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Abstract—Smart applications in vehicular networks, such as
highly-automated driving, require knowledge to support complex
decision making which is highly dependent on the current driving
context, for example, through machine learning based object
recognition. Unlike information, the pertinence of a knowledge
model depends on its context of use, rather than its date of
creation. In turn, the existing information sharing mechanisms in
vehicular networks, optimized for fast information delivery, must
be adapted to support rich contextual queries, and let vehicles
discover the right knowledge for the right context. Moreover,
networking of knowledge models has the potential to alleviate the
redundant transmission and computation of similar information.
Through a case of vehicle exit probability knowledge distribution
in a roundabout, we show the impact and potential of a context-
based dissemination of knowledge in terms of accuracy, delay,
and overhead compared to context-agnostic approaches.

Index Terms—context,distribution,knowledge,vehicular

I. INTRODUCTION

VEHICULAR networking has originally been defined as
an enabler of information sharing between vehicles,

infrastructure, and connected road users. Information storage
and dissemination mechanisms have been defined to support
infotainment and safety applications on board vehicles. For
example, the ETSI CAM [1] was standardized to convey in-
formation about the kinematics of a vehicle. Due to the highly
dynamic topology of the vehicular environment, such safety
messages quickly expire and must be stored and disseminated
with critical delay constraints.

On the other hand, knowledge can be defined as an ab-
stracted model obtained from the analysis of information
and defined using Artificial Intelligence (AI) technologies,
of which Machine Learning (ML) is a popular instance.
Knowledge has been increasingly used by Connected and
Autonomous Vehicles (CAVs) to support smart applications,
which require complex decision-making based on a form of
experience. For example, after receiving the information of the
presence of a conflicting vehicle on the road from a CAM, how
should a CAV react to avoid the associated risk? Depending
on the context, e.g., the location of the vehicle or the current
traffic conditions, the decision of which evasive maneuver
to perform requires complex and highly context-dependent
processing, which we refer to as knowledge.

The existing information storage and dissemination mecha-
nisms for vehicular safety applications are optimized for low
delay delivery. On the contrary, the relevance of a knowledge
model depends on its context of use rather than its age. For
example, let us consider a model to recognize and classify
objects on the road from camera images and LiDAR point
clouds, as defined in [2]. If the model has been trained from
images and point clouds sensed in clear weather, it will lose
accuracy when applied in rainy weather, as discussed in [3].
Due to the highly mobile topology of vehicular networks, the
driving context of each vehicle is likely to evolve dynamically.
As such, rather than critically low delay, a key factor of
knowledge distribution in vehicular networks is to ensure that
the right knowledge is delivered in the right context.

In turn, knowledge networking has the potential to reduce
redundancy, both by mitigating the independent computation
of similar models by distinct organizations, and by favoring the
transmission of precomputed knowledge rather than a larger
set of information to recreate it locally. Namely, existing works
have considered the networking of knowledge in vehicular
networks. Namely, [4] described the concept of a knowledge
networking architecture involving knowledge composition,
storage, and distribution. [5] defined a knowledge networking
framework specialized for the composition and exchange of
deep learning models. Yet, to the best of our knowledge,
no mechanism has been defined which considers a generic
context-based distribution of knowledge in vehicular networks,
such that the context of use of knowledge can be defined and
used to provide knowledge in the right context.

In [6], we introduced the Vehicular Knowledge Networking
(VKN) framework, which describes an architecture for knowl-
edge description, storage and dissemination in vehicular net-
works. In this paper, we use the VKN framework to evaluate
the potential impact of context-based knowledge networking
in vehicular networks. Through the case of roundabout exit
probability estimation knowledge, we define a packet-level
simulation in which vehicles can request for the creation of
knowledge which is adapted to their current driving context.
The contributions of this paper are as follows:
• A packet-level networking simulation is contributed

which implements context-based knowledge distribution
over existing vehicular networking protocols. It imple-



Fig. 1: The Exit Probability Knowledge Creation Case Study

ments the complementary aspects of knowledge descrip-
tion, storage, and dissemination mechanisms.

