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Linear Prediction Based Semi-Blind Estimation of MIMO FIR Channels

Abdelkader Medles, Dirk T.M. Slock

Eurecom Institute’
2229 route des Crétes, B.P. 193
06904 Sophia Antipolis Cedex
FRANCE

Email: {medles,slock}@eurecom.fr

Abstract — The multichannel aspect has led to the
development of a wealth of blind channel estimation
techniques over the last decade. However, most of these
blind techniques are not very robust and only allow to
estimate the channel up to a number of ambiguities,
especially in the MIMO case. On the other hand, all
current standardized communication systems employ
some form of known inputs to allow channel estimation.
The channel estimation performance in those cases can
always be improved by a semiblind approach which ex-
ploits both training and blind information. The pur-
pose of this paper is to introduce semiblind techniques
of which the complexity is not immensely much higher
than that of training based techniques. The semib-
lind criteria are quadratic and combine a training based
least-squares criterion with a blind criterion based on
linear prediction. A variety of convenient linear predic-
tion approaches are considered.

I. INTRODUCTION

Consider linear digital modulation over a linear channel with
additive Gaussian noise. Assume that we have p transmitters
and m > p receiving channels (e.g. antennas in BLAST or
SDMA). The received signals can be written in the baseband

Ezaj k)hi;(t— kT) + vi(t) (1)

where the aj(k) are the transmltted symbols from source 7, T
is the common symbol period, hi;(t) is the (overall) channel
impulse response from transmitter j to receiver antenna . We
assume the channels to be FIR. In particular, after sampling
we assume the (vector) impulse response from source j to be of
length N;. W.l.o.g., we assume the first non-zero vector impulse
response sample to occur at discrete time zero, and we can as-
sume the sources to be ordered so that Ny > No > --- > Np.

Let N = Zle N;. The discrete-time Rx signal can be repre-
sented in vector form as
p N;—1 Np—1
k)= hy(i)a;(k—i) + v(k) = > _ h(i)a(k—i) + v(k)

Jj=1 i=0 i=0

= Y Hin Ajw (k) +v(k) = HyAn(k) +v(k),

(k) v1(k)
7V(k) = 7hJ(k):
Ym (k) vm (k)
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HLN =[h;(0)---h;(N;-1)], Hy = [H17N1 "'HP,NP] )
h(k) = [hi(k) - hy(k)], Ajn, (k) = [aj(k) ( —N]+1)]TT,
a(k) = [a1 (k) ---ap(k)]", An(k) = [A] x, (k) - A7 v, (K)]

T H Jenote transpose and Hermitian

The multichannel aspect leads to a
signal subspace when m > p since y(k) = H(q)a(k) + v(k)
with H(q) = Ef\;lo_l h(s) g¢~% and ¢! the unit delay opera-
tor (¢~ 'a(k) = a(k—1)) and hence we get for the power spec-
tral density matrix Syy(z) = H(z) Saa(z) HT(Z) + Svv(z) =
o2 H(z)H(2) + 02 I,,. The existence of this signal subspace
has led to the development of a wealth of blind channel estima-
tion techniques over the last decade. Some of these techniques
are relatively simple due to the modeling of the unknown in-
put symbols as either deterministic unknowns of uncorrelated
random variables (as opposed to exploiting their finite alpha-
bet nature). The latter (uncorrelated) case is also called the
Gaussian case because (only) second-order statistics are ex-
ploited. However, most of these blind techniques are not very
robust in the sense that they often require precise knowledge
of the channel length(s) and if transmission zeros can be han-
dled, they are required to be minimum-phase.
the blind techniques leave channel ambiguities, which can range
from a simple scalar ambiguity factor for Single-Input Multiple-
Output (SIMO) channels or certain Multiple-Input Multiple-
Output (MIMO) channels (for certain techniques), to instan-
taneous or even convolutive mixtures of the sources for other
MIMO channels. On the other hand,
communication systems employ some form of known inputs to
allow channel estimation. The channel estimation performance
in those cases can always be improved by a semiblind approach
which exploits both training and blind information. The train-
ing information allows to resolve the blind ambiguities and ro-
bustifies the channel estimates. The purpose of this paper is to
introduce semiblind techniques of which the complexity is not
immensely much higher than that of training based techniques.

