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Abstract—Direction of arrival (DoA) estimation is crucial to
improve communications systems’ performance, leading to much
more accurate results in localization, one of the most vital
applications in the Internet of Things (IoT). Unlike the range-
based ones, the direction-based positioning algorithms estimate
the unknown position by the measured angles whose values must
be predefined in an interval of 2π-length. Noisy measurements
with values near the edges of this interval can lead to drastic
estimation errors, making the convergence of iterative procedures
much more challenging. In this paper, we propose a Maximum
Likelihood (ML) estimator, which applies iterative procedures
for position estimation. Our procedure is based on the atan2
function, which has the 2π-long codomain to map the DoA.
Moreover, a novel mechanism to make the estimation near the
edges much more robust, phase jump corrections are proposed
to rectify the final estimates. In addition, a new approximate ML
estimator, where the effects of approximately normal distributed
DoA estimation errors are limited to first-order perturbations,
is also introduced. Outputs of this approximate estimator help
to enhance the accuracy of the true ML estimator. Simulation
results show significant performance improvements.

Index Terms - direction-based, 2D positioning, DoA, Direction
of Arrival, localization, Maximum Likelihood, approximate ML.

I. INTRODUCTION

So far, we have several main traditional positioning tech-
niques in 2D schemes: Time of Arrival (ToA), Time Difference
of Arrival (TDoA), Received Signal Strength (RSS), and
Direction of Arrival (DoA) (in some documents, it is also
called Angle of Arrival - AOA) [1]. ToA-based [2]–[4] and
TDoA-based [5], [6] positioning require highly accurate clock
synchronization among all BSs and mobile device. RSS-based
technique [7], [8], on the other hand, is very sensitive to the log
normal fadings to it provides rough estimates for localization.
DoA-based systems do not require such a synchronization.
Instead, the resolution of DoA measurements is limited by
the Signal-to-Noise Ratio (SNR), the number of sensors in
the array, and the separation between these sensors. DoA
estimation schemes are usually thought of as computationally
expensive. However, recent developments propose computa-
tionally simple DoA estimation schemes that enable small
antenna arrays with a reduced number of elements [9].

Direction-based localization computes the coordinate of the
mobile device based on the direction of incident waves to
base stations. The numerical expression of this direction is
the trigonometric angle between the x-direction and the wave
(Fig. 1). To avoid confusion in measuring angle, all the angles’
value must be defined in an interval whose length is 2π . At
the bound of the interval, the DoA is very sensitive to noise.
On condition that the DoA’s set of definition is (−π;π], when
the true value of an angle is âOb = π − εa, a small noise of
εa + εb (εa and εb are small positive values) can make the
angle’s measured value âOb′ =−π + εb (Fig. 2).

Related papers [10]–[13] about 2D DoA-based localization
use arctan function to define DoA; meanwhile the codomain
of that function is [−π/2; π/2] (we assume that arctan (−∞) =
−π/2 and arctan (+∞) = π/2). This codomain does not cover
all the possible values of an angle. In the paper [13], a ML
estimator is proposed to optimize the positioning. However,
the sensitivity to noise of a value near the bound of the set of
definition is not well considered. In addition, the localization
is studied when all the DoA measurements are considered to
be distributed with one common variance.

Our contributions in this paper are:

• Expressing location in terms of the atan2 function; intro-
ducing and optimizing associated phase wrapping correc-
tion terms for ML estimator in section II. In the definition
of DoA, the atan2 function is utilized instead of arctan
function. Furthermore, phase jump corrections are added
in estimating the estimated DoA to avoid possible huge
computing errors caused by small mistakes in practical
measurements. Evaluations on the effect of the phase
jump corrections are carefully analyzed.

• Propose an approximate ML estimator for DoA-based
localization (section III).

• In section IV, we analyse the true ML estimator with
the new DoA definition and the additional correction
proposed in section II.

