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Abstract. Bayesian calibration of black-box computer models offers an estab-
lished framework for quantification of uncertainty of model parameters and pre-
dictions. Traditional Bayesian calibration involves the emulation of the computer
model and an additive model discrepancy term using Gaussian processes; inference
is then carried out using Markov chain Monte Carlo. This calibration approach is
limited by the poor scalability of Gaussian processes and by the need to specify
a sensible covariance function to deal with the complexity of the computer model
and the discrepancy. In this work, we propose a novel calibration framework,
where these challenges are addressed by means of compositions of Gaussian pro-
cesses into Deep Gaussian processes and scalable variational inference techniques.
Thanks to this formulation, it is possible to obtain a flexible calibration approach,
which is easy to implement in development environments featuring automatic dif-
ferentiation and exploiting GPU-type hardware. We show how our proposal yields
a powerful alternative to the state-of-the-art by means of experimental validations
on various calibration problems. We conclude the paper by showing how we can
carry out adaptive experimental design, and by discussing the identifiability prop-
erties of the proposed calibration model.
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1 Introduction

The task of carrying out inference of parameters of expensive computer models from
data is a classical problem in Statistics (Sacks et al., 1989). Such a problem is referred
to as calibration (Kennedy and O’Hagan, 2001), and the results are often of interest to
draw conclusions on parameters that have a direct interpretation of physical quantities
(see, e.g., Section 2.2 of Brynjarsdóttir and O’Hagan 2014). Calibration finds numer-
ous applications in fields as diverse as climatology (Sansó et al., 2008; Salter et al.,
2018), environmental sciences (Larssen et al., 2006; Arhonditsis et al., 2007), biology
(Henderson et al., 2009), and mechanical engineering (Williams et al., 2006), to name a
few. There are many fundamental difficulties in calibrating expensive computer models,
which we can distinguish between computational and statistical. Computational issues
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2 DGPs for Calibration of Computer Models

arise from the fact that traditional optimization and inference techniques require run-
ning the expensive computer model many times for different values of the parameters,
which might be unfeasible within a given computational budget. Statistical limitations,
instead, arise from the fact that computer models can only abstract real processes with
a given level of accuracy.

Building on previous work from Sacks et al. (1989), in their seminal paper, Kennedy
and O’Hagan (2001) propose a statistical model, based on Gaussian processes (gps; Ras-
mussen and Williams 2006), which jointly tackles the problems above. In their model,
which we will refer to as koh, the output of a deterministic computer model is emulated
through a gp estimated from a set of computer experiments; in this way, computational
issues are bypassed by using the predictive distribution of the emulating gp for any
given set of parameters in place of expensive runs of the computer model. Observations
from the real process, also known as field observations, instead, are modeled through
the gp emulating the computer model with the addition of a so-called discrepancy
term, which is also assigned a gp prior. The introduction of the discrepancy term is key
to avoid biased estimates of the parameters due to misspecifications of the computer
model (Brynjarsdóttir and O’Hagan, 2014). The koh model is treated in a Bayesian
way, making it suitable for problems where quantification of uncertainty is an impor-
tant requirement. This is often the case when one is interested in drawing conclusions on
parameters of interest, making predictions for decision-making with specific cost associ-
ated to predictions, or when one is interested in iteratively improving the experimental
design.

While the koh model and inference make for an attractive and elegant framework to
tackle quantification of uncertainty for calibration of expensive computer models, there
are limitations which we aim to overcome with this work. From the modeling perspective,
gps are indeed flexible emulators, provided that a suitable covariance function is chosen,
as in the literature of nonstationary gps (e.g. Paciorek and Schervish 2003). However,
more recent approaches like Deep gps (dgps; Damianou and Lawrence 2013) have shown
great modeling flexibility for many classes of functions and can potentially lead to more
accuracy in the emulation of the computer model and the real process compared to gps.
From the computational perspective, limitations are inherited from the poor scalability
of gps (Rasmussen and Williams, 2006), for which inference becomes impractical when
the number of runs of the code and the number of real observations are collectively
beyond a few thousands. In addition, the use of Markov chain Monte Carlo (mcmc)
(Neal, 1993) techniques to carry out inference for gp models can be painfully slow
without careful tuning and clever parameterizations (Filippone et al., 2013; Filippone
and Girolami, 2014).

This work aims to tackle these issues by proposing the use of recent developments
in the gp and dgp literature and variational inference, (i) to extend the modeling
capabilities of gps in emulation using dgps; (ii) to extend the original framework in
Kennedy and O’Hagan (2001), by casting the model as a special case of a dgp; (iii)
to adapt techniques based on random feature expansions and stochastic variational
inference, building on the work by Cutajar et al. (2017), to obtain a scalable framework
for Bayesian calibration of computer models. Thanks to this formulation, it is possible
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to obtain a flexible calibration approach, which is easy to implement in development
environments featuring automatic differentiation and exploiting GPU-type hardware.

We validate our proposal, which we name dgp-cal, on a variety of calibration
problems, comparing with alternatives from the state-of-the-art. We demonstrate the
flexibility and the scalability of dgp-cal, as well as the ability to capture the uncertainty
in model parameters and model discrepancy. We conclude the paper by showing how
we can carry out adaptive experimental design, and by discussing the identifiability
properties of the proposed calibration model. The code to replicate all the results in the
paper is available at the following url:

https://github.com/SebastienMarmin/variational-calibration.

2 Background

In this section, we introduce the problem of calibration of computer models and we
present the koh model. We then introduce Gaussian processes (gps), which are the
main modeling ingredients in the koh model. Motivated by the difficulties associated
with carrying out inference with gps, we present random feature expansions as a way to
reduce complexity and being able to exploit recent advances in approximate inference.
In particular, we focus on variational inference (vi) techniques that are able to operate
on mini-batches of data and that can be easily implemented in developing environments
featuring automatic differentiation. We conclude this section by showing how we can
increase flexibility of gps by composing processes, obtaining dgps, for which we can
extend the use of random feature expansions and vi. This background material gives us
all the elements to present our proposed calibration model in Section 3.

2.1 Bayesian Calibration

Consider prediction and uncertainty quantification for a phenomenon approximated
by a computer model, which is expensive to evaluate. Throughout the paper, we will
assume that the output of the computer model is univariate, but we will discuss ways
in which we can deal with multiple responses. We denote observations from the real
phenomenon of interest by y ∈ R, and we assume that we have n of these available
y = [y1, . . . , yn]

� for a number of inputs X = [x1, . . . ,xn]
�, with xi ∈ D1 ⊂ R

d1 . For
example, in climate modeling, y could correspond to temperature measurements at n
locations identified by latitude and longitude (in this case, D1 = [−90, 90]×[−180, 180[).
The computer model simulating the real phenomenon requires the so-called calibration
parameters θ ∈ D2 ⊂ R

d2 , as well as input variables x ∈ D1. Calibration parameters
may have a physical meaning (e.g., exchange rates determining the carbon cycle) and
inference over these is a central goal of Bayesian calibration.

Beside the observations y associated with X, the computer model is run at (possi-

bly different) inputs X∗ = [x∗
1, . . . ,x

∗
N ]

�
and calibration parameters T = [t1, . . . , tN ]

�
,

yielding a collection of outputs z = [z1, . . . , zN ]�. Note that we denote by T the col-
lection of N parameter configurations at which the computer model is run, while θ

https://github.com/SebastienMarmin/variational-calibration
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denotes the true (unknown) parameter we are interested in inferring. Generally N is
larger than n as running the computer model is easier compared to obtaining real world
observations (albeit computationally expensive).

