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Abstract—Thanks to the recent development of antenna design,
localization based on the Direction of Arrival (DoA) of the
incident signals is becoming more and more promising approach.
This paper presents a direction-based positioning algorithm
which can be implemented at the mobile device in 3D schemes.
As the mobile orientation is unclear and inconstant, an algorithm
utilizing the Direction Difference of Arrival (DDoA) among the
incident signals is considered. Because of the complexity in
computation, we use the Time of Arrival (ToA) as the additional
data for position estimation. As a result, the joint DDoA-ToA
method is studied. Moreover, an iterative Maximum Likelihood
(ML) estimator for position estimation is presented to rectify the
final estimates. Simulation results show significant performance
improvement compared to other methods.

Index Terms - positioning, ToA, Time of Arrival, DDoA, Direc-
tion Difference of Arrival, 3D localization, Maximum Likelihood.

I. INTRODUCTION

In localization, there are generally two positioning ap-
proaches [1]:
• Self-Positioning: A signal is transmitted from a base

station at a known position and received by a mobile
unit whose position has to be determined. The position
is calculated at the device to localize itself.

• Network-Positioning: A signal is transmitted by a mo-
bile unit whose position has to be determined and re-
ceived from an base station at a known position. The
position is calculated at a unit in the network of base
stations.

In direction-based localization, the positioning algorithms
are different between self-positioning and network-positioning.
In network-positioning, the signals’ DoAs are easily estimated
and obtained, since the orientation of all the base stations are
fixed. Nevertheless, in self-positioning, these DoAs cannot be
directly obtained, because the orientation of mobile device
is unclear and inconstant. Therefore, a localizing algorithm
based on DoAs is not feasible. Consequently, an algorithm
using Direction Difference of Arrival (DDoA) is proposed. In
this technique, only the difference in directions of arrival of
incident waves from a pair of base stations is required (Fig.
1).

Several papers illustrates their researches and results in
self-localizing problems. The authors of [2] gives a solution

for direction-based self-positioning problem when the tilt of
receiver is already given. However, the tilt of the receiver is
only expressed by its normal vector, which cannot represent
the whole orientation for a solid subject. In [3], the authors
propose an position algorithm using the DDoAs by a gradient
iterative procedure, but they do not demonstrate how to get
the initial point for the procedure, as well as what to do if
the procedure does not converge. In [4], a DDoA positioning
algorithm is studied. The sensor determines its position by
the Visible Light Communications (VLC) emitted from the
light-emitting diodes (LEDs) around. Nevertheless, the authors
assume that all the LEDs are collinear and the z-coordinate
of the sensor is always lowers than the common z-coordinate.
These assumptions reduce the complexity for the problem, but
also lose the generality for the solution.

Our previous work [5] analyzed a direction-based position-
ing algorithm at mobile devices in 2D schemes. To make the
localization solution realistic, problems in 3D schemes must
be considered. However, it is not as straightforward to estimate
the position based on DDoA in 3D as it is in 2D. An additional
time estimation is hence utilized to support the direction-based
solution.

ToA-based localization is already well analyzed in [6]. In
this paper, we investigate a hybrid DDoA ToA positioning al-
gorithm. Firstly, the Weighted Least Squares (WLS) method is
studied. Afterwards, we propose a Maximum Likelihood (ML)
estimator with iterative procedure to robustify the position
estimation. Simulation results show substantial improvement
in performances compared to the methods using only ToA, in
certain conditions.

II. TOA-BASED LOCALIZATION

In this section, we summarize the ToA-based algorithm
proposed by [6].

Let ti be the true propagation time of the signal from the
i-th base station to the mobile deivce and t̂i be its estimate,
with i from 1 to N (N is the number of base stations). We
have the relation

t̂i = ti + t̃i (1)

where t̃i is the ToA estimation error and assumed to be
Gaussian distributed with zero-mean and variance of σ2

ToA,i.