In the last two sections, we illustrate the simulations and
then compare our results to the related results, in order to



Fig. 1. DoA positioning in noiseless scenario

Fig. 2. Sensitivity to noise of an angle’s measured value

prove the superiority of our proposed algorithm.
Notation:
mod(x,a) denotes x modulo a; diag(a1, a2, . . . , an) is the

diagonal matrix whose diagonal elements are a1, a2, . . . , an
respectively; [a;b) is the interval of real numbers from a to
b which includes a but excludes b, atan2 means 2-argument
which is defined as: ϕ = atan2(y, x) ⇐⇒ x + jy = rejϕ with
r =

√
x2 +y2, ϕ ∈ (−π;π] and j is the imaginary unit. The

standard arctangent function arctan has values in [−π

2 ,
π

2 ]. Let

sign(x) =
{

1 , x≥ 0
−1 , x < 0 .

(1)

Then for (x,y) 6= (0,0), we have

atan2(y,x) = arctan
(y

x

)
− (sign(x)−1)sign(y)

π

2
. (2)

II. DOA-BASED LOCALIZATION BY LEAST SQUARES
ALGORITHM

A. Definition of DoA

We define ϕi to be the trigonometric angle between the x
axis and the signal ray received at the i-th base station (Fig. 1).
Let (x,y) be the coordinates of the mobile device and (xi,yi) be
the coordinates of the i-th base station. The relation between
ϕi and all the related coordinates can be stated as follows:

tanϕi =
y− yi

x− xi
(3)

In [10]–[13], the arctan function (or tan−1 for other notation)
is used to compute ϕi from the related coordinates

ϕi = arctan
y− yi

x− xi
(4)

However, the equation (4) can perform in low accuracy
when the value of ϕi is larger than π/2 or smaller than −π/2.
Consequently, we propose the definition for the true DoA of
the signal to the i-th base station:

ϕi = atan2(y− yi, x− xi) (5)

According to the definition of atan2 function, the true value

of DoA ϕi ∈ (−π;π] so its measured value ϕ̂i must be in
that range, too. Nonetheless, practical measurements always
contain an additive noise. When the true value of the angle
is close to −π or π , the measured value is very sensitive to
noise (a small change in noise can cause a big difference in
measured value) (Fig. 2). To avoid this unexpected difference,
a phase jump correction of ki2π is added, where the value of
ki can be -1, 0 or 1, depending on the difference between the
true value and the measured value caused by the small noise.

In practical measurements, the measured value of i-th DoA
is:

ϕ̂i = ϕi +ni + ki2π (6)

where ni is assumed to be a Gaussian distributed angle
estimation with zero-mean and variance σ2

i .
Assuming that all ni are independent. Therefore we have

covariance matrix of the noise vector nnn:
CCC = E{nnnnnnT}= diag{σ2

1 ,σ
2
2 , . . . ,σ

2
N} (7)

where nnn = [n1 n2 . . . nN ]
T and N is the number of base

stations.
We name the action of adding a phase jump correction of

ki2π as k-correction. We have the definition of ki

ki =


1 , ϕi +ni ≤−π

−1 , ϕi +ni > π

0 otherwise.
(8)

B. Effect of the phase jump corrections

We evaluate the effect of the phase jump corrections on
localization. A phase jump correction is significant when it
is non-zero. Let ρ(ϕi) be the probability of that event, at the
argument ϕi . We have

ρ(ϕi) = p(ni <−π−ϕi)+ p(ni ≥ π−ϕi)

= Φ

(−π−ϕi
σi

)
+1−Φ

(
π−ϕi

σi

) (9)

where Φ(x) = 1√
2π

∫ x
0 e−t2/2 dt

Since ϕi is in (−π,π], the probability pi that the phase jump
correction is non-zero is

pi =
1

2π

∫
π

−π

ρ(ϕi)dϕi (10)

In [14], it is approximated that Φ(x)≈ e2
√

2
π

x

1+ e2
√

2
π

x
when x is

very large.
Thus, when σi is small enough

pi ≈
1

2π

∫
π

−π

 e2
√

2
π

−π−ϕi
σi

1+ e2
√

2
π

−π−ϕi
σi

+1− e2
√

2
π

π−ϕi
σi

1+ e2
√

2
π

π−ϕi
σi

 dϕi

(11)

pi ≈ σi

ln2− ln
(

e
4
√

2π

σi +1
)

2
√

2π
+2 (12)

Since σi is small, we approximate

ln
(

e
4
√

2π

σi +1
)
≈ ln

(
e

4
√

2π

σi

)
=

4
√

2π

σi
(13)
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Fig. 3. Probability (%) that a phase jump correction is non-zero, in terms of
σi, when σi is small.

