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Abstract

In the context of a communication network with no QoS guarantees, we describe the problem

of adaptive streaming of layer encoded multimedia presentation data as a two-phase decision

problem. In phase one the application transfers only base layer data that comprise a presenta-

tion of minimum quality, which is stored at the client. When the application determines that

commencing play out will result in an uninterrupted presentation of at least minimum quality,

it does so, and then transitions into phase two. The application then loops on the decision on

which data to send next: another base layer, or an enhancement layer. We present two di�erent

algorithms for making this decision, based on two di�erent presentation quality metrics: the

total quality metric, which yields an optimization problem that can be solved with dynamic

programming, and the re�ned max-min metric, which yields a computationally inexpensive

algorithm for computing an optimal decision. We also consider the problem of progressively

rendering static objects after their start times as a means of improving presentation quality.

Using a slide show presentation with a randomly generated sequence of layer-encoded JPEG

images, we compare the various approaches.
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1 Introduction

A multimedia presentation consists of a collection of objects, with each object having one or more

rendering intervals within the presentation timeline. These intervals specify the objects' start times

and end times relative to the presentation timeline. For example, the presentation might consist of

an audio stream that is played continuously while a sequence of images is displayed. Other examples

might include one or more video clips (played simultaneously or sequentially), animation, text, etc.

In this paper we consider the problem of streaming a layer-encoded multimedia presentation

from a server to an arbitrary client over a communication network with no QoS guarantees, such

as the global IP network. Studies of TCP bandwidth on the Internet [7] demonstrate the non-

stationarity of TCP throughput. For this reason, the application must continuously monitor packet

loss and delay characteristics, and use this in adjusting its expectation of future bandwidth. We

assume the application has such an estimator, which will necessarily be related to the transport

protocol used, whether it be TCP or an application speci�c protocol implemented over UDP.

The advantage of layer-encoding multimedia presentation data is that some layers can be

dropped to reduce the size of the data representation, which will increase the speed at which

the presentation can be transported over the network. With faster transmission, the end user is

saved from waiting for presentation data to be pre-fetched into a playback bu�er. However, fewer

layers means lower quality, so we would like to send as many layers as possible while keeping the

start up latency to a minimum.

We assume that a presentation comprised of only the �rst layer of each object represents a

presentation of minimum acceptable quality. We will use the term base layer when referring to the

�rst layer, and enhancement layer when referring to higher layers, which contribute to quality but

are not required for achieving the minimum quality level.

Our �rst priority is to minimize the start up delay for play out of a presentation comprised only

of base layers. After establishing the minimum start up delay, our second priority is to improve the

quality of the presentation by sending enhancement layers. Corresponding to these two priorities,

we have two decision phases through which the application passes. In the �rst phase, the application

simply sends base layers for objects in the order of their �rst appearance in the presentation. While

it is sending base layer data, it collects information about the available bandwidth and uses it to

decide when to start playing the presentation. After the presentation starts playing, the application

enters into the second phase in which it loops on the decision of which layer to send next.
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We allow each layer level of each object to have a general quality value. In this manner, there

is considerable 
exibility in de�ning the quality of a rendered object. For example, the quality of

an object could be the percentage of layers rendered, the percentage of compressed bits rendered,

or the mean squared error of the rendered object.

There are several natural measures for the overall quality of a presentation. One natural measure

is the sum of the qualities of the individual objects, which we refer to as the total quality of the

presentation. For this total criterion we develop a dynamic programming algorithm that computes

the number of layers to send of each object to maximize the presentation quality, constrained by

playback deadlines and a lower bound on expected future bandwidth. However, in its attempt to

generate a presentation with highest total quality score, the algorithm may produce presentations

with highly varying object qualities. To avoid this result, we introduce a new criterion that we refer

to as the re�ned max-min criterion. The re�ned max-min criterion strives to equalize the quality

values of all objects while improving quality in a uniform manner when extra bandwidth remains

available. We also consider the problem of gradually rendering layers between their start and end

times. Gradual rendering provides more 
exibility at the cost of missing some start-time deadlines.

In the context of stored VBR-encoded video, several papers have studied the transmission of

video from a server to a client with �nite storage; a partial list includes [5, 8, 9, 10, 11, 12, 13, 14].

All of these papers assume that the video is encoded with one layer. These papers have examined

a variety of smoothing and pre-fetching schemes that minimize bandwidth usage for �xed start-up

delay and �nite client storage capacity. Although �nite client storage remains an important issue

for mobile handsets, the large majority of Internet users today have abundant local storage. The

schemes that we have developed in this paper target these users.

Recently, Zhao, Willebeek-LeMair and Tiwari have considered \malleable multimedia presenta-

tions" [4, 5]. Their model is similar to ours in that the objects are assumed to be encoded in layers.

A central assumption in their work is that client storage is �nite. They investigate the tradeo�

between the size of client storage and the number of layers that can be transmitted, assuming

that the transmission bandwidth is limited. In [5], the authors assume all objects have the same

number layers and only consider policies that transmit the same number of layers for each object.

They propose a binary search algorithm to search through the number of layers in order to �nd the

maximum number of layers that can be sent while satisfying the bandwidth constraint. In [4] they

provide an enhancement algorithm that adds one layer to a subset of the objects while remaining
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feasible.

Our work di�ers from [4] and [5] in many respects. First, we place the problem within the context

of a two-phase decision problem in which start up delay is minimized, which is not done in [4] and

[5]. Second, we allow for general quality values for each layer for each object. References [4] and

[5] only consider the special case where quality equals number of rendered layers, which is in many

circumstances not an accurate measure of the quality. Third, we examine optimization criteria that

are di�erent from simply �nding the maximum number of layers that can be transmitted for all

objects. We consider the natural total quality criterion and show how optimizing total quality can

be formulated as a dynamic programming problem. We also propose a re�ned max-min criterion,

which makes e�cient use of the available bandwidth while striving to maximize the worst-case

quality for rendered objects. We present numerical testing with real progressive JPEG data to

investigate and compare the di�erent quality value de�nitions and optimization criteria. Finally,

we introduce progressive rendering of static objects into the optimization objective, and study how

progressive rendering in
uences the optimal policy.