As a result, the distance is estimated based on multiplying
t̂i by c (c is the speed of light), denoted by d̂i is modeled as:

d̂i = di + d̃i (2)

where di = cti is the true distance and d̃i = ct̃i is the distance
estimation error based on the i-th ToA with zero-mean and
variance of σ2

i = c2σ2
ToA,i.

A. Equations

(x,y,z) are the coordinates of the undefined mobile station
and (xi, yi, zi) are the coordinate of the i-th base station, i from
1 to N.

We have the following equation demonstrating the sphere
whose center is the i-th base station and radius is di, where di
is the distance from the i-th base station to the mobile device:

(x− xi)
2 +(y− yi)

2 +(z− zi)
2 = d2

i (3)

B. Maximum Likelihood Estimator

In matrix formulation, we denote

d̂dd =
[
d̂1 d̂2 . . . d̂N

]T

fff d(xxx) =


√
(x1− x)2 +(y1− y)2 +(z1− z)2√
(x2− x)2 +(y2− y)2 +(z2− z)2

. . .√
(xN− x)2 +(yN− y)2 +(zN− z)2


The measurement vector d̂dd is Gaussian distributed with

mean vector of fff d and covariance matrix CCCd , we have the
probability density function (pdf) [7]:

p(d̂dd|xxx) = (2π)−N/2

|CCCd |1/2 exp
[
−1
2

(
d̂dd− fff d

)T
CCC−1

d

(
d̂dd− fff d

)]
(4)

where xxx = [x y z] is the coordinate vector of the mobile
device and CCCd = diag(σ2

1 ,σ
2
2 , . . . ,σ

2
N) is the covariance matrix

of ToA-based distance measurements.
Maximizing the pdf in (4) is equivalent to

x̂xx = argmin
xxx

(
d̂dd− fff d(xxx)

)T
CCC−1

d

(
d̂dd− fff d(xxx)

)
(5)

Iterative procedures are applied to obtain the optimized
x̂xx. The initialization is the result of Weighted Least Squares
(WLS) estimation [6].

III. DDOA-BASED LOCALIZATION

A. Problem Formulation

Direction-based localization at the mobile device is much
more complicated than the one at the base stations, because
of the ambiguity of orientation of the mobile device. As a
result, the DoA of an incident wave is really challenging to be
expressed by azimuth and elevation angles in the true Cartesian
coordinate system.

Fig. 2 shows the DoA expression in the true Cartesian
coordinate system. The true azimuth angle and elevation angle
of the incident wave from the i-th base station are ψi and
ϑi, respectively. However, at the relative coordinate system
with regard to the mobile device, the relative azimuth angle

Fig. 1. Localization at mobile device with Direction Difference of Arrival
(DDoA)

Fig. 2. Azimuth angle and elevation angle of the incident signal from the i-th
base station in true Cartesian coordinate system

is ϕi and and elevation angle is θi (Fig. 3). As the tilt of the
mobile device is undefined, it is likely impossible to compute
(ψi,ϑi) from (ϕi,θi). It is essential to find a solution which
can estimate the mobile position by (ϕi,θi).

We define βi, j as the Direction Difference of Arrival
(DDoA) between incident waves from i-th base station and j-
th base station (Fig. 1), where di and d j are the distance from
the mobile device to i-th base station and j-th base station.

B. Computing DDoA from the related DoAs
To calculate βi, j, we use scalar product of

−→
di and

−→
d j , the

vector demonstrating the incident signal from i-th and j-th
base station, respectively.

