91 ,

(11a)
R:1 =F

'�
1

� (
H:1T:1H�

:1︸         ︷︷         ︸
,S:1

+
∑

<1 ∈U1
<1≠:1

H<1T<1H�
<1
+

∑
<1 ∈U1

:<1H<1diag
(
T<1

)
H�
<1
+H1,1

∑
91 ∈D1

(
Q 91 + :1diag

(
Q 91

) )
H�
1,1

+
∑
2∈B
2≠1

H1,2

∑
92 ∈D2

(
Q 92 + :2diag

(
Q 92

) )
H�
1,2 +

∑
2∈B
2≠1

∑
:2 ∈U2

H1,:2

(
T:2 + ::2diag

(
T:2

) )
H�
1,:2
+ f2

1I=1
)
F '�
1 + V1diag

(
�1

)
,

(11b)
R 91

= R 91 − S 91 , R
:1
= R:1 − S:1 . (11c)

The WSR maximization problem with HYBF for a multi-
cell mMIMO mmWave FD system, serving multi-antenna
�1 ∈ D1 DL and *1 ∈ U1 UL users, ∀1 ∈ B, under
the joint sum-power, unit-modulus and discrete phase-shifters
constraints can be stated as

max
U,V,

G'�F '�

∑
1∈B

∑
:1 ∈U1

F:1 lndet
(
R−1
:1

R:1
)

+
∑
1∈B

∑
91 ∈D1

F 91 lndet
(
R−1
91

R 91

) (12a)

s.t. Tr
(
U:1U�:1

)
≤ ?:1 , ∀:1 ∈ U1 , (12b)

Tr
( ∑
9∈D1

G1V 9V�9 G�
1

)
≤ ?1 , ∀1 ∈ B, (12c)

G'�
1 (<, =) ∈ P1 , ∀<, = & ∀1 ∈ B, (12d)

F '�
1 (8, 9) ∈ P1 , ∀8, 9 & ∀1 ∈ B. (12e)

The scalars F:1 and F 91 denote rate weights for UL user
:1 and DL user 91 , respectively, and the scalars ?:1 and ?1
denote sum-power constraint for UL user :1 ∈ U1 and BS
1 ∈ B, respectively. The collections of digital beamformers
in UL and DL are denoted as U and V, respectively, and the
collections of analog beamformers and combiners are denoted
as G'� and F'� , respectively.

Remark 1: The WSR achieved with (12) is not affected
with the minimum-mean-squared-error (MMSE) combiners
(4) − (9) [59]. Therefore, they can be omitted during the
optimization process and can be chosen as the MMSE re-
ceivers after solving (12). The number of digital combiners
would be equal to the number of total users in the multi-cell
FD network. By omitting them, the HYBF design simplifies
and the per-iteration computational complexity reduces signif-
icantly. Moreover, it will significantly reduce the amount of
data exchange required among the FD BSs by the P&D-HYBF.

III. MINORIZATION-MAXIMIZATION

Optimization problem (12) is non-concave in the transmit
covariance matrices T:1 ,∀:1 ∈ U1 , and Q 91 ∈ D1 , due to
the interference generated towards other communication links

and finding its global optimum is very challenging. To find its
sub-optimal solution, this section presents the minorization-
maximization (MM) optimization method [52] to leverage
alternating optimization.

The WSR problem (12) for the multi-cell mmWave FD
system can be reformulated with its minorizer [52] using the
difference-of-convex (DC) programming [60], [61]. The WSR
in (12) can be expressed with the weighted rate (WR) of
user :1 ∈ U1 (WR*!

:1
), user 91 ∈ D1 (WR�!91 ), WSR of

users :1 (WSR*!
:1

) and 91 (WSR�!
91

), and WSR of all the UL

and DL users in cells different than 1, denoted as WSR*!
1

and WSR�!
1

, respectively. We can express the global network
WSR as

WSR =WR*!:1 +WSR*!
:1︸                 ︷︷                 ︸

,WSR*!1

+WR�!91 +WSR�!
91︸                 ︷︷                 ︸

,WSR�!

1

+WSR*!
1
+WSR�!

1
,

(13)

where WSR*!
1

and WSR�!
1

denote the UL and DL WSR
for FD BS 1. Considering the dependence on the transmit
covariance matrices, only WSR*!

:1
is concave in T:1 and the

remaining terms WSR*!
:1

, WSR�!
1

, WSR*!
1

and WSR�!
1

are

non concave in T:1 . Similarly, only WSR�!91 is concave in
Q 91 and WSR�!

91
, WSR*!

1
,WSR*!

1
,WSR�!

1
are non concave

in Q 91 . As a linear function is simultaneously convex and
concave, DC programming introduces the first order Taylor
series expansion of WSR*!

:1
, WSR�!

1
, WSR*!

1
and WSR�!

1

in T:1 , around T̂:1 (i.e. around all T:1 ), and for WSR�!
91

,

WSR*!
1

,WSR*!
1

,WSR�!
1

around Q̂ 91 (i.e. around all Q 91 ).
Let T̂ and Q̂ denote the sets containing all such T̂:1 and
Q̂ 91 , respectively. The tangent expressions by computing the
gradients with respect to the transmit covariance matrix T:1 ,
i.e.,

Ĝ*!
:1 ,1

= −
mWSR*!

:1

mT:1

���
T̂ ,Q̂

, Ĝ�!
:1 ,1

= −
mWSR�!

1

mT:1

���
T̂ ,Q̂

,

(14a)
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max
U,V,

G'� ,F'�

∑
1∈B

∑
:1 ∈U1

[
F:1 lndet

(
I + U�:1H�

:1
F '�
1 R−1

:1
F '�
1

�H:1U:1
)
− Tr

(
U�:1

(
Ĝ*!
:1 ,1
+ Ĝ�!

:1 ,1
+ Ĝ*!

:1 ,1
+ Ĝ�!

:1 ,1

)
U:1

) ]
+

∑
1∈B

∑
91 ∈D1

[
F 91 lndet

(
I + V�91G'�

1

�H�
91

R−1
91

H 91G'�
1 V 91

)
− Tr

(
V�91G'�

1

� (
Ĝ*!91 ,1 + Ĝ�!

91 ,1
+ Ĝ*!

91 ,1
+ Ĝ�!

91 ,1

)
G'�
1 V 91

) ]
.

(18a)

s.t. (12b) − (12e) (18b)

L =
∑
1∈B

∑
:1 ∈U1

[
F:1 lndet

(
I + U�:1H�

:1
F '�
1 R−1

:1
F '�
1

�H:1U:1
)
− Tr

(
U�:1

(
Ĝ*!
:1 ,1
+ Ĝ�!

:1 ,1
+ Ĝ*!

:1 ,1
+ Ĝ�!

:1 ,1
+ _:1 I

)
U:1

) ]
+
∑
1∈B

∑
91 ∈D1

[
F 91 lndet

(
I + V�91G'�

1

�H�
91

R−1
91

H 91G'�
1 V 91

)
− Tr

(
V�91G'�

1

� (
Ĝ*!91 ,1 + Ĝ�!

91 ,1
+ Ĝ*!

91 ,1
+ Ĝ�!

91 ,1
+ k1I

)
G'�
1 V 91

) ]
+

∑
1∈B

∑
:1 ∈U1

_:1 ?:1 +
∑
1∈B

k1?1 .

(19)

Ĝ*!
:1 ,1

= −
mWSR*!

1

mT:1
,

���
T̂ ,Q̂

Ĝ�!

:1 ,1
= −

mWSR�!
1

mT:1

���
T̂ ,Q̂

,

(14b)
allow to write the following minorizers

WSR*!
:1

(
T:1 , T̂, Q̂

)
= WSR*!

:1

(
T̂, Q̂

)
−Tr

( (
T:1 − T̂:1

)
Ĝ*!
:1 ,1

)
,

(15a)
WSR�!

1

(
T:1 , T̂, Q̂

)
= WSR�!

1

(
T̂, Q̂

)
−Tr

( (
T:1 − T̂:1

)
Ĝ�!
:1 ,1

)
,

(15b)
WSR*!

1

(
T:1 , T̂, Q̂

)
= WSR*!

1

(
T̂, Q̂

)
−Tr

( (
T:1 − T̂:1

)
Ĝ*!
:1 ,1

)
,

(15c)
WSR�!

1

(
T:1 , T̂, Q̂

)
= WSR�!

1

(
T̂, Q̂

)
−Tr

( (
T:1 − T̂:1

)
Ĝ�!

:1 ,1

)
.

(15d)
Similarly, for the transmit covariance matrix Q 91 , we have the
gradients

Ĝ*!91 ,1 = −
mWSR*!

1

mQ 91

���
T̂ ,Q̂

, Ĝ�!

91 ,1
= −

mWSR�!
91

mQ 91

���
T̂ ,Q̂

, (16a)

Ĝ*!
91 ,1

= −
mWSR*!

1

mQ 91

���
T̂ ,Q̂

, Ĝ�!

91 ,1
= −

mWSR�!
1

mQ 91

���
T̂ ,Q̂

, (16b)

which allow to write the minorizers

WSR*!
1

(
Q 91 , Q̂, T̂

)
= WSR*!1

(
Q, T̂

)
−Tr

( (
Q 91 −Q̂ 91

)
Ĝ*!91 ,1

)
,

(17a)
WSR�!

91

(
Q 91 , Q̂, T̂

)
= WSR�!

91

(
Q̂, T̂

)
−Tr

( (
Q 91 −Q̂ 91

)
Ĝ�!

91 ,1

)
,

(17b)
WSR*!

1

(
Q 91 , Q̂, T̂

)
= WSR*!

1

(
Q̂, T̂

)
−Tr

( (
Q 91 −Q̂ 91

)
Ĝ*!
91 ,1

)
,

(17c)
WSR�!

1

(
Q 91 , Q̂, T̂

)
= WSR�!

