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Abstract—In this paper, we consider cell-free (CF) massive
MIMO systems employing a massive number of access points
(APs) geographically distributed over a wide area to jointly
serve a smaller number of users over the same time-frequency
resources. We consider semi-blind methods for channel estima-
tion in the presence of Gaussian i.i.d. data to resolve the pilot
contamination. This task is further aided by exploiting prior
channel information in a Bayesian formulation. We propose a
variable level expectation propagation (VL-EP) algorithm for
message passing (MP) style semi-blind channel estimation which
provides an approximate minimum mean square error (MMSE)
channel estimator (which itself can not be found analytically).
Numerical simulations verify the analytical derivations and the
proposed algorithm.

Index Terms—Cell-free massive MIMO, expectation propaga-
tion, channel estimation, semi-blind, pilot contamination

I. INTRODUCTION

In recent years, cell-free (CF) massive MIMO systems have
drawn extensive attention as a potential paradigm shift for be-
yond 5G networks thanks to their potential to reap the benefit
of both massive MIMO and distributed antenna systems (DAS)
[1]–[3]. In a CF massive MIMO system, a massive number of
geographically distributed access points (APs) jointly serve
a much smaller number of single-antenna users distributed
over a wide area on the same time-frequency resources [1].
All the APs are connected to a central processing unit (CPU)
through a back-haul network. CF massive MIMO systems have
shown a great potential in improving the network performance
in various perspectives compared to the co-located massive
MIMO and conventional small-cell systems [1], [4], [5]. As
in centralized massive MIMO [6], CF massive MIMO systems
exploit phenomena such as the favorable propagation [7],
[8] and channel hardening [9], [10] as the number of APs
grows large. Additionally, in CF massive MIMO systems
each user is surrounded by a large number of serving APs
which yields a high degree of macro-diversity [1] and with
high probability all the users enjoy good channel conditions
[2]. Therefore, CF massive MIMO systems are expected to
provide significant improvements in terms of spectral/energy
efficiency and coverage probability. Channel state information
(CSI) in multiple antenna systems, both cellular and CF, is
crucial for accomplishing successful transmission under var-
ious channel conditions. Ideally, training sequences or pilots
should be selected to be mutually orthogonal in the channel
estimation. However, in most practical scenarios the number

of users is greater than the number of orthogonal training
sequences and a given training sequence can be assigned
to more than one user, therefore leading to the so-called
pilot contamination which prevents obtaining an adequate
estimate of CSI. Several pilot assignment (PA) techniques for
suppressing pilot contamination in CF massive MIMO systems
were proposed recently in [1], [11]–[15]. A semi-blind pilot
decontamination approach was proposed in [16] exploiting the
inherent structure of channels and data in CF massive MIMO
systems. An efficient data detection algorithm with affordable
complexity to achieve the optimum performance is of highly
interest in large-scale networks, such as CF massive MIMO.
An extensive attention has been dedicated to the design of
detectors relying on message passing (MP) algorithms in
recent years. The expectation propagation (EP) which is a
kind of MP algorithm is a generalization of sum-product belief
propagation (BP) algorithm. The EP algorithm attempts to find
the closest approximation for a computationally intractable
target probability distribution from a tractable family of dis-
tributions in an iterative refinement procedure by minimizing
a Kullback-Leiber (KL) distance [17]–[20]. The EP algorithm
was first proposed in [21] and summarized in, e.g., [22] for
approximate inference in probabilistic graphical models. The
method of EP was firstly applied to MIMO detection in [20],
where an EP-based MIMO detector shows near-optimal perfor-
mance with acceptable complexity under specific conditions.
With EP-based MIMO detector, a Gaussian approximation is
constructed for the posterior distribution of the transmitted
symbols by an iterative procedure based on moment matching.
The EP has been proposed as a low complexity algorithm
for symbol detection in massive MIMO systems [23]–[26]. In
[23], the EP principle was exploited for designing efficient
detector of extra-large-scale massive MIMO systems with the
subarray-based processing architecture. They represented the
a posteriori distribution as a factor graph and developed the
iterative algorithm by computing and transferring messages
among different nodes on the factor graph. A non-coherent
detection scheme for SIMO systems based on the EP algorithm
was proposed in [24]. The proposed EP detector iteratively
searches for the best approximation of the joint probability
density function of the channel coefficients and the transmitted
symbols. The output probability density function is used for
direct estimation of the channel coefficients, as well as the
transmitted symbols. In [26], an efficient MP algorithm for