Following the definition of the koh model in Kennedy and O’Hagan (2001), we as-
sume that y and z are drawn from p(yi|fi) and p(zj |η∗j ), which determine the likelihood

functions. The vectors f = [f1, . . . , fn]
� and η∗ = [η∗1 , . . . , η

∗
N ]� result from mapping

(xi,θ)i=1,...,n and (x∗
j , tj)j=1,...,N through random functions f and η, respectively. The

link between the computer model with latent representation η, and the real phenomenon
with latent representation f , is modeled by

f(x, t) = η(x, t) + δ(x), (2.1)

where δ(x) represents the discrepancy between the computer model and the real process.
Figure 1 illustrates the koh calibration model.

Figure 1: koh calibration model.

In their Bayesian formulation, Kennedy and O’Hagan (2001) assume η(x, t) and δ(x)
to be independent Gaussian processes (gps); in other words, the koh model assumes a
given prior distribution over these functions, which takes the form of a gp. In addition,
they assume a prior over θ, and they aim to characterize the posterior distribution over
θ given the observations of the real process and runs of the computer model. In order to
keep the notation uncluttered, we denote by ψ the set of gp parameters for η(x, t) and
δ(x), and we denote by U the collection of all input locations X, X∗, T . The marginal
likelihood of the koh model is

p(y, z|U,ψ) =

∫
p(y|ηθ+δ)p(z|η∗)p(δ|X,ψ)p(ηθ,η

∗|θ, U,ψ)p(θ)dη∗ dδ dηθ dθ,

with vectors η∗ = [η(x∗
1, t1), . . . , η(x

∗
N , tN )]�, ηθ = [η(x1,θ), . . . , η(xn,θ)]

� and δ =
[δ(x1), . . . , δ(xn)]

�. The high dimensionality and the nontrivial dependence of this in-
tegrand with respect to the parameters of interest θ, makes their inference intractable,
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thus requiring approximations. Similar considerations can be made for the predictive
distribution, that is the one made by the koh model at new input values. In the original
work by Kennedy and O’Hagan (2001), inference is carried out using mcmc, which of-
fers guarantees of convergence to the true posterior distribution over model parameters,
but it can be extremely slow and impractical when the number of field observations
and computer simulations is large. This is due to the poor scalability properties of gps,
which adds up to the need to repeatedly solve these within mcmc.

It is worth mentioning the identifiability issues associated with the koh model,
brought up in the discussion of the paper of Kennedy and O’Hagan (2001). Such issues
arise due to the over-parameterization of the model, whereby it is possible to confound
the effects of calibration parameters and model discrepancy. In particular, the koh

calibration model yields a joint posterior distribution over θ and δ(x), but as the number
of observations increases, the koh model concentrates this posterior over the manifold

M = {(t, δ(x)) | η(x, t) + δ(x) = f(x, t) with x ∈ X ∪X∗} .

Brynjarsdóttir and O’Hagan (2014) nicely illustrate this problem as they study how
removing the discrepancy would result in a model where the estimation of model pa-
rameters θ is biased. The argument is that if η(x,θ) does not model the real physical
process exactly and there is no discrepancy, the estimate of θ would be based on a mis-
specified model. Increasing the number of observations would not cure this fundamental
issue with model misspecification. The conclusion is that discrepancy in the koh model
is necessary to hope for a sound inference over calibration parameters θ of the computer
model, and imposing good priors on θ and δ(x) becomes of fundamental importance to
mitigate the lack of identifiability. Alternatively, one can improve identifiability when
multiple responses are available, and these are mutually dependent on the same set of
calibration parameters θ (Arendt et al., 2012). In the literature, there are works ad-
dressing the issue of identifiability of the koh models with alternative formulations,
such as loss minimization (Tuo and Wu, 2016) or frequentist formulations (Wong et al.,
2017). Within this line of works, assuming that the optimal θ is the optimizer of a loss
function, Plumlee (2017) showed that the prior over δ(x) should be orthogonal to the
gradient of the computer model. We remark that the issue of identifiability affects in a
similar way the model that we propose here, and we dedicate part of the discussion to
comment on how we can adopt current strategies from the literature to deal with this.

2.2 Gaussian Process and Random Features Expansions

A Gaussian process (gp) is a set of random variables such that any subset of these
is jointly distributed as a Gaussian (Rasmussen and Williams, 2006). This definition
makes them suitable for assigning priors over functions. Imposing a gp prior over a
function gexact(u),u ∈ D ⊂ R

d means assigning a prior over the realizations of the
function [gexact(u1), . . . , gexact(ul)]

� at a set of l inputs u1, . . . ,ul, such that this is
multivariate Gaussian; this is because of the properties of marginals of multivariate
Gaussian distributions. What needs to be specified is a mean function and a covariance
function c(ui,uj), which determines how realizations of the function at different inputs
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covary and therefore the properties of the functions that can be drawn from the gp.
For simplicity, we assume a constant zero mean, but adding a parametric mean function
is straightforward. Inference in models involving gps quickly becomes intractable when
l grows beyond a few thousands. The reason is that sampling from gps and posterior
inference requires algebraic operations with the covariance matrix obtained by evaluat-
ing the covariance function among all possible pairs of inputs. These operations usually
involve O(l3) operations, and require storing O(l2) entries for the covariance matrix. In
this work, we bypass these limitations by making a model approximation which lowers
both complexities to O(l), as we discuss shortly.

Note that in this short presentation of gps we assume that the function is univariate,
that is gexact(u) ∈ R. Extending this to multivariate functions gexact(u) ∈ R

o is rather
straightforward. What needs to be specified is a richer covariance structure, which is
able to characterize the covariance between (gexact)r(ui) and (gexact)s(uj); see, e.g.,

Álvarez and Lawrence (2011) for an extensive treatment of these scenarios. When we
assume a zero covariance across functions, we are effectively modeling each gr(u) as an
independent gp. We are free to parameterize each gp separately, or to use a common
covariance c(ui,uj), so that covariance parameters are shared across the o functions.
In this paper we prefer this latter approach to avoid introducing too many parame-
ters, although we can easily incorporate more advanced modeling assumptions in our
implementation.

For a large class of covariance functions, it is possible to show that draws from the
gp prior are a linear combination of a possibly infinite number of basis functions with
Gaussian-distributed weights (Neal, 1996; Rasmussen and Williams, 2006). This can be
formulated for u ∈ D as an infinite sum

gexact(u) = φ∞(u)�w∞, (2.2)

with w∞ infinite dimensional random vector with i.i.d. standard normal components,
and φ∞ the evaluation of an infinite set of basis functions at u. The exact covariance
of gexact is readily obtained as ∀u,u′ ∈ D

c(u,u′) = E
[
φ∞(u)�w∞w�

∞φ∞(u′)
]
= φ∞(u)�φ∞(u′). (2.3)

The infinite representation induced by the covariance function suggests a way to ap-
proximate gps by means of a finite dimensional truncation of φ∞(u), which we denote
by φ(u) ∈ R

p, so that

c(u,u′) = φ∞(u)�φ∞(u′) ≈ φ(u)�φ(u′). (2.4)

The function gexact(u) is then approximated by

gexact(u) ≈ g(u) = φ(u)�w. (2.5)

When using gps in modeling problems with l observations, the truncation has the ad-
vantage of avoiding the need to solve expensive algebraic operations with the covariance
matrix. Instead, the truncation turns gps into generalized linear models. In order to re-
tain the probabilistic flavor of gps, it is natural to treat these models in a Bayesian way,
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and this requires algebraic operations with matrices of size p×p (cost O(p3)), while the
complexity with respect to l is linear.