1

(
Q̂, T̂

)
−Tr

( (
Q 91 −Q̂ 91

)
Ĝ�!

91 ,1

)
.

(17d)
The gradients (14) for the UL user :1 and (16) for the DL
user 91 are provided in Appendix A.

The tangent expressions (15) and (17) constitute a touching
lower bound for the original WSR. Hence, the DC program-
ming approach is also a MM approach, regardless of the
restatement of the transmit covariance matrices T:1 and Q 91

as a function of the beamformers. By using the gradients (14)
and (16), the WSR maximization problem with respect to the

beamformers and combiners associated with each communica-
tion link can be written as (18a), given at the top of this page.
The Karush–Kuhn–Tucker (KKT) conditions of (18) and (12)
are the same, hence any sub-optimal or optimal solution for
(18) is also sub-optimal or optimal for (12).

Let _:1 and k1 denote the Lagrange multipliers associated
with the sum-power constraint for UL user :1 ∈ U1 and BS
1 ∈ B, respectively. Augmenting the WSR function (18a)
with the sum-power constraints yield the Lagrangian (19).
Note that (19) does not consider the quantization constraints
on the analog beamformers and combiners, which will be
incorporated later.

IV. CENTRALIZED HYBRID BEAMFORMING

This section presents a novel C-HYBF design based on
alternating optimization by exploiting the tools of MM to
solve (19) to a local optimum. Hereafter, for the sake of a
simplified explanation, we dedicate different sub-sections to
optimize different variables. However, while optimizing one
variable, the remaining ones are assumed to be fixed and their
complete information is saved in the gradients, which will
updated at each iteration.

A. Digital Beamforming

To optimize the digital beamformers U:1 and V 91 , we
consider the remaining variables to be fixed. By taking the
derivatives of (19) with respect to the conjugate of U:1 and
V 91 , yield the following KKT conditions

H�
:1

F'�1
�R−1

:1
F'�1 H:1U:1

(
I + U�:1H�

:1
F'�1 R−1

:1
F'�1

�H:1

U:1
)−1 −

(
Ĝ*!
:1 ,1
+ Ĝ�!

:1 ,1
+ Ĝ*!

:1 ,1
+ Ĝ�!

:1 ,1
+ _:1 I

)
U:1 = 0,

(20a)
G'�
1

�H�
91

R−1
91

H 91G'�
1 V 91

(
I + V�91G�

1 H�
91

R−1
91

H 91G'�
1

V 91

)−1 −G'�
1

� (
Ĝ*!91 ,1 + Ĝ�!

91 ,1
+ Ĝ*!

91 ,1
+ Ĝ�!

91 ,1

+ k1I
)
G'�
1 V 91 = 0.

(20b)
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Given the structure of the KKT conditions (20a)-(20b), the
digital beamformers can be optimized based on the result
provided in the following Theorem.

Theorem 1. The WSR maximizing digital beamformers U:1
and V 91 , fixed the remaining variables, can be obtained as
the generalized dominant eigenvector solution of the pair of
the following matrices

U:1 = D3:1
(
H�
:1
F '�
1 R−1

:1
F '�
1

�H:1 , Ĝ
*!

:1 ,1
+ Ĝ�!

:1 ,1

+ Ĝ*!
:1 ,1
+ Ĝ�!

:1 ,1
+ _:1 I

)
,

(21)

V 91 = D3 91
(
G'�
1

�H�
91

R−1
91

H 91G'�
1 ,G'�

1

� (
Ĝ*!91 ,1 + Ĝ�!

91 ,1

+ Ĝ*!
91 ,1
+ Ĝ�!

91 ,1
+ k1I

)
G'�
1

)
.

(22)
The matrix DG selects G dominant generalized eigenvectors,
equal to the number of data streams.

Proof. Please see Appendix B. �

Digital beamformers, given as the generalized dominant
eigenvectors, provide the optimized beamforming directions
but not the optimal power allocation. Thus, we scale the
columns of the digital beamformers to unit-norm, which will
allow designing the optimal power allocation scheme.

B. Analog Beamforming

To design the analog beamformer G'�
1

for BS 1 ∈ B, we
assume the remaining variables fixed. By considering only the
dependence of the WSR on unconstrained analog beamformer
G'�
1

, simplifies (18a) into

max
G'�
1

∑
91 ∈D1

[
F 91 lndet

(
I + V�91G'�

1

�H�
91

R−1
91

H 91G'�
1 V 91

)
− Tr

(
V�91G'�

1

� (
Ĝ*!91 ,1 + Ĝ�!

91 ,1
+ Ĝ*!

91 ,1

+ Ĝ�!

91 ,1
+ k1I

)
G'�
1 V 91

) ]
.

(23)
To optimize G'�

1
, we take the derivative of (23) with respect

to the conjugate of G'�
1

, which leads to the following KKT
condition∑
91 ∈D

H�
91
R−1
91

H 91G
'�
1 V 91V

�
9�

(
I + V 91V �

91
G'�
1

�H�
91

R−1
91

H 91G
'�
1

)−1 −
(
Ĝ*!91 ,1 + Ĝ�!

91 ,1
+ Ĝ*!

91 ,1
+ Ĝ�!

91 ,1

+ k1I
)
G'�
1 V 91V

�
91
= 0.

(24)

Given the KKT condition (24), G'�
1

can be optimized based
on the result stated in the following.

Theorem 2. The vectorized unconstrained analog beamformer
G'�
1

, common to all the DL users in set D1 , can be optimized

as one generalized dominant eigenvector solution of the pair
of the sum of following matrices

vec(G'�
1 ) = D1

( ∑
91 ∈D1

(
V 91V

�
91

(
I + V 91V �

91
G'�
1

�H�
91
R−1
91

H 91G
'�
1

)−1)) ⊗ H�
91
R−1
91

H 91 ,
∑
91 ∈D1

(
V 91V

�
91

))
⊗

(
Ĝ*!91 ,1 + Ĝ�!

91 ,1
+ Ĝ*!

91 ,1
+ Ĝ�!

91 ,1
+ k1I

) )
,

(25)

Proof. The proof is provided in Appendix C. �

The result stated in Theorem 2 optimizes the vectorized un-
constrained analog beamformer. Operation unvec(vec(G'�

1
))

is required to reshape it into correct dimensions. To meet
the unit-modulus and quantization constraints, we do G'�

1
=

Q1 (∠G'�
1
) ∈ P1 .

C. Analog Combining

Optimization of the analog combiner F'�
1

is more straight-
forward than the analog beamformer as it does not generate
any interference. Note that F'�

1
does not appear in the trace

operator of (18a). Combiners at the neighbouring FD BSs
1 appear only in the gradients as we take into account
the interference generated after the analog combining stage.
However, they are fixed while optimizing F'�

1
for BS 1 during

the alternating optimization process.
Given that the analog combiner F'�

1
does not generate

any interference, the WSR is purely concave with respect to
F'�
1

in the received covariance matrices R:1 and R
:1

for
1 ∈ B. Therefore, the original WSR maximization problem
(12) can be considered to optimize F'�

1
. By considering the

dependence of the unconstrained F'�
1

on the WSR, we have
the following optimization problem

max
F'�
1

∑
:1 ∈U1

lndet
(
R−1
:1

R:1
)
. (26)

The analog combiner F'�
1

has to combine the received co-
variance matrices at the antenna level. Let (R0

:1
) R0

:1
denote

the (signal plus) interference and noise covariance matrices
received at the antennas of BS 1 ∈ B to be combined
with F'�

1
. Given R0

:1
and R0

:1
at the antenna level, R:1

and R
:1

can be recovered as R:1 = F'�
1

�R0
:1

F'�
1

and

R
:1
= F'�

1

�R0
:1

F'�
1

. The analog combiner F'�
1

, by writing
(26) as a function of R0

:1
and R0

:1
and using the properties of

log(·) function, can be optimized by solving

max
F'�
1

∑
:1 ∈U1

[
F:1 lndet

(
F'�1

�R0:1F'�1
)

− F:1 lndet
(
F'�1

�R0
:1

F'�1
) ]
.

(27)

Taking the derivative of (27) with respect to F'�
1

leads to the
following KKT condition∑

:1 ∈U1

F:1R0:1F'�1
(
F'�1

�R0R
:1

F'�1
)−1

−
∑
:1 ∈U1

F:1R0
:1

F'�1
(
F'�1

�R0R
:1

F'�1
)−1

= 0.
(28)
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From (28), it is immediate to see that the WSR maximizing
analog combiner F'�

1
can be obtained as the generalized

dominant eigenvector solution of the pair of the sum of the
received covariance matrices at the antenna level from the UL
users in the same cell, i.e.

F'�1 = D# '�
1

( ∑
:1 ∈U1

F:1R0:1 ,
∑
:1 ∈U1

F:1R0:1
)
. (29)

The matrix D# '�
1

selects generalized dominant eigenvectors
equal to the number of receive RF chains #'�

1
at the BS 1 ∈

B. As the analog combiner given in (29) is unconstrained, we
normalize the amplitudes and perform the quantization such
that F '�

1
= Q1 (∠F '�

1
) ∈ P1 .

D. Optimal Power Allocation

This section presents a novel and optimal power allocation
scheme for the FD BSs and UL users operating in a mmWave
multi-cell FD scenario, given the digital beamformers with
unit-norm columns. Let � (1)

:1
, � (2)

:1
, � (1)

91
and � (2)

91
, be defined

as

U�:1H�
:1

F'�1 R−1
:1

F'�1
�H:1U:1 = � (1)

:1
, (30a)

U�:1
(
Ĝ*!
:1 ,1
+ Ĝ�!

:1 ,1
+ Ĝ*!

:1 ,1
+ Ĝ�!

:1 ,1
+_:1 I

)
U:1 = � (2)

:
, (30b)

V�91G'�
1

�H�
91

R−1
91

H 91G'�
1 V 91 = � (1)

91
, (30c)

V�91G'�
1

� (
Ĝ*!91 ,1+Ĝ�!