• The obtained results show that context-based knowledge
networking can significantly improve the accuracy of
knowledge, and that context-aware knowledge caching
reduces the overhead and delay of knowledge access.
This opens perspectives on future context-aware vehicular
knowledge networking.

The rest of the article is organized as follows: Section II
introduces the considered roundabout exit probability use case.
Then, Section III describes the implementation of knowledge
description, storage, and dissemination through VKN for this
use case. Section IV describes the packet-level simulation
setup to evaluate the VKN context-based knowledge distri-
bution. Lastly, Section V discusses the obtained results, while
Section VI summarizes the article.

II. RISK-BASED ROUNDABOUT ENTRY

The assessment of risk by CAVs is a key enabler of safe
highly automated driving. As considered in [7], several factors
may jeopardize self-driving abilities and cause slow downs or
a human take-over. The unexpected behavior of human road
users is listed as a key risk factor, especially when negotiation
is required, as in unsignalized intersections. For example,
entering a roundabout may require estimating the intentions
of vehicles which are already in the roundabout, to avoid a
collision between circulating and entering vehicles.

A report by the Transportation Research Board indicated
that roundabout entry conflicts involve, respectively, 36.6%,
50.8%, and 71.1% of roundabouts crashes in France, Queens-
land (Australia), and the United Kingdom [8]. In turn, to eval-
uate the accuracy of context-based knowledge networking in
vehicular networks, we consider the networking of roundabout
risk knowledge for safe CAV entry.

A. Scenario Definition

Figure 1 illustrates the considered scenario. The red-colored
vehicle va approaches an entry of a roundabout R, but senses
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Fig. 2: Flow Chart of the Roundabout Entry Procedure

a blue-colored incoming vehicle vb. To enter the roundabout
safely while avoiding the formation of queues at the entry,
the entering vehicle va aims to obtain the knowledge of the
probability of the incoming vehicle vb to exit the roundabout.

Models to estimate exit probability values are stored in
remote nodes, i.e., a central Mobile Edge Computing (MEC)
unit, or infrastructure nodes accessible through multihop wire-
less communication. Yet, no exit probability estimation model
was trained specifically for the roundabout R. In turn, va
wishes to express a request for the creation of exit probability
knowledge using a model which, albeit not trained directly on
tracks extracted from R, was trained in a similar context.

The safe roundabout entry use case, as described in Figure 2,
is leveraged to implement and evaluate a packet-level simula-
tion of the dissemination of context-relevant knowledge among
vehicular nodes. Three scenarios are compared to evaluate the
performance of context-based knowledge networking:
• In context-based knowledge networking with knowledge

caching, roundabout exit probability models which have
been trained in a relevant context are cached in the MEC
unit in the center of the roundabout.

• In context-based knowledge networking without knowl-
edge caching, models with relevant contexts are not
cached in the central MEC unit. As such, context-based
knowledge creation requests must be forwarded to other
infrastructure nodes which possess the right knowledge
through multihop communications, as shown in Figure 1.

• In context-agnostic knowledge networking, i.e., the base-
line approach, the context of usage of exit probability
models is not taken into account when creating exit
probability knowledge. Namely, models which were not
trained in a relevant context are cached in the central
MEC unit.

B. Exit Probability Models

The considered knowledge networking scenarios require the
definition of semantics to describe the considered roundabout
exit probability models, and ensure that entering vehicles and
infrastructure nodes share a common understanding of their in-
terface and context of application. In this section, we describe
the considered roundabout exit probability estimation models,
including a semantic description of their inputs, outputs, and
context of usage, based on existing works. In [9], we originally
defined the interface of a model to assess the probability of
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a vehicle to exit a roundabout at the next available exit. ML
models were trained to associate three inputs related to the
kinematics of a vehicle with its probability of exiting at the
next available exit. As illustrated by Figure 3 in dark green
underlined text, the inputs to predict the exit probability of a
vehicle in the next exit of a roundabout are:

• The heading of the vehicle, relatively to the curvature of
the roundabout, relative_heading ∈ [−180, 180]◦.

• The straight-line distance to the next exit, normalized
by the distance between the next and the previous exit,
exit_distance ∈ [0, 1].

