
Unsupervised Matching of Data and Text
Naser Ahmadi

EURECOM, France
naser.ahmadi@eurecom.fr

Hansjörg Sand
KPMG, Germany
hsand@kpmg.com

Paolo Papotti
EURECOM, France

paolo.papotti@eurecom.fr

Abstract—Entity resolution is a widely studied problem with
several proposals to match records across relations. Matching
textual content is a widespread task in many applications, such
as question answering and search. While recent methods achieve
promising results for these two tasks, there is no clear solution
for the more general problem of matching textual content and
structured data. We introduce a framework that supports this
new task in an unsupervised setting for any pair of corpora,
being relational tables or text documents. Our method builds a
fine-grained graph over the content of the corpora and derives
word embeddings to represent the objects to match in a low
dimensional space. The learned representation enables effective
and efficient matching at different granularity, from relational
tuples to text sentences and paragraphs. Our flexible framework
can exploit pre-trained resources, but it does not depends on their
existence and achieves better quality performance in matching
content when the vocabulary is domain specific. We also introduce
optimizations in the graph creation process with an “expand and
compress” approach that first identifies new valid relationships
across elements, to improve matching, and then prunes nodes
and edges, to reduce the graph size. Experiments on real use
cases and public datasets show that our framework produces
embeddings that outperform word embeddings and fine-tuned
language models both in results’ quality and in execution times.

I. INTRODUCTION

In data integration, matching records referring to the same
real world object is an important task, usually referred to
as entity resolution (ER) [1], [2], [3]. In other communities,
such as in Natural Language Processing (NLP), text matching
(TM) is also a widespread task in many applications, such as
question answering [4] and information retrieval [5]. However,
in many scenarios the borders between the two tasks are not
clearly defined. Several datasets have long textual cell values,
such as product descriptions. Text documents have structural
properties and content organized in hierarchies. Finally, some
applications match textual content to structured data, such as
relational tuples [6], [7].

The best ER results are obtained by methods exploiting
deep learning techniques [1], [8], [2], [9], but they rely on
the presence of multiple attributes (or fields) in the schema,
which is missing in text. Transformer-based approaches have
enabled important improvements in TM [10], [11]. However,
transformers are designed to capture the (hidden) relationships
in the language. Methods designed to learn table relationships
need a large corpus in the pre-training [12], [13], [14] and their
pre-trained models do not achieve top quality performance on
unseen tables for our task, as we show experimentally.

Consider the following examples.

Example 1: Text and relational data. A corpus of product
reviews is gathered from the Web. A company must link tuples
in a relation to these reviews for a promotional campaign.
However, the product reviews have no identifier (Figure 1).

Example 2: Structured texts. An enterprise manual about
auditing processes is hard to navigate for the final users. To
support search, the paragraphs in the manual must be matched
to a large taxonomy of concepts (Figure 2).

Fig. 1: Text and data: paragraph p1 matches tuple t2.

Fig. 2: Structured texts: 1st paragraph matches 4th node.

This problem is difficult because matching is based on
overlapping (or similar) content in the input objects, but this
signal can be missing or ambiguous in this new setting.

Missing matches. In Example 1, movie Pulp Fiction is
reported as Drama in the table but comedy is mentioned
in the review. This problem can be partially tackled with
the pre-trained embedding of Tarantino, which models him
as a director for both comedies and dramas [15]. But in
Example 2, modeling the connection between PDCA and its
full spelling is crucial to match the paragraph to the right
taxonomy node. While pre-trained embeddings can be used
to identify synonyms for common words and popular entities,
they fail for domain specific terms. Challenge 1: as specific
vocabularies are not well modeled by pre-trained resources, we
need to learn embeddings across the heterogeneous corpora
at hand to discover similarities in their content.

Ambiguous matches. In Example 1, an actor named Willis
appears in different paragraphs and tuples, but only one tuple



Fig. 3: The proposed unsupervised solution: (1) jointly model text and structured data documents in a graph, (ii) produce
embeddings for data and metadata nodes (representing texts, taxonomy nodes, tuples), (iii) match metadata nodes.

in the relation is the correct match in this case. Similarly, the
term audit appears in most paragraphs and taxonomy nodes
in the second example. This suggests the need of a weighting
mechanism for combining the matching tokens across two
candidate objects. Challenge 2: there is the need to learn how
to combine matching signals, but the lack of training data rules
out solutions based on fine tuning of pre-trained models.

Previous methods lack the flexibility to cover such chal-
lenges. Existing approaches handle traditional ER and TM,
but they fail in terms of accuracy in the new use cases above.
What is missing is a unified representation that is at the
same time modeling the relationships in the structured content
(for learning a good representation and identify similarities)
and the importance of every matching word when comparing
heterogeneous objects. The last point highlights the need of
learning a comparable representation for sets and sequences
of tokens, such as tuples and text documents.

To overcome these issues, we propose a framework for
learning representations of data and text that (i) is tailored
at the domain at hand with a joint modeling of heterogeneous
corpora and (ii) exploits structured information whether avail-
able to improve the quality of the generated embeddings and
of the matching process.

Figure 3 shows our solution. First, it represents text doc-
uments and tables as nodes and edges in an undirected
graph. This graph contains two main types of nodes. Data
nodes represent tokens (words) in the corpora, either in
text paragraphs or in table cells. Metadata nodes represent
IDs for tuples, attributes and paragraphs. Graph edges rep-
resent the relationship between data and metadata, e.g., a
tuple/attribute/paragraph contains the token in a data node.
As our goal is to match metadata nodes, we aim at creating
more paths between related nodes and at removing spurious
connections. The first goal is achieved in an expansion step
that exploits external resources, such as ConceptNet [16]. The
second goal is obtained by pruning edges and nodes with graph
compression techniques designed for our matching task. Next,
we generate an embedding for every graph node. We rely on
existing solutions for this step and the algorithm at hand can
be replaced as the community makes progress in this task.
Finally, we use the embeddings for the metadata nodes in an
unsupervised algorithm to identify the matching ones, such as
the paragraph and the tuple in the first example.

The framework enables users to improve the solution ac-
cording to the requirements and the resources at hand. If
relevant external resources exist, such as word dictionaries,
they can be plugged in graph construction to merge data nodes.
Knowledge graphs and ontologies are plugged in the expansion
step to find more relationships across metadata nodes. New
embedding generation algorithms can be plugged in the second
step to improve the quality of the embeddings.

Our work extend recent solutions designed for the ER
task (data to data only) to this new problem [1], [17], [2]
by enabling matching for schema-less text paragraphs and
taxonomies. The module for graph generation is our first
contribution as it creates a rich representation which is then
reflected in the domain specific embeddings for text and struc-
tured data metadata nodes, thus tackling the first challenge.
Our second contribution is the expansion and compression
approach that, together with matching generation module,
exploits the benefits of embeddings metadata nodes in an
unsupervised solution, thus tackling the second challenge.
While our work extends [1], this paper introduces the novel
problem of matching text paragraphs to tuples and nodes
in taxonomies, it extends the original graph to data sources
without a schema, and it handles long free texts with a
novel expansion and compression approach. Our proposal
outperforms state-of-the-art methods by increasing quality
performance up to 45% in absolute terms while taking a
fraction of their time in matching. Finally, while we focus
on unsupervised applications, any downstream classifier can
be trained using the embeddings from our solution.

In the following, Section II describes the proposed frame-
work and how we generate and refine the graph at the core
of the proposal. Section III introduces algorithms to expand
the original graph with external resources and compress it to
keep its size manageable. Section IV introduces the methods
for producing embeddings and matching metadata nodes. Sec-
tion V evaluates our work with datasets from real applications.
Section VI discusses related work. Section VII concludes the
paper with open challenges and the next steps we plan to take.

II. A GRAPH FOR HETEROGENEOUS CORPORA

In this section, we describe the algorithm for the generation
of a graph across heterogeneous corpora. We discuss the case
with text documents and tables as corpora, but the same
algorithm applies for the case with documents (tables) only.



The input of the graph creation are two corpora. A corpus,
based on the task, is a table, some structured text, or simple
text. The document to match is a tuple, for tables, while the
granularity of the text is user-defined and can span from a
single sentence to a paragraph. These corpora are matched in
three possible combinations, or tasks: text to structured text
matching, text to data matching, or text to text matching. The
purpose of each task is to find the top-k closest documents
in the second corpus for all the documents in the first corpus.
External resources, such as pre-trained embeddings, are not
needed to run the pipeline, but they can be naturally exploited
as we discuss in Section II-C.