91 ,1
+Ĝ*!

91 ,1
+Ĝ�!

91 ,1
+k1I

)
G'�
1 V 91 = � (2)

91
.

(30d)
Let P:1 and P 91 denote the power matrices for UL user
:1 ∈ U1 and DL user 91 ∈ D1 , respectively. Given the
optimized beamformers and fixed Lagrange multipliers, the
optimal stream power allocation can be obtained by multiply-
ing (30a) and (30b) with P:1 , ∀:1 and (30c) and (30d) with
P 91 , ∀ 91 . As the beamformers are given by the generalized
dominant eigenvector solution, they diagonalize the matrices
� (1)
:1
,� (1)

:1
,� (1)

91
and � (1)

91
. Multiplying (30a) and (30b) with a

diagonal matrix P:1 or (30c) and (30d) with a diagonal matrix
P 91 , still yields the generalized eigenvector solution, and thus
the optimized beamforming directions are not affected [42].

The stream power allocation optimization problem for UL
user :1 and DL user 91 can be formally stated as

max
P:1

[
F:1 lndet

(
I + � (1)

:1
P:1

)
− Tr

(
� (2)
:1

P:1
) ]
, (31)

max
P 91

[
F 91 lndet

(
I + Σ(1)

91
P 91

)
− Tr

(
Σ
(2)
91
P 91

) ]
. (32)

Solving (31) and (32) leads to the following optimal power
allocation scheme

P:1 =
(
F:1

(
U�:

(
Ĝ*!:1 ,1 + Ĝ�!

:1 ,1
+ Ĝ*!

:1 ,1
+ Ĝ�!

:1 ,1
+ _:1 I

)
U:1

)−1 −
(
U�:1F'�1 H�

:1
R−1
:1

F'�1 H:1U:1
)−1)+

,

(33a)
P 91 =

(
F 91

(
V�91G�

1

(
Ĝ*!91 ,1 + Ĝ�!

91 ,1
+ Ĝ*!

91 ,1
+ Ĝ�!

91 ,1
+ k1I

)
G1V 91

)−1 −
(
V�91G�

1 H�
91

R−1
91

H 91G1V 91

)−1)+
,

(33b)

where (X)+ = <0G{0,X}. Given the optimal stream powers,
we can search for the Lagrange multipliers satisfying the total
power budget constraint while performing interference, SI, and
CI leakage aware water-filling for the powers with (33).

Let P �! and P*! denote the collection of stream powers
in DL and UL, respectively. We define � and 	 as the
collection of multipliers for _:1 and k1 , respectively. Given
the optimal stream powers computed with (33), consider the
dependence of the Lagrangian on the multipliers and powers
as

L(�,	,P �! ,P*!) =
∑
1∈B

k1?1 +
∑
1∈B

∑
:1 ∈U1

_:1 ?:1

+
∑
1∈B

∑
:1 ∈U1

[
F:1 lndet

(
I + � (1)

:1
P:1

)
− Tr

(
� (2)
:1

P:1
) ]

+
∑
1∈B

∑
91 ∈D1

[
F 91 lndet

(
I + Σ(1)

91
P 91

)
− Tr

(
Σ
(2)
91
P 91

) ]
,

(34)

The multipliers in � and 	 should be such that the Lagrangian
(34) is finite and the values of multipliers are strictly positive.
The multipliers’ search problem can be formally stated as

min
	,�

max
P�! ,P*!

L
(
�,	,P �! ,P*!

)
,

s.t. 	,� � 0.
(35)

The dual function

max
P�! ,P*!

L
(
�,	,P �! ,P*!

)
(36)

is the pointwise supremum of a family of functions of 	,�, it
is convex [62] and the globally optimal values for 	 and � can
be found by using any of the numerous convex-optimization
techniques. In this work, we adopt the Bisection algorithm
to search the multipliers. Let k1 , k1 and _:1 , _:1 denote
the upper and lower bound for searching the multipliers k1
and _:1 , respectively. Let [0, _<0G

:1
] and [0, k<0G

1
] denote

the search range for the multipliers _:1 and k1 , respectively,
where _<0G

:1
and k<0G

1
denote the maximum values that _:1

and k1 can assume. As the generalized dominant eigenvector
solution is computed given the fixed multipliers, doing water-
filling for the powers while searching for the multipliers
leads to non diagonal power matrices (33). Hence, consider
a singular value decomposition (SVD) of the power matrices
as

[LBE3:1 ,D
BE3
:1
,RBE3:1 ] = P:1 , ∀:1 ∈ U1 , (37a)

[LBE31 ,DBE31 ,RBE31 ] = P 91 , ∀ 91 ∈ D1 , (37b)

where LBE3G ,DBE3G and RGBE3 denote the left unitary, diagonal
and right unitary matrices obtained via SVD. Given (37), the
diagonal power matrices can be obtained again as

P:1 = D:1 ,∀:1 ∈ U1 , P 91 = D 91 ,∀ 91 ∈ U1 , (38)

while searching for the multipliers satisfying the sum-power
constraints.

The complete C-HYBF procedure to maximize the WSR
in a multi-cell mMIMO mmWave FD system based on the
alternating optimization process by using MM is formally
stated in Algorithm 1. Once it converges, the combiners can
be chosen as the MMSE receivers, which will not affect the
WSR achieved after convergence.
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Algorithm 1 Centralized Hybrid Beamforming
Given: The CSI and rate weights.
Initialize: G'�

1
,F'�
1
,V 91 ,U:1 , ∀ 91 & ∀:1 .

Set: _:1 = 0, _:1 = _<0G:1
, k1 = 0, k1 = k<0G1

, ∀:1 & ∀1
Repeat until convergence

for 1 = 1 : �
Compute G'�

1
with (25), do unvec(G'�

1
) and get ∠GC

for: 91 = 1 : �1
Compute Ĝ*!

91 ,1
, Ĝ�!

91 ,1
, Ĝ*!

91 ,1
, Ĝ�!

91 ,1
(16)

Compute V 91 with (22) and normalize it
Next 91
Repeat until convergence

set k1 = (k1 + k1)/2
for 91 = 1 : �1

Compute P 91 with (33b)
[UP 91

,DP 91
,VP 91

] = (+� (P 91 )
Set P 91 = D%91

Set Q 91 = G1V 91P 91V�
91

G�
1

Next 91
if constraint for k1 is violated

set k1 = k1 ,
else k1 = k1

for: :1 = 1 :  1
Compute Ĝ*!

:1 ,1
, Ĝ�!

:1 ,1
, Ĝ*!

:1 ,1
, Ĝ�!

:1 ,1
(14)

Compute U:1 with (21) and normalize it
Repeat until convergence

set _:1 = (_:1 + _:1 )/2
Compute P:1 with (33a).
[UP:1

,DP:1
,VP:1

] = (+� (P:1 )
Set P:1 = D%:1

Set T
1
= U:1P:1U�

:1
.

if constraint for _:1 is violated
set _:1 = _:1

else _:1 = _:1
Next :1

Next 1

E. Convergence of C-HYBF

The convergence of Algorithm 1 can be proved by using
the minorization theory [52], alternating or cyclic optimization
[52], Lagrange dual function [62], saddle-point interpretation
[62] and KKT conditions [62]. For the WSR cost function
(12), we construct its minorizer as in (15) for the WSR in UL
and with (17) for the WSR in DL, ∀1 ∈ B. It constructs a
touching lower bound for (12), hence we can write

WSR ≥ WSR = WR*!
:1 ,1
+WSR*!

:1 ,1
+WR�!

91 ,1
+WSR�!

91 ,1

+WSR�!
1
+WSR*!

1
.

(39)
The minorized WSR, which is concave in T:1 and Q 91 ,

has the same gradient of the original WSR maximization
problem (12), hence the KKT conditions are not affected.
Reparameterizing T:1 or Q 91 in terms of G'�

1
,V 91 ,∀ 91 ∈ D1

or U:1 ,∀:1 ∈ U1 , respectively, including the optimal stream
power matrices and augementing the WSR cost function with
the Lagrange multipliers and power constraints leads to (34).

Alternating update of the Lagrangian L for the variables V 91 ,
G'�
1

, U:1 ,∀ 91 ∈ D1 ,∀:1 ∈ U1 , P:1 ,P 91 ,�,	 leads to a
monotonic increase of the WSR, which assures convergence.
For the KKT conditions, at the convergence point, the gradi-
ents of L for V 91 ,G

'�
1
,U:1 or P:1 ,P 91 correspond to the

gradients of the Lagrangian of original WSR maximization
problem (12). For the fixed analog and digital beamformers,
L is concave in powers, hence we have strong duality for the
saddle point, i.e.,

max
P�! ,P*!

min
�,	
L

(
�,	,P*! ,P�!

)
. (40)

Let X∗ and G∗ denote the optimal solution for matrix X or
scalar G at the convergence, respectively. As each iteration
leads to a monotonic increase in the WSR and the power
are updated by satisfying the sum-power constraint, at the
convergence point, the solution of the optimization problem

min
�,	
L

(
V∗91 ,G

'�
1

∗
,F'�1

∗
,U'�1

∗
,P�!∗,P*!∗,�,	

)
(41)

satisfies the KKT conditions for the powers in P�! and P*!
and the complementary slackness conditions

k∗1
(
?1 −

∑
91 ∈D1

Tr
(
G'�
1

∗
V ∗91P∗91V∗�91 G'�

1

∗� ) )
= 0,

(42a)
_∗:1

(
?:1 − Tr

(
U∗:1P∗:1U∗�:1

) )
= 0, (42b)

where all the individual factors in the products are non-
negative.