Random feature expansions (Rahimi and Recht, 2008; Lázaro-Gredilla et al., 2010)
offer an elegant framework to construct a finite p-dimensional representation φ(u),
which are referred to as the random features. As a working example, throughout this
paper we consider the Gaussian covariance (or kernel) function, also known as the
squared exponential or radial basis covariance function:

c(u,u′) = σ2 exp

(
−1

2
(u− u′)�A−1(u− u′)

)
. (2.6)

The symmetric positive definite matrix A controls the scaling and mixing of the inputs,
whereas σ2 controls the marginal variance of the gp. When the covariance is shift-
invariant, it is possible to express the covariance as the Fourier transform of a positive
measure (Rahimi and Recht, 2008). Applying the Fourier transform to the Gaussian
covariance, and defining ι =

√
−1, we obtain:

c(ui,uj) = σ2

∫
p(ω) exp

(
ι(ui − uj)

�ω
)
dω, (2.7)

which immediately suggests that the distribution p(ω) is also Gaussian, and it has the
form p(ω) = N (0, A). By sampling from p(ω), we can approximate the integral in
the Fourier formulation by means of Monte Carlo, thus obtaining a finite dimensional
representation of the covariance:

c(ui,uj) ≈
2σ2

NRF

NRF/2∑
r=1

exp
(
ι(ui)

�ω̃r)
)
exp

(
−ι(uj)

�ω̃r)
)
. (2.8)

In this expression, we sampled NRF/2 values of ω, denoted by ω̃r, and exploited the
property of shift invariance to split the complex exponential in two parts. While the
basis functions are complex, by realizing that the left-hand side is a real number, with
simple trigonometric manipulations of the right-hand side, it is possible to express the
previous equation in an equivalent form as:

c(ui,uj) ≈
2σ2

NRF

NRF/2∑
r=1

[
sin

(
u�
i ω̃r

)
, cos

(
u�
i ω̃r

)] [
sin

(
u�
j ω̃r

)
, cos

(
u�
j ω̃r

)]�
. (2.9)

Therefore, introducing φ : RNRF → R
NRF as the element-wise application of sine (for

the first NRF/2 components) and cosine (for the last NRF/2 components), the resulting
basis functions are

φ(u) =

√
2σ2

NRF

[
sin

(
u�Ω

)
, cos

(
u�Ω

)]�
, (2.10)

where Ω = [ω1, . . . ,ωNRF/2], and the sin and cos functions are applied element-wise
to their argument. The basis functions are also called random features, because they
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are obtained by multiplying the inputs ui with a random matrix Ω, followed by the
application of a nonlinearity. Similar considerations can be made, for instance, for the
Matérn covariance, where the ω’s are sampled according to a multivariate Student-t
distribution. See also Cho and Saul (2009) for an alternative derivation showing how
the arc-cosine covariance of order one can be approximated in a similar fashion by
sampling ω from p(ω) = N (0, A) and by employing a rectified linear unit nonlinearity
(h(x) = x if x > 0 and h(x) = 0 otherwise), which is very popular in the literature of
deep neural networks.

2.3 Deep Gaussian Processes and Random Feature Expansions

A Deep Gaussian Process (dgp) is defined as a composition of functions:

gdeep(u) = g(L)(g(L−1)(. . . (g(1)(u)) . . .)), (2.11)

where each function g(i)(·) is assigned a gp prior (Damianou and Lawrence, 2013; Neal,
1996). Again, for simplicity we focus our presentation on univariate gps, but we will
discuss ways in which we can deal with multivariate gps shortly. The composition can
be interpreted as a way to feed the output of g(i) as input to another g(i+1). In a parallel
with deep neural networks, each gp can be thought of as a “layer”. The composition
operation makes dgp priors substantially different from gps; that is, the realizations of
g(L)(u) at U are no longer multivariate Gaussian in general. We refer the reader to Neal
(1996); Duvenaud et al. (2014); Matthews et al. (2018) for some in-depth discussions
and illustrations on the composition of gps.

The dgp prior induced by the choice of gp priors over the functions in the com-
position can be used as a prior over functions in statistical models. After choosing an
appropriate likelihood function, one is usually interested in optimizing all model param-
eters, which include the covariance parameters of the gps at all layers, characterizing the
posterior over g(L)(u) at U , and making predictions for any u∗. For dgps, these tasks
are analytically intractable due to the nontrivial dependence introduced by the compo-
sition. Most of the literature on dgps extends approximations and inference techniques
developed for “shallow” gps. For instance, Hensman and Lawrence (2014); Salimbeni
and Deisenroth (2017) extend the use of Nytröm-type approximations (also known as
inducing points approximations) to dgps and carry out inference using variational tech-
niques, whereas Bui et al. (2016) employs expectation propagation.

This work focuses on random feature expansions for dgps instead, which were pro-
posed and studied in Gal and Ghahramani (2016); Cutajar et al. (2017). In this frame-
work, each gp in the composition is approximated by means of random features, as
shown in the previous section. With this approximation, each gp layer becomes a linear
model with a given distribution over the weights. Denoting by a the input to layer (i),
the gp at the ith layer approximated with random features implements the following
operations:

φ(i)(a) =

√
2(σ2)(i)

NRF
(i)

[sin(Ω(i)a)�, cos(Ω(i)a)�]�, g(i)(a) = (φ(i))�w(i). (2.12)
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With this approximation, each gp layer can be seen as a two-layer neural network.
The first layer implements a multiplication by a random matrix Ω(i) and applies a non-
linearity by means of trigonometric functions. The second layer implements a linear
combination of the inputs. Therefore, composing these approximate gps gives rise to
a particular form of a Bayesian deep neural network. In traditional deep neural net-
works nonlinearities are applied at each layer and all the weights are optimized; in the
approximate dgp viewed as a Bayesian deep neural network, nonlinearities are applied
every other layer, and only the w(i) weights are inferred, whereas the Ω(i) are random.
See Cutajar et al. (2017) for an in-depth discussion on the connection with Bayesian
deep neural networks and other ways in which Ω(i) can be treated in order to improve
performance.

The model approximation with random features bypasses the challenges of carry-
ing out inference having to deal with the composition of gps, but the composition of
the resulting linear models is still intractable from a Bayesian perspective due to the
nonlinearities introduced by the basis functions. In the next section, we present varia-
tional inference as a way to derive a tractable and scalable inference scheme for dgps
approximated with random features.

2.4 Stochastic Variational Inference

In this work, we make use of Variational Inference (vi) techniques to carry out inference
over model parameters. We give a brief overview of vi here, and we will show how this is
applied to the proposed calibration model in the next section. We consider a modeling
problem for a set of l pairs of input/labels observations (ui, vi), with u ∈ R

d, and v ∈ R.
Let U = [u1, . . . ,ul]

� and v = [v1, . . . , vl]
�. Imagine developing a statistical model with

parameters Θ and with likelihood function p(v|U,Θ), and assume a prior p(Θ).

vi is useful when the posterior over Θ, that is p(Θ|v, U) is intractable. In vi, an
approximation q(Θ) ∈ Q to the posterior is introduced, and the objective is to make it
as close as possible to the actual posterior p(Θ|v, U). The standard way to do so in vi

is to set up the following optimization problem:

argmin
q(Θ)∈Q

{DKL [q(Θ) ‖ p(Θ|v, U) ]} , (2.13)

where DKL is the Kullback-Leibler divergence measuring how different the two distribu-
tions are. With simple manipulations, it is possible to show that an equivalent problem
is the one of maximizing the following lower bound to the log-marginal likelihood with
respect to q(Θ) (see, e.g., Jordan et al. 1999; Graves 2011; Blei et al. 2017):

log p(v|U) ≥ Eq(Θ)[log(p(v|Θ, U))]−DKL [q(Θ) ‖ p(Θ) ] . (2.14)

In other words, a candidate q(Θ) providing the highest lower bound also minimizes the
divergence to the exact posterior.