• The lateral position of the vehicle in the round-
about, normalized by the width of the driveable area,
lateral_position ∈ [0, 1].

In [9], an exit probability model was trained from vehicle
tracks extracted from a single roundabout, extracted from the
RounD dataset [10]. The model was able to predict whether
a vehicle would exit with an accuracy of 91%. In turn,
to evaluate the accuracy of exit probability model in other
roundabouts, i.e., other driving contexts, a more complex
analysis was performed in [11].

On the one hand, a roundabout exit probability model with
the same input/output interface as described in Figure 3 was
trained for multiple distinct roundabouts. Namely, the three
roundabouts of the RounD dataset [10] and the five round-
abouts of the INTERACTION dataset [12] were considered.
On the other hand, through an information theoretic similarity-
based analysis as detailed in [11], we determine the contextual
features of two roundabouts which influence the similarity of
their resulting exit probability models: (i) The number of entry
legs, (ii) the radius, and (iii) the width of the roundabout,
as illustrated by the light blue italic text in Figure 3. For
example, the bottom-right roundabout features a non-similar
context than the main roundabout, due to a differing number of
entries. Table I summarizes the roundabouts for which an exit
probability model was trained and their associated context.

TABLE I: Considered Roundabouts and Associated Contexts

Dataset / Roundabout Entry Legs Radius (m) Width (m)
Interaction / CHN_LN 4 23 9
Interaction / DEU_OF 3 8.75 4.5
Interaction / USA_EP 4 6.75 6.75
Interaction / USA_FT 7 9 9
Interaction / USA_SR 4 13.5 4.5
RounD / 0 4 15 9
RounD / 1 4 8 4.5
RounD / 2 3 (see [11]) 6.75 4.5
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Fig. 4: Sequence of the Knowledge Dissemination Procedure

III. VEHICULAR KNOWLEDGE NETWORKING
INTEGRATION

In this work, we implement the roundabout entry pro-
cedure as shown in Figure 2. In this section, we define
VKN-supported (i) knowledge description, (ii) storage, and
(iii) dissemination mechanisms to support the distribution of
exit probability knowledge in an unknown roundabout, using
existing exit probability models trained in similar contexts. In
turn, we describe the implemented (iv) knowledge creation and
(v) utilization approaches.

Figure 4 shows the implemented knowledge distribution
aspects. It illustrates the overall flow of the exit probabil-
ity knowledge networking through VKN. Namely, entering
vehicles formulate requests to compute the exit probability
of any incoming vehicle. The request is forwarded to a
knowledge producer which takes the driving context of the
crossed roundabout into account to produce the knowledge.

A. Knowledge Description

To allow the storage and dissemination of exit probability
knowledge between vehicles in an interoperable manner, well-
defined semantics must be defined such that the nodes which
consume the knowledge share a common understanding of its
structure and context of use with the nodes which produce it.
In turn, nodes can discover and use new knowledge without
requiring hard-coded updates for their on-board computing
units to apprehend it. As part of VKN, we divide the semantic
description of knowledge in four complementary sections to
efficiently describe the exit probability knowledge models:

1) Ontology Description: To begin with, we provide a
description of the variables which are used to describe the
input, output, and context description elements of a knowledge
model. Table II defines the list of named objects which are
used as part of the exit probability model descriptions, as
introduced in Section II.



TABLE II: Semantic Description of the Exit Probability Model Variables

Named object Type Role Description
relative_heading float ∈ [−180, 180] (deg) Input The heading of a vehicle relatively to the curvature of a roundabout.
exit_distance float ∈ [0, 1] Input The relative distance to the next exit.
lateral_position float ∈ [0, 1] Input The relative lateral position in the roundabout.
exit_probability float ∈ [0, 1] Output A value of exit probability.
entry_number int > 0 Context The number of entry legs of a roundabout.
radius float > 0 (m) Context The radius of a roundabout.
width float > 0 (m) Context The total width of the driveable circular lanes of a roundabout.