We jointly represent the document corpora and tables in
a graph, from which we then generate embeddings. We first
perform some pre-processing steps for every corpus. This
includes stop-words removal and stemming on the tokens
coming from the texts and the cell values of the tables. We
call terms these processed values and a term can be composed
of one or multiple tokens. For example, “The Sixth Sense” is
a term composed of three tokens.

We define two types of nodes. Data nodes represent the
terms after pre-processing. If a term is contained in multiple
documents across the corpora, it still appears as a single node
in the graph. Metadata nodes represent a group of tokens,
such as a sentence, a tuple, or an attribute. Undirected and
unweighted edges connect metadata with the respective data
nodes, i.e., a tuple node is connected to its tokens.

The graph creation is presented in Algorithm 1. The algo-
rithm takes as input two corpora of pre-processed documents.
It creates a metadata node for each document in the first
corpus (lines 3-4). For example, Figure 4 shows metadata
nodes t1 and t2 for the tuples. If the document is a table,
it also creates a metadata node for every attribute (lines 5-10),
such as nodes c2, c3, c4, and c5. These columns are modeled
as nodes as they add 2-hop paths across values from the active
domain of an attribute. If the document is a structured text,
its nodes are modeled as metadata nodes and edges are added
to represent relations (lines 12-15). For each term associated
to the document (metadata) node, the algorithm then creates
term nodes (lines 18-20) and connects each data node to its
respective metadata node (lines 21-24). For example, edges
are created to connect t1 to Shyamalan, Willis, B. Willis, PG,
and Thriller. Next, metadata nodes for the documents in the
second corpus are created (lines 27-28), thus adding p1 and
p2 in Figure 4. Term nodes for these documents are connected
to their metadata nodes (lines 29-34). For example, metadata
node p1 is connected to data nodes Willis and Comedy.

Algorithm 1 creates different metadata nodes based on the
input documents. In this example, it outputs metadata nodes
to represent tuple, columns, and text. For the other two tasks
(text to text and text to structured text), only text metadata
nodes are produced.

A. Connecting metadata nodes

The graph creation algorithm never connects metadata nodes
from different corpora, as we assume that these connections

Algorithm 1: Graph Creation

1 Input. Two sets of documents;
2 G = An un-directed graph;
3 foreach document doc i in the first set do
4 G.addNode(doc i) ;
5 if get type(first set)=table then
6 foreach column col j in the document do
7 if ¬ G.hasNode(col j) then
8 G.addNode(col j)
9 end

10 end
11 end
12 if get type(first set)=structured then
13 parent ← get parent of document i ;
14 if G.hasNode(parent) then
15 G.addEdge(doc i,parent)
16 end
17 end
18 terms ← get list of terms in document i ;
19 foreach term tm k in terms do
20 G.addNode(tm k)
21 G.addEdge(doc i,tm k)
22 if get type(set)=table then
23 G.addEdge(col j,tm k)
24 end
25 end
26 end
27 foreach document doc i in the second set do
28 G.addNode(doc i);
29 terms ← get list of terms in the document;
30 foreach term tm j in terms do
31 if G.hasNode(tm j) then
32 G.addEdge(doc i,tm j)
33 end
34 end
35 end
36 Output. Graph G

are hard to infer and are indeed the results of the downstream
task in our system. However, those relations can be provided
by the users and consumed by our algorithm. On the other
hand, metadata text nodes from the same structured document
can be connected. For example, for the taxonomy in Figure 2,
the corresponding graph connects metadata text nodes for
Audit programme and ISO 19001. This edge represents the
hierarchical relation between the concepts.

B. Filtering nodes

The graph can become extremely large with real text cor-
pora. This is a problem in terms of performance both for the
execution time and for the quality, as it may lead to model
several terms that do not contribute to the final matching tasks.
To address this problem, we filter out irrelevant terms in the
graph creation. Algorithm 1 does not create data nodes for



Fig. 4: Graph with a sample of the nodes for Example 1.

all terms in both corpora. It starts by creating data nodes for
documents in the corpus with the smaller number of distinct
tokens and filters out from the second corpus the terms that
are not already in the graph.

As our goal is to model the connections across the two
corpora, we compromise the loss of some words (and possibly
relationships) in the second corpus to focus the learning in the
next step on the terms that create bridges between metadata
nodes. To limit the loss of possibly relevant words and to create
a more compact graph, we present next some techniques to
merge token nodes across corpora.

C. Merging nodes

Intuitively, (correctly) merging data nodes increases the
connectivity between related metadata nodes across corpora
and ultimately improves the matching tasks. For example,
merging data nodes Bruce Willis and B. Willis in Figure 1
decreases the distance in many paths connecting metadata
nodes P1 and t1. Merging data nodes is easier that solving
the metadata matching task and there are several resources
available for this operation. For this matter, we use different
techniques to merge data nodes:

• Stemming merges different forms of a word. For example,
in Figure 2, stemming merges planning from the first
paragraph with node Plan from Plan Do Check Act Steps.

• Bucketing merges data nodes with numeric values by
using equal width binning and the Freedman–Diaconis
rule [18] to compute buckets’ width.

• For merging synonyms, acronyms, and typos we use
external resources, such as WordNet [19].

For the last case, we merge two data nodes if the cosine
similarity between their embedding vectors is higher than a
threshold γ. For calculating γ, we use a list of 17K synonym
terms from WordNet and define γ as the average cosine
similarity between their vectors in the pre-trained model that
we use for merging. Specifically, for Wikipedia2Vec [20] we
identify and set γ = 0.57. This approach is widely used in
tasks such as entity linking [21] and retrieval [22].

D. Tokens and terms

One important aspect in graph creation is handling multi-
tokens data nodes. There are a lot of meaningful multi-tokens
words in document (e.g., movie names) and information is
lost if they are split over different single-word data nodes in
the graph, e.g., The Sixth Sense split over data nodes Sixth
and Sense with The filtered out as stop word. A possible
solution for tables is to represent the whole cell value as a
single data node (The Sixth Sense). But this granularity has
also drawbacks as it may lead to graphs that miss important
connections across corpora. For example, if B. Willis in the
review and node Willis are not merged, a strong connection
between the correct metadata nodes is lost.

We use a combination of the two approaches that solves
both problems. For each text in a corpus, we generate possible
n-gram tokens for n = 1, . . . , n. For example, for n = 3, the
graph represents The Sixth Sense using five data nodes: Six,
Sense, The Six, Six Sense, and The Six Sense. This increases
the chance of connecting terms of the second corpus with
nodes from the first corpus. We identified the default value of
n for every scenario by profiling a file of titles of Wikipedia
articles. About 99% of the titles have at most three tokens. Ex-
periments in Section V-F1 show that increasing n up to three
improves the quality performance but we observe diminishing
return with higher values. Other results also show that by
increasing n in character tokenization, the lexicon size grows
rapidly and precision diminishes for most languages [23].

III. GRAPH EXPANSION AND COMPRESSION

By generating the graph with Algorithm 1, the paths be-
tween metadata nodes represent the relationships which are
present in the documents and tables. This network of connec-
tions leads to embeddings that ultimately guide the metadata
matching process. However, the data relationships are not all
the existing relations between two real objects represented in
the graph. Real entities and concepts are connected by more
relationships that are missing from the corpus at hand.

For example, an actor and a director may have worked
together in a movie that is not in the movie table or in any of
the reviews. Such external relationships can be very valuable if
represented in our graph as they lead to better embeddings and
ultimately enable better matching. However, while expanding
the graph is a valid solution to include external information,
we should be careful in trying to remove useless or even
misleading new nodes and edges in order to keep the graph
as little as possible in terms of size. We present solutions to
address these two tasks in this section.

A. Expanding the graph with external information

A natural approach to expand the generated graph is to
employ external resources that model information with nodes
and edges, such as ontologies and knowledge bases. By
exploiting existing resources, we add information to the graph.

