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Abstract—This work studies the K-user broadcast channel
with Λ caches, when the association between users and caches
is random, i.e., for the scenario where each user can appear
within the coverage area of – and subsequently is assisted by – a
specific cache based on a given probability distribution. Caches
are subject to a cumulative memory constraint that is equal to t
times the size of the library. We provide a scheme that consists of
three phases: the storage allocation phase, the content placement
phase, and the delivery phase, and show that an optimized
storage allocation across the caches together with a modified
uncoded cache placement and delivery strategy alleviates the
adverse effect of cache-load imbalance by significantly reducing
the multiplicative performance deterioration due to randomness.
In a nutshell, our work provides a scheme that manages to
substantially mitigate the impact of cache-load imbalance in
stochastic networks, as well as – compared to the best known
state-of-the-art – the well-known subpacketization bottleneck by
showing its applicability in deterministic settings for which it
achieves the same delivery time – which was proven to be close
to optimal for bounded values of t – with an exponential reduction
in the subpacketization.

Index Terms—Coded caching, shared caches, heterogeneous
networks, femtocaching.

I. INTRODUCTION

The ever-growing amounts of mobile data traffic have
highlighted the need for innovative solutions that can provide
service to an ever-increasing number of users while using
restricted network bandwidth resources. Within this frame-
work, cache-enabled wireless networks have emerged as a
viable option that can transfigure the storage capabilities of
the network nodes into a fresh and powerful resource.

The seminal work in [1] introduced the concept of coded
caching, and revealed that an unbounded number of cache-
aided users having different content requests can be served
simultaneously by the aid of multicasting transmissions even
with a bounded amount of network resources. Key to this
approach is a novel and carefully designed cache placement
algorithm. This delivery speedup is referred to as the coding
gain – or equivalently as the Degrees-of-Freedom (DoF) –
and it scales with the total storage capacity of the network.
This same approach was shown to be information-theoretically
optimal in [2], [3] for the shared-link broadcast channel.
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Fig. 1: An instance of a shared-cache network.
Many follow-up works have been studied since then, in-

cluding the study of coded caching in D2D networks [4], in
subpacketization-constrained settings [5]–[7], in settings with
arbitrary popularity distributions [8]–[10], and in other settings
as well [11]–[17].

A. Coded caching networks with shared caches
Even though coded caching offers massive gains for

the shared-link broadcast channel, its applicability to more
realistic settings requires further exploration. In the so-called
shared-cache setting, different users are within the coverage
area of different cache-aided base stations (or caches), and
are forced to benefit from the same cache content stored in the
cache that they are associated with. This shared-cache setting
is of great importance, and it arguably represents a much more
realistic scenario as having all users with their own caches
dedicated to a certain content library is a fanciful assumption
in practical wireless communication settings [15], [16]. Such
realistic settings may include cache-enabled heterogeneous
networks (HetNets), where a central transmitter (a base station,
or a macrocell) needs to deliver content to a set of interfering
users with the assistance of cache-enabled helper nodes (small
base stations, or femtocells), where the cache content is
available to all users (cost-free) within the coverage area of
that node. An instance of a shared-cache network is shown in
Figure 1.

An early work on this scenario can be found in [14],
where each helper node is serving an equal number of users.
The work in [15] removed this assumption, and characterized
the optimal (under the uncoded cache placement) worst-case
delivery time for the case when an arbitrary number of users
is assisted by each cache, and when the cache placement
is agnostic to the user-to-cache association. Subsequently,



the work in [16] extended the deterministic user-to-cache
association setting in [15] to the stochastic network setting,
and for the setting where the cache populations follow a given
probability distribution. This work revealed the surprising fact
that the cache-load imbalance could lead to the significant
deterioration in coding gains. This same work also showed that
a more balanced user-to-cache association performs better than
the unbalanced one, leading to the fact that the multiplicative
performance deterioration caused by the stochastic nature of
the problem can be drastically reduced by carefully tuning the
cache-load balance.

The work in [17] proposed a novel coded placement strategy
by assuming that user-to-cache association during the place-
ment phase is known, and showed that exploiting this extra
knowledge yields additional coding gains. In a similar context,
the work in [18] optimized the cache sizes as a function of
the number of users served by each cache, and then proposed
a novel coded caching scheme that outperforms the optimal
scheme in [15].