non-coherent multi-user detection scheme based on EP was
proposed. In [27], a non-linear detector for CF massive MIMO
networks based on the EP principle with a distributed approach
[23] [28] was proposed. It was shown that such detector
can achieve better performance than other linear receivers
for both original and scalable CF massive MIMO networks.
In this paper, we propose a new variable level expectation
propagation (VL-EP) algorithm to iteratively conduct the
semi-blind method for channel estimation in the presence of
Gaussian i.i.d. data to mitigate the pilot contamination problem
originating from the reuse of training sequences. The proposed
VL-EP algorithm provides an approximate minimum mean
square error (MMSE) channel estimator which can not be
found analytically.

The remainder of this paper is organized as follows. We
describe the system and channel model in Section II. A VL-
EP algorithm is presented in Section III. In Section IV, we
propose channel VL-EP for Gaussian-Gaussian semi-blind
channel estimation. Numerical results are illustrated in Section
V. Finally, concluding remarks are drawn in Section VI.

Notation: In the following, superscripts T , ∗, and H stand
for transpose, conjugate, and conjugate transpose, respectively.
Uppercase and lowercase bold symbols denote matrices and
vectors, respectively. The expectation operator is indicated by
E{.} and IP is the P×P identity matrix. Here, ‖·‖ and diag(.)
denote the Euclidean norm operator and the squared diagonal
matrix consisting of the diagonal elements of matrix argument,
respectively. vec(.) denotes vec(A) =

[
AT

:,1 AT
:,2 · · ·AT

:,n

]T
,

where A:,j is the j-th column of matrix A. tr{.} is the trace
operator and <{.} denotes real part operator. Finally,N (µ, σ2)
and CN (µ, σ2) denote a real and a complex Gaussian distri-
bution with mean µ and variance σ2, respectively.

II. SYSTEM MODEL

We consider a CF massive MIMO system in uplink in which
M APs serve K users in the same time-frequency resource. All
APs and users equipped with a single antenna are randomly
distributed over a D × D square area. Furthermore, all APs
are connected to a CPU via a back-haul network. The channel
is assumed to remain constant over L consecutive symbol
intervals, i.e., a block. In the uplink transmission, each user k
sends P pilot sequences known by the CPU followed by L−P
unknown data symbols. The pilot sequences are assumed to
be ortho-normal, i.e., orthogonal with unit norm. The received
signal Y ∈ CM×L at the M APs over the block interval is
given by

Y =
√
ρ H XT + V, (1)

where ρ denotes the transmit power at each user terminal
normalized by the noise variance, X = [x1 . . .xK ] ∈ CL×K
is a matrix of the transmitted symbols and xk ∈ CL×1 is the
signal vector sent by user k. The channel vector between user
k and M APs is denoted by hk = [h1k . . . hMk]

T ∈ CM×1,
then the channel matrix between the APs and users is given
by H = [h1 . . .hK ] ∈ CM×K . The matrix V ∈ CM×L
represents the additive white Gaussian noise (AWGN) with
i.i.d. components having zero mean and unit variance. The

channel coefficient hmk between AP m and user k is modeled
as follows

hmk =
√
βmk gmk, (2)

where βmk represents the large-scale fading coefficient which
accounts for path loss and shadowing effects and gmk rep-
resents the small-scale fading. We assume that gmk, m =
1, · · ·M, k = 1, · · ·K, are independent and identically
distributed (i.i.d.) complex normal random variables, i.e.,
gmk ∼ CN (0, 1). Furthermore, we assume perfect knowledge
of the large-scale fading coefficients βmk, m = 1, · · ·M, k =
1, · · ·K at the CPU.