As a result, (11) and (12) give an approximation:

pi ≈ σi
ln2− 4

√
2π

σi

2
√

2π
+2 = σi

ln2
2
√

2π
(14)

Therefore, when σi is small enough, pi is proportional to
σi with the coefficient of ln2

2
√

2π
(Fig. 3). Since the network

has multiple base stations, the probability that at least one
phase jump correction is non-zero is much higher in practical
localization.
C. Estimating position by Least Squares method

From equation (3), we have

tanϕi =
sinϕi

cosϕi
=

y− yi

x− xi
(15)

xsinϕi− ycosϕi = xi sinϕi− yi cosϕi (16)

In this method, as ni is very small, we approximate that
sinni ≈ 0 and cosni ≈ 1. Thus

sinϕi = sin(ϕ̂i−ni− ki2π) = sin(ϕ̂i−ni)≈ sin ϕ̂i (17)

cosϕi = cos(ϕ̂i−ni− ki2π) = cos(ϕ̂i−ni)≈ cos ϕ̂i (18)

Hence, from (16), it is approximated that
xsin ϕ̂i− ycos ϕ̂i = xi sin ϕ̂i− yi cos ϕ̂i (19)

In matrix approach, we define

ÂAA =


sin ϕ̂1 −cos ϕ̂1
sin ϕ̂2 −cos ϕ̂2
. . . . . .

sin ϕ̂N −cos ϕ̂N

 ; b̂bb =


x1 sin ϕ̂1− y1 cos ϕ̂1
x2 sin ϕ̂2− y2 cos ϕ̂2

. . .
xN sin ϕ̂N− yN cos ϕ̂N


xxx =

[
x y

]T is the coordinate vector of the mobile device. We
have the equation of approximation

ÂAAxxx = b̂bb (20)

We have
x̂xx = min

xxx
‖ÂAAxxx− b̂bb‖2 (21)

leading to the estimate of xxx being calculated by Least Squares
estimation of xxx

x̂xx = ÂAA
†
b̂bb (22)

where AAA† = (AAAT AAA)−1AAAT is the Moore-Penrose pseudo in-
verse of matrix AAA.

III. OPTIMIZING POSITION ESTIMATION BY AN
APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATOR

Unlike Least Squares method, in this approximate estimator,
we assume that the effect of approximately Gaussian DoA
estimation errors ni can be limited to first-order perturbations,
so we have the approximations: sinni ≈ ni and cosni ≈ 1. As
a result, we have:

sinϕi = sin(ϕ̂i−ni− ki2π) = sin(ϕ̂i−ni)≈ sin ϕ̂i−ni cos ϕ̂i
(23)

cosϕi = cos(ϕ̂i−ni− ki2π) = cos(ϕ̂i−ni)≈ cos ϕ̂i +ni sin ϕ̂i
(24)

Therefore, from (16), we approximate

(x−xi)(sin ϕ̂i−ni cos ϕ̂i)−(y−yi)(cos ϕ̂i+ni sin ϕ̂i) = 0 (25)

ni =
−(x− xi)sin ϕ̂i +(y− yi)cos ϕ̂i

−(x− xi)cos ϕ̂i− (y− yi)sin ϕ̂i
(26)

The Cost Function of this approximate ML estimator is
expressed as

L =
N

∑
i=1

n2
i

σ2
i
=

N

∑
i=1

1
σ2

i

(
−(x− xi)sin ϕ̂i +(y− yi)cos ϕ̂i

−(x− xi)cos ϕ̂i− (y− yi)sin ϕ̂i

)2

(27)
Our task is to find an estimate x̂xx that minimizes the Cost

Function, or

x̂xx = argmin
xxx

N

∑
i=1

(
1
σi
.
−(x− xi)sin ϕ̂i +(y− yi)cos ϕ̂i

−(x− xi)cos ϕ̂i− (y− yi)sin ϕ̂i

)2

(28)
Finding x̂xx = [x̂ ŷ]T is really a challenging task. A solution

is to use a local search, which is an iterative algorithm requir-
ing an initial position estimate. We consider Gauss Newton
algorithm [15] for x̂xx. At the iteration (u+1):

x̂xx(u+1) = x̂xx(u)− (GGGT
n (x̂xx

(u))GGGn(x̂xx(u)))−1GGGT
n (x̂xx

(u))nnnT (29)

where x̂xx(u) is the estimated coordinate vector of the mobile
at the u-th iteration. GGGn(xxx) is the following Jacobian matrix:

GGGn(xxx) =
∂nnn

∂xxxT =

∂

(
1
σi
−(x− xi)sin ϕ̂i +(y− yi)cos ϕ̂i
−(x− xi)cos ϕ̂i− (y− yi)sin ϕ̂i

)
∂xxxT

(30)

The procedure is expected to terminate when ‖x̂xx(u+1) −
x̂xx(u)‖2 < ε1, for the stopping criterion ε1 sufficiently small.
Then, the final position of the procedure is considered to
be the coordinates of the mobile device in the xy plane.
However, the iterative procedures do not always converge. In
[16], we demonstrate that there are three possible outcomes
for an iterative procedure: Convergence, Divergence and
Oscillation.

If a procedure is diverging or oscillating, we will take
its initialization as the estimated mobile position. As for a
converging procedure, the final position is selected as estimate.

The Algorithm 1 illustrates the Gauss-Newton iterative
procedure of the approximate ML estimator.



Algorithm 1: Proposed Approximate ML Estimator
1 Take the measured Direction of Arrival ϕ̂i.
2 Assign u = 1 and ε1 sufficiently small.
3 Assign the coordinate vector computed by (22) as the first

estimated coordinate vector x̂xx(1) of the mobile device.
4 repeat
5 Compute the following estimated coordinate vector

x̂xx(u+1) of the mobile device by (29).
6 u = u+1;
7 until ‖x̂xx(u+1)− x̂xx(u)‖2 < ε or u > 1000 or ‖x̂xx(u+1)‖2 =±∞;
8 if u > 1000 or ‖x̂xx(u+1)‖2 =±∞ then
9 x̂xx(1) is the estimated position of the mobile device;

10 else
11 x̂xx(u) is the estimated position of the mobile device;

IV. OPTIMIZING POSITION ESTIMATION BY THE TRUE
MAXIMUM LIKELIHOOD ESTIMATOR

In the Least Squares method and approximate ML, the
existence of the k-correction does not matter, and there is
no difference in the final estimates if we use arctan or atan2
function in DoA definition. However, in the true ML estimator,
it is important to use the DoA definition with atan2 function
in equation (5) and the k-correction plays a crucial role, too.
This true ML estimator is expected to give more accurate
position estimations than the approximate ML.

In vector form, we denote
ϕ̂ϕϕ =

[
ϕ̂1 ϕ̂2 . . . ϕ̂N

]T (31)

fff (x̂xx,kkk) =

 ϕ̂1(x̂xx)+ k12π

ϕ̂2(x̂xx)+ k22π
. . .

ϕ̂N(x̂xx)+ kN2π

 (32)

where kkk = [k1 k2 · · · kN ]
T , ϕ̂i(x̂xx) is the estimated DoA

depending on x̂xx = [x̂ ŷ] and computed by:
ϕ̂i(x̂xx) = atan2(ŷ− yi, x̂− xi) (33)

Treating the phase shift vector kkk as unknown parameters
and ignoring their dependence on the noise, the measurement
vector ϕ̂ϕϕ is Gaussian with mean vector of fff and covariance
matrix CCC, we have the probability density function (pdf) [17]:

p(ϕ̂ϕϕ |xxx,kkk) = (2π)−
N
2

|CCC| 12
exp
[
−1
2 (ϕ̂ϕϕ− fff )TCCC−1(ϕ̂ϕϕ− fff )

]
(34)

Maximizing the pdf in (34) is equivalent to
x̂xx, k̂kk = argmin

xxx,kkk
(ϕ̂ϕϕ − fff (xxx,kkk))TCCC−1(ϕ̂ϕϕ − fff (xxx,kkk)) (35)

which we shall perform alternatingly.
Like the section III, the Gauss Newton algorithm [15] is

applied for x̂xx. At the iteration (u+1):
x̂xx(u+1)= x̂xx(u)+(GGGTCCC−1GGG)−1GGGTCCC−1(ϕ̂ϕϕ− fff (x̂xx(u),kkk(u+1)))

(36)
where GGG is the Jacobian matrix.