At this point, we need to highlight that there is a direct
relation between the aforementioned shared-cache setting and
the so-called subpacketization bottleneck. In order to achieve
the originally promised theoretical coding gains [1], each
file in the content library must be partitioned into S unit-
size subpackets, where S scales exponentially with number
of cache states1. Subsequently, a subset of these subpackets
is cached at different nodes depending on the cache-enabled
device’s cache state. The number of distinct cache states,
denoted as Λ, is then subject to some physical limitations,
i.e., a file cannot be partitioned into more subpackets than
a certain threshold, hence forcing S to be less than some
certain number, and inevitably forcing Λ to be less than a
certain value. In a nutshell, Λ must be generally less than the
total number of users since it is known that traditional coded
caching techniques require file sizes that scale exponentially
with Λ (cf. [6], [7].). In broad terms, reducing the number of
cache states leads to a reduction in the coding gain, hinting out
that the subpacketization bottleneck is in fact a major factor
on the performance.

In this work, we aim to exploit cache-size differences and
optimize the individual cache sizes to mitigate the cache-load
imbalance bottleneck in stochastic shared-cache networks. To
do so, we propose a coded caching scheme that optimizes the
individual cache sizes based on each cache’s load statistics,
subject to a given cumulative cache capacity. We characterize
the performance of our scheme and numerically verify its
effectiveness in substantially ameliorating the impact of cache-
load imbalance on the coding gain. We also show that for
a deterministic user-to-cache association setting, our scheme
achieves the same state-of-the-art (SoA) delivery time as
of [18] with a significant (exponential) reduction in subpack-
etization, thus making our scheme more suitable than [18] to
apply in HetNets in the finite file size regime.

1When adopting the cache placement strategy in [1] for Λ cache-enabled
users, we refer the content to be placed in a single cache as a cache state.

B. Notations
Throughout this paper, we use the notation [z] ,

[1, 2, . . . , z], and we use Q\P to denote the set difference
of P and Q, which is the set of elements in Q but not in
P. We use X [n]

k , {δ : δ ⊆ [n], |δ| = k} and we use δ(i) to
denote the ith element of δ.

II. NETWORK SETTING

We consider a heterogeneous cache-aided network setting
which consists of a base station (BS) having access to a library
of N unit-sized files F =

{
F 1, F 2, . . . , FN

}
, as well as

consists of Λ cache-enabled helper nodes (i.e., caches), and
K receiving users. The BS delivers content via an error-free
broadcast link of bounded capacity per unit of time to K users,
with the assistance of helper nodes. We assume that users
within the coverage area of a cache λ ∈ [Λ] have direct access
to the content stored at that cache. We consider the scenario
of non-uniform cache population intensities where the number
of users served by each cache may not be identical. For any
cache λ ∈ [Λ], let pλ be the probability that a user appears in
the coverage area of this λth cache-enable helper node, and
let p = [p1, p2, . . . , pΛ] denote the cache population intensities
vector, where

∑
λ∈[Λ] pλ = 1. Without loss of generality, we

assume that p1 ≥ p2 ≥ · · · ≥ pΛ. At any given instance, we
denote V = [v1, v2, . . . , vΛ] to be the cache population vector,
where vλ is the number of users having access to the content
of cache λ ∈ [Λ], and we let V̄ = Kp = [v̄1, v̄2, . . . , v̄Λ] be
the expected cache population vector.

The size of each cache λ ∈ [Λ] is the design parameter
Mλ ∈ (0, N ] (measured in units of file), adhering to a
cumulative sum cache-size constraint

∑Λ
λ=1Mλ = MΣ. For

any cache λ ∈ [Λ], we denote by γλ , Mλ

N the normalized
cache capacity, and subsequently we have the normalized
cache capacity vector γ = [γ1, γ2, . . . , γΛ]. Consequently, the
normalized cumulative cache-size constraint takes the form

Λ∑
λ=1

γλ = t ,
MΣ

N
. (1)

The communication process consists of three phases; the stor-
age allocation phase, the content placement phase and the de-
livery phase. The storage allocation phase involves allocating
the cumulative cache capacity MΣ (or the normalized cumu-
lative cache capacity t) to the caches subject to (1), a process
that results in the aforementioned normalized cache capacity
vector γ. The content placement phase involves the placement
of a portion of library-content, Zλ, in each cache λ ∈ [Λ] —
respecting its allocated cache capacity γλ — according to a
certain placement strategy Z = [Z1,Z2, . . . ,ZΛ]. We assume
that the first two phases are aware of the cache population
intensities p. However, these two phases are oblivious to
the actual requests generated during the delivery phase. The
delivery phase begins after each user k ∈ [K] appears within
the coverage area of one of the caches, and requests a content
file F dk ∈ F , where dk is the index of the file requested
by user k ∈ [K]. As is common in coded caching works, we
assume that each user requests a different file (i.e., worst-case).