Let the matrices Xp ∈ CP×K and Xd ∈ C(L−P )×K

denote the pilot sequences and data symbols, respectively.
Then, X = [XT

p XT
d ]
T and xk = [xTp,k xTd,k]

T . Similarly,
Y = [Yp Yd] where Yp ∈ CM×P and Yd ∈ CM×(L−P )

represent the matrices of received training and data signals,
respectively.

III. VARIABLE LEVEL EXPECTATION PROPAGATION
ALGORITHM

Let θ = [hT xTd ]
T , where h = vec(H) and xd=vec(Xd).

We partition θ into groups such that θ = {θi} and we assume
the prior factors at the level of these groups, which we call
the variables in the factor graph terminology. Then, based on
Bayes’ theorem, the true posterior probability distribution is
given by

p
(
θ|y
)
=

1

Z
p
(
y|θ
) ∏

i

p(θi) (3)

where the factors on the RHS are called the factors in a factor
graph, y=vec(Y), and Z=p(y)=

∫
p(y|θ)

∏
i p(θi) dθ is a

normalization factor. Given the posterior probability p
(
θ|y
)
,

the Bayesian MMSE estimate is given by

θ̂ =

∫
θ p
(
θ|y
)
dθ (4)

The posterior probability distribution in (3) involves a high-
dimensional integral, therefore the Bayesian MMSE estimator
in (4) is not computationally tractable. The EP algorithm
provides an iterative method to approximate the posterior
distribution of the unknown vector θ from an exponential
family F [21]. Here, we consider Gaussian distribution. In
this regard, we propose the following approximation

1

Z
p(y|θ) ≈

∏
i

m(θi) ⇒ p(θ|y) ≈ q(θ) =
∏
i

q(θi)

(5)
where q(θ) ∈ F is the approximate posterior in factored
form at the variable level, and q(θi) = m(θi) p(θi) where
the m(θi) are the extrinsic probability density functions (pdf).
Additionally, we assume that the prior pdfs p(θi) to be simple
(typically Gaussian or other members of the exponential
family), so that they do not need approximation. Therefore,
only the data pdf p(y|θ) requires approximation. The EP ap-
proach adjusts the approximate posterior by minimizing a KL
distance. In the original EP algorithm [29], the approximate
posterior factors get approximated alternatively at the factor
level, with each factor being optimized completely. In the
original EP, the approximate factors are in the exponential



family, but not constrained any further. Hence the factors
can involve possibly all variables. However, it is possible to
introduce constraints in approximate pdfs (e.g. Gaussians with
a block diagonal covariance). In the EP variation considered in
[26], the approximate factors are also factorizable at variable
level. However, we propose to optimize the factors not at factor
level but at variable level. Hence, the name variable level EP
(VL-EP), as opposed to the classical factor level EP (FL-EP).
But the updating follows exactly the EP principle: we optimize
a factor m(θi) by minimizing the KL distance

KL
( 1
Z
p(y|θ) q(θi) || m(θi)q(θi)

)
=

1

Z

∫
p(y|θ) q(θi) ln

1
Z p(y|θ) q(θi)
m(θi) q(θi)

dθ
(6)

with respect to (w.r.t.) a Gaussian m(θi). Note that q(θ) =
q(θi) q(θi). The minimization of the KL distance leads to (see
section 2 in [29] which exposes the original EP)

p̂(θi) =
∫
q(θī) p(y|θ)dθī

Zi =
∫
p̂(θi) dθi

µi = 1
Zi

∫
θi p̂(θi) dθi

Σi = 1
Zi

∫
θi θ

H
i p̂(θi) dθi − µiµ

H
i

(7)

where Zi is a normalization constant, µi and Σi are the mean
and covariance of the Gaussian m(θi). Note that p̂(θi) inte-
grates out all other variables and produces the (unnormalized)
target pdf for θi that we approximate by the Gaussian m(θi).
It is this integration which produces the cleaned y, cleaned
from the interference of other variables θi. Actually, the proof
of (7) is fairly straightforward. Since the KL distance in (6)
needs to be minimized w.r.t. (the parameters of) m(θi), we
can write