With an expression for the lower bound of the marginal likelihood, we can now
attempt to maximize it with respect to q(Θ), which generally means to optimize it
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w.r.t. its parameters. Therefore, the family of distributions, Q, for the candidate ap-
proximation q(Θ) ∈ Q needs to be chosen before inference. While the approximation is
constrained by the choice of the family Q, the complexity of Q impacts the complexity
of the lower bound maximization. The trade-off between the inference speed and the
quality of the approximation is an active research domain. For instance Rezende and
Mohamed (2015) and Liu and Wang (2016) increase the expressiveness of the variational
distribution while keeping the inference tractable, at the cost of increasing the number
of parameters of q(Θ).

The lower bound contains two terms: the first is a model fitting term, whereas
the second is a regularization term which penalizes approximations that deviate too
much from the prior. This DKL term can be computed analytically when priors and
approximate posteriors have particular forms. For example, when p1(x) = N (μ1, σ

2
1)

and p2(x) = N (μ2, σ
2
2), the Kullback-Leibler divergence between the two has the form:

DKL (p1(x)‖p2(x)) =
1

2

[
log

(
σ2
2

σ2
1

)
− 1 +

σ2
1

σ2
2

+
(μ1 − μ2)

2

σ2
2

]
. (2.15)

The first term in the lower bound (2.14) depends on q(Θ) through the expectation
of the log-likelihood. This complication is usually bypassed by employing stochastic
optimization using Monte Carlo:

Eq(Θ)[log(p(v|Θ, U))] ≈ 1

NMC

NMC∑
k=1

log
(
p(v|Θ̃(k), U)

)
, (2.16)

with Θ̃(k) i.i.d. samples from q(Θ). The Monte Carlo approximation is unbiased, and
so it is its derivative with respect to any of the parameters of q(Θ). This means that
we can employ stochastic gradient optimization to adapt the parameters of q(Θ) to
maximize the lower bound with guarantees to reach a local optimum of the objective
(Robbins and Monro, 1951; Graves, 2011). The only precaution to take to make this
viable, is to reparameterize the samples from q(Θ) using the so-called reparameterization
trick (Kingma and Welling, 2014). In its simplest form, assuming a fully factorized
Gaussian posterior over all parameter components θ� ∈ Θ, the expression (θ̃�)(k) =
μ� +(ε̃�)(k)σ� separates out the stochastic ((ε̃�)(k) ∼ N (0, 1)) and deterministic (μ� and
σ�) components in the way samples from the approximate posterior are generated. In this
way, the lower bound can be differentiated with respect to the variational parameters
μ� and σ� (with the (ε̃�)(k) variables fixed), and it is therefore possible to perform
gradient-based optimization (Graves, 2011; Kingma and Welling, 2014; Cutajar et al.,
2017). The gradients are stochastic because the (ε̃�)(k) variables are random, but the
Monte Carlo estimate of the objective guarantees that the estimate of the gradient is
unbiased, allowing for the use of stochastic gradient-based optimization (Robbins and
Monro, 1951). This is the reason why this implementation of vi is also referred to as
stochastic variational inference (svi).

Finally, it is worth noting that it is possible to considerably reduce the variance of
the stochastic gradients, thus increases convergence speed of the optimization by means
of the so-called local reparameterization trick (Kingma et al., 2015). In this approach,
instead of sampling (ε̃�)(k), one samples from the distribution of the product of the
inputs to a layer and samples from q(Θ); see Kingma et al. (2015) for more details.
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Mini-Batch-Based Learning and Automatic Differentiation Part of the huge success
of deep learning is due to the exploitation of mini-batch-based optimization and au-
tomatic differentiation (Graves, 2011). The former enables scalability, as the model is
updated by iteratively processing subsets of data. The latter, instead, allows one to
tremendously simplify the implementation of complex models, as one has to implement
the objective function and automatic differentiation takes care of computing its deriva-
tives based on the graph of computations. Näıvely operating with mini-batches in gps
ignores the covariance among observations, which is crucial for effective gp modeling.

The proposed gp and dgp approximation and svi allow us to exploit mini-batch-
based optimization. Assuming that the likelihood factorizes across observations,
p(v|Θ, U) =

∏n
j p(vj |Θ, U), the terms within the approximation of the fitting term

in the lower bound can be estimated without bias by selecting I, a set of m out of n
indices (Graves, 2011)

Eq(Θ)[log(p(v|Θ, U))] ≈ 1

NMC

NMC∑
i=1

n

m

∑
�∈I

log
(
p(u�|Θ̃(k), U)

)
. (2.17)

This approximation introduces an extra level of stochasticity in the optimization (with-
out introducing bias), but it allows one to scale the inference of these models to virtually
any number of observations; previous work has reported results on dgps for 107 obser-
vations with a single-machine implementation (Cutajar et al., 2017). Another important
remark is that this approximation and inference approach for dgps can be implemented
relying exclusively on matrix-matrix and matrix-vector products, which can be acceler-
ated by using GPU-type hardware.

3 DGPs for Calibration of Computer Models

In this section we present our contribution, which we refer to as dgp-cal. We begin by
observing that the koh calibration model can be seen as a special case of a dgp, and
this allows us to generalize the original formulation of the koh model to more flexible
ones. We then show how we can leverage the advances in approximation and inference
for dgps presented in the previous sections, namely random feature expansions and
stochastic variational inference, in order to obtain a scalable framework for calibration,
while retaining the flexibility offered by the use of dgps. We conclude the section by
discussing implementation details.

3.1 Generalization of the KOH Calibration Model as a DGP

The original formulation of the koh calibration model involves the use of gps to emulate
the computer model and to model the additive discrepancy. As pointed out by Kennedy
and O’Hagan (2001), additive discrepancy is somewhat specific and it can be generalized
(see, e.g., Qian and Wu 2008). We propose to do so by assuming that the function
underlying the real process is obtained by a warping function γ applied to the emulator:

f(x, t) = γ (η(x, t),x) . (3.1)
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We retrieve the koh formulation (2.1) when the warping applies the identity to η(x, t)
and adds it to a gp on x. In other words, we can think of the function f(x, t) in the
koh model as a composition of two functions; the first is a gp that, given the inputs x
and t, yields η(x, t), whereas the second applies a linear combination of η and another
gp δ(x) with fixed unit weights.

In the original formulation of the koh model, the discrepancy between the computer
code and the real process is modeled through the additive discrepancy term δ(x). In
the proposed generalization of the koh model, instead, we assume a gp prior over
γ (η(x, t),x), so that we apply a warping as a function of x. Similarly to the original
kohmodel, the analysis of the warping function γ (η(x, t),x) allows one to reason about
the discrepancy between the computer model and the real process.