Then for any request vector d = [d1, . . . , dv1
, dv1+1, . . . , dK ],

using the knowledge of the content stored at each cache
Zλ ∈ Z , and the user-to-cache association, the BS delivers
the content to the user.

A. Problem Definition

For a given normalized cache-size budget t, and cache
population intensities vector p, our goal is to design a content
placement strategy Z , and a delivery scheme for the system
where a BS is serving K users with the help of Λ caches.
Then our goal is to evaluate its performance in terms of the
delivery time (delay), which corresponds to the time needed to
complete the delivery of any request vector d, where the time
scale is normalized such that a unit of time corresponds to the
optimal amount of time needed to send a single file from the
transmitter to the receiver, had there been no caching and no
interference. Given the random nature of our problem where
at any given instance of the problem we may experience a
different cache population vector V, our measure of interest
is the average delay

T (t) = EV[T (V)] =
∑
V∈V

P (V)T (V), (2)

where T (V) is the time needed to complete the delivery of any
request vector d corresponding to a specific cache population
vector V, where V is the set of all possible cache population
vectors, and where P (V) is the probability of observing the
cache population vector V.

III. MAIN RESULT

In this section, we first present our main results on the
performance of the stochastic network setting described in
Section II. After doing so, we will also discuss the applicability
as well as the efficacy of our proposed scheme for a determin-
istic shared cache setting studied in [18] by showing that it
provides an exponential reduction in the subpacketization. Our
first result is the characterization of the achievable delivery
time T (V) for any cache population vector V. Crucial to
this characterization is the greatest common divisor (GCD) of
vector V̄, which we denote by α, and the partition of V into a
set BV = [V1,V2, . . . ,VβV ] of βV = maxi∈[Λ]

αvi
v̄i

vectors
according to the partition algorithm presented in Algorithm 1.
Each resulting partition vector Vj = [vj1, v

j
2, . . . , v

j
Λ] will then

satisfy vjλ ≤
v̄λ
α , where

∑
j∈[βV] v

j
λ = vλ, ∀λ ∈ [Λ]. Under

the assumption of a random user-to-cache association with
cache population intensities vector p such that the expected
cache population v̄λ ∈ V̄ is a non-negative integer for each
cache λ = [Λ], the achievable delay is given in the following
theorem.

Theorem 1. In the K-user, Λ-cache setting with a normalized
cache budget t, and a random user-to-cache association with
cache population intensities vector p, the delivery time for any

cache population vector V

T (V) =
∑
j∈[βV]

∑
τ∈X [Λ]

t+1

t+1∏
i=1

v̄τ(i)

α −
∑

τ∈X
Aj
t+1

t+1∏
i=1

(
v̄τ(i)

α − vjτ(i)

)
∑

τ∈X [Λ]
t

t∏
i=1

v̄τ(i)

α

(3)

is achievable if the expected cache population vector V̄ is a
non-negative integer vector, where Aj ⊆ [Λ] is a subset of the
set of caches, such that for each cache λ ∈ Aj , v̄λα > vjλ.

Proof. The proof is deferred to Section IV.

With Theorem 1 in hand, we present our next result, which
is the average delay T (t) corresponding to our stochastic
network setting.

Theorem 2. In the K-user, Λ-cache setting with a normalized
cache budget t, and a random user-to-cache association with
cache population intensities vector p, the average delay of

T (t) =
∑
V∈V

T (V)K!∏
λ∈[Λ] vλ

∏
λ∈[Λ]

pvλλ (4)

is achievable if the expected cache population vector V̄ is a
non-negative integer vector.