2) Meta Model Description: The named objects defined in
Table II provide a basis for the description of the generic
class of exit probability models. We refer to this aspect as
the exit probability meta model description. The meta model
description defines the input and output interface of the class
of exit probability models, as listed in the ’Role’ column of
Table II. What is more, it provides a list of named objects
which can be used to describe the context of usage of models
which are part of the exit probability class of models, namely,
(i) the number of entries, (ii) radius, and (iii) width of the
roundabout in which an exit probability model was trained.
What is more, the meta model description defines a condition
of context similarity which outputs whether two contexts are
similar. For example, Equation 1 is a condition of similarity
which was considered in our preliminary work [11], and
illustrated in Figure 3. Following Equation 1, RounD/2 and
DEU_OF were trained in contexts which are similar. On the
contrary, due to a differing number of entries, the contexts
associated with USA_FT and CHN_LN are not similar.

∆Entries = 0 ∧∆Radius ≤ 6.0m (1)

3) Model Description: Several models may belong to the
class of exit probability models as defined by the exit probabil-
ity meta model description. For example, an exit probability
model trained in DEU_OF and another trained in CHN_LN
share the same input/output interface, and variables to describe
their context of use. As such, they implement the exit probabil-
ity model meta-description. Yet, they each feature a different
context of usage, as shown in Table I.

As such, exit probability model descriptions implement the
exit probability meta-model in a specific context. Namely,
the exit probability meta-model states that the context of
usage of exit probability models can be described using the
entry number, radius, and width of a roundabout. In turn, the
description of the model associated with DEU_OF states that
it has been trained in a 3-entry roundabout of radius 8.75m
and width 4.5m. Figure 5 summarizes the semantic description
of exit probability models, exposing the relationship between
ontology, meta-model, and model descriptions.

4) Model Bytecode: Finally, the bytecode associated with a
model description is the machine code which can be executed
to perform output creation from well-formed input. In this
study, the exit probability models are executed in a Python
environment and stored as Python pickle files, as described
in [13]. They contain the exit probability logistic regression
models trained using the scikit-learn library [14].

INPUT: [
●  roundabouts.relative_heading
●  roundabouts.relative_distance_to_exit
●  roundabouts.relative_lateral_position ]

OUTPUT: [
●  roundabouts.exit_probability ]

CONTEXT DESCRIPTORS: [
●  roundabouts.number_of_entries
●  roundabouts.radius
●  roundabouts.width ]

CONTEXT SIMILARITY CONDITION (model1, model2):
  (model1.roundabouts.number_of_entries ==
   model2.roundabouts.number_of_entries) AND
  (model1.roundabouts.radius –
   model2.roundabouts.radius <= 6.0)

META_NAME: rd_exit_proba_estimator

NAME: rd_exit_DR_DEU
META_MODEL: rd_exit_proba_estimator
TRAINING_CONTEXT: [
● roundabouts.number_of_entries = 4
● roundabouts.radius = 6.0m
● roundabouts.width = 4.5m ]

exit_probability: float [0,1]
 

relative_heading: float [-180, 180] (deg)
relative_distance_to_exit: float [0, 1]
relative_lateral_position: float [0,1]

number_of_entries: integer [0, +inf[
radius: float [0, +inf[ (m)
width: float [0, +inf[ (m)

NAME: rd_exit_RounD_0
META_MODEL: rd_exit_proba_estimator
TRAINING_CONTEXT: [
● roundabouts.number_of_entries = 4
● roundabouts.radius = 7.0m
● roundabouts.width = 8.25m ]

Ontology Definition (prefix: roundabouts)Model Meta Description

Model Description

Model Description

Fig. 5: Exit Probability Knowledge Semantic Description

B. Knowledge Storage

1) Generic Architecture: To store knowledge in vehicular
networks, we define a VKN knowledge base module, which
matches the architecture of the knowledge description defined
in Section III-A. Namely, four distinct KBs are defined and
interconnected:

1. The definition of ontologies and named objects is con-
tained in an ontology knowledge base.

2. The description of meta-models, e.g., the exit probability
meta-model as defined in Figure 5, are contained in a
meta knowledge base. Meta models refer to the ontology
knowledge base to describe their interface and context.