V. PARALLEL AND DISTRIBUTED IMPLEMENTATION

Algorithm 1 requires enormous communication overhead to
transfer full CSI to the central node every channel coherence
time and very high computational power to update all the
variables jointly. As later shown in Section V-D, it also scales
quadratically as a function of the number of users and cells,
which limits its scalability in a real-time large and dense multi-
cell FD network. To overcome these drawbacks, we introduce
the concept of per-link parallel and distributed HYBF of
mmWave and propose a very low-complexity P&D-HYBF
design based on cooperation. It removes the requirement of
transferring full CSI to the central node and allows each FD BS
to update the beamformers associated with different users on
different computational processors in parallel at each iteration.

To proceed, we first make the following assumptions:
1) There exits a feedback link among the FD BSs and they

cooperate among themselves by exchanging information
about the digital beamformers, analog beamformers and
analog combiners.

2) The CSI is accessible by all the FD BSs.
3) Each FD BS has multiple computational processors ded-

icated for UL and DL.
4) The computations take place at the BSs and the optimized

beamformers of the UL users are communicated to them
afterwards.

Note that the WSR maximization problem (12) is decomposed
into (18a) with MM, in which to update the beamformers
for each UL or DL user at each iteration, only the gradients
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are required. Therefore, they summarize complete information
about all the reamining links in the network. From a practical
point-of-view, the gradients for each link take into account
the interference generated towards all the other links, and
hence limit greedy behaviour while updating its beamformer.
However, problem (18a) is coupled among different links as
the covariance matrices of other users directly appear in the
gradients. Hence, the update of one beamformer affects the
received covariance matrices, and thus the gradients, of all
the other users/links. Therefore, (18a) can be solved only in a
centralized fashion based on alternating optimization.

To decouple the global optimization problem (18a) into
local per-link independent optimization sub-problems for each
FD BS, we assume that each FD BS has some memory to
save information about the gradients. For each FD BS, we
introduce the following local variables ∀:1 ∈ U1 , ∀ 91 ∈ D1 ,

L$DC
91

= Ĝ*!
91 ,1
+ Ĝ�!

91 ,1
, L� =

91
= Ĝ*!91 ,1 + Ĝ�!

91 ,1
, (43a)

L$DC
:1

= Ĝ*!
:1 ,1
+ Ĝ�!

:1 ,1
, L� =

:1
= Ĝ*!

:1 ,1
+ Ĝ�!

:1 ,1
. (43b)

The variables L� =
:1

and L>DC
:1

save information about the overall
interference generated inside and outside the cell by the
beamformer of UL user :1 , respectively. Similarly, the local
variables L� =

91
and L$DC

91
save information about the interference

generated in the same cell and in the neighbouring cells by the
FD BS 1 while serving the DL user 91 , respectively. Note that
each BS can update the in-cell local variables L� =

:1
and L� =

91
by

itself. A feedback from the neighboring BSs is required only
to update L$DC

91
,∀ 91 and L$DC

:1
,∀:1 . To save information about

the interference-plus-noise covariance matrices, we define the
following local variables

R:1 = R:1 , R−1
:1
= R−1

:1
, ∀:1 , (44a)

R 91 = R 91 , R−1
91
= R−1

91
, ∀ 91 . (44b)

The analog combiner needs information about the received
covariance matrices at the antenna level, for which we define
the local variables

R0
:1
= R0:1 , R0

:1
= R0

:1
, ∀:1 . (45)

We remark that all of the aforementioned local variables are
fixed and saved in the memory. Replacing the gradients with
fixed local variables in the WSR cost function (18a), leads to
the following optimization problem

max
U,V,

G'� ,F'�

∑
1∈B

∑
:1 ∈U1

F:1 lndet
(
I + U�:1H�

:1
F '�
1 R−1

:1
F '�
1

�

H:1U:1
)
− Tr

(
U�:1

(
L$DC
:1
+ L� =

:1

)
U:1

)
+

∑
1∈B

∑
91 ∈D1

F 91 lndet
(
I + V�91G'�

1

�H�
91

R−1
91

H 91

G'�
1 V 91

)
− Tr

(
V�91G'�

1

� (
L$DC
91
+ L� =

91

)
G'�
1 V 91

)
.

(46a)
s.t. (12b) − (12e) (46b)

Note that (46a) has the same structure of (18a), but by
replacing the gradients with the fixed local variables, the global

Update Analog
Combiner

Multiplier Search and
power allocation

Multiplier Search and
power allocation

Update and normalize Update and normalize

Sub-Problem 1b Sub-Problem Ub

Fig. 2: Decomposition of the WSR maximization problem in
UL into per-link independent optimization sub-problems. The
sub-problems are solved from the bottom to the top.

WSR problem decouples into per-link independent optimiza-
tion sub-problems. Optimization of the analog combiners and
analog beamformers is still coupled as they are common to
all the UL and DL users in the same cell, respectively. Also,
optimization of the digital beamformers for the DL users in
the same cell remains coupled as each BS has to satisfy the
sum power constraint. Their decoupling and the solution of
(46) is discussed in the following.

A. Per-link independent sub-problems in UL

In the UL setting, each UL user has its own sum-power
constraint and only the update of analog combiner is coupled
among different UL users in the same cell. We assume that
BS 1 updates F'�

1
only after having updated all the digital

beamformers U:1 . Given this assumption and fixed local
variables, UL WSR maximization problem for BS 1 reduces
into three layers of sub-problems. At the bottom layer, BS 1

has to solve independent optimization sub-problems to update
U:1 for the beamforming directions and normalize its column
to unit norm, in parallel ∀:1 . At the middle layer, BS 1 has
to update the stream power matrix P:1 while searching the
multiplier _:1 in parallel ∀:1 . Finally, at the top layer, once
all the *1 two-layer sub-problems are solved by BS 1, both
for the beamforming directions and powers, only one update
of the analog combiner is required. Fig. 2 highlights the idea
of the proposed decomposition for WSR maximization in UL
for BS 1 and the sub-problems are solved from the bottom to
top.

Given the fixed local variables, the local per-link indepen-
dent optimization problem in UL to optimize U:1 for user
:1 ∈ U1 can be stated as

max
U:1

F:1 lndet
(
I + U�:1H�

:1
F '�
1 R−1

:1
F '�
1

�H:1U:1
)

− Tr
(
U�:1

(
L� =
:1
+ L$DC

:1

)
U:1

) (47a)

s.t.Tr
(
U:1U�:1

)
� ?:1 . (47b)
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The per-link independent Lagrangian for (47) ∀:1 , becomes

L:1 =F:1 lndet
(
I + U�:1H�

:1
F '�
1 R−1

:1
F '�
1

�H:1U:1
)

− Tr
(
U�:1

(
L� =
:1
+ L$DC

:1
+ _:1 I

)
U:1

)
+ _:1 ?:1 .

(48)

To solve it for U:1 , a derivative of (48) can be taken,
which leads to a similar KKT condition as (20a) with gradients
replaced with the local variables. By following a similar proof
for (21), it can be easily shown that the WSR maximizing
beamformer U:1 can be updated as

U:1 = D3:1
(
H�
:1
F '�
1 R−1

:1
F '�
1

�H:1 ,L� =:1 + L$DC
:1
+ _:1 I

)
,

(49)
which can be computed in parallel on different computational
processors ∀:1 . To include the optimal power allocation P:1
in parallel, we consider the normalization of the columns
of (49) to unit-norm and multiply the log det(·) and Tr(·)
terms in (48) from the right hand side with the power matrix
P:1 ,∀:1 . Power optimization problem for each link can be
formally stated similarly as in (31), as a function of the local
variables L� =

:1
and L$DC

:1
instead of gradients. Solving it yields

the following parallel and optimal power allocation scheme

P:1 =
(
F:1

(
U�:

(
L� =
:1
+ L$DC

:1
+ _:1 I

)
U:1

)−1

−
(
U�:1H�

:1
R−1
:1

H:1U:1
)−1)+

, ∀:1 .
(50)

Power allocation can be included while searching for the
multiplier _:1 associated with the sum-power constraint of
UL user :1 . To yield a diagonal power matrix again while
searching for _:1 , we do

[LBE3:1 ,D
BE3
:1
,RBE3:1 ] = P:1 , and P:1 = DBE3:1 . (51)

Multiplier _:1 should be such that (48) is finite and the value
of _:1 should be strictly positive. We search it in parallel by
solving the following problem ∀:1

min
_:1

max
P:1

L:1
(
_:1 ,P:1

)
,

s.t. _:1 � 0.
(52)

The dual function

max
P�!
1

L:1
(
_:1 ,P:1

)
(53)

is convex [62] and can be solved with the Bisection method.
Note that each optimization step stated above is fully decou-
pled for each communication link in UL as the local variables
are fixed.

At the final step, once updated the digital beamformers U:1

and powers P:1 , one update of F'�
1

is required, which is
common to all the UL users *1 served by BS 1. Simultaneous
variation of all the UL beamformers U:1 in parallel vary
the received covariance matrices R0

:1
and R0

:1
at the antenna

levels, which are required to optimize F'�
1

. However, in
the memory, each BS has complete information about the
beamformers of the UL users it has just updated at the bottom
layer, which can be used to update R0

:1
and R0

:1
,∀:1 ∈ U1 .

Afterwards, for the top layer, optimization of the unconstrained

analog beamformer F'�
1

, given the local variables, can be
formally stated as

max
F'�
1

∑
:1 ∈U1

lndet
(
R−1
:1

R:1
)
. (54a)

To solve it, we first write it as

max
F'�
1

∑
:1 ∈U1

[
F:1 lndet

(
F'�1

�R0
:1

F'�1
)

− F:1 lndet
(
F'�1

�R0
:1

F'�1
) ]
,

(55)

and by taking its derivative leads a similar KKT condition as
in (28), from which it is immediate to see that F'�

1
can be

optimized as

F'�1 = D# '�
1

( ∑
:1 ∈U1

F:1R0
:1
,

∑
:1 ∈U1

F:1R0
:1

)
(56)

which is unconstrained. To meet the unit-modulus and the
quantization constraints, we normalize the amplitudes to unit-
norm and quantize the phase part as F'�

1
= Q1 (∠F'�1 ) ∈ P1 .