Proof. From the fact that the probability distribution P (V)
follows the well-known multinomial distribution with param-
eter p, we have

P (V) =
K!∏

λ∈[Λ] vλ

∏
λ∈[Λ]

pvλλ . (5)

Combining (3) with (5) allows us to obtain (4), which con-
cludes the proof.

Next, we see the applicability of our scheme in a similar
setting, but with a fixed user-to-cache association, which was
initially studied in [18].

Corollary 1. In the K-user, Λ-cache setting with a normalized
cache budget t, and a fixed user-to-cache association with
cache population vector V̄, the proposed scheme in Section
IV achieves the delivery time of

T (V̄) = α

∑
τ∈X [Λ]

t+1

t+1∏
i=1

v̄τ(i)

α

∑
τ∈X [Λ]

t

t∏
i=1

v̄τ(i)

α

, (6)

which is same as of [18, equation (11)] and it requires the
subpacketization rate of

S =
∑

τ∈X [Λ]
t

t∏
j=1

v̄τ(j)

α
, (7)

which is αt times less than the subpacketization rate of [18,
equation (7)].

Proof. The analysis of our scheme is given in Section IV. In
particular, the proof is straightforward from (10) and (13).

Corollary 1 reveals the substantial benefits of our scheme
compared to the SoA [18] as it achieves the same delivery
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Fig. 2: Comparison of the required subpacketization.

time with a significantly reduced – with a factor of αt – sub-
packetization. This exponential reduction in subpacketization
is a crucial contribution as the subpacketization is a major
bottleneck in the applicability of coded caching schemes [6],
[16] especially in the finite file size regimes. To illustrate this
gain, in Figure 2, we compare the required subpacketization of
our scheme with the scheme in [18] for V̄ = [8, 6, 6, 4, 2, 2].
We can see that even for a modest network consisting of
an extremely small number of users, our scheme requires
significantly less subpacketization.

Remark 1. An interesting observation of our scheme is
that α can be treated as a trade-off parameter between the
subpacketization and the delivery time. For example, when
V̄ = [20, 15, 15, 5, 5, 4], we have α = 1. However, if we
associate one virtual user to the Λ-th cache, α increases from
1 to 5, thus, reducing the subpacketization by a factor of 5t

with a modest increase in the delivery time. We leave the study
of this trade-off for future work.

IV. PLACEMENT AND DELIVERY

In this section, we present the proof of Theorem 1. We
describe the content placement and delivery strategies that can
achieve the delay of (3).

A. Content Placement
The content placement scheme is based on the idea of

assigning more storage capacity to the caches with high
population intensities. We denote V̂ = [v̂1, v̂2, . . . , v̂Λ] as the
base cache population vector, which is given as V̂ , V̄

α ,
where α is the GCD of the elements in V̄. For a base cache
population vector V̂, we assume that there are Λ̂ ,

∑Λ
λ=1 v̂λ

virtual caches such that each cache λ ∈ [Λ] consists of v̂λ
virtual caches. We then use C = [1, 2, . . . , Λ̂] to denote the
set of virtual caches, and Cλ = [v̂λ−1 + 1, . . . , v̂λ−1 + v̂λ]
(assuming v̂0 , 0) to denote the set of virtual caches that
belongs to cache λ ∈ [Λ]. Let QCt ⊆ X Ct be the set of all
possible t-tuples of C such that for each tuple τ ∈ QCt , no two
virtual caches i, j ∈ τ belong to the same cache λ ∈ [Λ]. Next,
each content file F i ∈ F is divided into

∣∣QCt ∣∣ subpackets, and
labeled as F i =

{
F iτ
}
τ∈QCt

. Then, the set of contents to be
cached at each cache λ ∈ [Λ] is given by

Zλ =
{
Zλ̂ : λ̂ ∈ Cλ

}
, (8)

where
Zλ̂ =

{
F iτ : F iτ ∈ F i, τ ∈ QCt , λ̂ ∈ τ, F i ∈ F

}
. (9)

From the fact that for each cache λ we have v̂λ virtual caches,
we can conclude that for any t-tuple of caches τ ∈ X [Λ]

t there

must be
∏t
i=1 v̂τ(i) t-tuples of virtual caches that belong to

the set QCt . Consequently, the number of t-tuples of C in the
set QCt is given as ∣∣QCt ∣∣ =