For example, in Figure 4, p1 is the review related to tuple t2.
Even though there are seven paths between these two metadata,
only one of them has three or less nodes: p1 → Willis →



Fig. 5: Expanded graph for Example 1.

t2. By expanding this graph with new nodes and edges, we
can add new meaningful paths between these nodes, improve
their embeddings, and increase their chance of being matched.
Consider as a resource of external information the knowledge
graph DBpedia [24]. Among the relations for entity Tarantino
in DBpedia, there is the following triple: style(Tarantino,
Comedy). Adding this new edge to the graph creates nine new
path between p1 and t2 including one with less than three
nodes: p1 → Comedy → Tarantino → t2.

Different external resources can be exploited to expand a
graph. In graphs with named entities, we are interested in
finding more information about them, such as data about their
spouse, country, university, workplace, etc. This information
can be extracted from existing entity-centric knowledge bases
(KBs) such as DBpedia and Wikidata. For example, the graph
presented in Figure 4 contains information about movies and
their casts, those are entities for which we can use a KB for
expansion. By expanding this graph with DBpedia, we enrich
it with new edges such as starringOf(Willis, Pulp Fiction) and
spouse(Shyamalan, Bhavna Vaswani) as shown in Figure 5.

Textual corpora do not contain only named entities, but also
concepts, generic nouns and verbs. For example, by expanding
the word management in Figure 2, we connect it with the
relevant words in the correct text paragraph, such as planning.
In these cases, other external resources can be exploited, such
as ConceptNet [25] and Wordnet.

Algorithm 2 shows how we exploit any external resource
to fetch all connections for every data node in the graph. We
also remove any sink node, i.e., nodes that are not connected
to more than one other node. E.g., in Figure 5 node Bhavna
Vaswani is only connected to Shyamalan and can be removed.

The expansion technique introduces new graph paths that
affect the matching process between metadata nodes. For
example, in the original graph in Figure 4, there is one path
with less than five nodes between metadata nodes p1 and t2,
but the their shortest path is of size two after expansion.

Algorithm 2: Graph Expansion Algorithm
Input: Un-directed graph G

1 External resource E
// Expanding by fetching connections from E

2 foreach node in G do
3 if node is not a metadata node then
4 relations ← all connections of node in E;
5 foreach (node,m) in relations do
6 if ¬ G.hasNode(m) then
7 G.addNode(m)
8 end
9 G.addEdge(node,m)

10 end
11 end
12 end
// Cleaning the graph

13 foreach node in G do
14 if degree(node) == 1 then
15 G.removeNode(node)
16 end
17 end
18 Output. Expanded graph G

B. Pruning nodes and edges for compression

Expansion introduces relevant connections between related
nodes, but it also increases its size by adding new nodes
and edges that are not helpful for our tasks. For example,
there are more than 800 relations for entity Quentin Tarantino
in DBpedia but only a few of them increase the chance of
matching p1 and t2 (e.g., directorOf(Quentin Tarantino, Pulp
Fiction), redirectsOf(Quentin Tarantino, Samuel Jackson)). As
new nodes and relationships increase the execution time for
random walks and embedding generation, we should avoid
keeping nodes and edges that do not contribute to the connec-
tions among metadata nodes.

We therefore introduce a graph compression techniques
to reduce the size of our graph after the expansion phase.
Compression for static graphs has been studied for its benefits
in terms of reduction of data volume and storage, which in
turn enables speedup of algorithms and queries [26]. Noise
elimination has also been reported as an important effect of
the compression, with the removal of erroneous nodes and
labels [27]. Compression methods can be based on node sam-
pling [26], [28], [29], edge sampling [30], [31], or exploration
based sampling [32], [33], [34]. Most methods are configurable
w.r.t. the desired compression ratio, i.e., the desired size of the
output graph compared to the input graph.

As these methods are very general, they are not application
specific and cannot make use of the node types in our graph.
Our experiments in Section V show that these techniques can
help in reducing the size of the graph by filtering nodes, but
do not preserve good performance in the matching task.

Our key observation is that the goal of our graph and our
embeddings it to match metadata nodes. A crucial component



in determining the distance between the embeddings for two
metadata nodes in their distance in the graph. We therefore
start the design of our compression algorithm from the idea
that it should preserve the shortest path across all the metadata
nodes in the two corpora. This is a quadratic number of paths
w.r.t. the number of metadata nodes, but this is unavoidable as
we do not know at compression time what are the metadata
to match.

Inspired by an existing graph compression technique that
exploits shortest paths, namely SSP [33], we introduce an
algorithm tailored at our graph and matching application. The
original SSP is an exploration based sampling method which
takes a sampling size as input. It randomly picks a pair of
nodes in each iteration, computes their shortest path, and adds
nodes and edges of the shortest path to the output graph. In our
setting, the idea is to use metadata nodes in distinct corpora
for the selection of node pairs. This guarantees that metadata
nodes are connected and keeps in the graph the data nodes
that are modeling their relationship concisely.

Algorithm 3: Graph Compression MSP
Input: Un-directed graph G

1 Compression ratio β
2 CG = empty un-directed graph
3 i = 0
4 L = β * size(G.nodes())
5 while i < L do

// Select two random metadata nodes

6 first ← a random node from the first corpus
7 second ← a random node from the second corpus
8 shortest paths ← find all shortest paths between

first and second in G
// Add nodes and edges of the paths to CG

9 foreach path in shortest paths do
10 CG.add(path)
11 end
12 i += 1
13 end
14 Output. Compressed graph CG

Algorithm 3 shows our graph compression based on the
idea of using Metadata Shortest Path (MSP). It takes an un-
directed graph and a compression ratio β as input and returns
a compressed graph. We define the number of iterations of the
Algorithm by multiplying β and the number of nodes in the
graph. We also make sure that all metadata nodes, even if not
sampled at lines 6-7, are connected to the graph with at least
one shortest path.

There is however an orthogonal challenge in such an aggres-
sive compression. Keeping only shortest paths among metadata
nodes may lead to a graph with similar embeddings for all
nodes. Assume that all shortest paths are of length three and
all of them pivot on a single, very popular data node. This
extreme situation leads to all metadata nodes ending up with
the same embedding, therefore making the matching process

impossible. This observation highlights that compression is not
suitable in all cases. We discuss in the experiments how we
can recognize setting that are less likely to benefit from the
compression.

IV. MATCHING TEXT AND STRUCTURED DATA

In this section we discuss how to generate and compare
node embeddings for the unsupervised matching of objects.

A. Embeddings Generation

We generate embeddings for the graph nodes. Multiple
methods can be employed to generate embeddings directly
from the graph [35], [36]. A less resource intensive solution is
to use word embedding models on walks over the graph [37].
In our default setting, we use the second approach as we found
the results with different methods comparable in quality, but
the latter is faster and less demanding in terms of resources.

Algorithm 4: Embedding Generation
Input: Graph G

1 Number of RWs n
2 Length of RWs l
3 docs = []
4 for i in range(0,n) do
5 for node in G do
6 rw = []
7 while len(rw) < l do
8 next ← a random neighbor of node
9 rw.append(next.label())

10 end
11 docs.append(‘ ’.join(rw))
12 end
13 end
14 M ← Word embedding model
15 M.train(docs)
16 Output. Embeddings for data and metadata nodes

Algorithm 4 shows the process of generating embeddings.
The output of this algorithm are word embeddings that map
words in the random walks (data and metadata nodes) to
vectors of real numbers. In a word embedding model, words
with more co-occurrences in sentences show smaller distances
in the corresponding vectors. In our model, related metadata
nodes have a higher chance of appearing together in a random
walk, thus their vectors show smaller distances. In our default
method, a random walk starts from every graph node and at
each step it randomly chooses the next node among the current
node’s neighbors. A sentence is derived with the concatenation
of nodes traversed by the walk. The union of the sentences is
then processed with Word2Vec or similar methods. Multiple
parameters of the random walks affect the quality of the
embeddings, including whether random walk should be limited
to some nodes or not, the length of a random walk, and how
many random walks should be generated for every graph node.
In Section V-F1, we report the impact of these parameters on
the quality of the proposed model.



We stress the importance of the unified graph and of
the walks in our context. While any data structure can be
serialized as a sequence of sentences (e.g., row by row), this
is not effective in practice for learning embeddings for two
reasons. First, the resulting sentences do not follow meaningful
patterns as in real languages; the relationships that are nicely
captured in real text are missing. This is especially true for
transformer based solutions based on attention. Second, a
simple serialization misses the structural dependencies in a
relation; existing features in the data are not exploited. Given
text documents and a relation, our graph and walks enable the
joint representation for the given corpora.