GGG = GGG(x̂xx(u),kkk(u+1)) , GGG(xxx,kkk) =
∂ fff (xxx,kkk)

∂xxxT . (37)

At this point, it is important to determine the value of ki. As

we do not know the additive noise in each DoA measurement,
ki cannot be determined by equation (8). From (6), we have

|ni|= |ϕ̂i−ϕi− ki2π| (38)

We assume ni small enough, |ni|< π . Thus k̂i is estimated by
k̂(u+1)

i = arg min
ki∈{0;±1}

|ϕ̂i(x̂xx(u))− ϕ̂i− ki2π| (39)

where x̂xx(u) = [x̂(u) ŷ(u)] is the estimated coordinate vector of the
mobile device at the u-th iteration. The rests of the true ML
estimator are very similar to the approximate ML estimator
shown in section III.

In a nutshell, the Algorithm 2 is proposed for the Gauss-
Newton iterative procedure of ML estimator.

Algorithm 2: Proposed True ML Estimator with the
simultaneous estimation of k̂kk

1 Take the measured Direction of Arrival ϕ̂i.
2 Assign u = 1 and ε2 sufficiently small.
3 Assign a vector as the first estimated coordinate vector x̂xx(1)

of the mobile device. This vector can be the estimate of
Least Squares in equation (22) or the the result of
approximate ML by Algorithm 1 in section III.

4 repeat
5 Compute the estimated DoA ϕ̂i(x̂xx(u)) by (33).
6 if |ϕ̂i(x̂xx(u))− ϕ̂i| ≥ π then
7 k̂i = sign(ϕ̂i(x̂xx(u))− ϕ̂i)
8 else
9 k̂i = 0 ;

10 Compute the following estimated coordinate vector
x̂xx(u+1) of the mobile device by (36).

11 u = u+1;
12 until ‖x̂xx(u+1)− x̂xx(u)‖2 < ε2 or u > 1000 or ‖x̂xx(u+1)‖2 =±∞;
13 if u > 1000 or ‖x̂xx(u+1)‖2 =±∞ then
14 x̂xx(1) is the estimated position of the mobile device;
15 else
16 x̂xx(u) is the estimated position of the mobile device;

V. SIMULATION RESULTS

A. Analysis of Cramer-Rao Bound (CRB)
To evaluate the quality of the algorithm based on DoA, we

need to calculate the CRB, via the Fisher Information Matrix
(FIM):

III(xxx) = GGGT (xxx)CCC−1GGG(xxx) . (40)

The CRB is the trace of the inverse of FIM:
CRB = tr(III−1) = [III−1]1,1 +[III−1]2,2 (41)

B. Simulation Setup

To compare the quality among the algorithms and CRB,
we use Root Mean Square Position Error (RMSE) which is
defined by

RMSE =
√

E(‖x̂xx− xxx‖2) (42)

where xxx is the true position of the mobile device and x̂xx is its
estimate. In the xy plane, RMSE averaging is over 1000 mobile
positions picked randomly in a square of 1000m x 1000m
centered in the BS circle. The network of 8 Base stations
(numbered from 1 to 8) forms the circumscribed circle of this
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Fig. 5. Comparisons of RMSEs among the algorithms when N = 8 BSs, the
standard deviation of DOA measurements varies from 0.5◦ to 4◦.

square. All the related points are shown in Fig. 4. Stopping
criteria for the approximate ML and true ML estimators are
ε1 = ε2 = 0.01.