KL = ct − 1

Zi

∫
ln(m(θi)) p̂(θi) dθi

= ct + nθi ln(π) + ln det(Σi)

+
1

Zi
tr{Σ−1

i

∫
(θi − µi)(θi − µi)

H p̂(θi) dθi}

≥ ct + nθi ln(π) + ln det(Σi) +
nθi
Zi

(8)
where ct denotes (various) terms that are constant and nθi
denotes the dimension of θi. The minimization over µi and
Σi leads to the solution in (7) and the minimal value in the
last line in (8). As this minimal value is decreasing in Zi,
which itself is linear in p̂(θi), we can majorize the KL distance
by replacing p̂(θi) by a minorizer and still retain a valid
KL distance minimization strategy. We follow this strategy
in the following section when the moments of p̂(θi) can not
be computed analytically.

IV. CHANNEL VL-EP FOR GAUSSIAN-GAUSSIAN
SEMI-BLIND

For the application to the Gaussian inputs Gaussian channel
semi-blind (GG-SB) channel estimation problem, we shall
consider the problem formulation which eliminates the Gaus-
sian Xd. Then, we have the correspondence θ = h, θi = hi.
We have y = [yTp yTd ]

T . We shall consider the development of
yp and yd separately. The alternating updating of the posterior

factors loops over the K users. The update for user k updates
the posterior factor for hk. We consider first of all the pilot part
and let user k use the nth pilot, k ∈ Gn so that xp,k = x

(n)
p .

Then, the pilot signal model for user k can be written as
Yp =

√
ρhk xTp,k +

√
ρ
∑
i 6=k hi x

T
p,i + Vp

Ypx
(n)∗
p =

√
ρP hk +

√
ρP

∑
i∈Gn\{k}

(ĥi + h̃i) + Vpx
(n)∗
p

(9)
where V = [Vp Vd] and hi has (approximate) posterior pdf
q(hi)∼CN (ĥi,Ci) and Ci = E{h̃ih̃Hi }. All variables whose
pdf appears in different factors in the approximate posterior
are treated as independent. Hence,

√
ρP hk has a Gaussian

pdf with mean Ypx
(n)∗
p −√ρP

∑
i∈Gn\{k} ĥi and covariance

CỸp,k
= P IM + ρP 2

∑
i∈Gn\{k}

Ci . (10)

The likelihood from the pilot part needs to be combined
with the data likelihood, where xd,i has prior pdf pxd,i ∼
CN (0, IL−P ). The signal for user k can be written as

Yd =
√
ρhk xTd,k + Ỹd,k (11)

where
Ỹd,k =

√
ρ
∑
i 6=k hi x

T
d,i + Vd

=
√
ρ
∑
i 6=k(ĥi + h̃i)xTd,i + Vd

(12)

which Yd has zero mean and covariance ρhkh
H
k +CỸd,k

,
where CỸd,k

= IM+ρ
∑
i6=k

(ĥiĥ
H
i +Ci) . (13)

We shall model h̃ix
T
d,i also as Gaussian, since we need to go

towards Gaussian approximations q(θk) in any case. So we
associate a Gaussian pdf to (11) by moment matching (whereas
there are actually products of Gaussian variables). Given hk
and CỸd,k

, the negative log-likelihood leads to

− ln p(Yd|hk,CỸd,k
)=‖Yd‖2(ρhkhHk +C

Ỹd,k
)−1 +c

t (14)

with the squared weighted Frobenius norm ‖Y‖2A =
tr{AYYH}, and where the knowledge of CỸd,k

comprises

the knowledge of ĥk and Ck. We construct a convex majorizer
for the negative log-likelihood of (14) as in [30, Section
V.A 4)], [31] which can actually also been derived with an
expectation maximization (EM) approach. The construction
of the majorizer is simply based on first-order Taylor series
expansion of concave functions, either w.r.t. H directly or w.r.t.
a covariance type expression (which is then quadratic in H).
Then, we can majorize the negative log-likelihood of (14) by
− ln p(Yd|hk,CỸd,k