In the reference frame attached to the mobile device, we
have the coordinates of the following vectors:−→

di
(r) = (di cosθi cosϕi, di cosθi sinϕi, di sinθi)−→

d j
(r) = (d j cosθ j cosϕ j, d j cosθ j sinϕ j, d j sinθ j)

Fig. 3. Azimuth angle and elevation angle of the incident signal from the i-th
base station in relative Cartesian coordinate system



Thus, their scalar product is
−→
di

(r) •
−→
d j

(r)

= did j(cosθi cosϕi cosθ j cosϕ j
+cosθi sinϕi cosθ j sinϕ j + sinθi sinθ j)
= did j(cosθi cosθ j cos(ϕ j−ϕi)+ sinθi sinθ j)

(6)

where di and d j are the length of two vectors
−→
di and

−→
d j ,

respectively.
The definition of scalar product of two vectors:

−→
di

(r) •
−→
d j

(r) = di.d j.cosβi, j (7)

Hence, the relation between the DDoAβi, j and the DoAs
(ϕi,θi),(ϕ j,θ j) is

cosβi, j = cosθi cosθ j cos(ϕ j−ϕ j)+ sinθi sinθ j (8)

In [8], the authors prove that the DDoA is unchanged when
the mobile device rotates, no matter which coordinate system
is chosen.

In practice, the estimates of ϕi and θi can be expressed by:

ϕ̂i = ϕi + ϕ̃i (9)

θ̂i = θi + θ̃i (10)

The authors of [9] illustrates that when there is Gaussian
noise in received signal, ϕ̃i and θ̃i are asymptotically inde-
pendently Gaussian distributed with zero-mean. As a result,
we can assume that ϕ̃i and θ̃i are independently Gaussian
distributed with zero-mean. Their variances are ν2

i and µ2
i ,

correspondingly.
We denote γi, j = cosβi, j. Appendix A illustrates the espected

value and variance of γi, j. When the estimation errors are small
enough, it is considered that γi, j is Gaussian distributed.

C. Estimating position by Weighted Least Squares method

In the true Cartesian coordinate system, we have the coor-
dinates of the vectors

−→
di and

−→
d j as follows:−→

di = (xi− x, yi− y, zi− z)−→
d j = (x j− x, y j− y, z j− z)
The DDoA between the incident waves from i-th base

station and j-th base station does not depend on the orientation
of the mobile device.

Taking the scalar product of
−→
di and

−→
d j :

−→
di •
−→
d j =

x2− (xi + x j)x+ xix j + y2− (yi + y j)y+ yiy j + z2− (zi + z j)z+ ziz j
(11)

Meanwhile, the definition of scalar product is−→
di •
−→
d j = did j cosβi, j

Thus
x2− (xi + x j)x+ xix j + y2− (yi + y j)y+ yiy j + z2− (zi + z j)z+ ziz j
= did j cosβi, j

(12)
Replacing di =

√
(x− xi)2 +(y− yi)2 +(z− zi)2 and the

similar to d j, we get

x2− (xi + x j)x+ xix j + y2− (yi + y j)y+ yiy j + z2− (zi + z j)z+ ziz j =√
(x− xi)2 +(y− yi)2 +(z− zi)2

√
(x− x j)2 +(y− y j)2 +(z− z j)2 cosβi, j

(13)

It is really complicated to solve such an equation like (13)
to estimate the mobile position (x,y,z). Consequently, ToA
estimation is added to simplify the computation. When di and
d j are already estimated by the related ToA, the equation (12)
can be utilized for estimating position.

In matrix formulation, we denote

AAA =


−(x1 + x2) −(y1 + y2) −(z1 + z2) 1
−(x1 + x3) −(y1 + y3) −(z1 + z3) 1

. . . . . . . . . . . .
−(x1 + xN) −(y1 + yN) −(z1 + zN) 1



ωωω =


x
y
z

x2 + y2 + z2

 ; b̂bb =


d̂1d̂2γ̂1,2

d̂1d̂3γ̂1,3
. . .

d̂1d̂N γ̂1,N


where d̂i = ct̂i and γ̂i, j is estimated by (33).

