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1 INTRODUCTION

Traffic measurements are key for network management as testified
by the rich literature from both academia and industry. At their
foundation, measurements rely on transformation functions f(x) =
y, mapping input traffic data x to an output performance metric y.
Yet, common practices adopt a bottom-up design (i.e., metric-based)
which leads to (i) invest a lot of efforts into (re)discovering how
to perform such mapping and (ii) create specialized solutions. For
instance, sketches are a compact way to extract traffic properties
(heavy-hitters, super-spreaders, etc.) but require analytical mod-
eling to offer correctness guarantees and careful engineering to
enable in-device deployment and network-wide measurements.

Rather than relying on network experts domain knowledge, Ma-
chine Learning offers algorithms to learn f(x) = y mappings. In
particular, Deep Neural Networks (DNN5s) act as universal func-
tions approximators as they can learn complex input-output data
relationships with automatic feature extraction. Thus, contextual-
ized to traffic measurements, Deep Learning (DL) could empower a
top-down design (i.e., model-based), potentially fostering automa-
tion and generalization. Yet, we claim that its application to traffic
measurements is still in its infancy and we identified two research
questions that require more work in the community.

First, considering the nature of network traffic, Q1: What is the
appropriate representation of network traffic to facilitate knowledge
extraction with DL? Despite being automatic, the feature extraction
operated by DL algorithms highly depends on the input traffic
representation. Thus, we need to adapt the DL workflow to the
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Figure 1: Schematic pipelines to compare some Deep Learn-
ing approaches for N traffic measurements.

specific characteristics of traffic data [4]. For example, images used
in Computer Vision (CV) are represented as static grids of fixed
size. Such encoding is not transferable to networking which deals
with sequential data of arbitrary size.

Second, considering generalization, Qz: Can we design a unified
DL pipeline that serves several traffic measurements? CV and Natu-
ral Language Processing demonstrated that it is possible to reuse
DNNs knowledge across related tasks (e.g., Transfer Learning). Al-
ternatively, the feature extraction process can be designed to learn
several mappings at the same time (e.g., Multi-Task Learning). In
the context of networking, this would allow operators to derive
multiple measurements from a single common representation of
the input traffic, thus reducing the burdens of managing several in-
dividual models. However, often this leads to trade off performance
for generalization.

To answer these two questions, we propose an empirical cam-
paign to study a variety of modeling approaches for traffic metrics
prediction.

2 BACKGROUND

Traffic representation for Deep Learning. A DL model approxi-
mates a function mapping an input x to an output y. Under the
hood, this mapping is operated via a double transformation. First,
the raw data x is projected into a latent space by the model back-
bone, which does most of the knowledge extraction. Second, points
in the latent space are transformed into the final output y thanks
to the model head, which is typically a simple linear layer. These
two transformations compose the f(x) = y mapping. Conceptually,
the latent representation is expected to capture latent properties
in the input data. The representation effectiveness depends not
only on the DNN architecture but also on the input data fed during
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training. Specifically, the input should be presented in a way that
stresses the salient characteristics deemed helpful for the mapping.
For example, images in CV are represented by a grid of pixels, allow-
ing Convolutional Neural Networks to extract patterns at different
scales in the picture (low-level, mid-level and high-level features by
exploiting spatial locality). Similarly, in networking, traffic patterns
may emerge when capturing properties across several packets. Yet,
common traffic representations focus on encoding packet-level in-
formation (e.g., one-hot encoding of packet headers features [2])
or flow-level information (e.g., time series of packet inter-arrival
time or size [5]). We argue that those representations fail to capture
both intra-flow and inter-flow relationships: analyzing a packet in
isolation is likely insufficient to understand a flow; likewise, flow
dynamics are influenced by other flows. Thus, Q; calls for a deeper
investigation of the design space.