A further possible extension, which we implement in our work, is to increase model
flexibility by letting η(x, t) and/or γ(η(x, t),x) to be modeled as dgps instead of gps.
The deep extension is particularly useful when the emulator or the real process exhibit a
space-dependent behavior that is difficult to model by designing appropriate covariance
functions. dgps offer a way to learn such nonstationarities from data, so this is par-
ticularly appealing in such challenging applications. We will give illustrations of dgps
and the generalized formulation in the experiments. Thanks to the possibility to employ
random feature approximations of the dgps in the generalized model, we can obtain a
scalable framework for calibration as discussed next.

3.2 Model Approximation Using Random Features

In this section, we discuss how to employ the random feature approximation to make
the koh model and its generalization suitable for variational inference. We start from
the koh model, assuming that η(x, t) and δ(x) are modeled as gps with the Gaussian
covariance in (2.6); we denote their anisotropy matrices by Aη and Aδ and their marginal
variances σ2

η and σ2
δ , respectively. By applying the random feature expansion detailed

in Section 2.2 we obtain

η(x,θ) = φη(x,θ)
�wη = ση φ

(
Ωη

[
x
θ

])�
wη, (3.2)

δ(x) = φδ(x)
�wδ = σδ φ (Ωδx)

�
wη. (3.3)

The feature maps φη and φδ use the functions φ : RNRF → R
NRF given in (2.10). The

elements of wη and wδ, of size NRF, have i.i.d. standard normal priors, whereas the
matrices Ωη, Ωδ of sizeNRF×(d1+d2),NRF×d1, have i.i.d. normal rows, with covariance
dependent on the positive definite matrices Aη and Aδ; in particular, the columns of
Ωη and Ωδ are i.i.d. N (0, Aη) and N (0, Aδ), respectively. Figure 2 represents the model
(using a neural network-like diagram) according to (2.1), (3.2), and (3.3).

It is straightforward to extend this formulation to model η(x, t) and δ(x) with dgps
instead of gps, by applying the random feature expansion to each gp layer. Assuming
that each dgp has Lη and Lδ layers, in this case, η(x, t) and δ(x) are approximated by
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Figure 2: Neural Network representation of the proposed approximation to the koh

model. (3.2) and (3.3) formulate random feature expansions for η(x, t) and δ(x).

a Bayesian deep neural network, where each gp layer is approximated by:

η(x,θ) = φ(Lη)
η (a(Lη))�w(Lη)

η φ(Lη)
η (a(Lη)) = φ(Ωηa

Lη),

aLη = φ(Lη−1)
η (a(Lη−1))�w(Lη−1)

η φ(Lη)
η (a(Lη−1)) = φ(Ωηa

Lη−1),

. . . = . . .

a(2) = φ(1)
η (x,θ)�w(1)

η φ(1)
η (x,θ) = φ

(
Ω(1)

η

[
x
θ

])
. (3.4)

Similarly, we can construct a random feature approximation for a dgp modeling δ(x) in

the koh model, or apply the same construction for the warping function γ (η(x, t),x)

in the generalized version of the koh model. The advantage of the proposed approxima-

tion using random features is that it enables the use of stochastic variational inference

presented in Section 3.3, as discussed next.

3.3 Inference of the Approximate DGP Calibration Model

Again, we focus on the formulation of the koh model with the discrepancy term δ(x)

instead of the warping γ(η(x, t),x), but it is easy to follow the same derivation for this

latter case. We make use of variational inference (vi), so we approximate the posterior

distribution over all model parameters wη, wδ, and θ by introducing a variational

posterior q(wη,wδ,θ), see Section 2.4. We assume q(wη,wδ,θ) to be Gaussian and
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completely factorized across parameters, that is

q(wη,wη,θ) =

NRF∏
i=1

dout∏
j=1

q(wη,ij)q(wδ,ij)

d2∏
�=1

q(θ�), (3.5)

although the factorization assumption can be relaxed. With the assumption that
q(wη,wη,θ) factorizes across parameters, we deal with computations and storage which
are linear in the number of model parameters. Relaxing the factorization means to as-
sume that certain groups of parameters have nonzero covariance. For example, one could
assume q(wη,·j) = N (μη,j ,Ση,j) and parameterize Ση,j = Lη,jL

�
η,j to preserve positive-

definiteness by optimizing Lη,j . It is easy to verify that this choice requires O(N2
RF)

storage and O(N3
RF) computations.

Following the principles of vi, we need to derive a lower bound to the marginal
likelihood of the model and maximize it with respect to the distribution q(wη,wδ,θ).
In practice, this problem turns into the optimization of the lower bound with respect
to the parameters that govern q(wη,wδ,θ). Taking the lower bound (2.14) and its
unbiased Monte Carlo and mini-batch-based approximation (2.17), we now adapt this
to our calibration model. In this adaptation we realize that there are two types of input
points, namely observations X and computer runs [X∗, T ]; note that the shapes of
X,X∗ and T does not allow a concatenation of these three matrices in a single matrix.
One possibility is to apply mini-batch on the union of the data sets. However we do
not recommend this procedure without ensuring that each category (“Observations”
versus “Runs”) gets sufficiently represented. For example a uniform sampling blind to
the category of the input points with n << N , would make the number of sampled
observations vary a lot from one iteration to the other and may sometimes sample none
of them. A workaround is to draw two index sets, I ⊂ {1, . . . , n} and J ⊂ {1, . . . , N}
of sizes m and M . The fitting term of the lower bound can now be approximated as

E := Eq(wη,wδ,θ) [log(p(y, z|wη,wδ,θ, U))] (3.6)

≈ 1

NMC

NMC∑
k=1

[
n

m

∑
i∈I

log
(
yi|ψ, X, (w̃η)(k), (w̃δ)(k), θ̃(k)

)

+
N

M

∑
j∈J

log
(
zj |ψ, X∗, T, (w̃η)(k)

)⎤⎦ , (3.7)

with (w̃η)(k), (w̃δ)(k), θ̃(k) i.i.d. samples from q (wη,wδ,θ). The regularization term can
be easily calculated when both priors and posteriors are Gaussian using (2.15).

3.4 Implementation Details

Considering the large number of parameters to optimize, the optimization procedure is
divided into stages. We first focus on the computer model response; all parameters are
fixed except the ones influencing the prediction of z, i.e. σz, the means and variances
of the components of wη, and the gp/dgp parameters of η(x, t). In the second stage
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all others parameters are freed for inferring y and θ jointly, i.e. adding the weights and
hyperparameters of δ(x) or γ(η(x, t),x). Within each stage, we first optimize the means
and variances of θ, and then all parameters jointly with a smaller learning rate.

For initializing the weights of the dgp (or gp) η(x, t), we use the methodology
proposed by Rossi et al. (2019), which is a scalable, layer-wise initialization strategy
based on Bayesian linear regression. The idea is to perform a series of regression tasks
mapping each layer to the labels, so that sensible initial parameters for the variational
distribution can be obtained. Starting from the first layer, we perform Bayesian linear
regression from the inputs X∗ and T to the labels z, so that we can estimate the
posterior over the parameters at the first layer. We then freeze this distribution and
compute the output of the first layer with the given input data X∗ and T . This result
is then used as the input to the second layer, for which the corresponding linear model
is estimated by performing regression to the labels z. We then proceed iteratively up
to the last layer. Intuitively, this initialization promotes configurations where the first
layers are already capable of obtaining sensible regression result, while the layers closer
to the labels serve as refinements.