We have

d̂id̂ j γ̂i, j = (di + d̃i)(d j + d̃ j)(γi, j + γ̃i, j)
≈ did jγi, j + d̃id jγi, j +did̃ jγi, j +did j γ̃i, j

(14)

As a result, b̂bb = bbb + b̃bb where

bbb =


d1d2γ1,2
d1d3γ1,3

. . .
d1dNγ1,N

 ;

b̃bb =


d̃1d2γ1,2 +d1d̃2γ1,2 +d1d2γ̃1,2
d̃1d3γ1,3 +d1d̃3γ1,3 +d1d3γ̃1,3

. . .
d̃1Nγ1,N +d1d̃Nγ1,N +d1dN γ̃1,N


The Weighted Least Square (WLS) cost function

JWLS = (AAAωωω−bbb)TWWW (AAAωωω−bbb) (15)

where WWW is a symmetric weighting matrix.

We choose WWW =
[
E
(

b̃bbb̃bb
T
)]−1

with E
(

b̃bbb̃bb
T
)

is expressed
by (40).

The WLS estimate of ωωω is

ω̂ωω = (AAATWWWAAA)−1AAATWWWb̂bb (16)

The estimated coordinate vector of the mobile device com-
prises the 3 first elements of ω̂ωω:

x̂xx =
[
[ω̂ωω]1 [ω̂ωω]2 [ω̂ωω]3

]T (17)

D. Iterative Maximum Likelihood Procedure

We propose an iterative Maximum Likelihood estimator,
which uses the positioning result in (17) as its initialization,
to optimize the estimation.

Linking the distance to the coordinates, we have:

di(xxx) =
√
(x− xi)2 +(y− yi)2 +(z− zi)2 (18)

From the equation (12), we have the relation between the
DDoA and the coordinates:



γi, j(xxx) = cosβi, j(xxx) =
x2−(xi+x j)x+xix j+y2−(yi+y j)y+yiy j+z2−(zi+z j)z+ziz j√
(xi−x)2+(yi−y)2+(zi−z)2

√
(x j−x)2+(y j−y)2+(z j−z)2

(19)

with i from 1 to N−1 and j from i+1 to N.
Then, we denote

d̂dd =
[
d̂1 d̂2 . . . d̂N

]T (20)

γ̂γγ =
[
γ̂1 d̂2 . . . d̂N

]T (21)

r̂rr =
[
d̂dd γ̂γγ

]T
(22)

fff (xxx) =



√
(x− x1)2 +(y− y1)2 +(z− z1)2√
(x− x2)2 +(y− y2)2 +(z− z2)2

. . .√
(x− xN)2 +(y− yN)2 +(z− zN)2

γ1,1(xxx)
γ1,2(xxx)
. . .

γ1,N(xxx)


(23)

where γi, j(xxx) is defined in (19).
We have cov(d̂dd) =CCCd and

CCCγ = cov(γ̂γγ) =


s2

1,2 s2
1,2,3 . . . s2

1,2,N
s2

1,2,3 s2
1,3 . . . s2

1,3,N
. . . . . . . . . . . .

s2
1,2,N s2

1,3,N . . . s2
1,N

 (24)

where s2
i, j and s2

i, j,l are expressed in the Appendix A.
The covariance matrix of r̂rr

CCCr = cov(r̂rr) =
[

CCCd 000N×(N−1)
000(N−1)×N CCCγ

]
(25)

where 000a×b is the null matrix of the size a×b.
Similar to the section II-B, the measurement vector r̂rr is

Gaussian distributed with mean vector of fff and covariance
matrix CCCr, we have the probability density function (pdf):

p(r̂rr|xxx) = (2π)−N/2

|CCCr|1/2 exp
[
−1
2 (r̂rr− fff r)

TCCC−1
r (r̂rr− fff r)

]
(26)