2 Determining Startup Delay

Frequently a distinction is made between continuous and discrete media; audio and video are

classi�ed as continuous, while still images and text are classi�ed as discrete. For our purposes,

the main di�erence is that the rendering of a discrete object can be started only after the data

comprising the object arrives at the client in its entirety, but the rendering of a continuous media

object can be started before all of its data arrives at the client. In our approach, however, we

decompose continuous media into separate discrete objects with relatively short rendering periods.

This allows us to treat all data components of the presentation as atomic units with arrival deadlines

at the client equal to the starting point of their rendering intervals.

Because we are transmitting data over a network with no QoS guarantees, after a communication

channel is established, the application does not know the rate at which it can transmit data from

source to destination. For this reason, the application begins by transmitting only base layer data,

which it stores in a pre-fetch bu�er at the client until it determines that it can safely begin play

out of the presentation without the threat of the presentation stalling.

While the application is transmitting base layers, it performs two other tasks in parallel. First,
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it records a packet transmission history, which it uses for predicting future bandwidth. Second, it

loops on the decision whether to begin playing the presentation.

We do not assume any particular transport protocol, such as TCP or a particular UDP-based

scheme. However, for whatever transport mechanism is employed, we assume the application has a

reasonable method of estimating from the packet transmission history a lower bound for expected

future bandwidth. We let B(a; b) represent a lower bound for the number of bits the application

expects can be delivered from server to client in the time interval [a; b].

i index used to label the presentation objects

N the number of objects in the presentation

Li the total number of layers for object i

ji layers of object i to be transmitted (and rendered)

B(a; b) estimated lower bound on bandwidth on [a; b]

ti deadline for the arrival of layers of object i

Figure 1: Notation introduced in Sec. 2

Let N represent the number of discrete objects in the presentation after decomposition of the

continuous media, and let ti represent the starting point of the initial rendering interval of object

i. We assume the objects are ordered by increasing values of their deadlines. We measure time

relative to the start of the presentation, so that the presentation starts at time t = 0. We let Li

represent the number of layers in object i.

Suppose the application has delivered the base layers of objects 1 through q � 1 to the client,

and is now considering whether to start play out. Let xi;j be the number of bits in the jth layer of

object i. If the application starts play out now, all of the unsent base layers will arrive on-time if

the cumulative bits needed at each deadline is less than or equal to the cumulative bits that can be

delivered. Thus, the application starts play out if the following inequalities are satis�ed:

xq;1 � B(0; tq)

xq;1 + xq+1;1 � B(0; tq+1)

...

xq;1 + : : :+ xN;1 � B(0; tN )

If this system of inequalities is not satis�ed, the application does not begin play out, but continues
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to pre-fetch additional base layers.

3 Layer Selection

After the application gives the command to start playback, it transitions into phase two, in which it

loops on the decision of which layer to send next. To make this decision, the application continues

to record transmission statistics and re�nes its estimate of a lower bound on future bandwidth.

With this estimate, it determines a sequence of layers P (which we call a transmission policy) that

can be delivered on-time (which we call feasibility) and that maximizes an objective measure of

presentation quality Q(P ). The �rst layer in the sequence comprising this policy is chosen to be

transmitted next.

Suppose that the rendering of the �rst r objects have already started, so the application only

needs to concern itself with scheduling the delivery of layers from objects r + 1 to N . To simplify

notation, we re-label these objects as 1 through M .

M the number of non-rendered objects

P the transmission policy (j1; : : : ; jM )

Q(P ) presentation quality resulting from P

bi expected bandwidth between deadlines ti�1 and ti

yi(j) unsent bits of object i in layers 1 through j

qi(j) quality of object i when layers 1 through j are rendered

Figure 2: Notation introduced in Sec. 3

A transmission policy speci�es the number of layers to send for each object, which we represent

as an M-dimensional vector P whose ith component ji represents the number of layers of object i

to send to the client. We call a policy feasible if all of the bits it sends arrive at the client prior to

their deadlines.

Let bi = B(ti�1; ti), the application's estimate of the number of bits that can be transmitted

between the deadlines ti�1 and ti. At each deadline, the cumulative number of bits needed must be

less than or equal to the cumulative bits that will be transmitted. Thus, if we let yi(j) equal the

unsent bits of object i that appear in layers 1 through j, then policy P is feasible if the following
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system of M inequalities hold.

y1(j1) � b1

y1(j1) + y2(j2) � b1 + b2
...

y1(j1) + : : : yM (jM ) � b1 + : : :+ bM

Now that we have de�ned the set of feasible policies, we need to determine which of these policies

are optimal, that is, which policies result in presentations with the best quality. In the following

two sections, we consider two measures of overall presentation quality, and provide algorithms that

converge to optimal policies under these measures. In both sections, we assume a general measure

qi(j) for the quality of an individual object i when layers 1 through j are used for its rendering.

4 The Total Quality Criterion

After the application begins play back, and enters into phase 2, it loops on the decision regarding

which layer to send next. To make this decision, it uses its estimate of future bandwidth to compute

an optimal transmission policy, that is, a feasible transmission policy that maximizes the overall

quality of the presentation. In this section, we use dynamic programming to develop an e�cient

algorithm for the determination of the optimal transmission policy with respect to the total quality

metric, which equates the overall quality of a presentation with the sum of the qualities of its

component objects. That is,

Q(P ) =

MX
i=0

qi(ji)

A brute-force determination of Q(P ) requires L1L2 : : :LM calculations, which is not polynomial-

bounded in the number of objects. However, there exists a recursive formulation of the problem

that yields an algorithm that terminates in polynomial time. To do this, we �rst develop some

terminology, which we use to state a theorem. Then we show how the theorem provides an e�cient

method of solving the optimization problem. We end the section with a proof of the theorem.