∑
τ∈X [Λ]

t

t∏
j=1

v̂τ(j), (10)

and the normalized cache capacity required at any cache λ ∈
[Λ] is given as

γλ =
|Zλ|
N
∣∣QCt ∣∣ =

∑
τ∈X [Λ]

t :τ3λ

t∏
j=1

v̂τ(j)

∑
τ∈X [Λ]

t

t∏
j=1

v̂τ(j)

. (11)

Thus, (11) yields our proposed storage allocation strategy.
We can see that

∑
λ∈[Λ] γλ = t, as for each τ ∈ QCt ,

the corresponding subpackets
{
F iτ : F i ∈ F

}
are placed in t

caches. Thus, the content placement strategy satisfies the total
caching budget constraint (1).

Algorithm 1 Cache Population Vector Partition

Input: V and V̄
Output: BV
Initialization:α← GCD(V̄), βV←max

i∈[Λ]

αvi
v̄i

, BV ← φ

for j from 1 to βV do
for i from 1 to Λ do

if vi > v̄i
α

vji ←
v̄i
α , vi ← vi − v̄i

α
else
vji ← vi, vi ← 0

end if
end for
BV ← [BV , [vj1, v

j
2, . . . , v

j
Λ]]

end for

B. Content Delivery
We will consider the worst-case delivery scenario where

each user requests a different file. Once the BS is notified
of the cache population vector V and the corresponding
request vector d, it commences delivery. We propose a delivery
scheme that is completed in βV = maxi∈[Λ]

vi
v̂i

rounds, where
the content is delivered to at most v̂λ users from each cache
λ ∈ [Λ] in each round. We divide the cache population vector
V into a set of βV vectors BV = [V1,V2, . . . ,VβV ] based
on the procedure described in Algorithm 1, such that for
all j ∈ [βV ], Vj = [vj1, v

i
2, . . . , v

j
Λ] satisfies vjλ ≤ v̂λ and∑

j∈[βV] v
j
λ = vλ for all λ ∈ [Λ]. In the following, we describe

our delivery strategy for the two only possible cases after
applying Algorithm 1.

Case 1: Vj = V̂: In this case, the BS will serve Λ̂
users based on the base cache population vector V̂. Let
U = [u1, u2, . . . , uΛ̂] denote the set of indices of users that
corresponds to V̂, and Uλ = {ui}

v̂λ−1+v̂λ
i=v̂λ−1+1 be the set of

users associated to cache λ ∈ [Λ] (assuming v̂0 = 0). The
corresponding request vector is dV̂ =

[
du1 , du2 , . . . , duΛ̂

]
.



Let QCt+1 ⊆ X Ct+1 be the set of all possible (t + 1)-tuples
of C such that for each tuple τ ∈ QCt+1, no two virtual caches
i, j ∈ τ belong to the same physical cache. Then, for each
(t+ 1)-tuple τ ∈ QCt+1, the BS transmits the following XOR:

Yτ = ⊕λ̂∈τF
du
λ̂

τ\λ̂
. (12)

The structure of Yτ allows to serve t+1 users simultaneously
as each user can easily decode its required subpacket using
the content Zλ of its associated cache λ ∈ [Λ]. Let Y ={
Yτ : τ ∈ QCt+1

}
denote the set of all transmissions. In order

to completely serve the request vector dV̂ corresponding to
cache population vector V̂, the BS transmits |Y| =

∣∣QCt+1

∣∣ =∑
τ∈X [Λ]

t+1

t+1∏
j=1

v̂τ(j) XORs in the set Y . Thus the corresponding

transmission delay is given as

T (V̂) =

∑
τ∈X [Λ]

t+1

t+1∏
i=1

v̂τ(i)

∑
τ∈X [Λ]

t

t∏
i=1

v̂τ(i)

. (13)

Case 2: Vj 3 vjλ < v̂λ for some λ ∈ [Λ]: The delivery
scheme for this case is exactly the same as for the case when
Vj = V̂. However, the number of users to be served in this
case is less than Λ̂, i.e., |U| < Λ̂. Hence, there may exists some
subpackets in Y that does not serve any user, and the BS only
transmits the subpacket Yτ ∈ Y if it serves at least one user.
Let Aj⊆ [Λ] be the subset of caches such that for each cache
λ∈Aj , vjλ<v̂λ holds. Then, for any cache population vector
Vj , the total number of subpackets Yτ ∈ Y that will not serve

any user is given by
∑

τ∈X
Aj
t+1

t+1∏
i=1

(v̂τ(i) − vjτ(i)). Consequently,

for any cache population vector Vj 3 vjλ ≤ v̂λ ∀ λ ∈ [Λ], the
transmission delay T (Vj) is given as