Maximizing the pdf in (26) is equivalent to finding

x̂xx = argmin
xxx
(r̂rr− fff (xxx))TCCCr(r̂rr− fff (xxx)) (27)

which we shall perform alternatingly. We consider Gauss-
Newton procedure [10] for x̂xx. At iteration (u+1):

x̂xx(u+1)= x̂xx(u)+
(
GGGTCCCrGGG

)−1
GGGTCCCr

(
r̂rr− fff (x̂xx(u)

)
(28)

where GGG is the Jacobian matrix of fff (xxx)

GGG = GGG(x̂xx(u)) , GGG(xxx) =
∂ fff (xxx)
∂xxxT . (29)

A procedure is expected to terminate when ‖x̂xx(u+1) −
x̂xx(u)‖2 < ε, for the stopping criterion ε sufficiently small. Then,
the final position of the procedure is considered to be the
coordinates of the mobile device in the xyz space.

However, iterative procedures do not always converge. In
[5], we show that there are three possible outcomes for an it-
erative procedure: Convergence, Divergence and Oscillation.

If a procedure is diverging or oscillating, we will take
its initialization as the estimated mobile position. As for a
converging procedure, the final position is selected as estimate.

In a nutshell, the Algorithm 1 is proposed for the Gauss-
Newton iterative procedure of Maximum Likelihood estimator.

Algorithm 1: Proposed Maximum Likelihood estimtor
with Gauss-Newton procedure

1 Take all the estimated ToAs and then compute the
corresponding d̂1, d̂2, . . . , d̂N .

2 Take the measured Direction of Arrival: azimuth ϕ̂i and
elevation θ̂i.

3 Compute γ̂i, j by (33).
4 Assign u = 1 and ε sufficiently small.
5 Compute the estimation x̂xx by (17) as the first estimated

coordinates of the mobile device.
6 repeat
7 Compute the following estimated coordinates x̂xx(u+1) of

the mobile device by (28).
8 u = u+1;
9 until ‖x̂xx(u+1)− x̂xx(u)‖2 < ε or u > 1000 or ‖x̂xx(u+1)‖2 =±∞;

10 if u > 1000 or ‖x̂xx(u+1)‖2 =±∞ then
11 x̂xx(1) is the estimated position of the mobile device;
12 else
13 x̂xx(u) is the estimated position of the mobile device;

IV. SIMULATION RESULTS

A. Cramer-Rao Bound (CRB)

The Cramer-Rao Bound (CRB) is computed for the quaility
evaluation of the algorithm. The Fisher Information Matrix
(FIM) is calculated by

III(xxx) = GGGT (xxx)CCC−1GGG(xxx) (30)

The CRB is the trace of the inverse of FIM:

CRB = tr(III−1) (31)

B. Simulation Setup

To compare the quality among of algorithms and CRLB,
we use Root Mean Square Position Error (RMSE) which is
defined by

RMSE =
√

E(‖x̂xx− x̄xx‖2) (32)

where x̄xx is the true position of the mobile device and x̂xx is its
estimate.

We consider a space of size 1000m x 1000m with the height
of 20m. The network of 8 Base stations (numbered from 1 to
8) forms the circumscribed circle of this square. Each base
station has 3 antenna arrays, which transmit signals, at the
altitudes of 10m, 15m and 20m.

RMSE averaging is over 1000 mobile positions picked
randomly in the space concerned. (Fig. 4).

Stopping criterion is ε = 0.01



(a) View from top

(b) View from one side

Fig. 4. Map of base stations and random positions of the mobile device
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Fig. 5. Localization at mobile device with hybrid ToA-DDoA

C. Results
Instead of comparing the MSEs to the CRB, we compare

their square roots: The Root Mean Square Error (RMSE) =√
MSE and square root of CRB (

√
CRB).

In the simulations, we assume that all the estimations of
azimuth and elevation angles have the same standard deviation:
µ1 = µ2 = · · · = µN = ν1 = ν2 = · · · = νN = σ . The standard
deviations of all ToA measurements are also assumed to have
the same value: σToA,1 = σToA,2 = · · ·= σToA,N = σToA.