Suppose we only want to send objects i throughM , and that we have s surplus bits of bandwidth

available to do this, in addition to the bi; : : : ; bM bits that are available in the intervals terminating

at deadlines ti; : : : ; tM . The sub-policy (ji; : : : ; jM ) is feasible if it satis�es the following deadline
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constraints:

yi(ji) � s+ bi

yi(ji) + yi+1(ji+1) � s+ bi + bi+1

...

yi(ji) + : : :+ yM (jM ) � s + bi + : : :+ bM

(1)

Let 
i(s) be the set of all such feasible sub-policies, that is, all sub-policies that satisfy (1). We

de�ne f(i; s) to be the maximum total quality attainable over the set of feasible sub-policies. That

is,

f(i; s) = max

i(s)

�
qi(ji) + : : :+ qM (jM )

�
. (2)

By de�nition, f(1; 0) is the maximumquality for the presentation. We develop a recursive expression

for f that will allow us to compute f(s;M ), f(M �1; s), : : :, f(2; s), f(1; 0), in that order. For this

purpose, de�ne Xi(s) to be the set of all possible values for the number of layers of object i that

can be sent within a bandwidth of s (surplus) bits plus the bits that can be transmitted between

deadlines ti�1 and ti. That is,

Xi(s) =
n
j j yi(j) � s + bi

o
: (3)

Theorem 1 f(i; s) can be expressed recursively as follows:

f(M; s) = max
j2XM (s)

�
qM(j)

�
, (4)

and for i =M � 1; : : : ; 1,

f(i; s) = max
j2Xi(s)

�
qi(j) + f

�
i + 1; s+ bi � yi(j)

��
. (5)

This theorem provides a way to compute an optimal policy using the following procedure:

1. Use (4) to compute and store f(M; s) for values of s that range from 0 to the total number

of presentation bits (incrementing s by some reasonable value, such as 100).

2. Similarly, for varying values of s, use (5) to compute and store f(M � 1; s), f(M � 2; s) ,: : :,

f(2; s), in that order.

3. Compute bj1 that maximizes (5) for f(1; 0), that is, bj1 maximizes q1(j) + f(2; b1 � y1(j))

over X1(0). Set bs1 to the unused bandwidth to be carried into the next interval, that is,

bs1 = b1 � y1(bj1).
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4. Repeat the following for i = 2; : : : ;M � 1:

� Compute the value bji that maximizes qi(j) + f(i + 1; bsi�1 + bi � yi(j)) over Xi(bsi�1).
� Let bsi represent the unused bandwidth to carry into the next interval, that is, bsi =

bsi�1 + bi � yi(bji).
5. Compute the value bjM that maximizes qM(j) over XM(bsM�1).

The optimal transmission policy will be (bj1; : : : ;bjM). This algorithm has complexity O(L �M � S),

where L is an upper bound for the number of layers in each object, M is the number of objects,

and S is the number of presentation bits.

Proof Let f(s; i) be de�ned as in (2), and let g(s; i) be de�ned as in (4) and (5). We use an

inductive argument to show that f and g are identical. For the case of i = M , note that since


M (s) =
n
(j) j yM (j) � s + bM

o
and Xi(s) =

n
j j yM (j) � s + bM

o
, j ranges through the same

values in the maximizations of qM (j) over 
M (s) in (2) and XM(s) in (4). Thus,

f(M; s) = max

M (s)

�
qM (jM )

�
= max

XM (s)

�
qM(j)

�
= g(M; s):

This establishes equality for the case i = M .

Now, we make the inductive assumption that g(i + 1; s) = f(i + 1; s). We demonstrate that

g(i; s) = f(i; s) by �rst showing g(i; s) � f(i; s), and then g(i; s) � f(i; s). By de�nition of g as

satisfying (5), we have

g(i; s) = max
j2Xi(s)

�
qi(j) + g

�
i + 1; s+ bi � yi(j)

��
.

Combining this with our inductive assumption, we have

g(i; s) = max
j2Xi(s)

�
qi(j) + f

�
i+ 1; s+ bi � yi(j)

��
,

and then by de�nition of f in (2),

g(i; s) = max
Xi(s)

�
qi(j) + max


i+1(s+bi�yi(j))

�
qi+1(ji+1) + : : :+ qM (jM )

��
(6)

Suppose that (ji(s); : : : ; jM(s)) maximizes qi(ji) + : : :+ qM (jM ) over 
i(s). Then by de�nition of

f in (2), we have

f(i; s) = qi

�
ji(s)

�
+ : : :+ qM

�
jM (s)

�
. (7)
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Additionally, the �rst inequality of (1), which de�nes 
i(s), gives

yi

�
ji(s)

�
� s + bi:

Thus, Xi(s), as de�ned in (3), contains ji(s). This means the outer maximization in (6) covers

ji(s). Thus we have:

g(i; s) � qi

�
ji(s)

�
+ max


i+1(s+bi�yi(ji(s)))

�
qi+1(ji+1) + : : :+ qM (jM )

�
(8)

Substituting ji(s); : : : ; jM(s) into the other inequalities in (1) (omitting the �rst inequality) produces

the following system:

yi

�
ji(s)

�
+ yi+1

�
ji+1(s)

�
� s + bi + bi+1

yi

�
ji(s)

�
+ yi+1

�
ji+1(s)

�
+ yi+2

�
ji+2(s)

�
� s + bi + bi+1 + bi+2

...

yi

�
ji(s)

�
+ yi+1

�
ji+1(s)

�
+ : : :+ yM

�
jM(s)

�
� s + bi + bi+1 + : : :+ bM

Shifting the �rst term yi

�
ji(s)

�
onto the right side of these inequalities gives us the system:

yi+1

�
ji+1(s)

�
� s + bi � yi

�
ji(s)

�
+ bi+1

yi+1

�
ji+1(s)

�
+ yi+2

�
ji+2(s)

�
� s+ bi � yi

�
ji(s)

�
+ bi+1 + bi+2

...

yi+1

�
ji+1(s)

�
+ : : :+ yM

�
jM (s)

�
� s+ bi � yi

�
ji(s)

�
+ bi+1 + bM

By de�nition of 
, this system implies that
�
ji+1(s) : : : ; jM(s)

�
2 
i+1

�
s + bi � yi

�
ji(s)

��
.