Deep Learning pipelines. Qo suggests that parts of the learning
process might be shared across different measurements. At a high
level, we identify three "pipeline” designs (cf. Figure 1 - right). The
baseline approach consists in a single pair of backbone and head.
Training is guided by a loss minimization objective between a
single target measurement and a predicted one. To this extent, this
kind of supervised DNNs act as feature extractors for Single-Task
Learning (STL). In order to amortize training and maintenance costs,
operators may be interested in mutualizing the learning process
across several related measurement tasks. To accommodate this
need, we identify two possible pipeline designs for such Multi-Task
Learning (MTL). Both produce a single representation common
to several tasks, but they differ in the way this representation is
learned: in a supervised or an unsupervised fashion.

In a supervised MTL approach, the training process considers
several model heads plugged on the same model backbone. Each
head takes care of a specific target mapping and the latent space
construction is guided by concurrent supervised learning objectives.
The intuition behind this approach is that one task may benefit
from the knowledge learned during the training of other related
tasks. However, this is not a guarantee and this knowledge transfer
can even be detrimental to some tasks [1].

The unsupervised MTL approach requires a two-step process.
First, the learning objective is focused on parametrizing an encoder
and a decoder that optimize input reconstruction, e.g., (Variational)
Auto-Encoders. Once the encoder/decoder pair has been trained,
the decoder is replaced by several model heads that will map the
same encoded representation to several metrics. This second step
of the pipeline training is thus conducted in a supervised setting
and the encoder may or may not be adjusted (fine-tuning) for the
metrics to model.

3 METHODOLOGY

Our goal is to evaluate how specific approaches compare to more
generic ones by studying the trade-off between efficiency and gen-
erality. To do so, we aim to assess various strategies in terms of
accuracy and cost for a set of traffic measurements. As a starting
point, we consider the three approaches detailed in Section 2, with
two variations for input traffic representation. We focus our study
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on three example flow-related measurements: two related regres-
sion tasks (flow completion time and average round trip time) and
one classification task (traffic classification).

Input pre-processing. Input features related to the target measure-
ments (e.g., packets inter-arrival time, headers values) need to be
presented in a way that preserves flow inter- and intra-relationships.
As sketched in Figure 1 - left, in order to capture a flow’s internal
dynamics, its packets are batched in consecutive time windows.
A second option adds packets from concurrent flows to the previ-
ously defined batches, thus also enabling the capture of inter-flow
dynamics. Results comparison between these two options will help
answer Qj.

DNNss architectures. Out of the three approaches we consider (cf.
Figure 1 - right), the STL pipeline is composed of three distinct su-
pervised DNNS, one per metric. The fully supervised MTL pipeline
consists of a single backbone and three heads, one per metric. In this
case, all the model’s components are trained together at once with
a common objective expressed as a weighted linear combination of
the distinct losses [3]. For the encoder/decoder-based MTL pipeline,
training is first performed without supervision. In a second step,
the latent representation in the bottleneck is forwarded to three
models heads which can be trained separately at a later time, or
concurrently with the encoder. Comparison of these approaches in
terms of accuracy, training cost and inference cost will help answer

Q2.
4 FUTURE EVALUATION

To evaluate and compare the proposed approaches, we consider
traffic traces (PCAP) extracted from multiple vantage points in the
network for a given time window. We plan to first use simulated
data (e.g., generated with NS3) to test our method on a simple
network and then adapt it to real-world traces. To assess the final
performance of each approach, we propose to relate the accuracy
of their measurement to their task cost. Accuracy can be measured
with standard metrics depending of the task at hand: e.g., Mean
Squared Error for the regression tasks and F1-score for the classifi-
cation task. As for the task cost, it can be interpreted in many ways:
total number of model parameters, number of training epochs [1],
total training time, or even inference time. These metrics measure
different cost aspects that need to be weighted in accordance with
the network operator’s priorities. Eventually, as stressed in [1], all
tasks may not learn at the same rate, which is why each competitor
may require a different training budget.
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