)

= − lnExpd,k,H
q

k
Xp

d,k
|C

Ỹd,k

p(Yd|hk,hk,xd)

= − lnExpd,k|Yd,ĥk,CỸd,k

EHq

k
Xp

d,k
|C

Ỹd,k

p(Yd|hk,hk,xd) p(xd,k)

p(xd,k|Yd,ĥk,CỸd,k
)

= − lnExpd,k|Yd,ĥk,CỸd,k

EHq

k
Xp

d,k
|C

Ỹd,k

p(Yd|hk,hk,xd) + ct

≤Expd,k|Yd,ĥk,CỸd,k

{−lnEHq

k
Xp

d,k
|C

Ỹd,k

p(Yd|hk,hk,xd)}+ct

= Expd,k|Yd,ĥk,CỸd,k

‖Yd −
√
ρhk xTd,k‖2C−1

Ỹd,k

+ct

= ‖Yd −
√
ρhk x̂Td,k‖2C−1

Ỹd,k

+ρ tr{Rk}hHk C−1

Ỹd,k
hk+c

t

= − ln p̂(hk)
(15)



where the inequality follows from Jensen’s inequality and the
convexity of − ln(.). The column vector x̂d,k and the matrix
Rk which respectively denote the linear MMSE (LMMSE)
estimate of xd,k and associated error covariance matrix based
on the current estimate ĥk, are given by

x̂Td,k =
√
ρ (1 + ρ ĥHk C−1

Ỹd,k
ĥk)
−1 ĥHk C−1

Ỹd,k
Yd

Rk = Cx̃d,kx̃d,k = σ2
x̃d,k

IL−P
(16)

where σ2
x̃d,k

=(1+ρĥHk C−1

Ỹd,k
ĥk)
−1. Note that EHq

k
Xp

d,k
|C

Ỹd,k

in (15) uses a Gaussian distribution for HkXd,k which is
based on moment matching from p(Xd,k) and q(Hk) (as
VL-EP requires). Note also that because of the Gaussian
approximation of HkXd,k and the EM majorization step, the
target pdf p̂(hk) is Gaussian. This Gaussian blind information
pdf needs to be combined with the Gaussian pilot part and the
Gaussian prior to yield

− ln q(hk) =

‖Yp x
(n)∗
p −√ρP

∑
i∈Gn\{k} ĥi −

√
ρP hk‖2C−1

Ỹp,k

+ ‖Yd −
√
ρhk x̂Td,k‖2C−1

Ỹd,k

+ ct

+ ρ (‖x̂d,k‖2 + (L−P )σ2
x̃d,k

)hHk C−1

Ỹd,k
hk + hHk C−1

o,khk

= −2<{ĥHk C−1
k hk}+ hHk C−1

k hk + ct

(17)
which is Gaussian with mean and covariance

ĥk =
√
ρCk [P C−1

Ỹp,k

(
Yp x

(n)∗
p −√ρP

∑
i∈Gn\{k} ĥi

)
+ C−1

Ỹd,k
Yd x̂∗d,k]

Ck =(
ρ [P 2 C−1

Ỹp,k
+(‖x̂d,k‖2+(L−P )σ2

x̃d,k
)C−1

Ỹd,k
] + C−1

o,k

)−1

(18)
where now ĥk is the new estimate, and CỸp,k

, CỸd,k
are

defined in (10), (13), and Co,k = diag(β1k, . . . , βMk). This
channel VL-EP is an iterative procedure that cycles through the
hk, k = 1, . . .K and can be considered as an iterative version
for the channel maximum a posteriori (MAP) estimation if
one puts the Ci = 0 in CỸp,k

, CỸd,k
. The channel MAP

estimation instead of alternatingly optimizing the hk tries to
optimize w.r.t. all of H at once. The channel VL-EP can be
initialized with ĥ

(−1)
k = 0 or with the channel MAP estimate

for ĥk with associated

Ck=
(
ρ [P IM + (L−P ) (IM + ρ

∑
i 6=k

ĥiĥ
H
i )−1] + C−1

o,k

)−1

where ‖xp,k‖2 = P and ‖x̂d,k‖2 + (L−P )σ2
x̃d,k

) ≈ (L−
P )σ2

xd,k
= L−P . Note that if parallel updating of the users is

performed, one can reduce complexity in the computation of
sums of the form

∑
i 6=k Ai =

∑K
i=1Ai−Ak, so by computing

a sum only once and then performing single term corrections.