Therefore, the maximization in (8) covers the point
�
ji+1(s); : : : ; jM (s)

�
, and so we have from (8)

and (7) that

g(i; s) � qi+1

�
ji+1(s)

�
+ : : :+ qM

�
jM (s)

�
= f(i; s):

Now we complete the proof by showing g(i; s) � f(i; s). For this purpose, suppose that ji(s)

is an element in Xi(s) that maximizes the outer maximization in (6). Then we can rewrite g as

follows:

g(i; s) = qi

�
ji(s)

�
+ max


i+1(s+bi�yi(ji(s)))

�
qi+1(ji+1) + : : :+ qM (jM )

��
: (9)

Since ji(s) 2 Xi(s), we have

yi

�
ji(s)

�
� s + bi: (10)
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Now suppose that
�
ji+1(s); : : : ; jM(s)

�
solves the maximization in (9), so that

g(i; s) = qi

�
ji(s)

�
+ : : :+ qM

�
jM (s)

�
, (11)

and �
ji+1(s); : : : ; jM (s)

�
2 
i+1

�
s + bi � yi

�
ji(s)

��
. (12)

Statement (12) implies the following system of inequalities:

yi+1(ji+1(s)) � s + bi � yi(ji(s)) + bi+1

yi+1(ji+1(s)) + yi+2(ji+2(s)) � s + bi � yi(ji(s)) + bi+1 + bi+2
...

yi+1(ji+1(s)) + : : :+ yM (jM (s)) � s+ bi � yi(ji(s)) + bi+1 + : : :+ bM

(13)

If we shift the term �yi(ji(s)) appearing in each inequality to the left side, we see that (10)

and (13) imply that (ji(s); : : : ; jM(s)) satis�es (1), and thus is a member of 
i(s). Therefore,

(ji(s); : : : ; jM (s)) is covered by the maximization in (2) that de�nes f , and so we have

f(i; s) � qi

�
ji(s)

�
+ : : :+ qM

�
jM (s)

�
:

This result combined with (11) gives us f(i; s) � g(i; s). �

We will use the algorithm developed in this section to compute, in Sec. 6, optimal transmission

policies for two di�erent object quality functions at varying levels of bandwidth. We will compare

these policies with those generated from a di�erent algorithm that we develop in the next sec-

tion based on a di�erent presentation quality metric, called the max-min quality metric. Both of

these algorithms generate optimal policies under their respective criteria, and both can be used for

scheduling the delivery of presentation layers after play out has begun.

5 The Re�ned Max-Min Criterion

One possible measure of overall presentation quality is simply to take the worst object quality. A

feasible policy would then be optimal if it maximizes the minimum quality across all objects in the

presentation. We call this the max-min criterion.

Although the max-min criterion is a natural choice for a criterion of optimality, it typically

provides policies that do not allocate all the available bandwidth. Consequently, sending additional

layers for some objects may be possible, which, although not increasing the minimumquality, clearly
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improves the overall quality of the presentation. Also, in general, less cumulative bandwidth will be

available for transmitting objects with earlier deadlines, thus the minimum attainable quality will

be dominated by bandwidth available for the early objects. We now consider a re�ned max-min

criterion that overcomes these inadequacies.

With the re�ned max-min criterion, we represent the overall quality of the delivered presentation

by a vector of object qualities, appearing in increasing levels of quality. For example, suppose we

have a presentation with three objects, a transmission policy of P = (2; 4; 3), and quality values

q1(2) = 16:3, q2(4) = 30:4, and q3(3) = 20:5, so that Q(P ) = (16:3; 20:5;30:4). We let ai represent

the object that takes the ith position in the quality vector, so that in our numerical example we

have a1 = 1, a2 = 3, and a3 = 2. In general, we can express the overall presentation quality as

Q(P ) = (qa1(ja1 ); : : : ; qaM (jaM )).

It is important to note that if a policy is optimal for the re�ned max-min criterion, then it is also

optimal for the max-min criterion. However, the converse is not generally true. Thus, the re�ned

max-min criterion is a more sensible measure for the overall quality of a presentation, because in

addition to satisfying the max-min criterion, it better exploits the available bandwidth to improve

the quality of the presentation.

We now present an algorithm that determines the optimal policy under the assumption that the

quality values qi(j) are distinct for all values of i and j. Quality measures that utilize the length of

time rendered, root mean square, or number of bits, typically ful�ll this assumption. The algorithm

(Fig. 3) initializes a policy vector (j1; : : : ; jM) to the layers that have already been sent to the client.

Then it sets to 1 the layer counters ji of all objects that have not yet had their base layer sent.

This will result in a feasible policy, because the application runs this algorithm only when there is

adequate bandwidth to deliver all base layers prior to their deadlines. Then, the algorithm enters

a loop in which it tries to add a layer to the object with lowest quality. If adding a layer to this

object results in a feasible policy, then the layer counter for this object is incremented. On the

other hand, if adding a layer results in a non-feasible policy, then its layers are held �xed, and no

longer considered (by removal from S) for a possible quality improvement.

We now proceed to show that the algorithm in Fig. 3 indeed produces an optimal policy for the

re�ned max-min criterion. We �rst establish the following lemma.
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do for i = 1; : : : ;M

ji = number of layers sent of object i

if ji == 0 then ji = 1

S = f1; : : : ;Mg

do while S is not empty

�nd k 2 S s.t. qk(jk) � qi(ji) for all i in S

if (j1; : : : ; jk + 1; : : : ; jM) is feasible then

jk = jk + 1

else

remove k from S

Figure 3: Re�ned max-min algorithm

Lemma 1 When the algorithm removes an object k from S, we have that

qi(ji � 1) < qk(jk) for i 2 S.

Proof Suppose we are at the point in time when the algorithm removes k from S. Relative to this

point, let i be an arbitrary element in S, and let j0k and j0i be the number of layers assigned to

objects k and i, respectively. We demonstrate the lemma by showing:

qi(j
0

i � 1) < qk(j
0

k). (14)

Case 1 j0i = 1.