3. The description of models is stored in a model description
base. Each model description implements and refers to
a specific meta-model described in the meta knowledge
base.

4. Model bytecodes are stored in specific database. Each
model is connected with its semantic description in the
model description base.

Application to Roundabout Exit Knowledge In this paper,
which implements context-based exit probability knowledge
distribution as described in Section II, both the vehicles and
infrastructure units are provided with a KB module, containing
the aforementioned databases. In the KB module of the
simulated vehicles, the ontology KB contains the ontology
description as defined in Table II and the top-right corner of
Figure 5. What is more, the exit probability meta-model, i.e.,
rd_exit_proba_estimator as defined in the left side
of Figure 5 is contained in the meta KB of vehicles. Yet, the
vehicles are not aware of the description nor bytecode of any



model implementing the rd_exit_proba_estimator
meta-description.

The KB modules of the infrastructure units contain the
same ontology and meta KB as vehicles. Additionally,
their model description KB and model bytecode KB con-
tain descriptions and bytecodes of models implementing the
rd_exit_proba_estimator meta-model:
• In context-based knowledge networking with knowledge

caching, models with relevant contexts are cached in the
KB of the MEC unit in the center of the roundabout. For
example, if the considered roundabout is DEU_OF, the
rd_exit_RounD_2 model is integrated, as it has been
trained in a similar context.

• In context-based knowledge networking without knowl-
edge caching, models with relevant contexts are not
stored in the central MEC unit but in several remote
infrastructure nodes. In turn, knowledge creation requests
from vehicles need to be routed to knowledge producers
in the right context through multi-hop communications.

• In the baseline context-agnostic knowledge networking,
models which were not trained in a relevant context are
added to the KB of the central MEC unit. They are used
to produce knowledge despite the context mismatch, as a
benchmark.

Vehicles are provided with a meta-model description of the
exit probability class of models, but no description nor byte-
code of an actual model implementing the meta description.
In turn, mechanisms are required to let vehicles express and
route requests for the creation of exit probability knowledge
to remote infrastructure nodes, which own relevant models in
a context which is similar to that of the crossed roundabout.

C. Knowledge Dissemination

As illustrated by Figure 4, each vehicle is provided with
the knowledge of the rd_exit_proba_estimator meta-
model. In turn, entering vehicles which sense the presence of
an incoming vehicle in the roundabout can formulate a request
for the creation of exit probability knowledge (i) using the
input sensed from the incoming vehicle, (ii) in the context of
the crossed roundabout. The request is wirelessly forwarded
to a remote knowledge producer, which owns a model imple-
menting the rd_exit_proba_estimator interface. After
it was produced, the knowledge is finally returned to the
entering vehicle.

In this case study, entering vehicles are not aware of the
exact location and host address in which relevant knowledge
models are stored and available. In turn, we make the choice
to implement networking operations using Information-Centric
Networking (ICN). ICN is a paradigm in which content is
uncoupled from its host. As such, rather than addressing a
specific host which is known beforehand to host relevant
knowledge, entering vehicles directly disseminate a knowl-
edge creation request to neighboring nodes. Named Data
Networking (NDN) is an implementation of ICN, which uses
hierarchical names to refer to content, and routes ’interests’
for named content from consumers to producers.

/vkn/model_apply
/rd_proba_exit_estimator
/__context__/roundabout.entry_number/4
            /roundabout.radius/6.0m

       /roundabout.width/4.5m
/__input__/roundabout.relative_heading/10deg

/roundabout.exit_distance/0.4
/roundabout.lateral_position/0.2

The applied model should
Implement the

rd_exit_proba_estimator
meta model.

It should have been trained
in a context which is similar

to this description.

The model should be applied
using this provided input.

1 2 3

Fig. 6: Knowledge Creation Requests over NDN

To formulate knowledge creation requests to be dissem-
inated over NDN, we define a naming convention to en-
capsulate VKN knowledge creation requests in a NDN
interest name. As illustrated by Figure 6, we set the
/vkn/model_apply prefix to indicate that the inter-
est is a knowledge creation request. Then, two keywords
are integrated to the interest name, i.e., __input__ and
__context__ to indicate the upcoming definition of slash-
separated (key, value) elements describing, respectively, (i)
the inputs to use, and (ii) the driving context which should be
matched when selecting the models to use.