T (Vj) =

∑
τ∈X [Λ]

t+1

t+1∏
i=1

v̂τ(i) −
∑

τ∈X
Aj
t+1

t+1∏
i=1

(v̂τ(i) − vjτ(i))

∑
τ∈X [Λ]

t

t∏
i=1

v̂τ(i)

. (14)

Hence, the transmission delay T (V) corresponding to the
cache population vector V is equal to (3).

Example: Let us take the example of K = N = 10,
Λ = 4, t = 2, and p = (0.4, 0.2, 0.2, 0.2). Then the
expected cache population vector is V̄ = [4, 2, 2, 2], and
consequently V̂ = [2, 1, 1, 1] (α = 2 for V̄). The set of
virtual caches is C = [1, 2, 3, 4, 5], where the virtual caches
C1 = [1, 2], C2 = [3], C3 = [4], and C4 = [5] belong
to the caches 1, 2, 3, and 4 respectively. Then we have
nine 2-tuples in the set QCt = [(1, 3), (1, 4), (1, 5), (2, 3),
(2, 4), (2, 5), (3, 4), (3, 5), (4, 5)] and each file is divided into
nine subpackets. The content placement at each cache is given
as
Z1 =

{
F iτ :τ ∈ [(1, 3),(1, 4),(1, 5),(2, 3), (2, 4), (2, 5)], i∈ [N ]

}
,

Z2 =
{
F iτ :τ ∈ [(1, 3),(2, 3),(3, 4),(3, 5)], i∈ [N ]

}
,

Z3 =
{
F iτ :τ ∈ [(1, 4),(2, 4),(3, 4),(4, 5)], i∈ [N ]

}
,

Z4 =
{
F iτ :τ ∈ [(1, 5),(2, 5),(3, 5),(4, 5)], i∈ [N ]

}
.

This placement leads to the normalized cache capacity allo-
cation of γ = [ 6

9 ,
4
9 ,

4
9 ,

4
9 ]. Now, let us move to the content

delivery phase. Let us assume the case of V = [6, 2, 1, 1],
where users 1 to 6 have access to cache 1 and request the
content F 1, F 2, F 3, F 4, F 5, and F 6 respectively, users
7 and 8 have access to cache 2 and request F 7 and F 8

respectively, user 9 has access to cache 3 and requests F 9,
and user 10 has access to cache 4 and requests F 10. The
BS partitions the cache population vector into the set of
βV = 3 vectors, and transmits the content in 3 rounds.
The partition of V based on Algorithm 1 leads to BV =
[(2, 1, 1, 1), (2, 1, 0, 0), (2, 0, 0, 0)], and the corresponding de-
mand vectors are dV1

= [1, 2, 7, 9, 10], dV2

= [3, 4, 8], and
dV3

= [5, 6]. In the first round of delivery, the BS serves user
1 and 2 from cache 1, user 7 from cache 2, user 9 from cache
3, and user 10 from cache 4. For this round, we have V1 = V̂,
thus, for the demand vector dV1

= [1, 2, 7, 9, 10], the BS
transmits the following seven subpackets based on set QCt+1 =
[(1,3,4), (1,3,5), (1,4,5), (2,3,4), (2,3,5), (2,4,5), (3,4,5)],
Y1,3,4 =F 1

3,4 ⊕ F 7
1,4 ⊕ F 9

1,3, Y1,3,5 =F 1
3,5 ⊕ F 7

1,5 ⊕ F 10
1,3

Y1,4,5 =F 1
4,5 ⊕ F 9

1,5 ⊕ F 10
1,4, Y2,3,4 =F 2

3,4 ⊕ F 7
2,4 ⊕ F 9

2,3

Y2,3,5 =F 2
3,5 ⊕ F 7

2,5 ⊕ F 10
2,3, Y2,4,5 =F 2

4,5 ⊕ F 9
2,5 ⊕ F 10

2,4

Y3,4,5 =F 7
4,5 ⊕ F 9

3,5 ⊕ F 10
3,4.