It is easy to see that (14) holds by observing that qi(j
0

i�1) = qi(0) = 0, and qk(j
0

k) � qk(1) > 0.

Case 2 j0i > 1.

Consider the point prior to the removal of k from S when the algorithm last incremented the

layer counter for object i, that is, when ji was equal to j
0

i � 1. Relative to this point, let j00k be the

number of layers assigned to object k. Because the layer counter for object i was being incremented,

the quality of object i was less than the quality of all objects in S, and in particular, the quality of

object k. Thus,

qi(j
0

i � 1) < qk(j
00

k ). (15)

Since this time precedes the point when k is removed from S, we must have that j00k � j0k, which

implies, since q is increasing, that

qk(j
00

k ) � qk(j
0

k). (16)
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Taken together, (15) and (16) demonstrate (14). �

Theorem 2 The re�ned max-min algorithm converges to an optimal policy for increasing quality

metrics that take on distinct values over the set of presentation objects.

Proof Let bP = (bj1; : : : ;bjM ) be an optimal policy, that is, a feasible policy whose quality is greater

than or equal to all other feasible policies. Let bai represent the object with the ith best quality

under bP , which means that the ith component of Q( bP ) is q
bai(
bj
bai). At an arbitrary point during the

execution of the algorithm, let P = (j1; : : : ; jM) represent the current policy, and ai the object with

the ith best quality under P . Thus, the ith component of Q(P ) is qai(jai ). Each time an object is

removed from S, its assigned layers (and thus its quality) becomes �xed. At the point when the

mth object is removed from S, the following inequalities will hold for the duration of the algorithm:

qa1(ja1) < qa2(ja2) < : : : < qai(jam )

Additionally, since the objects remaining in S have qualities higher than qam(jam ), and since the

number of layers assigned to them are never decreased, we must have that the following holds true

after the mth removal from S:

qam(jam ) < qak(jak ) for k = m + 1; : : : ;M

We prove the theorem inductively. In step 1, we demonstrate that when the algorithm removes its

�rst object from S, we have

qa1(ja1) = q
ba1(
bj
ba1).

In step 2, we make the inductive assumption that after m removals from S,

qai(jai) = q
bai(
bj
bai ) for i = 1; : : : ;m, (17)

and then show that when the algorithm removes its next object from S, the following must hold:

qam+1(jam+1 ) = q
bam+1 (

bj
bam+1 ).

Thus, when the algorithm removes the M th object from S and terminates, we have that Q(P ) =

Q( bP ).
Before beginning step 1, note that since the quality values are assumed to be unique across all

layers and objects within the presentation, (17) is equivalent to the following:

ai = bai and jai =
bj
bai for i = 1; : : : ;m (18)
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Therefore, we have as a corollary to the theorem that the optimal re�ned max-min policy is unique.

Step 1 When the algorithm removes its �rst object from S, we have that qa1(ja1 ) = q
ba1(
bj
ba1 ).

Suppose the algorithm is removing its �rst object from S. As we noted before, this object will

be permanently assigned to a1, and it will have lowest quality in all remaining policies computed by

the algorithm. We demonstrate equality by showing that both qa1(ja1) > q
ba1(
bj
ba1 ) and qa1(ja1) <

q
ba1(
bj
ba1) lead to contradictions.

Assume that qa1(ja1 ) > q
ba1(
bj
ba1). Because a1 has been removed from S, all other objects have

qualities greater than qa1(ja1) under P , which means that qai(jai) > q
ba1(
bj
ba1 ) for i = 1; : : : ;M .

Thus, Q(P ) > Q( bP ), which contradicts the fact that bP is optimal.

Now assume qa1(ja1) < q
ba1(
bj
ba1). Since qba1(

bj
ba1) is less than all other values of q

bai(
bj
bai ), we have

qa1(ja1 ) < q
bai(
bj
bai ) for i = 1; : : : ;M .

Since fba1; : : : ;baMg = f1; : : : ;Mg, the above is equivalent to

qa1(ja1) < qi(bji) for i = 1; : : : ;M . (19)

Since a1 2 f1; : : : ;Mg, (19) gives qa1(ja1 ) < qa1(
bja1 ). Because q is increasing, we must have that

ja1 < bja1 , and then, since ji takes only integer values,

ja1 + 1 � bja1 . (20)

Combining our assumption that qa1(ja1 ) < q
ba1(
bj
ba1) with the lemma, we have

qi(ji � 1) < q
ba1(
bj
ba1) for i 2 S.

Since q
ba1(
bj
ba1) is less than all other values of q

bai(
bj
bai), we can state that qi(ji � 1) < qi(bji), which

leads to ji � 1 < bji, and then

ji � bji for i 2 S. (21)

Taken together, (20) and (21) imply that (j1; : : : ; ja1 + 1; : : : ; jM) is component-by-component less

than bP , and therefore must be feasible. But this contradicts the fact that a1 is being removed from

S.

Step 2 If the �rst m removals from S result in (17), then the next removal from S results in

qam+1(jam+1 ) = q
bam+1 (

bj
bam+1 ).
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Similar to step 1, we show that qam+1 (jam+1 ) > q
bj
bam+1

(bam+1) and qam+1(jam+1 ) < q
bam+1 (

bj
bam+1 )

lead to contradictions.

Assume that qam+1 (jam+1 ) > q
bj
bam+1

(bam+1). Since the objects remaining in S have qualities

greater than qam+1 (jam+1 ), we have that qai(jai ) > q
bam+1 (

bj
bam+1 ) for i = m + 1; : : : ;M . Thus,

Q(P ) > Q( bP ), which contradicts the assumption that bP is optimal.