V. PERFORMANCE EVALUATION

In this section, we provide numerical results verifying the
analytical derivations and the performance of the proposed
algorithm. The M=100 APs and K=24 users are uniformly
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distributed at random over a square area of size 1000× 1000.
The large-scale fading coefficient βmk in (2) models the path
loss and shadow fading as follows

βmk = 10
PLmk

10 10
σshzmk

10 (19)
where PLmk represents the path loss (expressed in dB), and
10

σshzmk
10 represents the shadow fading with standard devia-

tion σsh, and zmk ∼ N (0, 1), i.e., we assume uncorrelated
shadow fading. The three-slope model in [32] is adopted
for the path loss. The performance of the different channel
estimators is assessed by the normalized mean square error
(NMSE) versus SNR. The NMSE is defined as NMSE =
avg‖h−ĥ‖2
avg‖h‖2 where avg stands for average. Fig. 1 compares

the performance of the proposed channel estimation VL-EP
for GG-SB and channel MAP estimation and presents NMSE
[dB] versus SNR [dB]. The proposed algorithm outperforms
the channel MAP estimation and a joint channel and data MAP
algorithm, termed Bayesian semi-blind approach in [16]. The
joint channel and data MAP alternatingly estimates the channel
or data as if the estimate for the other quantity is perfect,
whereas the channel MAP estimation takes into account the
data error covariance matrix CX̃dX̃d

. Therefore the channel
MAP estimation outperforms the Bayesian semi-blind iterative
algorithm. The performance of these three different semi-blind
channel estimation algorithms is compared to the different
Cramer-Rao bounds (CRBs). For the semi-blind approaches
one can consider the genie-aided scenario in which the data
Xd would be detected exactly, hence becoming also pilots for
the channel estimation, leading to the genie-aided Bayesian
semi-blind (B-SB) CRB. For our VL-EP or channel MAP
scenario, we consider Gaussian channels with the Gaussian
input symbols eliminated, leading to the Gaussian inputs B-SB
CRB. The deterministic CRB curve in the figure corresponds
to a deterministic framework in which both data signal and
channel coefficients are modeled as unknown deterministic
quantities [16]. The performance of the different CRBs is
evaluated by NMSE = tr{CRB}/tr{Chh}, where Chh =
diag(β11, . . . , βM1 . . . β1K , . . . , βMK). The simulations show



that exploiting prior information gives significant performance
gains. Compared to a fictitious scenario of just orthogonal
pilot based channel estimation (pilots still of length P ),
deterministic semi-blind does not do as well whereas Bayesian
semi-blind still does much better. On the other hand, the
Bayesian pilot based CRB shows that just adding channel
prior information to the contaminating pilots allows already to
significantly improve MSE at low to moderate SNR, but floors
at higher SNR. Adding the blind channel information from
the data second-order statistics breaks this flooring, and both
channel MAP and especially VL-EP allow to get performance
close to the corresponding CRB, which behaves with just an
SNR offset compared to the genie-aided CRB.

VI. CONCLUSION

In this paper, we considered semi-blind methods for channel
estimation in the presence of Gaussian i.i.d. data, exploiting
prior channel information to mitigate the pilot contamination
which originates from reusing pilot sequences, in CF mas-
sive MIMO systems. We proposed a VL-EP algorithm for
semi-blind channel estimation which provides an approximate
MMSE channel estimator. Numerical simulations corroborated
the analytical derivations and the proposed algorithm.
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