In the case of SIMO channels, we previously [4] introduced a
simple semi-blind technique, taking the SRM (Subchannel Re-
sponse Matching) method (also known as the Cross-Relation
(CR) method) for the blind criterion. In the SRM approach,
we use a simple parameterization of the noise subspace that is
linear in the channel parameters. A blind criterion is then ob-
tained by expressing orthogonality between this parameterized
noise subspace and the data (for use in a semiblind approach,
the data covariance matric should be denoised). This leads to
a simple quadratic semiblind criterion. However, a linear pa-
rameterization of the noise subspace in terms of the channel
parameters only exists in the SIMO case.

where superscripts
transpose respectlvely.

Furthermore,

all current standardized

II. MIMO LINEAR PREDICTION

In the MIMO case, we propose here as in [5] to use linear



prediction quantities for the blind information. Linear predic-
tion is applicable equally well to both the SIMO and MIMO
cases. Two flavors can be obtained, depending whether the
transmitted symbols are modeled as deterministic unknowns or
as uncorrelated random sequences (in the deterministic case, for
the purpose of linear prediction, some considerations are more
straightforward if the symbols are considered as stationary se-
quences with unknown correlation).

Consider the problem of predicting y(k) from Y (k — 1) =
[yT(k=1)---yT(k=L)]%, for noiseless received signal. The pre-
diction error can be written as

YRy, ooy =YR) =YKy, o1y =PrYrua(k)  (2)

with P;, = [Pro Pr1---Pri], Pro = Im. Minimizing
the prediction error variance leads to the following optimisation
problem

Ifl)iLn P.RyyP{ = crf;L (3)
hence

PLRyy = {0237@ 0~~~0} . (4)
Let L = {m p—l The rank profile of cr .1 behaves as a function

of L generically (for an irreducible and column reduced MIMO
channel) like

=p L>L
rank (cr% L) =m-m € {p+1,..,.m} ,L=L-1 (5)
' =m ,L<L-1

where m = L(m —p) — N+ p € {0,1,...,m—1 — p} represents
the degree of singularity of Ryy,1. For L > L, g(k)|YL(k_l) =
h(0)a(k). For such L, let V; be the eigenvectors of 02~L in

order of decreasing eigenvalue, then Vi, = [V1 Vil has the
same column space as h(0) and P(z) = "p+1 nP(z) satisfies
P(z)H(z) = 0 (P(z) represents a parameterization of the noise
subspace). Note that P(z) changes if the symbols are corre-
lated (hence P(z) contains information about the symbol cor-

relation) whereas P(z) is insensitive to such correlation. To
obtain the noisefree prediction quantltles we need to denoise

an estimated covariance matrlx via RYY = Ryy —o2] (partlal

denoising) or RYY = LRyy 012, I|4 (full denoising). In the case
of partial denoising, we used a generalized version (to covariance
windowing) of the MIMO Levinson algorithm, which applies in
the nonsingular indefinite case. Singular components appear
then as negative semidefinite. In the case of full denoising, we
determined the prediction quantities directly from the normal
equations, with a generalized inverse R* = U~2 D#U~! where
R = UDU¥ is the UDL triangular factorization of R and D#
is the Moore-Penrose inverse of the singular diagonal matrix D.
As in [1], the columns in U corresponding to zeros in D are
taken to be all zero, except for a unit diagonal element. In both
approaches, the overestimation of L leads to consistent in SNR
P(z), whereas for P(z) we only have consistency in amount Mg
of (blind) data samples y(k) (the noiseless uncorrelated symbols
case with finite amount of data is similar to a colored symbols
case). Note that the partial and full denoising approaches cor-
respond to resp. the first and second subspace estimates in [6].
Let h; = [h7(0)---hf(N;=1)]T Hf v, where * denotes trans-
position of the block entries, and h = HtT. Then a stretch of
Rx signal Y can be written as

Y :T(h)A+VM =Ah+Vy
where T(h) = [Ta(Hy n,) -+ Taae(Hp n, )] and Tas(H) denotes

a block Toeplitz convolution matrix with M block rows and

[H 0---0] as first block row. A4 is a structured matrix con-
taining the multi-source symbols. Let T'S denote the number of
training sequence (T'S) symbols per source (considered equal for
all sources for most of what follows). The TSs for the differents
users are considered to be simultaneous initially.