Now, assume that qam+1 (jam+1 ) < q
bam+1 (

bj
bam+1 ). Because q

bak(
bj
bak) is increasing in k, we have

that

qam+1 (jam+1 ) < qi(bji) for i 2 fbam+1; : : : ;baMg (22)

Because our inductive assumption is equivalent to (18), we have that fa1; : : : ; amg = fba1; : : : ;bamg,
and then,

fam+1; : : : ; aMg = fbam+1; : : : ;baMg. (23)

Thus, 22 holds for i 2 fam+1; : : : ; aMg, and in particular, for i = am+1. Therefore, we have that

qam+1(jam+1 ) < qam+1 (
bjam+1 ). Because q is strictly increasing, we have jam+1 <

bjam+1 , and then

jam+1 + 1 � bjam+1 . (24)

The lemma guarantees that qi(ji � 1) < qam+1 (jam+1 ) for i 2 S = fam+2; : : : ; aMg. But this

is also true for i = am+1, because q is increasing. Combining this with our assumption that

qam+1(jam+1 ) < q
bam+1 (

bj
bam+1 ), we get

qi(ji � 1) < q
bam+1 (

bj
bam+1 ) for i 2 fam+1; : : : ; aMg. (25)

Because q
bak(
bj
bak ) is increasing in k, and because of (23) we have that

qi(ji � 1) < q
bak(
bjk) for i 2 fam+1; : : : ; aMg and k 2 fbam+1; : : : ;baMg

But since fam+1; : : : ; aMg and fbam+1; : : : ;baMg are identical, we have that qi(ji � 1) < qi(bji) for
i 2 fam+1; : : : ; aMg, and thus ji � 1 < bji, for i 2 fam+1; : : : ; aMg. This implies

ji � bji for i 2 fam+2; : : : ; aMg. (26)

Equations (18), (24) and (26) taken together imply that (j1; : : : ; jam+1 + 1; : : : ; jM) is component-

by-component less than or equal to bP , and therefore must be feasible. But this contradicts the fact

that am+1 is being removed from S. �
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For object quality measures that map into a relatively small range, such as qi(j) = j, the re�ned

max-min algorithm may not converge to an optimal policy, because it does not properly resolve

quality ties. We propose (and evaluate in Sec. 6) the following tie-breaking heuristic: in the presence

of a quality tie, choose the object whose next layer has the smallest number of bits. Intuitively, this

heuristic makes sense, because we are improving the quality by one layer with the least expenditure

of bandwidth.

In the next section, we use a sample presentation to compute the optimal policies under the

max-min criterion for two di�erent object quality functions, and for varying levels of bandwidth.

We also do this for the total quality criterion discussed in Sec. 4, and use the results to compare

the two approaches. Then in Sec. 7 we look at a method to extend the re�ned max-min approach

to better utilize available bandwidth by permitting progressive rendering of static objects.

6 Experimental Results

In this section we report some of our experimental results regarding the di�erence between the

policies generated by our total quality and re�ned max-min algorithms. We will see how well the

re�ned max-min algorithm performs under the tie-breaking heuristic, and we will compare the

policies generated by the to algorithms using di�erent individual object quality functions. We are

not reporting on the two-phase decision problem.

We assembled a slide show presentation with 2 black and white and 8 color JPEG images in

order to compare the re�ned max-min criterion with the total quality criterion under two di�erent

object quality measures. We encoded the images using the Independent JPEG Group's library [15],

which by default encodes color images into 10 layers and black and white images into 6 layers. The

two object quality measures were a layer-oriented measure, which equates quality with the ratio

of layers rendered to the total number of layers in the object, and a bit-oriented quality measure,

which equates quality with the ratio of bits rendered to total bits from all layers. Note that under

the bit-oriented measure, convergence to an optimal re�ned max-min policy is guaranteed. We

chose rendering times that re
ect a quick-paced slide-show presentation. Table 6 shows the number

of bytes in each layer of each image, and the deadlines for the arrival of each image relative to the

presentation timeline.

The �rst object quality measure is the ratio of layers rendered to the total number of layers
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Table 1: Image data for slide show presentation

image deadline bytes by layer number total

(secs) 1 2 3 4 5 6 7 8 9 10

1 0 1321 1956 457 306 1926 2899 246 492 415 5210 15228

2 18 2966 8026 7479 14341 566 25803 59181

3 36 11118 14782 1594 2635 14471 28445 2556 3060 3830 73974 156465

4 51 11223 22622 12931 35286 2106 66897 151065

5 62 10536 17380 1007 1600 14285 30474 2550 3521 4839 81178 167370

6 76 3473 3666 602 569 1700 6880 826 978 922 19360 38976

7 95 4596 7312 852 629 2375 7988 952 1616 1645 14893 42858

8 107 9253 7322 818 1200 3068 16640 2587 2025 2482 68278 113673

9 124 4424 4969 1554 1153 2284 6597 829 1613 1473 14705 39601

10 133 13221 28030 2438 4026 45614 58405 2621 5035 8037 116863 284290

in the object, i.e., qi = j=Li. We call this the layer-oriented quality measure. We use this rather

than the number of layers, because the objects in the presentation are not encoded into the same

number of layers. The layer-oriented quality measure generally results in many ties, because many

objects in the presentation will be encoded with the same number of layers. Thus, the policy that

the re�ned max-min algorithm produces may be sub-optimal.

The second object quality measure is the ratio of bits rendered to total bits across all layers.

We call this the bit-oriented quality measure. For the bit-oriented quality measure, we have:

qi(j) =

Pj

k=1 xij

xi
, where xi =

LiX
j=1

xij

This is a somewhat natural measure in that the number of encoded bits, in a loose sense, represents

the \information" in the layers; we are therefore associating quality with rendered information.

We suppose that there is approximately a constant 24 Kbps of bandwidth available for the

presentation, and we �x the start up delay at 5 seconds. Fig. 4 shows the percentage of layers sent

for each of the ten objects in the presentation for the re�ned max-min and total quality criteria

under the layer-oriented quality measure. The resulting policies of the two algorithms appear to

agree in general regarding which images should be weak (in terms of percentage of layers rendered)

and which should be strong. However, the re�ned max-min algorithm produces a presentation with

more uniform image qualities.