We define the routine μ,Σ ← LM(XLM,yLM), which performs Bayesian linear re-
gression on a set of input-output pairs XLM, yLM. The routine returns the mean and the
covariance of the posterior distribution over the weightsw in the instrumental regression
yLM := z = XLMw + σ2

ηε, where σ2
η is the variance of the likelihood function, and the

prior for the components of w, ε is i.i.d. N (0, 1). With these definitions, the initializa-
tion is reported in Algorithm 1. The posterior distribution in Bayesian linear regression
has full covariance in general, whereas the assumed posterior is fully factorized. In this
case, we match the optimal factorized Gaussian distribution to the actual posterior us-

ing the Kullback-Leibler divergence, which explains the assignment to q(W
(�)
η,:,i) in the

last line of Algorithm 1. The procedure can easily exploit mini-batching, as reported in
Algorithm 1, and it can operate with stochastic optimization, thus making it suitable
for large-scale problems. We refer the reader to Rossi et al. (2019) for more details.

4 Experiments

In this section we validate dgp-cal on a number of calibration problems. In each
experiment, we specify whether dgp-cal uses the additive structure in (2.1), as in the
koh formulation, or the general one in (3.1); we also specify when the model is tested
with dgps instead of gps (the default). The experiments have the following setup.
The likelihoods p(yi|fi) and p(zj |η∗j ) are Gaussian with variances σ2

y and σ2
z treated as

hyperparameters within ψ. All covariance functions of η(x, t) and δ(x) are Gaussian,
except for the comparative experiment in Section 4.2 where a Matérn kernel is used.
The variational posteriors q(Wη)q(Wδ)q(θ) and the prior p(θ) are Gaussian.

Competing Methods A large literature is devoted to the practicalities of numerically
challenging applications. Gramacy et al. (2015) use local approximate gp modeling and
calibrate parameters by solving a derivative-free maximization of a likelihood term. Pra-
tola and Higdon (2016) handle large problems using a Bayesian sum-of-trees regression
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Input:

• dgp η = g(L)(g(L−1)(. . . (g(1)(x, t)))) with variational distribution of the

weights wη = {W (1)
η , . . . ,W

(L)
η } set to the prior N (0, 1) i.i.d. for all

components.
• Computer runs X∗, T with outputs z organized in mini-batches of size M .

Result: A distribution q(wη) to start the lower bound maximization with.

for each layer index 	 do
for each output component i of g(�) do

• X∗
b , Tb, zb ← next data batch;

• Propagate X∗
b , Tb through a sample path of η and save XLM as:

XLM ← [g(�−1)(. . . (g(x∗
b,j , tb,j)))

�]j=1,...,M

(XLM is the output of the previous layer g(�−1), uses [X∗
b , Tb] for 	 = 1);

• yLM ← zb;
• μ,Σ ← LM(XLM,yLM);

• Initialize the variational distribution of the ith column of W
(�)
η

q(W
(�)
η,:,i) ← N

(
μ, diag

(
1

Σ−1
11

, . . . , 1
Σ−1

MM

))
;

end

end
Algorithm 1: Initialization for the approximate posterior distribution over η.

for modeling data from computer model and the real process jointly. More recently in
Gu and Wang (2018) and Gu (2018), calibration is performed within a Bayesian frame-
work by defining a prior distribution directly on the L2 norm of the discrepancy. Xie
and Xu (2018) sample from the posterior distribution over calibration parameters by
minimizing the L2 norm of a sample path of the discrepancy (similarly to Wong et al.
2017). These authors provided easy-to-use code in R or C++ packages. We will refer to
these methods as LaGP, Sum-of-trees, Robust, and Projected, respectively

4.1 Illustrative Example

We illustrate dgp-cal on a calibration problem with one variable and one calibration
input. As a first test, the prior and hyperparameters used to generate the data set
are assumed to be known, with θ ∼ N (0, 1), ση = 1, Aη = 1

2I, σδ = 2
10 , Aδ = 1

20 .
We choose locations for N = 7 computer runs and n = 4 observations from the real
process in a space filling manner in [0, 1]× [−5

2 ,
5
2 ]. The output vector z of the computer

model at (x∗
i )i=1,...,N is sampled from its prior distribution. In order to determine the

real observations y, we first sample p(θ) to get θtrue and then a sample path of δ(x).
The gp priors of η(x, t) and δ(x) are approximated with NRF = 50 random features
through (3.2) and (3.3), and the observations are computed using (2.1). The results
of dgp-cal are displayed in Figure 3. In the first and the third panels, we see that
the posterior of θ obtained analytically by integrating out wη and wδ has its mass
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concentrated around the true value ≈ 0.8, where there is a (color) match between z
(the dots) and y (the lines). The variational posterior (blue line) offers a reasonable
approximation of the true posterior.

Figure 3: Top-left: the prior (black), the analytical posterior (green) and the variational
posterior (blue) distributions of θ and the actual value used to generate y (red). Top-
right: the true response η used to generate the data set of this example and the locations
of the computer runs (dots). Bottom-left: shows y as horizontal lines in D1×D2. The
colors of the lines correspond to the values yi. The dots represent the computer runs z.
The grey levels represent the posterior distribution of θ (also displayed in the top-left
panel). Bottom-right: the posterior mean of η.

4.2 Model Calibration in Cell Biology

We apply dgp-cal to a biological application, which has been previously studied in
Plumlee (2017) and Xie and Xu (2018). The output is the normalized current through
ion channels of cardiac cells needed to maintain the membrane potential at −35 mV.
The input variable x is the logarithm of the experiment time rescaled to D1 = [0, 1].
The calibration inputs θ ∈ D2 = [0, 10]3 control a mathematical model ηcell(·,θ) of
the phenomenon proposed by Clancy and Rudy (1999). Here it is considered to be an
expensive black box with N = 300 runs available, whereas the number of observations
is n = 19. The runs are located in a space filling manner in D1 ×D2 (Latin hypercube
sampling optimized with maximin distance criterion).

We compare dgp-cal with additive and general discrepancy against four com-
petitors. The method “L2” is a simple minimization over θ of the L2 residual error
||y − η̂cell(X,θ)||, where η̂cell is a surrogate of ηcell given X∗, T and Z. Its minimiza-
tion takes 30 seconds and the residual error is 1.31. This method is good for predicting
observations from the real process, but it provides no quantification of uncertainty.

In Table 1, we report the mean squared error (mse), Eq(θ)(||y−ηcell(X,θ)||2), where
q represents the estimated posterior density of θ. All tuning parameters of the codes
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Method Time (s) MSE

Projected 3792 2.52

dgp-cal additive 79 1.83

dgp-cal general 93 1.55

koh 3245 5.10

Robust 361 1.99

Table 1: Comparison of errors on the Cell Biology problem.

are left to default values, and all methods are run on the same machine to ensure some
fairness in reporting running times (laptop with 4×2.50 GHz cores). We see that the mse
values obtained by the methods Projected, dgp-cal and Robust are significantly
lower than the mse of koh. The proposed dgp-cal is the fastest. The version of dgp-
cal with general discrepancy performs slightly better, thanks to the relaxation of the
hypothesis of purely additive discrepancy.

The posterior distributions over θ obtained by the calibration methods we tested
are reported in Figure 4. All methods yield a distribution concentrated around the
L2 minimizer (the red dot). However, the distributions are clearly not similar to each
other (except for Robust and dgp-cal). This could be explained by differences in
the model formulations. Although we ensured that the covariance and mean functions
are the same for all competing methods (Matérn with smoothness 5/2 and constant
mean), there are several differences that cannot be matched. For instance, Robust has
an additional step in the hierarchy of priors concerning the L2 norm of the discrepancy.
Moreover, the definition of the calibration parameters θ itself differs among methods.
In Projected, θ is a minimizer of a given stochastic process, while other methods
follow the koh definition. Also, Robust performs a fully Bayesian inference including
hyperparameters, while in the other methods, including ours, they are optimized. It
would be straightforward to allow for a Bayesian treatment of the hyperparameters in
dgp-cal, but we leave this for future work.