B. Matching Metadata Nodes

In the final step, the input of the matching module is a
metadata node for a document in the first corpus and the
metadata nodes representing all documents in the second
corpus. The embedding vectors are used to match such nodes
and ultimately the documents they represent (text paragraphs,
text sentences, or tuples). The distance between two nodes’
vectors is used for matching them. Given the embeddings, we
use cosine similarity to identify the top-k neighbours in the
second corpus for the metadata node from the first corpus.

Differently from the graph creation, in the metadata match-
ing we found more effective to start the process from the larger
corpus and this is our default configuration. However, this
decision can be changed according to the specific task. For
example, in text matching we do it claim by claim (from the
smaller corpus) as this is the natural setting for the application.

V. EXPERIMENTS

We first introduce our execution setting and the baseline
methods. We then report the results in three matching tasks: i)
text to data, ii) text to structured text, iii) text to text. We do not
report performance for the data to data task since it has already
been studied in previous work [1]. Finally, we report execution
times and discuss the impact of the different parameters and
optimizations in our solution. Code and datasets are available
at https://github.com/naserahmadi/TDmatch.

Execution setting. Experiments have been conducted on a
laptop with CPU Intel i5-7300U, 4x2.6GHz cores and 8GB
RAM. For fine tuning the baselines, we used a Google Co-
laboratory instance with CPU Intel 2x2.20GHz, 13GB RAM,
and NVIDIA Tesla T4 GPU (16GB memory). Algorithms are
written in Python with the Numba compiler.

Baselines. We compare our approach to several baselines; we
report only the best performing baselines for every task. Some
baselines rely on training over the given documents and data
(as our approach), while others use pre-trained resources. We
further distinguish unsupervised and supervised solutions.

For unsupervised methods based on training, we test
Word2Vec (W2VEC) for word embedding and Doc2Vec
(D2VEC) for document embedding. We obtain embeddings
from the documents at hand and then use such embeddings
to identify matches. We generate embeddings for longer texts

with the mean of the vectors of their tokens [38]. We use
vectors of size 300, Skip-Gram for Word2Vec and DBOW for
Doc2Vec. For unsupervised approaches using pre-trained em-
beddings, we report on SentenceBERT (S-BE). Unsupervised
methods match objects with the algorithm in Section IV-B.

We denote supervised methods using pre-trained models
with ∗ for clarity and always report results for 5-fold cross
validation. The first approach is based on fine-tuning for a
multi-label classification task on BERT large (L-BE∗). We
also report the results for two supervised state-of-the-art entity
matching methods for the text to data task: Ditto [2] and
DeepMatcher [9]. These methods take two tables as input
and compute the matching probability for tuples from different
tables. We represent text documents as tuples of a table with
one attribute. We report the results for text-to-data matching
also using TAPAS [13], a BERT-based model designed and
pre-trained for answering questions about tabular data. We
use 60% of the annotated data to train these models. Finally,
we report for Reranking (RANK∗), a supervised algorithm that
learns to rank using a pairwise loss [39].

For our unsupervised approach, we used Word2vec (W-RW)
on the random walks (RW) generated on the graph. In the
default configuration, we generate 100 random walks of length
30 for every node. For the text to data task, we use Skip-gram
with a window of size three as in the data to data match [1],
while for text oriented tasks we use CBOW with a window
of size 15. We report for our method with (W-RW-EX) and
without (W-RW) applying the expansion technique in Sec-
tion III. We use ConceptNet as our default external resource
for expanding graphs, except for IMDB where we employed
DBpedia as this relation contains mostly entities.

A. Text to Data

For the text to data matching we use two datasets. We cre-
ated a first scenario from the Internet Movie Database (IMDb)
website with a corpus of movies reviews and a database of
movies. We also report results for the CoronaCheck scenario,
which matches COVID-19 claims to the official datasets [7].
For both scenarios, the task is to find tuples related to each
sentence. For example, a sentence “Number of cases in US is
higher than China” required to match two rows of a table to
verify the claim.

Datasets. As the task is novel, we release two new scenarios:

1. IMDb. We created the dataset by manually matching two
reviews for every movie in “top 1K of all times” to a sample
of 50k tuples from the official IMDb dataset. The 2k reviews
contain one to 207 sentences, sixteen on average. We created
two versions of the target relation: an easier one with 13
attributes, including the title information (WT) and a more
challenging one without title (NT).
2. CoronaCheck. This scenario contains a corpus of sentences
about COVID-19 spread and effects, such as daily total death
cases and new confirmed monthly cases, annotated w.r.t. the
corresponding tuples in a dataset with 1.2k tuples about daily
cases for all countries. We report for a dataset with 7k

https://github.com/naserahmadi/TDmatch


Method MRR MAP@k HasPositive@k
1 5 20 1 5 20

W
T

S-BE .254 .088 .142 .159 .171 .339 .510
W-RW .853 .400 .678 .682 .802 .919 .942

W-RW-EX .868 .410 .691 .706 .820 .926 .955
RANK∗ .535 .218 .351 .376 .438 .645 .797
DITTO∗ .759 .349 .549 .553 .699 .839 .877
TAPAS∗ .722 .375 .525 .526 .802 .849 .929

N
T

S-BE .218 .067 .118 .139 .136 .301 .454
W-RW .780 .362 .574 .589 .727 .841 .906

W-RW-EX .792 .371 .587 .598 .749 .854 .911
RANK∗ .404 .156 .236 .260 .312 .494 .688
DITTO∗ .560 .265 .386 .410 .428 .689 .814
TAPAS∗ .643 .327 .354 .358 .678 .706 .715

TABLE I: Quality of match results for IMDb scenario.

Method MRR MAP@k HasPositive@k
1 5 20 1 5 20

G
en

S-BE .486 .294 .463 .483 .295 .752 .916
W-RW .728 .575 .718 .725 .578 .945 .995

W-RW-EX .755 .601 .746 .752 .611 .959 .996
RANK∗ .460 .287 .438 .455 .289 .703 .845

DEEP-M∗ .376 .347 .368 .374 .349 .395 .439
DITTO∗ .160 .030 .161 .203 .066 .283 .518
TAPAS∗ .394 .325 .367 .389 .330 .452 .723

U
sr

S-BE .354 .177 .284 .320 .200 .620 .860
W-RW .518 .296 .427 .472 .306 .755 .979

W-RW-EX .538 .329 .451 .496 .371 .771 1
RANK∗ .332 .137 .256 .303 .160 .600 .880

DEEP-M∗ .321 .200 .200 .248 .280 .280 .600
DITTO∗ .153 .020 .100 .123 .040 .281 .407
TAPAS∗ .192 .053 .053 .077 .053 .053 .474

TABLE II: Quality of match results for CoronaCheck scenario.

sentences created from the data (Gen) and a more challenging
dataset with 50 sentences submitted by users on the website
https://coronacheck.eurecom.fr (Usr) [7].

Evaluation Measures. Mean Reciprocal Rank (MRR) is the
average of reciprocal ranks of queries, i.e., the multiplicative
inverse of the rank of the first correct answer. Mean Average
Precision (MAP) is the mean of the precision scores after
each relevant document is retrieved and we report MAP
truncated at rank k (MAP@k). We also report HasPositive@k
for determining whether there is a true positive among the
top-k results.

Matching results. As the training-based methods (W2VEC,
D2VEC) do not take tables as input, we serialize every tuple
to a sentence using two special tokens ([COL] and [VAL) [2],
e.g., the first row in Figure 1 starts with “[COL] title [VAL]
The Sixth Sense [COL] director [VAL] Shyamalan”. We then
generate an embedding vector for every resulting sentence and
match vectors for tuple and text metadata nodes. As results are
poor for these baselines, we do not report them. For the pre-
trained models, we report for S-BE, RANK∗, DITTO∗, DEEP-
M∗, and TAPAS∗.