B. Per-link independent sub-problems in DL

The DL scenario is much more challenging as the digi-
tal beamformers have a coupling total sum-power constraint
among the DL users in D1 . Moreover, G'�

1
is common

between all the DL users and affects the transmit covariance
matrices, i.e., Q 91 = G'�

1
V 91P 91V�

91
G'�
1

� , ∀ 91 , and thus the
total transmitted power. To introduce the per-link independent
sub-problems in DL, we assume that each BS first updates all
the digital beamformers V 91 ,∀ 91 , by keeping the Lagrange
multiplier k1 and the analog beamformer G'�

1
fixed. Also the

power matrices P 91 are included afterwards, while search-
ing for k1 . Given this assumption, the WSR maximization
problem in DL for each cell decomposes into three layers
of sub-problems. At the top layer we have to search for
the Lagrange multiplier k1 and update the power allocation
matrices P 91 for all the DL users, in parallel. At the middle
layer, we have to optimize the analog beamformer G'�

1
. At

the bottom layer, we have to update the DL beamformers V 91

and normalize their columns to unit-norm, in parallel ∀ 91 . Fig.
3 shows the proposed per-link decomposition of the DL WSR
maximization problem for FD BS 1 ∈ B and the sub-problems
are solved from the bottom to the top.

For the bottom layer, to optimize the digital beamformer
V 91 , each FD BS has to solve the following independent
optimization sub-problem in parallel ∀ 91 ∈ D1

max
V 91

[
F 91 lndet

(
I + V�91G'�

1

�H�
91

R−1
91

H 91G'�
1 V 91

)
− Tr

(
V�91G'�

1

� (
L� =
91
+ L$DC

91

)
G'�
1 V 91

) ] (57a)

Tr
( ∑
9∈D1

G1V 9V�9 G�
1

)
� ?1 (57b)
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Update Analog
Beamformer

Multiplier search and
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Update and normalize Update and normalize
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Fig. 3: Decomposition of the WSR optimization problem in
DL into per-link independent optimization sub-problems. The
sub-problems are solved from the bottom to the top.

with the coupling constraint (57b) among different DL users
in the same cell. Augmenting the cost function with the total
sum-power constraint yield the Lagrangian

L�!1 =
∑
91 ∈D1

F 91 lndet
(
I + V�91G'�

1

�H�
91

R−1
91

H 91G'�
1 V 91

)
− Tr

(
V�91G'�

1

� (
L� =
91
+ L$DC

91
+ k1I

)
G'�
1 V 91

)
+ k1?1 .

(58)
In (58), k1 and G'�

1
are fixed and will be updated with the

power allocation at the top and middle layer, respectively, to
meet the total sum-power constraint. Therefore the update of
V 91 at the bottom layer only for the beamforming directions
and normalization to unit-norm columns remains decoupled
∀ 91 . To solve it, a derivative for V 91 can be taken which leads
to a similar KKT condition (20b) for the centralized version,
with gradients replaced with the fixed local variables. From
the KKT conditions, by following a similar proof for the C-
HYBF scheme, it can be immediately shown that V 91 can be
updated as

V 91 = D3 91
(
G'�
1

�H�
91

R−1
91

H 91G'�
1 ,G�

1

(
L� =
91
+

L$DC
91
+ k1I

)
G1

)
.

(59)

To include the optimal power allocation, we consider the
normalization of the columns of V 91 to unit-norm in parallel.
Once all the digital beamformers are optimized, at the middle
layer, BS 1 has to optimize the analog combiner G'�

1
. By

considering the unconstrained analog combiner, at the middle
layer, each BS has to independently solve the following
unconstrained optimization problem

max
G'�
1

∑
91 ∈D1

F 91 lndet
(
I + V�91G'�

1

�H�
91

R−1
91

H 91G'�
1 V 91

)
− Tr

(
V�91G'�

1

� (
L� =
91
+ L$DC

91
+ k1I

)
G'�
1 V 91

)
.

(60)
Note that each BS has complete information about the digital
beamformers optimized at the bottom layer, which can be first

used to update R−1
91

and L� =
91

appearing in (60). By taking the
derivative of (60) and by following a similar proof of (25), it
can be easily shown that G'�

1
can be optimized as

vec(G'�
1 ) = D1

( ∑
91 ∈D1

(
V 91V�91

(
I + V 91V�91G'�

1

�H�
91

R−1
91

H 91G'�
1

)−1)) ⊗ H�
91

R−1
91

H 91 ,
∑
91 ∈D1

(
V 91V�91

))
⊗

(
L� =
91
+ L$DC

91
+ k1I

) )
,

(61)
with gradients of (25) replaced with the local variables.
The analog beamformer G'�

1
in (61) is unconstrained and

vectorized, we do unvec(vec(G'�
1
)) to shape it into correct

dimensions and then set G'�
1

= Q(∠G'�
1
) ∈ P1 to meet

the unit-modulus and quantization constraints. For the top
layer, the optimal stream power allocation can be included
while searching the multiplier k1 to satisfy the sum-power
constraint ?1 . Assuming the multiplier k1 to be fixed, the
per-link independent power optimization problem ∀ 91 ∈ D1
can be stated as

max
P 91

F 91 lndet
(
I + V�91G'�

1

�H�
91

R−1
91

H 91G'�
1 V 91P 91

)
− Tr

(
V�91G'�

1

� (
L� =
91
+ L$DC

91
+ k1I

)
G'�
1 V 91P 91

)
.

(62)

In (62), the update of power matrix P 91 ,∀ 91 remains
independent and the multiplier k1 must be updated
based on the sum of the transmit covariance matrices∑
91

G'�
1

�V�
91

P 91V 91G'�
1

, once all the power matrices P 91

are updated in parallel. Solving (62) in parallel ∀ 91 leads to
the following optimal power allocation scheme

P 91 =
(
F 91

(
V�91G�

1

(
L� =
91
+ L$DC

91
+ k1I

)
G1V 91

)−1

−
(
V�91G�

1 H�
91

R−1
91

H 91G1V 91

)−1)+
.

(63)

Finally, the Lagrange multiplier can be searched with the
Bisection method and while doing so, the water-filling for the
powers for each user in DL in D1 can be done in parallel
with (63). Including the optimal power allocation (63) in the
Lagrangian (58) leads to

L�!1 =
∑
91 ∈D1

F 91 lndet
(
I + V�91G'�

1

�H�
91

R−1
91

H 91G'�
1 V 91P 91

)
− Tr

(
V�91G'�

1

� (
L� =
91
+ L$DC

91
+ k1I

)
G'�
1 V 91P 91

)
+ k1?1

(64)
Multiplier k1 should be such that (64) is finite and the value

of k1 should be strictly positive. It can be searched by solving
the following problem

min
k1

max
P�!
1

L�!1
(
k1 ,P

�!
1

)
,

s.t. k1 � 0.
(65)

where P �!
1

denotes the collection of powers in DL for BS 1.
The dual function

max
P�!
1

L�!1
(
k1 ,P

�!
1

)
(66)

is convex [62] and can be solved with the Bisection Algo-
rithm. When (63) becomes non-diagonal while searching the
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Algorithm 2 Parallel and Distributed Hybrid Beamforming
Given: The rate weights, in-cell CSI and interfering channels.
Dedicate: Multiple processors in UL and DL ∀1.
Initialize: G1 ,V 91 ,U:1 ,∀ 91 ∈ D1 ,∀:1 ∈ U1 in each cell.
Repeat until convergence

Cooperation stage (∀1 ∈ B)
Share G'�

1
,F'�
1

and U:1 ,V 91 ,∀:1 ,∀ 91
For each cell (∀:1 ∈ U1 ,∀ 91 ∈ D1 .)

Update L� =
91
,L� =

:1
from the memory.

Based on the feedback, update L$DC
91

and L$DC
:1

Update R:1 ,R:1 and R 91 ,R 91
from the memory.

Solve in parallel ∀1 ∈ B
Parallel DL for BS 1

Set: k1 = 0, k1 = k<0G1
.

Compute V3
91

in parallel with (59) and normalize it

Update R−1
91

and L� =
91
,∀ 91 from the memory.

Compute G'�
1

with (61), do unvec and get ∠G'�
1

Repeat until convergence
set k1 = (k1 + k1)/2
In parallel ∀ 91

Compute P 91 with (63)
[XP 91 ,DP 91 ,YP 91 ] = SVD(P 91 )
P 91 = DP 91
Q 91 = G1V 91P 91V�

91
G�
1

if constraint for k1 is violated
set k1 = k1 ,

else k1 = k1
Parallel UL for BS 1

Set: _:1 = 0, _:1 = _<0G:1
, ∀:1 .

Compute U3
:1

(49) in parallel and normalize it
Repeat until convergence in parallel ∀:1

set _:1 = (_:1 + _:1 )/2
Compute P:1 in parallel with (50).
[XP:1

,DP:1
,YP:1

] = SVD(P:1 )
Set P:1 = D%:1

Set T
1
= U:1P:1U�

:1
if constraint for _:1 is violated

set _:1 = _:1
else _:1 = _:1

Update R0
:1
,R0

:1
, ∀:1 .

Compute F'�
1

with (56) and get ∠F'�
1

.
Repeat
Quantize G'�

1
and F'�

1
, with Q1 (·),∀1

multiplier k1 , we take the SVD of the stream powers in
parallel for each DL user and set P 91 = DBE3

91
,∀ 91 . After each

iteration, the FD BSs must exchange information such that the
local variables could be updated. The complete procedure to
execute the cooperative P&D-HYBF for WSR maximization in
a multi-cell mMIMO mmWave FD network is formally stated
in Algorithm 2. Once it converges, the combiners for the UL
and DL users must be chosen as the MMSE combiners, which
will not affect the rate achieved at convergence.