We can also see from Fig. 4 that the worst case object quality is 50 percent for the re�ned

max-min criterion. The ordinary max-min criterion would have stopped at this point, generating a

policy that transmits 50% of the layers for each object. The re�ned max-min criterion enables the
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Figure 4: Percentage of layers sent by criterion under the layer-oriented quality measure

presentation to display more layers than an ordinary max-min criterion while still respecting the

max-min philosophy.
            

Figure 5: Percentage of layers sent by criterion under the bit-oriented quality measure

Fig. 5 shows the percentage of bits sent for each object under using the bit-oriented quality

measure. Here the two algorithms give strikingly di�erent policies. While the re�ned max-min

algorithm continues to distribute relatively equal importance across all objects, the total quality

algorithm selects a highly non-uniform distribution. The worst case object quality for the re�ned

max-min criterion is approximately 30 percent of the object's bits, while that of the total quality

criterion is less than 10 percent.

In order to further examine the di�erences between the two criteria and the two qualitymeasures,
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we computed the optimal policies for the sample presentation while varying the level of bandwidth.

We plotted three di�erent summary statistics related to presentation quality: minimum percentage

of layers rendered by bandwidth (Fig. 6), bandwidth utilization (Fig. 7), and average percentage

of layers rendered by bandwidth (Fig. 8). Note that the legend appearing in Fig. 6 applies to all

three �gures.

Fig. 6 demonstrates that the re�ned max-min criterion is superior to the total quality criterion

with respect to minimizing the worst quality, which isn't surprising, because this objective is its

primary motivation. It should also be noted that the layer-oriented quality measure performs better

than the bit-oriented quality measure. There are a few points where the total quality criterion with

the layer-oriented measure performs better than the re�ned max-min criterion with the bit-oriented

measure, but in general the re�ned max-min criterion performs better with both quality measures.
            

Figure 6: Minimum percentage of layers rendered by bandwidth

After maximizing the minimum object quality, our second motivation was to improve the pre-

sentation quality by using as much of the additional bandwidth as possible, while trying to minimize

the worst case of those images that could be helped. Fig. 7 shows the bandwidth utilization (band-

width consumed � available bandwidth) for the two criteria with the two quality measures. Here,
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all methods show increased variance in the upper bandwidth region, which is explained by the large

amount of data concentrated in the �nal layer of each image. The plot shows that the re�ned

max-min criterion works slightly better with the bit-oriented measure.
            

Figure 7: Bandwidth utilization by criterion/quality measure

Fig. 8 shows the average percentage of layers rendered by bandwidth levels. Here the total quality

criterion based on the layer-oriented quality measure is superior to the other methods, especially

for the low- and mid-range bandwidths. The total quality criterion with the bit-oriented quality

measure also appears to do well in the lower bandwidths, but gives weaker results for higher levels

of bandwidth. At high levels of bandwidth, the various methods converge, but the re�ned max-

min criterion based on the layer-oriented quality measure converges the most quickly. The re�ned

max-min criterion with the bit-oriented quality measure is the clear loser in this comparison.

In summary, the four objectives can produce rather di�erent optimal policies. We believe that

the re�ned max-min criterion is superior to the total quality and max-min criteria. Nevertheless, in

order to make a more de�nite conclusion, subjective testing with human subjects is needed. Also, it

is desirable to experiment with other quality values that take into account the mean-squared error.
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Figure 8: Average percentage of layers rendered by bandwidth

7 Progressive Rendering

Now we consider the bene�ts and methodology of progressive rendering of static object data, such as

JPEG images. In progressive rendering, the object layers are permitted to arrive after the beginning

of the object's rendering period, but before the end of the rendering period. In this way, the client

can improve the object's quality by rendering additional layers that arrive late.

To see that a transmission policy that includes progressively rendered objects has value, consider

a slide show presentation of one minute duration that includes three images. The �rst image is

displayed immediately and is rendered for the entire 60-second length of the presentation. The

second image is rendered 20 seconds later and is rendered for the remaining 40 seconds. The third

image is displayed 40 seconds into the presentation and is rendered for the remaining 20 seconds.

Suppose the images are encoded into 6 layers.

Because the �rst image is to be displayed at the start of the presentation, the length of time

needed for the transport of its base layer will determine the presentation start up delay. If the

images are of equal size, and the bandwidth in 10 seconds is adequate to send all 6 layers of an

image, then play out of the presentation will be (1; 6; 6), that is, 1 layer of image 1, 6 layers of

image 2, and 6 layers of image 3.

However, if we allowed an image to be progressively rendered in increasing degrees of quality,
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we could play out the presentation (6; 6; 6). In this scenario, image 1 is rendered with 1 layer at

time t = 0, and then is rendered with increasing quality as additional layers arrive during the next

10 seconds. At time t = 10 the transmission of layers of image 2 begins. All layers of images

2 and 3 arrive before the starting points of their rendering intervals, and thus are rendered with

full quality. Clearly, this presentation has better overall quality than the one without progressive

rendering. In general, presentations with a static object whose rendering begins at the beginning

of the presentation will only have its base layer rendered.

Besides rendering more layers of static objects near the beginning of the presentation, another

bene�t of progressive rendering is to increase bandwidth utilization near the end of the presentation.

After the last object is delivered, it is possible to improve the quality of static objects that remain

displayed by sending additional enhancement layers.

To see that progressive rendering is applicable for objects other than the �rst and the last,

consider a presentation with three objects, each having 10 layers with 10K bits per layer. The

presentation starts with a period of silence in which 30K of bandwidth is available. Then, object

1 is rendered for a length of time in which 30.01K of bandwidth is available. At the end of this

period, the rendering of object 1 ceases and the rendering of object 2 begins. Then, there is 200K of

bandwidth available during the rendering period of object 2. When the rendering period of object

2 ends, the rendering period of object 3 begins. (In our example, it is not necessary to specify the

length of the rendering period of object three.) Without progressive rendering, the optimal re�ned

max-min policy will be to send 3 layers of the �rst object (consuming the 30K of bandwidth in

the �rst interval), 3 layers of the second object (consuming the 30K of bandwidth in the second

interval), and 10 layers of the third object (consuming 100K of bandwidth in the third interval). In

summary, the optimal re�ned max-min policy without progressive rendering will be (3, 3, 10).