Table I and Table II show the results on the IMDb and
CoronaCheck scenarios, respectively. Our method outper-
forms unsupervised S-BE in all scenarios and the techniques in
Section III show a positive effect in both datasets. For IMDb,
we observe an absolute increase of 0.45 for MRR with W-RW

in both datasets and at least 410x relative improvement for
Positive@1. In CoronaCheck, the increase for Gen sentences
is an absolute 0.24 for MRR and up to 0.30 for MAP@k
and Positive@k. For the Usr sentences, increases are up to
0.2 for MRR and MAP and up to 0.18 for Positive@k. Our
model clearly outperforms also supervised methods. Results
show that pre-trained models fail short in this task and that the
joint modeling enabled by our graph is needed to achieve good
matches. We do not report DeepMatcher on IMDB because it
failed due to the limited amount of memory in our machine.

B. Text to Structured Text

In this task, we match taxonomy elements to a text docu-
ment in a real enterprise scenario from an auditing company.

Dataset. This scenario contains 1622 audit text documents
(containing one to 17 sentences, three on average) and a
taxonomy containing 747 auditing concepts. Each path spans
multiple nodes, e.g., r1 : a→ b→ c→ d, where each variable
is a concept. Right arrows show the hierarchical relations
between terms, e.g., in r1 c is a child of b and b is a child of a.
The length of taxonomy paths are between two and five nodes
(four on average). The final graph has 5.9k nodes and 164k
edges. Text documents are manually matched to concept nodes
by domain experts. About 40% of documents are annotated
with one concept, 10% are matched to two concepts, and the
rest are matched with three to 27 concepts (four on average).

Exact Scores Node Scores
Method P R F P R F

K
=1

D2VEC .254 .217 .234 .554 .503 .527
S-BE .094 .071 .081 .379 .358 .368

W-RW .346 .265 .300 .593 .530 .560
W-RW-EX .367 .282 .319 .601 .545 .572

K
=1 RANK∗ .162 .125 .138 .425 .392 .408

L-BE∗ .381 .304 .338 .626 .567 .595

K
=3

D2VEC .176 .386 .242 .485 .564 .521
S-BE .065 .014 .088 .362 .431 .393

W-RW 201 .434 .275 .521 .652 .579
W-RW-EX .214 .475 .295 .528 .670 .594

K
=3 RANK∗ .162 .125 .138 .425 .392 .408

L-BE∗ .183 .417 .254 .487 .678 .566

K
=5

D2VEC .132 .470 .206 .457 .679 .546
S-BE .052 .179 .080 .356 .473 .406

W-RW .145 .508 .222 .478 .699 .568
W-RW-EX .151 .533 .236 .485 .719 .580

K
=5 RANK∗ .072 .242 .110 .365 .522 .429

L-BE∗ .135 .508 .213 .446 .740 .556

K
=1

0

D2VEC .087 .587 .152 .42 .758 .541
S-BE .038 .253 .066 .347 .541 .423

W-RW .092 .613 .160 .437 .768 .557
W-RW-EX .094 .629 .164 .438 .783 .562

K
=1

0 RANK∗ .051 .324 .088 .350 .592 .440
L-BE∗ .081 .584 .141 .393 .797 .526

TABLE III: Exact and Node scores for structured text matches.

Evaluation Measures. For this task, we change quality mea-
sures as we show results at different granularity. We report

https://coronacheck.eurecom.fr


Precision, Recall and F-score for concepts (in the taxonomy)
assigned to every document w.r.t. the ground truth. As different
taxonomy nodes can contain the same text, we compare the
root to node path in the measures. With Exact matches, we
consider a match in the top-k valid only if it is equal to the path
in the ground truth. As two paths can be partially overlapping,
we consider also partial matches with the Node score, which
measures the intersection between the matched path(s) and the
closest path(s) in the ground truth. For an accurate calculation,
we exclude two most general levels of the taxonomy (root and
first level under it) in the intersection and denote the new path
with p′. We then use formula (1) below to calculate the Node
score for two paths p1 and p2.

Node(p1, p2) =
intersection((nodes(p′1), nodes(p

′
2))

maximum((nodes(p′1), nodes(p
′
2))

(1)

Consider r1 and r2 : a → b → c. After excluding the
general nodes, we obtain r1 : c and r2 : c → d, thus
Node(r1,r2) = 0.5.

Matching results. Table III reports for both measures the
precision, recall and F-score for matching top-k paths to
every document for different k values. Results show that the
task is very difficult. Indeed, different auditors have different
opinions about the right matches for a given taxonomy node
and the ground truth is constructed after a discussion to
reach consensus. In this hard task, our methods outperform
unsupervised methods with a large margin. This scenario
contains some domain specific terms that are not covered
by pre-trained models as we can observe by D2VEC (trained
on the audit data) outperforming unsupervised S-BE. Only
for the top-1 case the supervised BERT large shows small
margins for both measures. Supervised classifiers are effective
for documents matched against one concept but do not have
enough training data for the other cases. In Section V-F2,
we show how our model combined with S-BE outperform
supervised BERT large solution also for k=1.

C. Text to Text

We evaluate our framework in matching documents between
three text corpora. While our solution is tailored towards
structured data and text, its results are better than unsupervised
state of the art baselines for this task and close to supervised
ones. Two datasets come from the task of detecting previously
fact-checked claims [39]. Given a check-worthy input claim
and a set of verified claims, the goal is to rank the verified
claims that help check the input claim it, above other claims.
We also test the dataset from the STS (semantic textual
similarity) GLUE task [40] as an unsupervised matching task.
In this dataset, an original similarity score between text pairs
is defined between 0 (completely dissimilar) and 5 (completely
equivalent). We consider two snippets a true match when they
have in the ground truth a score equal or greater than k.

Datasets. The Snopes dataset contains a set of 1k claims
(tweets) and 11k verified claims (facts), while the Politifact
dataset contains 768 claims (made by politicians) and 16.6k
verified claims (facts). Text documents contain from one to

Method MRR MAP@k HasPositive@k
1 5 20 1 5 20

S-BE .395 .354 .372 .382 .362 .417 .496
W-RW .489 .346 .396 .401 .409 .579 .702

W-RW-EX .507 .358 .406 .418 .429 .600 .726
RANK∗ .608 .531 .588 .599 .535 .688 .787

TABLE IV: Quality of match results for Politifact scenario.

Method MRR MAP@k HasPositive@k
1 5 20 1 5 20

S-BE .543 .457 .527 .535 .457 .648 .724
W-RW .695 .586 .688 .693 .587 .820 .886

W-RW-EX .708 .613 .698 .706 .614 .843 .898
RANK∗ .788 .691 .782 .784 .693 .894 .925

TABLE V: Quality of match results for Snopes scenario.

nine sentences in Snopes and from one to 11 in Politifact.
On average they have less than two sentences. We match
top−k verified claims (facts) for every claim. The STS dataset
contains a set of 7k pairs of sentences and we report results
for thresholds k=2 (5k pairs) and k=3 (3.7k pairs).

Evaluation Measures. We use Mean Reciprocal Rank (MRR),
Mean Average Precision at k (MAP@k), and HasPositive@k.

Baselines. We use methods with good results reported for
these datasets [39]: unsupervised S-BE and supervised RANK.

Matching results. Results in Tables IV, V and VI show that
our method is the best unsupervised solution, outperforming
S-BE in all measures and scenarios. Table VI shows that as
sentences with higher similarities share more details, increas-
ing k improves the performance for all methods. Our approach
sits between the best unsupervised baseline and the supervised
method. One explanation is that these datasets contain generic
textual claims with common terms, which is the best scenario
for pre-trained models trained on very large corpora. Also,
long natural language English sentences are nicely modelled
by the attention mechanism in transformers. As we discuss in
Section V-F2, by combining our embeddings with pre-trained
language models, we can improve our performance.

D. Compression Results

We report the performance of the compressing technique
introduced in Section III. As a baseline technique, we report
also for SSuM, a state of the art method that employs node
merging and edge sparsifying to generate a super-graph as out-
put [41]. Table VIII compares the performance of compression
methods in terms of size (number of nodes and edges) of the
compressed graph and of quality in the matching task (MRR).

For MSP, we report results for iterations equal to half (MSP
(0.5)) and a quarter (MSP (0.25)) of the expanded graph’s
nodes. SSuM (0.1) is set with a compression ratio of 0.9 as
this is the value generating the best quality results (MRR) in
our experiments.