After this round user 1, 2, 7, 9, and 10 can successfully decode
their required files. Then, in the second round of delivery, the
BS serves users 3 and 4 from cache 1 and user 8 from cache
2. For this round, we have V2 6= V̂, A2 = [3, 4], and the
demand vector dV2

= [3, 4, 8]. Thus, the BS transmits the
following seven subpackets based on set QCt+1,

Y1,3,4 = F 3
3,4 ⊕ F 8

1,4, Y1,3,5 = F 3
3,5 ⊕ F 8

1,5

Y2,3,4 = F 4
3,4 ⊕ F 8

2,4, Y2,3,5 = F 4
3,5 ⊕ F 8

2,5

Y1,4,5 = F 3
4,5, Y2,4,5 = F 4

4,5, Y3,4,5 = F 8
4,5.

After this round users 3, 4, and 8 can successfully decode
their required files. Next, in the final round of delivery, the BS
serves users 5 and 6 from cache 1. For this round, we have
V3 6= V̂, A3 = [2, 3, 4], and the demand vector dV3

= [5, 6].
We can see that subpacket Y3,4,5 will not serve any user, thus,
the BS transmits the following six subpackets based on set
QCt+1\(3, 4, 5),

Y1,3,4 = F 5
3,4, Y1,3,5 = F 5

3,5, Y1,4,5 = F 5
4,5

Y2,3,4 = F 6
3,4, Y2,3,5 = F 6

3,5, Y2,4,5 = F 6
4,5.

After this round users 5 and 6 can successfully decode their
required files. This completes the content delivery phase,
which results in a delivery time of T (V) = 20

9 .

V. NUMERICAL EVALUATION

We know from Theorem 2 that it is computationally ex-
pensive to numerically evaluate the exact average delay even
for small system parameters. This is due to the fact that
such evaluation would require the generation of the set V of
all possible cache population vectors V, which corresponds
to the so-called weak composition problem, and where the
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Fig. 3: T (t) from (15) (i.e., N-UCS) vs Tuni from (16) (i.e.,
UCS).
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Fig. 4: Cache capacity allocations

cardinality of V is known to grow exponentially with system
parameters K and Λ. Instead, we proceed to numerically
evaluate our results by using the sampling-based numerical
(SBN) approximation method, where we generate a large set
V1 of randomly generated cache population vectors V based
on cache population intensities p, and approximate T (t) as

T (t) ≈ 1

|V1|
∑
V∈V1

T (V), (15)

where T (V) is given in (3). Then, the corresponding ap-
proximate performance is evaluated by comparing it with the
achievable average delay for the uniform cache size from [16],
which is given as

Tuni ≈
1

|V1|
∑
V∈V1

Λ−t∑
λ=1

L(λ)

(
Λ−λ
t

)(
Λ
t

) , (16)

where L = sort(V) is the sorted (in descending order) version
of the cache load vector V.

Figure 3 compares the SBN approximation from (15) (i.e.,
our non-uniform cache size (N-UCS) scheme) with the SBN
approximation from (16) (i.e., uniform cache size (UCS)
scheme [16]) for |V1| = 10000, K = 400, Λ = 10,
and p = [0.2, 0.2, 0.15, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05],
where V1 is generated based on cache population intensities
vector p. This figure highlights the significant gain that can
be achieved by allocating the cache capacity according to
the cache population intensities as our scheme significantly
outperforms the uniform cache size based coded caching
scheme. For the same parameter setup, Figure 4 compares
the cache capacity allocations of our scheme (N-UCS) with
uniform cache capacity allocations (UCS) for various capacity
budgets t. This new figure illustrates how our scheme allocates
cache capacity in proportion with cache population intensities.

VI. CONCLUSION

The work explored the coded caching problem in stochastic
shared-cache networks, where each user can appear within the
coverage area of one of Λ caches with a given probability, and
in this context proposed a scheme that optimizes the storage
allocation of caches under a cumulative cache-size constraint.
The novel scheme alleviates the adverse effect of cache-
load-imbalance by significantly ameliorating the detrimental
performance deterioration due to randomness. Furthermore,
for each and every instance of the coded caching problem, our
scheme substantially alleviates – compared to the best known
state-of-art — the well-known subpacketization bottleneck.
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