D. Knowledge Creation
As the knowledge producer receives the request, it creates

the exit probability knowledge as illustrated in 4, and fol-
lowing the procedure described in Algorithm 1. From line 7
to 13, the model KB is searched for exit probability models
which have been trained in a similar context than the requested
context of application. In turn, in line 11, matching models
are used to predict values of exit probability based on the
provided input. Lastly, in line 16, the obtained probabilities are
averaged. This technique is an instance of ensemble voting, as
surveyed in [15]. It alleviates the impact of potential outliers in
the obtained probability values, as discussed in the preliminary
study in [11]. If no model with the right context is found, the
algorithm fails, or falls back to using a model with a non-
similar context in the baseline context-agnostic approach.

Algorithm 1 Knowledge Creation Request Processing
1: KB_meta←MetaKB() ▷ The Meta KB.
2: KB_model←ModelKB() ▷ The Model KB.

3: ▷ Treat an exit probability knowledge creation request encoded as a NDN interest.
4: procedure treat_request(interest_name)
5: matching_models_predictions← list()
6: (meta_model, inputs, context)← parse(interest_name)

7: for each model in KB_model do
8: if model.meta_model = meta_model and
9: meta_model.is_similar(model.context, context) then

10: matching_models_predictions.add(model.apply_to(inputs))
11: end if
12: end for

13: if not matching_models_predictions.empty() then
14: return matching_models_predictions.average()
15: else
16: return no matching model
17: ▷ In the context-agnostic knowledge networking case, the knowledge creation falls

back to selecting a non context relevant model
18: end if
19: end procedure



TABLE III: Simulation Parameters

Parameter Value
Considered Roundabouts Table I, except USA_FT and CHN_LN
Infrastructure Nodes 1 (Local MEC) + 50 (Remote Static Nodes)
Node Placement Area 200× 200m2

Protocol stack IEEE 802.11p & IEEE 1609.4 & NDN
Three Log Distance Model Distance=(1, 200, 500)m, Exponents=(1.9, 3.8, 3.8),

Reference Loss=46.67dB
Nakagami Model Distance=(80, 200)m, Exponents=(1.5, 0.75, 0.75)
NDN Hop Limit 10

E. Knowledge Utilization

As illustrated by Figure 4, vehicles receiving the exit
probability knowledge could use it in real applications to take
routing or entering decisions. Yet, as this study aims at demon-
strating the impact of context-based knowledge networking,
the mobility of vehicles is not modified as a result of the
received exit probability, which is left as future work. Rather,
at the end of the simulation, the exit probability values received
by vehicles are scored based on whether the incoming vehicle
did exit the roundabout.

Namely, accuracy scores are computed for the exit prob-
ability values obtained by vehicles. Probabilities exceeding
0.5 are associated with a prediction of exit. In turn, the
exit predictions are compared with the actual observed be-
havior of incoming vehicles. We consider (i) accuracy, i.e.,
number of correct predictions

number of predictions , and (ii) precision, i.e., TP
TP+FP ,

with TP the number of true positives and FP false positives.

IV. SIMULATION SETUP

We run several ns-3 simulations of vehicles crossing a
roundabout R which request the creation of exit probability
knowledge to remote knowledge producers, based on the
driving context in that roundabout. Simulations are run for
each roundabouts listed in Table I which feature at least one
other roundabout with a similar context, according to the
similarity condition of Equation 1, i.e., excluding USA_FT
and CHN_LN. Namely, in each simulation, we consider that
no exit probability model has been trained for the considered
roundabout R. In turn, existing models which have been
trained in other roundabouts listed in Table I must be used.

A. Topology

A MEC unit is placed in the center of the roundabout.
Moreover, a set of 50 additional static nodes are generated in
a square area of 200m side centered on the roundabout. They
represent infrastructure units or static connected objects. Their
position are uniformly sampled, following the condition that
each added infrastructure node must be located within 30m
of at least one other infrastructure unit. Then, the mobility of
vehicles is replicated from real vehicle tracks extracted from
the RounD and INTERACTION dataset recordings.