In terms of size reduction, MSP (0.25) is the compression
method with the best results in four cases and it is second
to SSuM only for IMDB. However, it shows an higher de-
crease in match quality results w.r.t. MSP (0.5), which is the



Method MRR MAP@k HasPositive@k
1 5 20 1 5 20

k=
2

S-BE .739 .649 .723 .733 .657 .836 .920
W-RW .780 .691 .765 .772 .703 .872 .947

W-RW-EX .796 .707 .785 .788 .716 .887 .962
RANK∗ .798 .714 .789 .796 .717 .899 .967

k=
3

S-BE .842 .767 .832 .838 .773 .925 .999
W-RW .841 .766 .832 .836 .775 .926 .974

W-RW-EX .858 .787 .848 .854 .795 .887 .988
RANK∗ .890 .830 .887 .890 .830 .969 .994

TABLE VI: Quality of match results for STS scenario.

Method Text to data Structured text Text to text
Train Test Train Test Train Test

W2VEC 13.9 239 3.5 11.82 5.0 107
D2VEC 47.7 17.2 8.5 1.30 14.9 21.95

S-BE - 2.6 - 1.16 - 7.5
W-RW 152 0.07 207 0.05 189 0.41

RANK∗ 3206 0.09 3916 0.05 6918 1.2
L-BE∗ 3616 0.25 3280 0.69 251 2.6

TAPAS∗ 7301 7.2 - - - -
DEEP-M∗ 3492 0.68 - - - -
DITTO∗ 34528 2.28 - - - -

TABLE VII: Train and test execution times (sec).

compression method with the best results in all cases. For
Corona it even does better than the expanded graph. This
dataset contains many numerical values (about 25% of its data
nodes in the expanded graph), which are misleading in some
cases, as they are more likely to raise spurious connections
in the graph. In general, MSP performs better than SSuM.
For higher compression, MSP (0.25) produces smaller graphs
with better match accuracy in most cases. For MSP (0.5), we
observe better quality in the matches in all cases except Audit,
and comparable size in the compressed graphs. The results
show the benefit of considering shortest paths among metadata
nodes. For MSP, the graph size and the match accuracy follow
the expected behavior w.r.t. the compression ratio.

MSP, in both executions, shows its best results for sce-
narios with at least one relational table. In these cases, the
compressed graph is smaller than the original one (and much
smaller than the expanded one), with better or very close
matching quality. For text-only scenarios, the size reduction
is remarkable, and better than SSuM, but a significant drop in
matching quality can be observed. The conclusion is that the
use graph compression depends on the kind of data and the
requirements for the target application at hand.

E. Execution Times.

Table VII reports execution times for all methods averaged
over the experiments for every task. For training time, em-
beddings methods (W2VEC, D2VEC) and transformer-based
methods (RANK∗, L-BE∗) are trained (fine tuned) on a smaller
corpus than our method (W-RW). This is because we create
100 walks for each node in the graph, which leads to bigger
corpora in general. Due to this difference, Word2Vec and
Doc2Vec are faster than other methods in training, while our
method has execution times smaller than those taken to fine
tune transformers. S-BE has no training.

5 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Length of walks

M
ea

n
A

vg
Pr

ec
is

io
n IMDb Coro. Audit Poli. Snop.

Fig. 6: Match quality with increasing walk length.

We report the average execution time for a single match
(test). Our solution is the fastest. Document based methods,
like Doc2Vec, are faster than word based embedding solutions.
This is because for the latter methods we generate vectors for
all tokens in the document and aggregate them. Classifiers
are faster than document embeddings based matching, but
slower than our method. In the training step of our method,
expansion and compression take less than 3k seconds in all
cases, with the exception of IMDB (by far the largest) with
79k seconds for expansion (with DBpedia) and 51k seconds
for compression with MSP (0.5).

F. Ablation Study

We first report on the impact of different parameters on
the performance of our method W-RW. We then evaluate the
impact of the improvements proposed in Section II.

1) Impact of parameters: We examine the impact of length
and number of random walks, followed by number of tokens
in data nodes. We also report the impact of the graph size
(in terms of number of nodes) on the execution time of our
model. For CoronaCheck, we report results for the union of
the Generated and User sentences.

Length of random walks. Figure 6 shows the mean average
precision results for all scenarios when increasing the length
of the random walks. Increasing the walk length increases
the performance for all scenarios up to size 20. The increase
is higher at lower values and then stabilizes or gradually
decreases for most scenarios. We explain the different behavior
for IMDb and Audit with the fact that they have the biggest and
most dense graphs. IMDb graph is the biggest both in terms of
nodes (107k nodes vs 35k node for Snopes) and edges (1m vs
168k edges for Politifact). Because of their size, larger graphs
benefit of walks longer than 20.
Number of walks. Figure 7 shows the mean average precision
when increasing the number of walks. The performance for
all datasets improve with more walks, but with diminishing
results. Results also confirm that graphs with more edges per
node need more walks to obtain the best results. After 20
walks per node, results for IMDb keep improving, while for
CoronaCheck, which is the most sparse graph with an average
of four edges per node, there is no improvement.
Number of tokens in terms. Allowing more tokens in data
nodes (terms) increases the mean average precision in all



Dataset Original Graph Expanded Graph MSP (0.5) MSP (0.25) SSuM (0.1)
#N #E MRR #N #E MRR #N #E MRR #N #E MRR #N #E MRR

IMDB 107k 1m .780 237k 1.5m .792 82k 887k .779 75k 840k .755 27k 540k .601
Corona 10k 43k .728 15k 56k .755 10k 40k .769 8.5k 32.5k .757 10k 33k .610
Snopes 35k 129k .695 142k 622k .708 84k 479k .647 49k 292k .586 83k 470k .590
Politi 24k 168k .489 62k 317k .507 37k 242k .500 33k 225k .484 52k 257k .397
Audit 6k 164k .421 17k 202k .452 7k 161k .389 5.5k 144k .362 14k 150k .392

TABLE VIII: Compression performance: number of graph nodes (#N) and edges (#E) compared with matching quality MRR.

5 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of walks

M
ea

n
A

vg
Pr

ec
is

io
n IMDb Coro. Audit Poli. Snop.

Fig. 7: Increasing number of random walks per node.

3 10 20 30 40 50 80 100 120
0

100

200

300

Number of nodes (thousands)

E
xe

c.
tim

e
(m

in
ut

es
)

Fig. 8: Increasing number of nodes in the graph.

scenarios. There is a significant increase in quality going from
one to two tokens and the impact is smaller with higher values.
The highest increase is for Snopes and Audit datasets with an
increase up to 0.24 and 0.07, respectively. For text to data
scenarios, IMDb has an increase up to 0.05 and CoronaCheck
up to 0.03. The amount of increase for a scenario is related
to the number of new nodes added to the graph. For Snopes,
an increase in the number of tokens in a term adds an average
of 24k new nodes to the graph, which is close to the initial
number of nodes (35K). For Audit, the increase is 1.7k, which
is 62% of the initial graph’s token nodes. In IMDb, 23K new
nodes are generated (22% of initial graph) at every increase.
For all scenarios, except Snopes, the number of nodes does
not increase drastically after allowing three tokens in a term.
The behaviour of a dataset is determined by the length of
documents in its first corpus as tokens in the documents of the
second corpus get filtered. Snopes has the biggest documents
in its first corpus in comparison to the other datasets: it has
claims of 43 tokens on average while PolitiFact has 18.
Number of nodes in the graph. To show that our method
can scale on a commodity machine, we generate graphs of
increasing size. The graphs are generated from the STS dataset
with k values between 0 and 5. For increasing further the

Audit Politifact SnopesIMDb Corona

0.2

0.4

0.6

0.8

M
ea

n
A

vg
Pr

ec
is

io
n

Normal TFIDF Intersect

Fig. 9: Impact of data node filtering.

size of the graphs, we expand them using Algorithm 2 and
ConceptNet. For every graph, we generate 100 random walks
of length 30 for each node and report in Figure 8 the total time
to generate random walks and to train the word embeddings.
Results show that by increasing the number of nodes in the
graph, the execution time increases linearly.

2) Improving graph generation: We discuss here the im-
pact of the techniques introduced in Section II to improve
embeddings and matching quality.