C. Results
Instead of comparing the MSEs to the CRB, we compare

their square roots: The Root Mean Square Error (RMSE) =√
MSE and square root of CRB (

√
CRB). In each scheme,

a common standard deviation is assumed for all the DoA
measurements. More comprehensively, Fig. 5 compares the
RMSEs of the 6 positioning algorithms:
(a) Least Squares method shown in section II-C.
(b) Approximate ML estimator shown in section III, with the

initialization obtained by Least Squares method.
(c) True ML estimator (section IV), with k-correction; the

DoA definition using atan2 function. The initialization is
obtained by Least Squares method.

(d) True ML estimator (section IV), with k-correction; the
DoA definition using atan2 function. The initialization is
obtained by Approximate ML.
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Fig. 6. Comparisons among the iterative procedures of the algorithms when
N = 8 BSs, the standard deviation of DOA measurements varies from 0.5◦ to
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(e) True ML estimator (section IV), without k-correction; the
DoA definition using atan2 function. The initialization is
obtained by Approximate ML.

(f) True ML estimator (section IV), with the DoA definition
using arctan function [13]. The initialization is obtained
by the Approximate ML.

The
√

CRB is also added to validate their performances.
Section III introduces 3 possible outcomes of an iterative

procedure. Table I compares their results on RMSE and
number of iterations. We compare the algorithms in terms of
the accuracy (evaluated by the RMSEs) and the time delay
(evaluated by the average number of iterations). When a
procedure is diverging or oscillating, the initial position is
taken as its estimate, which increases the RMSE and thus
makes the location less exact. Moreover, an oscillating proce-
dure raises remarkably the number of iterations, which makes



the localization processes slower. As a result, the figures,
which compare the RMSEs, the number of non-converging
procedures and the average number of iterations among the
algorithms, are demonstrated.

TABLE I: Possible outcomes of an iterative procedure.

Possible
outcomes

Estimated
position of mobile RMSE Number of iterations

Convergence Final position of
the procedure Low Low (fewer than 10)

Divergence First position of the
procedure High Low (fewer than 10)

Oscillation First position of the
procedure High High (1000)

Fig. 5 compares the RMSEs of the 6 algorithms above in
the scenario of 8 base stations and the standard deviation
of DoA measurements varies from 0.5◦ to 4◦. RMSE stands
for the accuracy in estimation. Furthermore, Fig. 6 gives us
an overview on how efficient the iterative procedures are in
approximate ML and true ML estimators. More specifically,
Fig 6a illustrates the number of non-converging procedures
out of 1000 testing procedures. Non-converging procedures
are the combination of diverging procedures and oscillating
procedures defined in section III. Our proposed algorithm for
true ML estimator has zero non-converging procedure, or in
other words, all the procedures converge to local minima. Fig.
6b presents the average number of iterations. Our proposed
algorithm has the fewest average number of iterations, which
reduces the time delay for localization processes.

From the results above, it is obvious that
• The true ML estimator gives the best accurate position

estimation, compared to approximate ML estimator and
Least Squares method.

• In the true ML estimator, the initialization obtained by
approximate ML gives a little smaller RMSE than that
has initialization obtained by Least Squares. On the other
hand, this RMSE is still larger than the

√
CRB, which

assures the unbiased property of the estimator.
• The positioning algorithm with the k-correction and the

definition of DoA using atan2 function has the best
performance, in both accuracy and time delay, compared
to the algorithms, of which the DoA is defined by arctan
function, or by atan2 function but no k-correction for the
iterative procedures. With this proposed algorithm, the
RMSE is lowest but still higher than the

√
CRB, and

the average number of iterations is noticeably smaller
than the 2 other algorithms. This is the most important
contribution of our paper.

In essence, the true ML likelihood estimator, of which
the DoA is defined with atan2 function and an addition k-
correction is used, is the best estimator. The initialization by
an approximate ML can enhance the performance of the true
ML.

VI. CONCLUSIONS

This paper thoroughly analyzes a ML estimator with the
DoA-based positioning algorithms using atan2 function and
the k-correction in 2D schemes. Moreover, an approximate

ML estimator is also proposed. The simulations demonstrate
the superior properties of our proposed algorithm: maintaining
the unbiased property with the most accurate results and
the shortest time delay. The approximate ML gives a better
initialization for the true ML, which can augment the accuracy.
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