To visualize the results of the calibration process, in Figure 5 we overlay the obser-
vations from the real process with the responses of the computer model ηcell(·,θ) when
θ is sampled from its posterior distribution. All the probabilistic methods present a
good fit while allowing for quantification of uncertainty in the predictions, with larger
uncertainty for models that account for the uncertainty in the hyperparameters.

We see how the computer model output η is warped by γ in dgp-cal with general
discrepancy (3.1). In Figure 6 we display the expected derivative of the warping with

respect to the computer model output, i.e., E
[
∂γ(·,x)

∂η

]
, for three values of x. As the esti-

mated values oscillate around one for every x ∈ D1, this model confirms that an additive
discrepancy is a sensible assumption. When the estimated γ(·, x) is exactly the identity,
the general discrepancy boils down to an additive one. This figure also shows how the
model with general discrepancy can adapt to data sets with space-dependent behavior.
Indeed in this test case the values of η have a very different distribution according to
x. If x is around 0.2, the distribution of the computer runs is very asymmetric, with a
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Figure 4: Posterior distributions of θ from the calibration methods (integrated over θ1
for visualization).

heavy tail for high values, and very light tail for low values (see the grey dots in Fig-
ure 5). On the other hand for higher values of x, say higher than 0.6, the distribution
of z is more symmetric, and looks closer to a Gaussian distribution. This corresponds
to the warping observed in Figure 6, where η gets its output warped and concentrated
asymmetrically toward lower values for x = 0.2, while for x = 0.6 or 1, its Gaussian
output is almost left untouched.

4.3 Model Calibration for Complex Response

We deal now with a case-study with locally nonsmooth/nonstationary response of the
computer model, for which a stationary gp is generally inadequate. The computer model
is a simulator of the effects of underground nuclear tests on radionuclide diffusion into
aquifers at the Yucca Flats in the United States (Fenelon, 2005). We take the same
data set as generated by a script in the supplementary material of Pratola and Higdon
(2016), which is available online, with d1 = 2, d2 = 6, n = 10 and N = 17600.

In Pratola and Higdon (2016), the size of the dataset as well as nonstationary mod-
eling is handled with a sum-of-trees regression. We carry out calibration using dgp-cal

with a two-layer dgp emulator for the computer model to showcase the ability of a more
complex emulator to capture the nonstationarity that characterizes this problem. We
therefore compare dgp-cal with a shallow gp emulator. Details about the initializa-
tion can be found in Table 2. Furthermore, we compare against the modularized method
with Local Approximate gps (lagp) of Gramacy et al. (2015).

In Figure 7, we display the posterior over the function f(·,θ) modeling the real
observations. We observe that only the deep variational calibration and the sum-of-trees
approach manage to reproduce the nonstationary nature of the data set by capturing
the spike characterizing one observation.
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Figure 5: Samples of ηcell(·,θ), with θ drawn from its posterior. The grey dots represent
the computer runs and the white dots the real observations.

Figure 6: Derivative ∂γ(·,x)
∂η for three values of x.

4.4 Data Set Size Scalability

We now showcase the scalability of dgp-cal to a large calibration problem in 8 di-
mensions with one million computer runs, and 100, 000 real observations. We use the
borehole function ηbh(x, t), which is a widely used function in the literature of computer
experiments (see, e.g., Gramacy et al. 2015). For all x ∈ [0, 1]5 and t ∈ [0, 1]3, we have

ηbh(x, t) =
2πTu(Hu −Hl)

ln(r/rw)
(
1 + 2LTu

ln(r/rw)r2wKw
+ Tu

Tl

) , δbh(x) =
2(10x2

1 + 4x2
2)

50x1x2 + 10
, (4.1)

with Tu = x1(115600 − 63070) + 63070, Hu = x2(1110 − 990) + 990, Hl = x3(820 −
700)+700, L = x4(1680− 1120)+1120, Kw = x5(12045− 9855)+9855, rw = t1(0.15−
0.05) + 0.05, r = t2(50000− 100) + 100, Tl = t3(116− 63.1) + 63.1.
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PARAM. SHALLOW DEEP

Eq(θ)(θ)
1
2 [1, 1, 1]

� 1
2 [1, 1, 1]

�

varq(θ)(θ)
1
4 [1, 1, 1]

� 1
4 [1, 1, 1]

�

σy 10−2 10−2

σz 10−3 10−3

Aη, Aδ 20I ∅, 20I
σδ

1
10

1
10

ση 1 ∅
Ag(1) , Ag(2) ∅ 2Id1+d2

σg(1) , σg(2) ∅ 1

Table 2: Radionuclide Model: Initial Values for the dgp-cal models (in Deep setting,
η(·) = g(2)(g(1)(·))).

Figure 7: Mean of the posterior over the function f(·,θ).

We are interested in retrieving a randomly chosen true value θ=[0.089,0.308,0.372]�.
The locations X, X∗ and T are generated with Latin hypercube sampling. To generate
y, a white Gaussian noise ε of standard deviation σbh = 5 × 10−3 is added: yi =
η(xi,θ) + δ(xi) + εi.

We build a shallow dgp-cal model with additive discrepancy as described by (2.1),
(3.2), and (3.3). Indeed, as the response surface of the borehole functions is smooth, we
consider “shallow” gps for η(x,θ) and δ(x), with Gaussian covariance approximated
by 100 random features.

Concerning the sum-of-trees calibration, a sensible budget would be to set 2000
posterior samples plus 10000 for burn-in, with 1000 tree cut-points. However, this cor-
responds to one month of computation on our computers, so we divided the sampling
budget by 5, and set 100 cut-points, keeping all other default parameters untouched.

We did not compare with the modularized calibration using lagp, as the current
implementation in R does not support large amount of real observations. This does not
question the relevance of the method, which could be modified by using a scalable gp

for the discrepancy.
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Calibration Time (h) MSE

None (unif. samples on D2) 0 0.32

dgp-cal 1.4 0.03

Sum-of-trees 132.4 0.14

Table 3: Results of calibration on a large data set.

We evaluate the performance by comparing the posterior over θ with the truth
(Figure 8) and by evaluating the mse error between the computer model and observation
from the real process Eq(θ)(||y − ηbh(X,θ)||2) (Table 3). dgp-cal provides the best
performance both in retrieving θ and mse, and it is the fastest by far.

Figure 8: Posterior distribution of θ on a large data set (black: truth, blue: dgp-cal,
green: sum-of-trees).

5 Discussion

The koh model and inference in Kennedy and O’Hagan (2001) offers a classical frame-
work to tackle calibration problems where quantification of uncertainty is of primary
interest. In this paper we proposed dgp-cal, which offers a number of improvements
over the koh calibration. From the modeling perspective, we cast the koh calibration
model as a special case of a more general dgp model, where the latent process model-
ing the real observations is a warped version of the emulator of the computer model;
we showed that this general calibration model retains the possibility to reason about
uncertainty in the discrepancy between the computer model and the real process.