We compare the RMSE of the four different scenarios,

where in each scenario, the standard deviation of ToA mea-
surements (σToA) varies from 2.5 ns to 30 ns; the Weighted
Least Squares (WLS) method and the Maximum Likelihood
(ML) estimator are applied for localization (Fig. 5).
(a) ToA-based positioning algorithm given in [6].
(b) Hybrid positioning algorithm when σ = 0.5◦.
(c) Hybrid positioning algorithm when σ = 1◦.
(d) Hybrid positioning algorithm when σ = 1.5◦.

From Fig. 5, it is clear that the ML estimator considerably
enhance the accuracy of WLS estimations. In addition, the
advantage of the proposed hybrid positioning algorithm de-
pends on the accuracy of DoA estimations. The more precise
the DoA estimation is, the more useful the hybrid algorithm
is, especially when the standard deviation of ToA estimation
increases.

V. CONCLUSIONS
This paper develops a direction-based positioning algorithm

at the mobile device. DDoA is the main element used to local-
ize the mobile device because of its indistinct orientation. ToA
is utilized as an additional element to reduce the computing
complication. An iterative Maximum Likelihood procedure is
also proposed to enhance the accuracy of localization.

However, all results presented are obtained by simulations.
It would be of interest to evaluate the proposed positioning
algorithm on measurements also.
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APPENDIX

A. Computations of expected value and variance of γi, j

In [11], it is proved that if x∼N (x0,ς
2) then

E(sinx) = e−ς2/2 sinx0; E(cosx) = e−ς2/2 cosx0; var(sinx) = var(cosx) = 1
2

(
1− e−2ς2

)
E(sin2 x) = 1

2 −
1
2 e−2ς2

+ e−2ς2
sin2 x0; E(cos2 x) = 1

2 −
1
2 e−2ς2

+ e−2ς2
cos2 x0

(8) shows the equation of γi, j = cosβi, j in terms of the related DoAs: ϕi,ϕ j,θi,θ j. Therefore, the estimated value of the γi, j
is:

γ̂i, j = E(γi, j) = E(cosβi, j) =
(

e−µ2
i /2 cosθi

)(
e−µ2

j /2 cosθ j

)(
e−(ν2

i +ν2
j )/2 cos(ϕi−ϕ j)

)
+
(

e−µ2
i /2 sinθi

)(
e−µ2

j /2 sinθ j

)
= e−(µ2

i +µ2
j )/2 (cosθi cosθ j)e−(ν2

i +ν2
j )/2 cos(ϕi−ϕ j)+ e−(µ

2
i +µ2

j )/2 sinθi sinθ j
(33)

In addition, the variance of γi, j is:
s2

i, j = var(γi, j) = var(cosβi, j) = E(cos2 βi, j)− (E(cosβi, j))
2 (34)

where E(cosβi, j) is expressed in (33) and

cos2 βi, j = (cosθi cosθ j cos(ϕi−ϕ j)+ sinθi sinθ j)
2 = cos2 θi cos2 θ j cos2(ϕi−ϕ j)+ sin2

θi sin2
θ j +

1
4 sin(2θi)sin(2θ j)cos(ϕi−ϕ j) (35)

As a result,
E(cosβ

2
i, j) = h1h2h3 +h4h5 +

1
4

h6h7h8 (36)

where
h1 = E(cos2

θi) =
1
2
− 1

2
e−2µ2

i + e−2µ2
i cos2

θi ; h2 = E(cos2
θ j) =

1
2
− 1

2
e−2µ2

j + e−2µ2
j cos2

θ j ;

h3 = E(cos2(ϕi−ϕ j)) =
1
2
− 1

2
e−2(ν2

i +ν2
j ) + e−2(ν2

i +ν2
j ) cos2(ϕi−ϕ j) ; h4 = E(sin2

θi) =
1
2
− 1

2
e−2µ2

i + e−2µ2
i sin2

θi ;

h5 = E(sin2
θ j) =

1
2
− 1

2
e−2µ2

j + e−2µ2
j sin2

θ j ; h6 = E(sin(2θi)) = e−2µ2
i sin(2θi) ;

h7 = E(sin(2θ j)) = e−2µ2
j sin(2θ j) ; h8 = E(cos(ϕi−ϕ j)) = e−(ν2

i +ν2
j )/2 cos(ϕi−ϕ j) ;