Remark 2: A feedback from the neighbouring FD BSs is

required only to update the out-cell local variables L$DC
91

and

L$DC
:1

. As we considered the analog beamformer and combiner
in the optimization problem, only one analog beamformer and
combiner of bigger dimension and many digital beamformers
of minimal dimension need to be shared by each FD BS, re-
gardless of the number of users served in a mMIMO scenario.
Moreover, omitting the digital combiners reduces the per-
iteration computational complexity, and the communication
overhead for P&D-HYBF is also minimized. To further reduce
the communication overhead, if the interference and the CI
channels among different cells vary slowly, the FD BSs
can consider updating them only when these channels have
changed significantly compared to the last feedback stage.

Remark 3: Each BS has full flexibility to reconsider the
allocation of processors in UL and DL in a highly asymmetric
traffic scenario. For example, suppose that BS 1 solves the
problem early in one direction with fewer users, i.e., in UL or
DL. In that case, the idle processors can be reallocated imme-
diately to serve the transmission direction with many users to
further distribute the computational burden and achieve faster
convergence.

C. On the Convergence of P&D-HYBF

The convergence proof for P&D-HYBF follows similarly
from the proof stated for the C-HYBF scheme. Compared to
the centralized version, fixing the local variables leads to a
different type of information saved for each communication
link while updating its beamformer. As the beamformers
are computed as the dominant generalized eigenvectors, they
increase the WSR for every link at each iteration. However, the
increase is different as the local variables’ information differs
from the information captured in the gradients. The gradients
are updated immediately before updating each beamformer,
and the local variables are updated in a synchronized manner
in parallel once all the FD BSs have entirely updated their
UL and DL beamformers. However, as in P&D-HYBF the BSs
share information about the updated variables at each iteration,
it makes the beamformers’ update aware of the generated
interference towards other links, which leads to a monotonic
increase in WSR and assures convergence.

Fig. 4 shows a typical convergence behaviour of the pro-
posed C-HYBF and P&D-HYBF schemes in comparison with
the centralized fully digital beamforming scheme. It is also
visible that the P&D-HYBF requires a similar number of
iterations to converge as the C-HYBF and therefore requires
a minimal amount of information exchange among different
cells. We can also see that the increase in WSR at each
iteration is different for both designs as the information
captured in the gradients and local variables differs. It is also
highlighted that despite being a decentralized design, the P&D-
HYBF scheme achieves similar WSR as the C-HYBF.

D. Computational Complexity Analysis

For complexity analysis, we assume equal number of users
in DL and UL in each cell, i.e., �1 = � and *1 = *, ∀1 ∈ B.
We also assume the same number of antennas in each cell for
the BSs, UL and DL users.



14

5 10 15 20 25

Number of iterations

20

30

40

50

60

70

80

90

100

110
W

e
ig

h
te

d
 S

u
m

-R
a
te

 [
b
p
s
/H

z
]

Fully Digital FD

C-HYBF-32RF

P&D-HYBF-32RF

Fig. 4: Typical Convergence behaviour of the proposed HYBF
designs with 32 RF chains in comparison with the fully digital
beamforming.

1) Computational Complexity of C-HYBF: One iteration of
C-HYBF consists in updating �� DL beamformers V 91 , �*
UL beamformers U:1 , � analog beamformers G'�

1
and �

analog combiners F'�
1

. Assuming that the number of antennas
get large and the computations take place at the central node
iteratively, the per-iteration computational complexity of the
proposed C-HYBF scheme results to be

≈ O(�2*2#'�1
3 + �2*�#3

91
+ �2�2#3

91

+ �2�*#'�1
3 + �"'�

1

2
"2
1 + �#

'�
1 #2

1

+ ��3 91"'�
1

2 + ��3:1#2
:1
).

(67)

Note that the complexity of C-HYBF (67) scales quadratically
as a function of the number of cells � (network size) and users
* or � (density).

The computational complexity of P&D-HYBF in DL and
UL for each FD BS is fully decoupled on different processors.
Therefore, in the following, it will be analyzed separately
under the assumption that the dimensions of the antennas get
large.

2) Worst-case Computational Complexity in DL for P&D-
HYBF: We first assume the number of computational proces-
sors dedicated for DL equal to the number of DL users for each
FD BS. The worst-case computational complexity for each BS
in P&D-HYBF in DL is given for the processor which has to
update one digital beamformer and then update also the analog
beamformer G'�

1
, which is given by

�! ≈ O(��#3
91
+ �*#'�1

3 + 3 91"'�
1

2 + "'�
1

2
"2
1). (68)

If the number of processors dedicated for DL is less than
the total number of DL users, then each processor may have
to update  digital beamformers before updating the analog
beamformer G'�

1
. In that case, the worst-case complexity is

given for the processor in each cell which updates  digital

beamformers and then also the analog beamformer. In such a
case, the complexity is given by

�! ≈ O( ��#3
91
+  �*#'�1

3 +  3 91"'�
1

2 + "'�
1

2
"2
1).
(69)

3) Worst-case Computational Complexity in UL for P&D-
HYBF: Assuming the dedicated processors for UL equal to
the UL users in each cell, the worst-case complexity in each
cell is given for the processor which has to update one analog
combiner F'�

1
and one digital beamformer U 91 . In such a

case, the complexity results to be

*! ≈ O(�*#'�1
3 + ��#3

91
+ 3:1#2

:1
+ #'�1 #2

1). (70)

If the number of dedicated computational processors is less
than the UL users, then each processor may have to update
# UL beamformers U:1 before updating the analog combiner
F'�
1

. In such a scenario, the worst-case complexity is given
by

*! ≈ O(#�*#'�1
3 +#��#3

91
+#3:1#2

:1
+#'�1 #2

1). (71)

From the analysis presented above, it is clear that the com-
plexity of P&D-HYBF distributed over multiple processors at
each FD BS is significantly less than the C-HYBF scheme.
Namely, the latter is quadratic, and the former is only linear
in the number of UL and DL users and number of cells.
Intuitively, for every beamformer’s update, we have to invert
the covariance matrices in the gradients for all the remaining
users. As we have to repeat this for all the beamformers, it
leads to a quadratic behaviour. Note that any of the centralized
HYBF schemes would have a quadratic behaviour. On the
other hand, in P&D-HYBF, each processor has to update only
one or a very limited number of variables and linearize with
the gradients for all the remaining users at each iteration,
which leads to only a linear increase in the complexity.

VI. SIMULATION RESULTS

This section presents simulation results to evaluate the per-
formance of the proposed C-HYBF and P&D-HYBF schemes
for the multi-cell mMIMO mmWave FD network. For com-
parison, we consider the following benchmark schemes:
• A centralized Fully Digital FD scheme affected by the

LDR noise.
• A centralized Fully Digital HD scheme with LDR noise,

serving the UL and DL users by separating the resources
in times. It is neither affected by the SI nor by the CI.

To compare the performance with a fully digital HD system,
we define the additional gain in terms of percentage for an FD
system over an HD system as

�08= =
WSR�� −WSR��

WSR��
× 100[%] . (72)

where WSR�� and WSR�� are the network WSR for the
FD and HD system, respectively. We assume the same SNR
level for all the FD BSs, defined as

SNR = ?1/f2
1 , (73)

with transmit power ?1 and thermal noise variance f2
1
. We

assume that the UL users and FD BSs transmit with the same
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TABLE II: Simulation parameters to simulate a multi-cell
mMIMO mmWave FD system.

Parameters
Cells � 2
UL and DL users *1 , �1 1, ∀1
Data streams 3 91 ,3:1 2, ∀1
BSs antennas "1 , #1 100, 60
Clusters and Paths #2,1 ,#?,1 3,3
RF chains (BSs) "'�

1
= # '�

1
10,12,16,32

Rx RF chains #A 10,12,16,32
User antennas ":1 = # 91 5
DL user antennas # 9 5
Rician Factor ^1 1
Array response aA,1 ,aC,:1 , aA, 91 ULA,ULA,ULA
AoA q 91 ,q:1 U∼ [−30◦, 30◦ ]
AoD \ 91 ,\:1 U∼ [−30◦, 30◦ ]
Rate weights F: , F9 1
Sum Power ?:1 , ?1 1,1
Uniform
Quantizer

Q1 ( ·) 4 or 10 bits

Relative Angle Θ1 90◦
Array separation �1 20 cm

amount of power, i.e., ?:1 = ?1 ,∀:1 . The thermal noise level
for DL users is set as f2

91
= f2

1
,∀ 91 . The total transmit power

is normalized to 1 and we choose the thermal noise variance
to meet the desired SNR. We simulate a multi-cell network
consisting of � = 2 cells with each FD BS serving one DL
and one UL user. P&D-HYBF is evaluated on a computer
consisting of 4 computational processors, equal to the number
of users in the network, i.e., fully parallel implementation.
BSs are assumed to have "1 = 100 transmit and #1 = 60
receive antennas. The RF chains in transmission and reception
for FD BSs are chosen as "'�

1
= #'�

1
= 32, 16, 10 or 8 and

the phase-shifters are assumed to be quantized with a uniform
quantizer Q1 (·) of 10 or 4 bits. The DL and UL users are
assumed to have # 91 = #:1 = 5 antennas and are served
with 3 91 = 3:1 = 2 data streams. The number of paths and
number of clusters are chosen to be #2,1 = #?,1 = 3 and
the AOA \

=?,1 ,=2,1
91

and AOD q
=?,1 ,=2,1

:1
are assumed to be

uniformly distributed in the interval U ∼ [−30◦, 30◦],∀ 91 , :1 .
We assume uniform-linear-arrays (ULAs) for the FD BSs and
users. For the FD BSs, the transmit and the receive array are
assumed to be separated with distance �1 = 20 cm with a
relative angle Θ1 = 90◦ and A<,= in (7) is set given �1 and
Θ1 as in (9) [21]. The Rician factor is chosen to be ^1 = 1
and the rate weights are set to be F:1 = F 91 = 1. Table II
summarizes all the parameters’ choice. Digital beamformers
are initialized as the dominant eigenvectors of the channel
covariance matrice of each user. The analog beamformers and
combiners are initialized as the dominant eigenvectors of the
sum of the channel covariance matrices across all the DL
and UL users, respectively. The results reported herein are
averaged over 100 channel realizations. Note that as we are
assuming perfect CSI, the SI can be cancelled only up to the
LDR noise floor, which reflects the residual SI power.