Connecting metadata nodes.
For measuring the impact of edges between related metadata

nodes in a structured text, we run the same experiments in
Section V-B for W-RW without edges among metadata nodes.
The quality of the matches is negatively affected, with the
Node F-scores for increasing values of K (1, 3, 5, 10) dropping
by .08, 0.04, 0.02, and 0.01 in absolute values.

Filtering data nodes. Merging tokens create shorter paths
between related metadata nodes. In graph creation, we filter
tokens of the second corpus based on the nodes from the first
one. In this experiment, we compare the performance of our
technique (Intersect) against a solution based on TF-IDF [2],
which retains non-stopword tokens with high TF-IDF scores.
It has been shown that in a data to data matching task this
technique increases the quality performance on a text-heavy
dataset from 41% to 93% [2]. For implementing this method,
for each document we keep k tokens with highest TF-IDF
scores for different k values. For each scenario, we run k =3,
5, 10 and 20 and report the best result.

Figure 9 shows the performance of these two techniques
in terms of mean average precision for all scenarios. The
results show that, except for IMDb dataset and TF-IDF, both
summarizing techniques improve the mean average precision
of matching. It also shows that our technique works better than
TF-IDF in all scenarios.

Combining matching scores. Figure 10 depicts the results



IMDb Corona Audit Politifact Snopes

0.4

0.6

0.8
M

ea
n

A
vg

Pr
ec

is
io

n
W-RW W-RW &S-BE

Fig. 10: Our method combined with SentenceBERT.

of averaging the cosine similarity scores from our solution
with those from the pre-trained S-BE. Our solution already
outperforms S-BE in the original experiments, but averaging
the two methods improves the matching quality in all scenarios
even above the results from our methods alone. The biggest
improvements are for Snopes and CoronaCheck with 0.9 and
0.8 increase, respectively. This simple combination show the
benefit of exploiting domain specific embeddings and pre-
trained ones from large, generic corpora.

Merging nodes. For all scenarios, we employ different tech-
niques and resources to improve their quality results (Sec-
tion II-C). In CoronaCheck, 17% of the nodes are numeric
values and merging with equal-width buckets decreases the
number of graph nodes. We had the best results with equal-
width buckets of size 7, which increased the mean average
precision from 0.72 to 0.76. In Audit, Politifact, and Snopes
datasets, there are few numeric values and bucketing had no
effects. In IMDB, we observe a small loss because numeric
values are release dates, for which is better to avoid merging.

We also use Wikipedia2Vec to merge similar nodes. IMDb
contains variations for the same entity (e.g., director names)
and merging them with a threshold γ = 0.57 increases the
performance by 2.5%. For Snopes and Politifact, using the
same value, the increase is by 1.7% and 1.5%, respectively. As
CoronaCheck contains typos in user sentences (e.g., country
names), merging such typos leads to a 3.4% increase. Auditing
does not show improvements by merging nodes with pre-
trained resources because of the difference between the general
meaning of a term and its meaning in a specific domain.
Models pre-trained on general corpora do not help much in
a domain specific scenario. For example, the Wikipedia2Vec
similarity is high between Financial statement and Financial
reporting, same for Auditor and Risk control. However, these
terms have different meanings in audit documents.

VI. RELATED WORK

Entity resolution for relational data [3] has been recently
studied with deep learning solutions [1], [8], [2]. As they
rely on the presence of a schema, one way to use them in
this setting is to treat the text paragraphs as tuples within a
single column, but this leads to poor results. Even approaches
that consider schema-agnostic attribute matching, assume a
semi-structured input [42], [43]. In contrast, our solution
models texts and tables in a unified representation for learning
embeddings, with benefits in the matching tasks even with

very lightweight algorithms. Compared to [1], we extended the
graph generation to handle free text (without schema) with new
merging and tokenization techniques and with a new expansion
and compression approach. We model text matching both as
a binary classification task and as a multi-label classification
task to use SOTA baselines based on fine tuning language
models [39], [44]. These methods outperform traditional IR
approaches, such as BM25, but do not focus on the problem
of matching text and relational datasets. This latter problem
has been studied in settings that do not cover our use cases,
either because they assume supervision or because they are no
domain specific [45], [7], [6]. Other approaches for text and
data matching assume a very expensive training over large
document corpora and millions of tables [13], [12], [14]. We
report results for the fine-tuning on top of these pre-trained
model (TAPAS∗), but do not report results based on pre-training
as they are significantly worse in terms of quality w.r.t. our
solution. Indeed, the pre-training is not designed for a setting
with a small table corpus. Our setting is also different from
the problem of entity linking, as we are matching long text
to tuples in relational data [21], but it could be used as a
pre-processing tool to provide correspondences to knowledge
translation solutions [46].

Our default method to generate data and metadata repre-
sentations is Word2Vec [47] as it is powerful in discovering
relationships in the corpus as well as similarity between
tokens [48]. While we generate embeddings, some of our
baselines use pre-trained ones [15], [10]. Document embed-
ding methods model longer text sequences by aggregating the
vectors of words in the given sentence or paragraph [49], [38]
or by learning the document vector with special tokens [44],
[50]. Given our graph, it is also possible to generate embed-
dings directly for its nodes [51], [36], [37] with comparable
results w.r.t. the random walks followed by word embedding
generation in the data to data matching task [1]. Our study
confirms that they do not bring clear benefit, but are more
resources intensive than Word2Vec. Finally, our work can be
seen as a new instance of the general approaches of using deep
learning for data integration [52], [53], [17] and of improving
pre-trained embeddings w.r.t. relational data [54].

VII. CONCLUSION

We presented a new generic matching task that allows both
structured text documents and relational data. Results show
that lightweight embeddings effectively model the similarity
between heterogeneous corpora. Our proposal outperforms in
quality and test time all unsupervised baselines and it is com-
petitive to supervised solutions. Our graph expansion always
leads to the best matching quality, while the compression is
effective in reducing the graph size, but comes with a trade off
in the performance of the matching for text-only corpora. We
plan to extend our framework to support a richer graph with
typed edges and blocking to speed up performance. However,
while word embeddings are effective and efficient to generate,
a more complex architecture should be considered to enable
the benefits of fine tuning when examples are available.



REFERENCES

[1] R. Cappuzzo, P. Papotti, and S. Thirumuruganathan, “Creating embed-
dings of heterogeneous relational datasets for data integration tasks,” in
SIGMOD, 2020.

[2] Y. Li, J. Li, Y. Suhara, A. Doan, and W. Tan, “Deep entity matching
with pre-trained language models,” PVLDB, 2021.

[3] L. Getoor and A. Machanavajjhala, “Entity resolution for big data,” in
ACM SIGKDD, 2013, pp. 1527–1527.

[4] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know:
Unanswerable questions for squad,” in ACL, 2018, pp. 784–789.

[5] J. Guo, Y. Fan, X. Ji, and X. Cheng, “Matchzoo: a learning, practicing,
and developing system for neural text matching,” in SIGIR, 2019, pp.
1297–1300.

[6] W. Chen, H. Wang, J. Chen, Y. Zhang, H. Wang, S. Li, X. Zhou,
and W. Y. Wang, “Tabfact: A large-scale dataset for table-based fact
verification,” in ICLR, 2020.

[7] G. Karagiannis, M. Saeed, P. Papotti, and I. Trummer, “Scrutinizer: A
mixed-initiative approach to large-scale, data-driven claim verification,”
Proc. VLDB Endow., vol. 13, no. 11, pp. 2508–2521, 2020.

[8] M. Ebraheem, S. Thirumuruganathan, S. R. Joty, M. Ouzzani, and
N. Tang, “Distributed representations of tuples for entity resolution,”
Proc. VLDB Endow., vol. 11, no. 11, pp. 1454–1467, 2018.

[9] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep,
E. Arcaute, and V. Raghavendra, “Deep learning for entity matching:
A design space exploration,” in Proceedings of the 2018 International
Conference on Management of Data, 2018, pp. 19–34.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[11] M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. Ontañón,
P. Pham, A. Ravula, Q. Wang, L. Yang, and A. Ahmed, “Big Bird:
Transformers for longer sequences,” CoRR, vol. abs/2007.14062, 2020.
[Online]. Available: https://arxiv.org/abs/2007.14062

[12] P. Yin, G. Neubig, W. Yih, and S. Riedel, “Tabert: Pretraining for joint
understanding of textual and tabular data,” in ACL, 2020, pp. 8413–8426.