The covariance of γi, j and γi,l is
s2

i, j,l = cov(γi, j,γi,l) = E(γi, jγi,l)−E(γi, j)E(γi,l) (37)

where E(γi, j) is expressed in (33) and
γi, jγi,l = (cosθi cosθ j cos(ϕi−ϕ j)+ sinθi sinθ j)(cosθi cosθl cos(ϕi−ϕl)+ sinθi sinθl) =
1
2 cos2 θi cosθ j cosθl(cos(2ϕi−ϕ j−ϕl)+ cos(ϕ j−ϕl))+

1
2 sin(2θi)sinθ j cosθl cos(ϕi−ϕl)+

1
2 sin(2θi)cosθ j sinθl cos(ϕi−ϕ j)

+sin2
θi sinθ j sinθl

(38)
As a result, E(γi, jγi,l) =

1
2

m1m2m3(m4 +m5)+
1
2

m6m7m8m9 +
1
2

m10m11m12m13 +m14m15m16 (39)

where
m1 = E(cos2

θi) = h1 ; m2 = E(cosθ j) = e−µ2
j /2 cosθ j ; m3 = E(cosθl) = e−µ2

l /2 cosθl ;

m4 = E(cos(2ϕi−ϕ j−ϕl)) = e−(4ν2
i +ν2

j +ν2
l )/2 cos(2ϕi−ϕ j−ϕl) ; m5 = E(cos(ϕ j−ϕl)) = e−(ν2

i +ν2
j )/2 cos(ϕ j−ϕl) ;

m6 =E(sin(2θi))= h6 ; m7 =E(cosθl)= e−µ2
l /2 cosθl ; m8 =E(cosθl)=m3 ; m9 =E(cos(ϕi−ϕl))= e−(ν2

i +ν2
l )/2 cos(ϕi−ϕl) ;

m10 = E(sin(2θ j)) = h7 ; m11 = E(cosθ j) = m2 ; m12 = E(sinθl) = e−µ2
l /2 sinθl ; m13 = E(cos(ϕi−ϕ j)) = h8;

m14 = E(sin2
θi) = h4 ; m15 = E(sinθ j) = e−µ2

j /2 sinθ j; m16 = E(sinθl) = m12

B. Covariance matrix of bbb

E
(

b̃bbb̃bb
T
)
=



σ2
1 d2

2γ2
1,2 +σ2

2 d2
1γ2

1,2 + s2
1,2d2

1d2
2 σ2

1 d2d3γ1,2γ1,3 + s2
1,2,3d2

1d2d3 . . . σ2
1 d2dNγ1,2γ1,N + s2

1,2,Nd2
1d2dN

σ2
1 d2d3γ1,2γ1,3 + s2

1,2,3d2
1d2d3 σ2

1 d2
3γ2

1,3 +σ2
3 d2

1γ2
1,3 + s2

1,3d2
1d2

3 . . . σ2
1 d3dNγ1,3γ1,N + s2

1,3,Nd2
1d3dN

. . . . . . . . . . . .

σ2
1 d2dNγ1,2γ1,N + s2

1,2,Nd2
1d2dN σ2

1 d3dNγ1,3γ1,N + s2
1,3,Nd2

1d3dN . . . σ2
1 d2

Nγ2
1,N +σ2

Nd2
1γ2

1,N + s2
1,Nd2

1d2
N


(40)