On the other hand, if we permit progressive rendering, it is possible to render the policy (6, 10,

10). With this policy, the server transmits 26 layers back-to-back with the available bandwidth.

First, it transmits the six layers of object 1, then the 10 layers of object 2, and �nally the 10 layers

of object 3. The �rst 3 layers of the �rst object are rendered at the beginning of its rendering

interval, followed by 3 additional layers that are progressively rendered throughout the interval.

When the rendering interval of the second object begins, no layers will be available, but each of

the object's 10 layers will be transmitted and progressively rendered during the initial one third of

the interval. The remaining bandwidth will then be used to transmit 10 layers of the third object,
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which will be rendered on time.

One drawback of policy (6, 10, 10) over (3, 3, 10) is that now the �rst three layers of the second

object will arrive late relative to the start of their rendering interval. Thus it could be argued that

this delay makes the progressive rendering policy inferior. In this case, one could use the policy (3,

10, 10), in which the �rst 3 layers of the second object are available at the start of its rendering

interval, as in policy (3, 3, 10), and the 7 additional layers are progressively rendered.

However, a more serious objection to policy (6, 10, 10) is that layer 6 of the �rst object is used

for an insigni�cant amount of time, but results in a signi�cant delay in the rendering of the second

object. Intuitively, policy (5, 10, 10) is better than (6, 10, 10), because it avoids sending a layer

which is rendered for an insigni�cant amount of time and reduces the rendering delay for the layers

of the second object. The algorithm we present does not recognize this trade-o�, and converges to

policy (6, 10, 10). However, if we modify the de�nition of feasibility so that it rejects layers that

arrive excessively late | such as 1 second prior to the end of their rendering interval | then the

algorithm will converge to policy (5, 10, 10) in this example.

For progressive rendering, we now consider a policy P to be feasible if the bits sent arrive prior

to the end, rather than the start, of their rendering intervals. For illustrative purposes, we consider

the following natural de�nition of quality for progressive rendering:

qi(j1; : : : ; ji) =
1

Li

LiX
j=1

vij

wi

, where

vij is the rendering time of layer j of object i, and wi is the length of the rendering interval for

object i. The calculation of vij depends on the number of layers chosen for object i and the objects

preceding object i, which is why we express qi as a function of these layers.

The re�ned max-min algorithm without progressive rendering converges, because adding a layer

to the object with the worst quality will not degrade the quality of the other objects. But this may

not be the case with our new de�nitions of feasibility and quality, because at some point within the

execution of the algorithm, it may be possible to add a layer to the object with minimum quality

that results in the delayed arrival of succeeding layers, thus degrading their qualities. We propose

the heuristic of testing for degradation in overall quality before adding a layer. The algorithm for

progressive rendering with our proposed heuristic is shown in Fig. 9.

We used the same presentation data in Table 6 in Sec. 6 to compare the layer-oriented re�ned

max-min algorithm with and without progressive rendering. Fig. 10 shows the percentage of layers
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do for i = 1; : : : ;M

ji = number of layers sent of object i

if ji == 0 then ji = 1

S = f1; : : : ;Mg

do while S is not empty

�nd k 2 S s.t. qk(jk) � qi(ji) for all i in S

P = (j1; : : : ; jM)

P 0 = (j1; : : : ; jk + 1; : : : ; jM )

if P 0 is feasible AND Q(P 0) > Q(P ) then

jk = jk + 1

else

remove k from S

Figure 9: Re�ned max-min algorithm with progressive rendering

rendered for each object under the two methods. Note that the policy with progressive rendering is

better than the policy without progressive rendering in the sense of the re�ned max-min criterion.

Interestingly, the progressive rendering algorithm decreases the number of layers in images 1 and 2

in order to send more layers of image 5. It also decreases the number of layers in images 6 through

9 in order to send more layers of image 10. The reason for this is that the algorithm delivers some

of the layers in images 5 and 10 late, which then contribute less than a full unit towards the quality

of their images, so the algorithm works harder to send additional layers of these two objects. Image

10 dominates the transmission policy, because it is very large in size (almost twice as large as the

next largest image) and it is preceded by a very short interval (half as long as the next shortest

interval).

8 Conclusion

As multimedia authorship tools develop in the coming years, synchronized multimedia presentations

will likely become a popular medium for Web pages and e-mail messages. Because the Internet

does not provide guarantees on QoS, it is desirable to introduce layered encoding into multimedia

presentations, so that applications can maintain continuous play out and fully utilize available
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Figure 10: Percentage of layers sent by the re�ned max-min algorithmwith and without progressive

rendering

bandwidth to deliver a presentation of highest possible quality with minimum start up delay.

In this paper we have developed a comprehensive methodology for the streaming of layer-encoded

multimedia presentations based on a two-phase decision problem. In phase one, the application

transmits base layer data that comprise a presentation of minimum acceptable quality. When the

application determines that enough bandwidth will most likely exist to deliver the remaining base

layers on time, it starts play out of the presentation and transitions into phase two. In phase two,

the application loops on the decision on which layer of which object to transmit next. To make

this decision, we propose that the application continuously re-evaluate its expectation of future

bandwidth, and based on this, compute an optimal transmission policy that maximizes an overall

measure of presentation quality. We proposed two di�erent presentation quality metrics: the total

quality metric, which yields a decision problem that can be solved with dynamic programming, and

second, the re�ned max-min metric that yields a computationally inexpensive optimal algorithm.

Much work remains to be done in the area. From a practical perspective, layered compression

schemes for audio and video need to be further developed, and standards developers need to con-

sider how existing protocols and document languages may need to be modi�ed for layer encoded

presentations. Also, work is needed in studying methods of estimating a lower bound on future

bandwidth, whose accuracy improves over time following the initial connection between client and

server. From a theoretical perspective, optimization criteria with progressive rendering need to be
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studied in greater detail. We are considering all of these issues in our ongoing research activities,

as well as developing client/server implementations of the optimal policies.
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