Furthermore, the proposed approximation of gps and dgps with random features
and approximate inference through variational techniques give dgp-cal a number of
advantages, such as simplicity of implementation in development environments featuring
automatic differentiation and the possibility to exploit GPU-type hardware. The exper-
iments showed that the approximations introduced to recover tractability do not affect
the ability of dgp-cal to effectively calibrate parameters of complex computer models,
while enjoying scalability to large number of observations and/or computer runs, demon-
strating that dgp-cal is a powerful alternative to the state-of-the-art. We are currently
investigating the application of dgp-cal to other large-scale calibration problems in



S. Marmin and M. Filippone 23

Figure 9: Calibration error as a function of the number of runs.

environmental sciences, where the koh model and related calibration methodologies
are usually not the preferred choice due to limited scalability.

We conclude the paper by discussing two important aspects of this work, namely
adaptive experimental design and identifiability.

Adaptive Experimental Design Building up the design sequentially may allows smaller
training sets, limiting the evaluation of the simulator code (see e.g. Sauer et al. 2021). It
is possible to extend dgp-cal to handle cases where the uncertainty in the model can
be used to guide the incremental design of the experiment. For simplicity, we assume
η(x, t) in the koh model to be modeled as a gp. The goal is to improve calibration by
sequentially optimizing the locations of the inputs of the computer model (X∗ and T ).
More precisely, instead of determining the N locations from the outset, Nadd points are
added at each of nit iterations to an initial design of N0 < N experiments. At each
iteration, the model is inferred on the data integrating the new batch of Nnew inputs
and outputs. The batch of points [X∗

ca, Tca] with corresponding labels zca added to the
design is determined as a solution to the optimization of a criterion. We can specify a
criterion such that the evaluation of η at the best candidate points maximally reduces
the variance θ. Many sampling criteria can be imagined and tested; for example, one
can choose the sum of the partial derivatives of the lower bound with respect to the
(logarithm of the) variance of the components of θ:

[X∗
add, Tadd] = argmax

X∗
ca∈D1,Tca∈D2

−
d2∑
i

∂Lca(X
∗
ca, Tca)

∂ log ξi
, (5.1)

where ξi is the parameter of the of variational distribution controlling the variance of
θi. The function Lca returns the lower bound in (2.14) after updating the variational
distribution with candidate input points.

In the case of gps with random features, the update of the variational distribution
can be computed analytically (see, e.g., Section 2.3.3 of Bishop (2006) for a derivation),
obtaining updated mean and covariance as

μca = Σca

(
Σ−1

0 μ0 + σ2
zΦ

�
η,cazca

)
,

Σca = σ2
z

(
Φ�

η,caΦη,ca + σ2
zΣ

−1
0

)−1
, (5.2)
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with Φη,ca ∈ R
Nca×NRF the row by row evaluation of φη(x, t)

� on X∗
ca and Tca, μ0

and Σ0 are the mean and the covariance of the variational distribution before selecting
the candidate points, and σ2

z > 0 corresponds to the noise term of the likelihood func-
tion. The criterion forecasts the effect of evaluating η at [X∗

ca, Tca] using the predictive
mean zca = E(η(X∗

ca, Tca)|U,ψ,Ω). Therefore, the adaptive sampling chooses new input
locations which maximally reduce the variance of the approximate posterior over θ.

As an illustration of this approach, we perform adaptive sampling on the borehole
function in (4.1), starting from N0 = 100 points and adding batches of Nadd = 20 until
we reach N = 400. The initial design is obtained by a latin hypercube sampling with
optimized maximin distance. The sampling criterion in (5.1) is optimized with gradi-
ent descent using automatic differentiation with respect to X∗

ca and Tca. We compare
against latin hypercube sampling with optimization of the maximin distance, which is
a classic space-filling design, for N = 100, 200, 300 and 400. The experiment is repro-
duced five times with different initial and space filling designs, and we report calibration
errors ||Eq(θ)(θ) − θ|| with standard deviations in Figure 9. The designs produced by
the adaptive method lead to consistently lower calibration error due to the optimized
locations of the computer runs.

Identifiability The issue of identifiability that we discussed for the koh model affects
our formulation too. In particular, for the generalized formulation where the discrepancy
is not modeled through an additive component but through a composition with an
unknown function γ(η(x, t),x), our approach yields a posterior over θ and γ(η(x, t),x)
which concentrates on the manifold

M = {(t, γ(η(x, t),x)) | γ(η(x, t),x) = f(x, t) with x ∈ X ∪X∗} ,

as the number of observations increases. Ignoring the discrepancy by removing the
composition of the warping function with η(x,θ) would not constitute a problem from
the implementation perspective, and our approach would result in a fast and flexible
calibration model where θ is identifiable. Similarly to the koh model, however, ignoring
the discrepancy results in a model that could potentially yield a biased estimation of the
parameters θ, depending on how accurate η(x, t) is in modeling the physical process.

The composition with a discrepancy function is therefore needed to avoid bias in
the estimate of θ. As a result, the importance of priors over θ and model discrepancy
to mitigate the issue of lack of identifiability is as important as in the koh model.
This can dictate the choice of gp versus dgp priors. For instance, in the radionuclide
diffusion test case (Section 4.3), a preview of the hectic observations hints in favor of
a dgp model. On the contrary, in Section 4.4 knowing that the borehole function is
smooth, the computer model and the discrepancy were given gp priors. Beyond these
general considerations, there exist works allowing to impose constraints on dgps priors,
such as positivity, monotonicity, convexity, or being solutions to differential equations.
In Lorenzi and Filippone (2018), this is done within the same framework proposed here
involving random feature approximations and variational inference, so it would be rather
straightforward to incorporate these in our model and inference.
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Other ideas proposed in the literature on how to deal with the lack of identifiability
could easily be adapted to our framework. For example, when multiple responses are
available and they are mutually dependent on the same set of calibration parameters
θ, this improves identifiability (Arendt et al., 2012), and accommodating for multiple
responses in our framework is straightforward. Furthermore, it would be possible to
apply similar ideas to the ones proposed in Tuo and Wu (2016); Wong et al. (2017)
where gp priors are replaced by dgps.

Another exciting line of research, which we could benefit from in order to investigate
the identifiability properties of dgp-cal, follows recent results on so-called disentangle-
ment (Locatello et al., 2019). This literature studies the properties of deep models in
the context of density estimation, through the use of variational autoencoders (Kingma
and Welling, 2014). Autoencoders are models composed of two elements: an encoder
and a decoder. The encoder maps a set of observations into a low-dimensional latent
representation, whereas the decoder maps the latent variables into the observations. In
variational autoencoders, one is interested in obtaining a distribution over the latent
variables by means of a variational formulation. Recently, a lot of interest has been
devoted to disentangled representations, which are those where the latent variables are
independently controlling different generative factors, and their number is sufficient to
capture the diversity observed in the observations. A popular example is the one where
observations are images of a ball of different colors and sizes, and with varying color of
the background; the three generating factors are color and size of the ball, and color
of the background, and one hopes to be able to infer this without any prior knowledge
and simply by analyzing the given images. Locatello et al. (2019) made a theoretical
breakthrough showing that this is impossible unless some extra information on these
generating factors is available. Following this negative result, Khemakhem et al. (2020)
provided theoretical guarantees on how to recover identifiability of these latent gener-
ating factors by means of a factorized prior distribution over the latent variables that
is conditioned on some additional observed variables. While the setup is different to
calibration, there are many similarities with our model in that they both use deep mod-
els and variational inference. Our calibration model can be seen as the decoder of such
variational autoencoders, and θ in our model can be seen as the latent generative fac-
tors without encoder. We believe that this is an interesting direction to establish novel
results and insights on the identifiability of the proposed calibration model.
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