Fig. 5 shows a typical execution time to run the C-HYBF
and the P&D-HYBF with 32 RF chains. We can see that
the former requires significant computational time as it can
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Fig. 5: Execution time for the C-HYBF and the P&D HYBF
schemes with 32-RF chains.
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Fig. 6: Average WSR as a function of the LDR noise at
SNR= 20 dB with 32 or 16 RF chains and 10 or 4 bit phase-
resolution.

only update different variables iteratively based on alternating
optimization, one after the other. Transferring full CSI to the
central node and communicating back the optimized variables
to all cells will add significant additional time. For the latter,
computation of the local variables takes place in parallel for
each BS, which has to compute only the variables associated
with its users in parallel on different processors. We can see
the P&D-HYBF requires ∼ 1/21 and ∼ 1/2.3 less time in UL
and DL, respectively, than the average execution time of C-
HYBF. The complexity of P&D-HYBF in DL is dominated
by the computation of one large generalized dominant eigen-
vector to update the vectorized analog beamformer, which has
complexity O("'�

1

2
"2
1
). In UL, complexity of the analog
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20 dB with 12 or 10 RF chains and 10 or 4 bit phase-resolution.
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Fig. 8: Average WSR as a function of the SNR with LDR
noise ^:1 = ^1 = V1 = V 91 = −80 dB, with 32 or 16 RF
chains and 10 or 4 bit phase-resolution.

combiner is only O(#'�
1
#2
1
). We also show the execution

time to solve one sub-problem for the bottom layers in UL
and DL, which is negligible compared to the average execution
time of C-HYBF. Given the complexity analysis in Section-
V-D, we can expect that the execution time of C-HYBF will
increase quadratically as the number of users or cells increase.
P&D-HYBF requires significantly less time and the execution
time is expected to increase only linearly as the network size
grows, which makes it very desirable.

Fig. 6 shows the average WSR achieved with both schemes
as a function of the LDR noise with 32 or 16 RF chains
and 10 or 4 bits phase-resolution. We can see that the P&D-
HYBF performs very close to the C-HYBF scheme with the
same number of RF chains and phase resolution. Fully digital
FD achieves ∼ 83% of additional gain than the fully digital
HD for any LDR noise level. For a low LDR noise level
:1 < −80 dB, C-HYBF and P&D-HYBF with 32 RF chains
achieve ∼ 74%, 55% and ∼ 71%, 54% additional WSR with
10, 4 bits phase resolution, respectively. With 16 RF chains,
the gain results to be ∼ 67%, 48% and ∼ 64%, 47%, with
10, 4 bits phase-resolution, respectively. As the LDR noise
variance increases, the achievable WSR for both the FD and
HD systems decreases considerably. For :1 ≥ −40 dB, all of
the beamforming schemes achieve a similar average WSR. Fig.
7 shows the average WSR as function of the LDR noise with
only 12 or 10 RF chains and with 10 or 4 bits phase-resolution.
We can see that both schemes achieve significant performance
improvement in terms of WSR with a few RF chains and very
low phase-resolution and significantly outperforms the fully
digital HD system at any LDR noise level. In Fig. 7, for LDR
noise :1 ≤ 80 dB, C-HYBF and P&D-HYBF with 12 RF
chains achieves ∼ 60, 43% and ∼ 57, 43% additional gain with
10, 4 bit phase-resolution, respectively. With 10 RF chains,
the additional WSR results to be ∼ 58, 38% and ∼ 53, 37%,
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Fig. 9: Average WSR as a function of the SNR with LDR
noise ^:1 = ^1 = V1 = V 91 = −80 dB, with 12 or 10 RF
chains and 10 or 4 bit phase-resolution.

with 10, 4 bit phase-resolution, respectively. As the LDR noise
increases, the achievable average WSR decreases and results
to be a fewer 1?B/�I for any of the designs.

Fig. 8 shows the average WSR as a function of the SNR
with 32 and 16 RF chains and with 10 or 4 bit phase-resolution
affected with LDR noise :1 = −80 dB, in comparison with
the benchmark schemes. A fully digital FD system achieves
∼ 94% and ∼ 82% additional gain at low and high SNR,
respectively. With 32 RF chains and 10 bit phase-resolution,
the C-HYBF scheme achieves ∼ 79% gain at all the SNR
levels and the P&D-HYBF achieves ∼ 77% and ∼ 68% gain
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Fig. 10: Average WSR as function of the SNR with LDR noise
^:1 = ^1 = V1 = V 91 = −40 dB, with 32 or 16 RF chains and
10 or 4 bit phase-resolution.
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Fig. 11: Average WSR as a function of the SNR with LDR
noise ^:1 = ^1 = V1 = V 91 = −40 dB, with 12 or 10 RF chains
and 10 or 4 bit phase-resolution.

at low and high SNR, respectively. As the phase-resolution
decreases to 4-bits, we can see that the loss in WSR compared
to the 10-bit phase-resolution case is much more evident at
high SNR. Still, with 16 RF chains and 10 or 4 bit phase-
resolution, both schemes significantly outperform the fully
digital HD scheme for any SNR. Fig. 9 shows the average
WSR as a function of the SNR with same LDR noise level
as in Fig. 8, i.e., :1 = −80 dB, but with 10 or 12 RF chains
and 10 or 4 bit phase-resolution. The achieved average WSR
presents a similar behaviour as in the case of a high number
of RF chains. We can see that both the proposed schemes
significantly outperform the fully digital HD system with only
10 RF chains and with a very low phase-resolution of 4 bits.

Fig. 10 shows the achieved average WSR as a function
of the SNR with LDR noise :1 = −40 dB, which reflects
communication systems in which the signal suffers from a very
high level of distortions. It is visible that at very high LDR
noise level, the WSR does not increase as the SNR increases.
When the LDR noise dominates, decreasing the thermal noise
variance has negligible effect on the effective signal-to-LDR-
plus-thermal-noise ratio (SLNR). Therefore, dominance of
the LDR noise variance acts as a ceiling to the effective
SLNR ratio, which limits the achievable WSR. Consequently,
increasing the SNR does not dictate higher WSR in a multi-cell
mmWave FD system in the case of high LDR noise, which
saturates at SNR=10 dB. We can also see that with a large
LDR noise level, C-HYBF and P&D-HYBF perform similarly
with the same phase-resolution and RF chains. At high SNR,
both schemes achieve higher WSR at high LDR noise level
with 16 RF chains and 10 bit phase-resolution than the case
of 32 RF chains and 4 bit phase-resolution. Fig. 11 shows the
average WSR as a function of the SNR with only 10 or 12 RF
chains and with 10 or 4 bit phase-resolution. We can also see
that, at very high LDR noise level, both schemes still perform

similarly even with a very low number of RF chains and low
phase-resolution. Fig. 11 also shows that both schemes with
10 RF chains and 10 bit phase resolution are more robust to
the LDR noise than the case of 12 RF chains and 4 bit phase-
resolution.

As the results reported above consider LDR for all the
devices, the achieved WSR as a function of LDR noise
variance can be expected in a practical multi-cell FD system
with non-ideal hardware. From the results presented above, we
can conclude that both the proposed HYBF schemes achieve
significant additional gain and outperform the fully digital HD
system with only a few RF chains. Both the schemes achieve
similar average WSR with the same number of RF chains and
phase-resolution. However, P&D HYBF is much more attrac-
tive because it can be distributed at each FD BS and allows a
parallel update of all the variables on multiple computational
processors. It eliminates the problem of transferring full CSI
to the central node every channel coherence time. Moreover,
it results to be also highly scalable as its complexity increases
only linearly as the number of users or BSs increases. C-
HYBF suffers from a quadratic increase in the computational
complexity and requires a massive computational power to
update all the variables jointly based on alternating optimiza-
tion. P&D-HYBF achieves a similar average WSR as the C-
HYBF but imposes a minimal computational burden on each
processor and converges in a few iterations, thus requiring
only a limited amount of information exchange among the
BSs. We have also investigated the execution time for both
designs and observed that parallel HYBF requires significantly
less execution time. Therefore, it has the potential to be
implemented in a real-time large and dense mmWave multi-
cell massive mMIMO FD network and can deal with the
optimization of numerous variables for the UL and DL users
very efficiently.
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VII. CONCLUSION

This paper has presented two joint HYBF schemes for
WSR maximization in a multi-cell mmWave mMIMO FD
systems. Firstly, we have presented a C-HYBF scheme based
on alternating optimization. It has several drawbacks and not
desirable for a real-time multi-cell mmWave FD system. To
overcome all of its drawbacks, we have proposed a novel
P&D-HYBF design, which is very prominent for the next
generation of mmWave multi-cell FD systems. Its complexity
scales only linearly as a function of the network size and has
a very low-complexity. Simulation results show that both the
HYBF designs achieve similar average WSR and significantly
outperform the centralized fully digital HD systems with only
a few RF chains and very low phase-resolution at any LDR
or SNR level.

APPENDIX A
GRADIENTS

To derive the gradients (14) and (16) to construct the
minorized WSR cost function, we apply the following result
we derived in Lemma 3 [42].