ITI. DETERMINISTIC SEMI-BLIND (DSB) APPROACH

__ In the semiblind approaches, we shall seek a channel estimate
h with possibly overestimated channel lengths N
shall assume that Nl remains the largest N In the determin-

~

istic symbols setting, we shall work with P. P(z)H;(z) = 0

t)ﬁg = 0. Let

> N; and we

can be written in the time domain as TA(
where EB A; = blockdiag{Ai,...,

B = @T]{(F)
} (©)

can now formulate a semiblind criterion as
2
min { HYTS —Ars h
h

where « is a weighting factor, and Yrs is the portion of Rx signal
containing only training symbols. A more optimal approach
introduces weighting involving the covariance matrix C of Bh
due to the estimation errors in P and leads to

~|2 ~NH I — o~
n{HYTs—ATshH + GihHBHC#Bh} (7)

Ap}. We

Bh

+ «

‘_A

where a possible pseudo-inverse can be avoided by using an
infinitisemal amount of regularization. Inspired by an approxi-
mate expression for C given in [2], we have taken o2 ct = Mg
so that (7) reduces to (6) with a = Mp.

With overestimated channel lengths, deterministic blind

identification leads to an estimate ﬁ(z) = H(z) S(z) where pxp
S(z) is also causal and polynomial and the length of S;;(z) can
be shown to be (ﬁi — Nj + 1)* where (z)T = max{x,0} (this
is a generalization of a result in [3] for the case ﬁz = N;).

As a result, the DSB approach has the following identifiabil-

ity requirements
P P

STNi= N+ )P <m(TS = Ni+1), Y (Ni— N, + 1)t
i,7=1 i=1
< min{(min(N;, m))(T'S—Ny+1), TS+N,— Ny}, ¥j
(8)
IV. GAussiAN SEMI-BLIND (GSB) APPROACH
In the Gaussian case, the blind estimation ambiguity gets re-
duced to an instantaneous unitary mixture of the sources (which
gets even limited to mixtures of subsets of sources with iden-
tical channel length N;). Since h(0) can only be determined
up to an instantaneous mixture, we reduce the exploitation of
P(z)H(z) = h(0) or P(q) h(k) = h(0) éxo to ﬁoh(O) =0 and
P(g)h(k) = 0, k > 0. We shall call this the reduced Gaus-
sian case, in which all decorrelation is exploited except between
symbols at the same time instant. This can be expressed by
i Py 0
Bh =0 where B = EB ??Pt)

with the first block row removed. The problem of recovering h
from 7}\{ (P*) h; = 0 in the SIMO case, with an optimal weight-

TT (Pt ;o 7T t
where Tﬁl(P ) is Tﬁl(P )

ing between the nuller P(z) and the equalizer portions of P(z)
has been addressed in [2] and involves the covariance matrix of

?(Pt) h; (a simple approximation is given also). This allows

us to introduce a semi-blind criterion of the form

m}iln{||YTs—.ATsh||2 + oo h® B C*Bh} . (9)



P

We took C = M3y @(Im@((]m'FUU_QU’i;)@INl—I))7 inspired by
i=1

[2]. The (restricted) GSB semiblind approach has the following

identifiability requirements

P’ < m(TS — K’l +1)

~ ~ 10
p < min{(min(N;, m))(T'S—N1+1), TS+N;—N1}, Vjy (10)

For both semiblind methods, if the amount of blind data be-
comes very large, then the particular structure of the weighting
matrix for the blind part becomes unimportant and the soft-
constrained criterion approaches the hard constrained criterion,
in which the TS criterion ||YT5 — A7rs h|| gets minimized sub-
ject to the blind constralnts Bh=0or Bh=0.

In practice, 02 should be overestimated to obtain good de-
noising. If o2 gets that much overestimated that its subtraction
cuts away a portion of the signal subspace, then this would lead
to loss of the blindly identifiable (in a deterministic setting) part
of H(z). However, in a semiblind approach, identifiability gets
recovered and if a blindly identifiable portion got excised in this
way, this means that it would have resulted in bad blind estima-
tion quality. So even if the denoising gets done in an overzealous
fashion and the order of P(z)/P(z) gets reduced w.r.t. its the-
oretical order, the resulting ﬁ(z) still lies in the noise subspace
and satisfies P(z) H(z) = 0/P(z) H(z) = h(0) (though in that
case this would not allow identification of the blindly identifi-
able part of H(z)). So in this way, the badly blindly identifiable
parameters also get estimated through the T'S.