B. Protocol Stack

Communications between the vehicles and infrastructure
units are wireless, implemented in ns-3 using existing proto-
cols adapted to the vehicular environment. The physical layer
implements the IEEE 802.11p standard [16]. Specifically, it

uses a 10MHz frequency band of the licensed 5.9 GHz band of
Intelligent Transportation Systems (ITS). In turn, the Medium
Access Control (MAC) layer uses IEEE 802.11p, with the
WAVE IEEE 1609.4 extension [17]. Moreover, a Three Log
Distance propagation loss and Nakagami fading model are
added to the physical IEEE 802.11p channel, with the default
ns-3 parameters as listed in Table III.

The networking layer of vehicles and infrastructure units
implements the NDN protocol, which we simulate in ns-3
through the ndnSIM 2.8 library [18]. On the one hand, entering
vehicles are consumers for exit probability knowledge content,
and express interest messages for its creation. On the other
hand, depending on the scenario, a specific set of simulated
infrastructure nodes are defined as producers of exit probabil-
ity knowledge. Interests are routed from entering vehicles to
producers through multicast and potentially multihop wireless
communications, with a limit of 10 hops.

In terms of applications, as illustrated by Figures 1 and 2,
vehicles which are about to enter the roundabout and sense
an incoming vehicle produce an exit probability knowledge
creation interest. The knowledge creation interest is routed to
a knowledge producer which leverages its KB to create the
exit probability knowledge as described in Algorithm 1.

C. Evaluation

Finally, we evaluate the performance of context-based
knowledge networking considering the (i) delay, (ii) average
hop count, and (iii) overhead associated with exit probability
knowledge dissemination, as well as (iv) the accuracy of the
obtained knowledge. These metrics are compared for the three
knowledge networking scenarios introduced in Section II-A:
• In context-based knowledge networking with knowledge

caching, exit probability models with a relevant training
context are cached in the central MEC unit, close to the
vehicles, which is defined as the only exit probability
knowledge producer.

• In context-based knowledge networking without knowl-
edge caching, a set of 5 infrastructure units, distinct
from the central MEC unit, are randomly selected as
knowledge producers and provided with relevant context
knowledge. In turn, multiple hops may be required to
route knowledge interests from vehicles to producers.

• In context-agnostic knowledge networking, only the cen-
tral MEC unit is defined as a producer for exit probability
knowledge. Yet, its KB is populated with models which
were not trained in a relevant context for the considered
roundabout R. As such, while the exit probability can
be computed close to the vehicles, the accuracy of the
obtained knowledge may be reduced compared to the
proposed context-aware approaches.

V. RESULTS & DISCUSSION

In this section, we present and discuss the obtained results
through two main aspects, i.e., the accuracy of context-based
knowledge creation and the networking performance of knowl-
edge dissemination.
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Fig. 7: Accuracy Score on RounD/0 Exit Predictions using
Context-Based Knowledge Networking

A. Knowledge Accuracy

To begin with, we evaluate the impact of context-based
knowledge networking on the accuracy of the knowledge
which is disseminated in vehicular networks. For each vehicles
track recording of each considered roundabout, the accuracy
of knowledge produced through the two context-based ap-
proaches, i.e., the proposed approach, is compared with the
context-agnostic alternative, i.e., the baseline approach.

Figure 7 illustrates, for each vehicle track recording of the
RounD/0 roundabout, the accuracy of predictions obtained
through the proposed context-based knowledge networking
in blue, i.e., when remote infrastructure units have produced
knowledge using models which have been trained in a relevant
context, similar to that of RounD/0. It is compared with the
accuracy of predictions obtained through the baseline context-
agnostic knowledge networking in red, which are bounded by
95% confidence intervals, obtained by considering accuracy
scores related to the various models trained in a non-similar
context to that of RounD/0. The recordings are ordered by
average accuracy improvement of the context-based approach.