Lemma 1. Let Y = AXB + 0 A diag
(
X + Q

)
B +

1 diag
(
CXD + E

)
+ F . The derivative of lndet

(
Y

)
with

respect to X is given by
mlndetY
mX

=A�Y −�B� + 0 diag
(
A�Y −�B�

)
+ 1 C�diag

(
Y −�

)
D� .

(74)

The result stated above can be used to construct the gra-
dients for the multi-cell mMIMO mmWave FD system. To
proceed, we write the WSR cost function (12) as∑

1∈B

∑
:1 ∈U1

[
F:1 lndet

(
R:1

)
− F:1 lndet

(
R
:1

) ]
+

∑
1∈B

∑
91 ∈D1

[
F 91 lndet

(
R 91

)
− F 91 lndet

(
R 91

) ] (75)

To compute the gradient Ĝ*!
:1 ,1

to optimize the transmit
covariance matrix T:1 for UL user :1 , in the same cell for
which T:1 acts as interference, we have to linearize with
respect to the users <1 ∈ U1 with <1 ≠ :1 . Applying the
result in (74) for R<1 as X and then R<1 as X *1 − 1 times,
and considering that X is Hermitian, yields the gradient

Ĝ*!
:1 ,1

=
∑

<1 ∈U1
<1≠:1

F<1
[
H�
<1

F '�
1

(
R−1
<1
− R−1

<1
+ V1diag

(
R−1
<1
− R−1

<1

) )
F '�
1

�H<1 + :<1diag
(
H�
<1

F '�
1

(
R−1
<1
− R−1

<1

)
F '�
1

�H<1

) ]
.

(76a)
To linearize with respect to the DL users in the same cell for
which the transmit covariance matrix T:1 acts as CI, we first
replace R 91 as X and then R 91

as X in (74), and repeating it
for all the DL users in the same cell leads to the following
gradient

Ĝ�!
:1 ,1

=
∑
91 ∈D1

F 91
[
H�
91 ,:1

(
R−1
91
− R−1

91
+ V 91diag

(
R−1
91
− R−1

91) )
H 91 ,:2 + ::1diag

(
H�
91 ,:1

(
R−1
91
− R−1

91

)
H 91 ,:1

) ]
,

(76b)

By repeating a similar reasoning for all the remaining gradients
and applying the results provided in (74) yields the gradients

Ĝ*!
:1 ,1

=
∑
2∈B
2≠1

∑
:2 ∈U2

F:2
[
H�
2,:1

F '�
2

(
R−1
:2
− R−1

:2
+ V2diag

(
R−1
:2
−

R−1
:2

) )
F '�
2

�H2,:1 + ::1diag
(
H�
2,:1

F '�
2

(
R−1
:2
− R−1

:2

)
F '�
2

�H2,:1

) ]
,

(76c)

Ĝ�!

:1 ,1
=
∑
2∈B
2≠1

∑
92 ∈D2

F 92
[
H�
92 ,:1

(
R−1
92
− R−1
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(
R−1
92
−

R−1
92

) )
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H�
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(
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− R−1

92

)
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(76d)
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∑
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1,1F
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2

(
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)
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) ]
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(76g)

Ĝ�!

91 ,1
=

∑
2∈B
2≠1

∑
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F 92
[
H�
92 ,1

(
R−1
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− R−1
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(
R−1
92

− R−1
92

) )
H 92 ,1 + :1diag

(
H�
92 ,1

(
R−1
92
− R−1

92

)
H 92 ,1

]
.

(76h)

APPENDIX B

The proof of Theorem 1 follows similarly as in Appendix B
[42]. We proceed with the proof by considering the minorized
version of the optimization problem

max
U,V,

G'�F '�

∑
1∈B

∑
:1 ∈U1

F:1 lndet
(
I + U�:1H�

:1
F '�
1 R−1

:1
F '�
1

�H:1

U:1
)
− Tr

(
U�:1

(
Ĝ*!
:1 ,1
+ Ĝ�!

:1 ,1
+ Ĝ*!

:1 ,1
+ Ĝ�!

:1 ,1

+ _:1 I
)
U:1

)
+

∑
1∈B

∑
91 ∈D1

F 91 lndet
(
I + V�91G'�

1

�H�
91

R−1
91

H 91G'�
1 V 91

)
− Tr

(
V�91G'�

1

� (
Ĝ*!91 ,1 + Ĝ�!

91 ,1

+ Ĝ*!
91 ,1
+ Ĝ�!

91 ,1
+ k1I

)
G'�
1 V 91

)
.

(77)
We first consider the optimization only with respect to V 91 .
The proof for the digital beamformer U:1 will follow similarly.
When optimizing V 91 , all the remaining variables are fixed
and their information from their previous update is saved
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in the gradients. Therefore, form (77), only the following
optimization problem needs to be considered

max
V 91

F 91 lndet
(
I + V�91G'�

1

�H�
91

R−1
91

H 91G'�
1 V 91

)
− Tr

(
V�91G'�

1

� (
Ĝ*!91 ,1 + Ĝ�!

91 ,1
+ Ĝ*!

91 ,1
+ Ĝ�!

91 ,1

+ k1I
)
G'�
1 V 91

)
.

(78)

The proof consists in simplifying (78), until the Hadamard’s
inequality applies as in Proposition 1 [61] or Theorem 1 [63].
The Cholesky decomposition of the matrix

(
G'�
1

� (
Ĝ*!
91 ,1
+

Ĝ�!
91 ,1
+ Ĝ*!

91 ,1
+ Ĝ�!

91 ,1
+ k1I

)
G'�
1
) can be written as L 91L�

91

where L 91 is the lower triangular Cholesky factor. We can
define Ṽ 91 = L�

91
V 91 , which allows to write (78) as

max
V 91

F 91 lndet
(
I + Ṽ 91

�L−1
91

G'�
1

�H�
91

R−1
91

H 91G'�
1

L−�91 Ṽ 91

)
− Tr

(
Ṽ 91

� Ṽ 91

)
.

(79)

Let E 91D 91E
�
91

be the eigen-decomposition of

L−1
91

G'�
1

�H�
91

R−1
91

H 91G'�
1

L−�
91

, where E 91 is a unitary

matrices and D 91 is diagonal. Let O 91 = L�
91
Ṽ 91 Ṽ 91

�
L 91 ,

and we can express (79) as

max
O 91

F 91 lndet
(
I +O 91D 91

)
− Tr

(
O 91

)
. (80)

By invoking the Hadamard’s inequality [Page 233 [64]], we
can see that the optimal O 91 must be diagonal. Therefore,

U 91 = L−�
91

E 91O
1
2
91

and thus

G'�
1

�H�
91

R−1
91

H 91G'�
1 = L 91L�91L−�91 E 91O

1
2
91
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1

� (
Ĝ*!91 ,1 + Ĝ�!

91 ,1
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91 ,1
+ Ĝ�!

91 ,1
+ k1I

)
G'�
1 ,

(81)
from which we select 3 91 dominant generalized eigenvectors,
equal to the number of data streams to be transmitted, which
concludes the proof for the digital beamformer V 91 . For the
digital DL beamformers U:1 , the result mentioned above holds
immediately by applying it to the optimization problem

max
U:1

F:1 lndet
(
I + U�:1H�

:1
F '�
1

�R−1
:1
F '�
1 H:1U:1

)
− Tr

(
U�:1

(
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:1 ,1
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:1 ,1
+ Ĝ*!

:1 ,1
+ Ĝ�!

:1 ,1
+ _:1 I

)
U:1

) )
.

(82)
and simplifying the terms in log det(·) and Tr(·) until the
Hadamard’s inequality applies to yield a result similar to (81).

APPENDIX C

To provide the proof for the analog beamformer, the re-
sults stated above cannot be applied directly as the KKT
condition (24) is not resolvable for G'�

1
, having the form

A1G'�
1

A2 = B1G'�
1

B2. To solve it for G'�
1

, we apply the

result vec(AXB) = B) ⊗ Avec(X) [42], which allows to
rewrite (24) as∑
91 ∈D1

( (
V 91V

�
91

(
I + V 91V �

91
G'�
1
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91
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91

H 91G
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91

H 91

)
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(
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1

)
−

(
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(
Ĝ*!91 ,1

+ Ĝ�!

91 ,1
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91 ,1
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91 ,1
+ k1I

) )
vec

(
G'�
1

)
= 0.

(83)
which now become resolvable for vec(G'�

1
). To get to the

KKT condition (83), we first consider rewriting the cost
function such that, taking its derivative leads to (83). Firstly,
we consider applying a noise whitening procedure using the
noise plus interference covariance matrix R1/2

91
on the received

signal. We can rewrite the whitened signal as

ỹ 91 =
((

s)91V
)
91

)
⊗ R−1/2

91
H 91

)
vec(G'�

1 ) + ñ 91 , (84)

where ỹ 91 = R−1/2
91

y 91 and ñ 91 represents the whitened noise
plus interference signal. The resulting WSR optimization
problem by computing the minorizers for all the links with
respect to the analog beamformer G'�

1
can be stated as

max
G'�

∑
91 ∈D

F 91 lndet
(
I + vec

(
G'�

)� ( (
V 91V

�
91

)) ⊗ H�
91
R−1
91

H 91

)
vec

(
G'�
1

) )
− Tr

(
vec

(
G'�
1

)� (
V 91V

�
91
⊗(

Ĝ*!91 ,1 + Ĝ�!

91 ,1
+ Ĝ*!

91 ,1
+ Ĝ�!

91 ,1
+ k1I

) )
vec

(
G'�

) )
.

(85)
By taking the derivative of (85) leads to the KKT condition

(83). Note that the restatement of the whitened version stated
with vec(G'�

1
) has the same form as the digital beamformer

V 91 or U:1 . By following a similar proof for V 91 , now it can
be easily shown that we can optimize the analog beamformer
vec(G'�

1
) as one generalized dominant eigenvector, which is

summed for all the users in DL in the same cell.
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