V. AUGMENTED TRAINING-SEQUENCE PART

So far (classical T'S approach) Yrs denoted the Rx samples in
which only TS symbols appear. In an augmented TS approach,
Yrs shall collect all Rx samples in which at least one T'S symbol
appears. In that case we can write Yoo — V = T(h)A =
TJicArx + TovApy in which A Kx/u collect the known/unknown
symbols and Tx,y the corresponding columns of 7. The TS
part of the semiblind criteria becomes

2

o, _
(Yrs — Axh)" (I + FTUT(}H) "(Yrs — Axh). (11)
Due to the parameter-dependent weighting, the semiblind cri-
teria now require at least one iteration. In the Gaussian ap-
proach, the weighting can be determined blindly (and hence
consistently). Identifiability conditions for the augmented ap-

proaches:

P
E (ﬁg - N; + 1)+ < m(TS —+ ﬁl — 1)
i,;:l (12)
Y (Ni= N+ 1)* < TS—N;+Ni, V)
i=1

for DSBA, weheras for GSBA

P> <m(TS+ N, —1)

~ i (13)
p< TS—N;+Ni,Vy ’

The augmented approach also allows us to handle the user-
wise grouped TS approach (Yrs contains T'S symbols from only
one user at a time) and the distributed TS approach (YTS con-
tains only one TS symbol from any user at a time). The identi-
fiability conditions in these cases reduce to having at least one
TS symbol for every user.

VI. FLAT CHANNEL CASE

For this case (N; = 1), we propose a Gaussian semiblind ap-
proach which exploits more completely the uncorrelated sym-
bols assumption. In this case, h = h(0) is identifiable up to an
instantaneous mixture (p2 complex parameters) using the meth-
ods above. By exploiting the decorrelation between users, the
mixture matrix can be reduced to a unitary matrix (p2 /2 param-
eters). We shall consider the limiting case in which Mp — oo.
In this approach, the blind part is used to determine the blindly
identifiable parameters while the TS is used only to determine
the remaining parameters. We get

anH ~~H
VAY2AY2yHE —hh =o¢’hh

Ryy = VAVT = (14)

where the eigendecomposition is limited to rank p, and the semi-

blind estimate h = cr;lﬁQ where h = VA!/2 is the blind es-
timate and QQF = I,. The TS part gives (time index now
denoted as subscript)

Znyk ha|? +Z||yk
Znykn -2 Z A Qay b+ o7 Za Q" AQas

(15)
where y; = VHyk. Assuming Zk apa; ~ I, either exactly by
TS design or approximately for long enough TS, the TS prob-
lem becomes maxg Rtr{Q A} where A = (Zk akka) VAL/?

has SVD A = ULW¥. Then with QI = WHQU which is also
unitary, we get max g/ %tr{QIE} = max Zle i %{Q:Z}
which leads to Qit = 1 and hence QI = [,. The channel esti-

mate { ﬁnallv becomes h = a_IVAl/QVV U¥ . Instead of V/\l/2
any Ryy could be used.

_1A1/2Qak||2 _

VII. SIMULATIONS

We consider the following scenarii:

scen. || (Ni,Na) | (Ni,Na) | TS | Mg
1 (3,1) (3,1) 12 | 300
2 (3,1) (3,3) 12 | 300
3 (3.1) (3.3) 11 | 300
4 (4,1) (4,1) 11 | 300
5 (3,1) (3,3) 5 | 300

For the first two scenarii we used partial denoising, whereas for
the last three we used full denoising. We compare the classical
TS approach with the DSB/GSB/DSBA/GSBA approaches and
with an “exact” version (e.g. DSBe) in which the blind quan-
tities (P(z)) are determined from an exact Ryy (Mp = o).
We see that the semiblind approaches offer significant improve-
ments over TS, especially using the augmented TS part. The
performance of the deterministic approaches gets close to that
of their exact versions, but not for the Gaussian approaches,
which should yield better performance. For the curves in Fig. 5
that stay flat, the identifiability conditions are not satisfied.
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