In RounD/0,1,2 and DEU_OF, significant accuracy im-
provements are obtained for the proposed context-based
knowledge networking. Even in a context-agnostic approach
where knowledge is created from a random model implement-
ing the right interface, the spread of the confidence intervals
would force vehicles to take conservative entering decisions,
based on the lower bounds of the prediction accuracy.

On the other hand, the accuracy of context-based and
context-agnostic approaches remained stable for the USA_SR
and USA_EP roundabouts, potentially because of an overly
permissive similarity condition in Equation 1. Nonetheless,
for these roundabouts, the precision score associated with the
proposed context-based knowledge networking was improved
significantly compared to the baseline context-agnostic ap-
proach. Precision is relevant in this use case as it penalizes
false positives, i.e., cases when a vehicle was predicted to but
did not exit the roundabout, which is a dangerous behavior as
it may induce collisions.

B. Networking Performance

In parallel, we consider the impact of the proposed context-
based knowledge networking on networking performance met-
rics, i.e., the delay, number of hops, and overhead required to
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Fig. 8: Networking Performance Evaluation

distribute knowledge in the considered wireless topology. As
these network metrics are independent from the specific exit
probability model which is used to produce the exchanged
knowledge, we focus on a recording extracted from the
DEU_OF roundabout, as a case study.

Figure 8 compares network performance indicators for the
three considered scenarios, i.e, the proposed context-based
knowledge networking, with and without caching, and the
baseline context-agnostic knowledge networking. For each
scenario, the considered DEU_OF recording is simulated 20
times with different random infrastructure unit locations. Four
metrics are compared:

• The average delay between the sending of an interest
and the reception of the knowledge with 95% confidence
intervals, as well as the average associated hop count.

• The average accuracy of the exit probability knowledge
over a simulation with 95% confidence intervals, as well
as the average overhead associated with a simulation.

While the baseline context-agnostic approach allows knowl-
edge delivery with a lower delay and overhead than the
context-based approach without caching, it significantly de-
creases the accuracy of the produced knowledge, as discussed
in Section V-A. Namely, in the baseline context-agnostic
approach, models have been cached in the central MEC unit,
yet without considering context-relevant knowledge. In turn,
due to the proximity of entering vehicles, the knowledge can
be disseminated with low hop count, delay, and overhead. On
the other hand, it is significantly less accurate than approaches
which route knowledge requests to producers possessing
context-relevant models. To conciliate both high networking
performance and knowledge accuracy, the proposed context-
based knowledge networking with caching caches knowledge
in locations which feature a matching context. Then, accurate
knowledge can be accessed efficiently.

The obtained results illustrate the potential and impact of
context-based knowledge networking in vehicular networks.
They open perspectives on the need to take the context of



usage of knowledge into account for every aspect of knowl-
edge networking in vehicular networks. Namely, knowledge
should be stored and cached in locations which feature a
context in which it can be applied, such that it can be
accessed in a relevant context by vehicles which may need it.
Similarly, knowledge is typically built by an organization for
the exclusive use of its fleet of vehicles. Through semantic-
supported dissemination mechanisms which allow the trans-
mission of requests for the creation of knowledge in a specific
context, knowledge networking could be opened to all nodes of
vehicular networks, while maintaining the accuracy of models.

VI. CONCLUSION

Existing content caching and dissemination approaches in
vehicular networks take various parameters such as the popu-
larity or age of content into account. While it is adapted for
safety information delivery, which has strict delay constraints
and local relevance, knowledge is relevant indefinitely as long
as it is applied in the right context. As such, mechanisms are
required which take the context of usage of knowledge into
account for knowledge networking operations. Through rich
knowledge semantic description, vehicles can describe their
driving context, as well as the relevant context of usage of
knowledge models. In this paper, we showed the potential and
impact of context-based knowledge networking in a packet-
level simulation, where vehicles request the creation of round-
about exit probability knowledge in various roundabouts, i.e.,
driving contexts. This opens perspectives for context-based
knowledge networking applied to other types of vehicular
knowledge, which would make the knowledge accessible to
a greater number of vehicles, while maintaining its accuracy
by ensuring it is cached and used in the right context.
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