[13] J. Herzig, P. K. Nowak, T. Müller, F. Piccinno, and J. M. Eisenschlos,
“Tapas: Weakly supervised table parsing via pre-training,” in ACL, 2020,
pp. 4320–4333.

[14] X. Deng, H. Sun, A. Lees, Y. Wu, and C. Yu, “TURL: table under-
standing through representation learning,” Proc. VLDB Endow., vol. 14,
no. 3, pp. 307–319, 2020.

[15] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in EMNLP, 2014, pp. 1532–1543.

[16] R. Speer, J. Chin, and C. Havasi, “Conceptnet 5.5: An open multilingual
graph of general knowledge,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 31, no. 1, 2017.

[17] C. Koutras, G. Siachamis, A. Ionescu, K. Psarakis, J. Brons,
M. Fragkoulis, C. Lofi, A. Bonifati, and A. Katsifodimos, “Valentine:
Evaluating matching techniques for dataset discovery,” CoRR, vol.
abs/2010.07386, 2020. [Online]. Available: https://arxiv.org/abs/2010.
07386

[18] D. Freedman and P. Diaconis, “On the histogram as a density estima-
tor: L2 theory,” Z. Wahrscheinlichkeitstheorie und verwandte Gebiete,
vol. 57, no. 4, pp. 453–476, 1981.

[19] G. A. Miller, WordNet: An electronic lexical database. MIT press,
1998.

[20] I. Yamada, H. Shindo, H. Takeda, and Y. Takefuji, “Joint learning of
the embedding of words and entities for named entity disambiguation,”
in SIGNLL, 2016.

[21] H. Chen, S. Wadhwa, X. D. Li, and A. Zukov-Gregoric, “Yelm: End-
to-end contextualized entity linking,” arXiv preprint arXiv:1911.03834,
2019.

[22] E. J. Gerritse, F. Hasibi, and A. P. de Vries, “Graph-embedding empow-
ered entity retrieval,” in European Conference on Information Retrieval,
2020, pp. 97–110.

[23] P. Mcnamee and J. Mayfield, “Character n-gram tokenization for euro-
pean language text retrieval,” Information retrieval, vol. 7, no. 1-2, pp.
73–97, 2004.

[24] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,
and S. Hellmann, “DBpedia-A crystallization point for the web of data,”
Web Semantics: science, services and agents on the WWW, vol. 7, no. 3,
pp. 154–165, 2009.

[25] R. Speer, J. Chin, and C. Havasi, “Conceptnet 5.5: An open multilingual
graph of general knowledge,” in AAAI. AAAI Press, 2017, pp. 4444–
4451.

[26] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman,
“Search in power-law networks,” Physical review E, vol. 64, no. 4, p.
046135, 2001.

[27] Y. Liu, T. Safavi, A. Dighe, and D. Koutra, “Graph summarization
methods and applications: A survey,” ACM Comput. Surv., vol. 51, no. 3,
pp. 62:1–62:34, 2018.

[28] M. P. Stumpf, C. Wiuf, and R. M. May, “Subnets of scale-free networks
are not scale-free: sampling properties of networks,” Proceedings of the
National Academy of Sciences, vol. 102, no. 12, pp. 4221–4224, 2005.

[29] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2006, pp. 631–636.

[30] V. Krishnamurthy, M. Faloutsos, M. Chrobak, L. Lao, J.-H. Cui, and
A. G. Percus, “Reducing large internet topologies for faster simulations,”
in International Conference on Research in Networking. Springer, 2005,
pp. 328–341.

[31] N. K. Ahmed, J. Neville, and R. Kompella, “Network sampling: From
static to streaming graphs,” ACM Transactions on Knowledge Discovery
from Data (TKDD), vol. 8, no. 2, pp. 1–56, 2013.

[32] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
densification laws, shrinking diameters and possible explanations,” in
Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, 2005, pp. 177–187.

[33] A. Rezvanian and M. R. Meybodi, “Sampling social networks using
shortest paths,” Physica A: Statistical Mechanics and its Applications,
vol. 424, pp. 254–268, 2015.

[34] Y. Li, Z. Wu, S. Lin, H. Xie, M. Lv, Y. Xu, and J. C. Lui, “Walking
with perception: Efficient random walk sampling via common neighbor
awareness,” in 2019 IEEE 35th International Conference on Data
Engineering (ICDE). IEEE, 2019, pp. 962–973.

[35] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” arXiv preprint arXiv:1709.05584,
2017.

[36] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in SIGKDD, 2014, pp. 701–710.

[37] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in SIGKDD, 2016, pp. 855–864.

[38] C. De Boom, S. Van Canneyt, T. Demeester, and B. Dhoedt, “Repre-
sentation learning for very short texts using weighted word embedding
aggregation,” Pattern Recognition Letters, vol. 80, pp. 150–156, 2016.

[39] S. Shaar, N. Babulkov, G. D. S. Martino, and P. Nakov, “That is a known
lie: Detecting previously fact-checked claims,” in ACL, 2020, pp. 3607–
3618.

[40] D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia, “Semeval-
2017 task 1: Semantic textual similarity-multilingual and cross-lingual
focused evaluation,” arXiv preprint arXiv:1708.00055, 2017.

[41] K. Lee, H. Jo, J. Ko, S. Lim, and K. Shin, “Ssumm: Sparse summariza-
tion of massive graphs,” in SIGKDD, 2020, pp. 144–154.

[42] G. M. Mandilaras, G. Papadakis, L. Gagliardelli, G. Simonini,
E. Thanos, G. Giannakopoulos, S. Bergamaschi, T. Palpanas,
M. Koubarakis, A. Lara-Clares, and A. Fariña, “Reproducible exper-
iments on three-dimensional entity resolution with JedAI,” Inf. Syst.,
vol. 102, 2021.

[43] R. Singh, V. V. Meduri, A. K. Elmagarmid, S. Madden, P. Papotti,
J. Quiané-Ruiz, A. Solar-Lezama, and N. Tang, “Synthesizing entity
matching rules by examples,” Proc. VLDB Endow., vol. 11, no. 2, pp.
189–202, 2017.

[44] A. Adhikari, A. Ram, R. Tang, and J. Lin, “Docbert: Bert for document
classification,” arXiv preprint arXiv:1904.08398, 2019.

[45] Y. Ibrahim, M. Riedewald, G. Weikum, and D. Zeinalipour-Yazti,
“Bridging quantities in tables and text,” in ICDE. IEEE, 2019, pp.
1010–1021.

[46] B. G. Bashardoost, R. J. Miller, K. A. Lyons, and F. Nargesian,
“Knowledge translation,” Proc. VLDB Endow., vol. 13, no. 11, pp. 2018–
2032, 2020.

[47] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[48] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes,
and D. Brown, “Text classification algorithms: A survey,” Information,
vol. 10, no. 4, p. 150, 2019.

https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2010.07386
https://arxiv.org/abs/2010.07386


[49] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Tor-
ralba, and S. Fidler, “Skip-thought vectors,” in NIPS, 2015, pp. 3294–
3302.

[50] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” arXiv preprint arXiv:1908.10084, 2019.

[51] P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” Knowledge-Based Systems, vol. 151, pp.
78–94, 2018.

[52] C. Fu, X. Han, L. Sun, B. Chen, W. Zhang, S. Wu, and H. Kong, “End-
to-end multi-perspective matching for entity resolution,” in IJCAI, 2019.

[53] R. C. Fernandez and S. Madden, “Termite: a system for tunneling
through heterogeneous data,” in aiDM. ACM, 2019, pp. 7:1–7:8.

[54] M. Günther, P. Oehme, M. Thiele, and W. Lehner, “Learning from
textual data in database systems,” in CIKM, 2020, pp. 375–384.


	Introduction
	A Graph for Heterogeneous Corpora
	Connecting metadata nodes
	Filtering nodes
	Merging nodes
	Tokens and terms

	Graph Expansion and Compression
	Expanding the graph with external information
	Pruning nodes and edges for compression

	Matching Text and Structured Data
	Embeddings Generation
	Matching Metadata Nodes

	Experiments
	Text to Data
	Text to Structured Text
	Text to Text
	Compression Results
	Execution Times.
	Ablation Study
	Impact of parameters
	Improving graph generation


	Related Work
	Conclusion
	References

