
1

AutoProfile: Towards Automated Profile Generation for
Memory Analysis
FABIO PAGANI, UC Santa Barbara, USA
DAVIDE BALZAROTTI, Eurecom, France

Despite a considerable number of approaches that have been proposed to protect computer systems, cyber-
criminal activities are on the rise and forensic analysis of compromised machines and seized devices is
becoming essential in computer security.

This paper focuses on memory forensics, a branch of digital forensics that extract artifacts from the volatile
memory. In particular, this paper looks at a key ingredient required by memory forensics frameworks: a
precise model of the OS kernel under analysis, also known as profile. By using the information stored in the
profile, memory forensics tools are able to bridge the semantic gap and interpret raw bytes to extract evidences
from a memory dump.

A big problem with profile-based solutions is that custom profiles must be created for each and every
system under analysis. This is especially problematic for Linux systems, because profiles are not generic: they
are strictly tied to a specific kernel version and to the configuration used to build the kernel. Failing to create
a valid profile means that an analyst cannot unleash the true power of memory forensics and is limited to
primitive carving strategies.

For this reason, in this paper we present a novel approach that combines source code and binary analysis
techniques to automatically generate a profile from a memory dump, without relying on any non-public
information. Our experiments show that this is a viable solution and that profiles reconstructed by our
framework can be used to run many plugins which are essential for a successful forensics investigation.

CCS Concepts: • Applied computing→ System forensics.

Additional Key Words and Phrases: memory forensics, memory forensics profile, Linux kernel

ACM Reference Format:
Fabio Pagani and Davide Balzarotti. 2021. AutoProfile: Towards Automated Profile Generation for Memory
Analysis. ACM Trans. Priv. Sec. 1, 1, Article 1 (January 2021), 26 pages. https://doi.org/10.1145/3485471

1 INTRODUCTION
While traditionally focused on the analysis of the information stored on hard drives, in recent
years digital forensics broadened its scope to cover other components of computer systems. One of
these components, the volatile memory, is becoming more and more crucial in many investigations,
because it contains a number of artifacts which are not found elsewhere. Moreover, in large
organizations, the analysis of volatile memory – best known as memory forensics – is nowadays
not only used as part of incident response, but also as a proactive tool to periodically check machines
and look for signs of compromise or infection. For example, Microsoft has recently announced
Project Freta [32], a cloud-based solution to detect malicious processes and rootkits using memory
forensics techniques.

Authors’ addresses: Fabio Pagani, UC Santa Barbara, USA, pagani@ucsb.edu; Davide Balzarotti, Eurecom, France,
davide.balzarotti@eurecom.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2471-2566/2021/1-ART1 $15.00
https://doi.org/10.1145/3485471

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

HTTPS://ORCID.ORG/0000-0002-4357-9804
https://doi.org/10.1145/3485471
https://orcid.org/0000-0002-4357-9804
https://doi.org/10.1145/3485471

1:2 Fabio Pagani and Davide Balzarotti

The core idea behind memory forensics is to extract evidences from the data structures used
by the operating system kernel. While some of these structures can be located by carving the
memory for particular byte patterns, the true power of memory forensics comes from the so-called
structured analysis. In most of the cases, this type of analysis starts by finding a set of global
symbols inside a memory dump. From these variables, other kernel structures are then discovered
by de-referencing pointers [28]. For example, a common task performed in memory forensics
consists of listing the processes that were running inside the machine when the memory dump
was acquired. Under Linux, a way to retrieve this information is to find the location of the global
variable init_task and use it to traverse the list of task_structs. However, even this simple and
seemingly straightforward operation can be performed only if the tool has a very detailed model of
the system under analysis. In memory forensics, this detailed model is called a profile. A typical
profile contains two different pieces of information: the address of kernel global variables and
the layout of kernel objects. The latter is of particular interest because it is influenced by several
different factors, including the kernel version, the way the kernel was configured at compile time,
and the compiler optimizations. Without a complete profile, none of the existing memory forensics
frameworks - such as Volatility, Rekall and Project Freta - are able to analyze a memory dump [4].

For Microsoft Windows operating systems, retrieving the correct profile from the system under
analysis is not really a problem, because the number of different kernels is limited and well known.
Moreover the layout can be retrieved from the kernel debugging symbols, which are generally
available on a public server. On the other hand, memory forensics is more and more focusing on
Linux-based operating systems, both for the analysis of servers and to support a wide range of
appliances, mobile phones, and network devices. Unfortunately, when it comes to Linux there is no
central symbol server and the number of combinations of kernel versions and possible configuration
is countless.

However, it is important to understand that the main challenge is not to determine the specific
version of the kernel under analysis. Thus, it is not important how much kernel structures change
across kernel versions, but instead how much they change within a single version – because of
user configurations or compiler options. Previous research [49] have empirically confirmed this
effect and reported that the layout of important forensics structures is affected by the configuration
used at compile time. Thus, forensics analysts have to create a profile for each and every system
they want to analyze. Currently, this is a manual process that involves the compilation of a special
kernel module. While this operation is generally performed on the machine under analysis, it
may also be performed offline by cross-compiling the module on the analyst workstation. In both
cases, this process has several important requirements. For instance, it requires access to the kernel
headers, the kernel configuration file and, in certain cases, the very same compiler toolchain used
to build the kernel (as different compilers or compiler versions can result in different data structure
offsets and layouts). In some cases, like in the latest development version of Volatility - the de facto
standard framework when it comes to memory forensics - the profile generation even requires to
have access to the full debugging symbols or to recompile the entire kernel itself. While the previous
constraints might not be an obstacle for a common desktop machine, the required information are
rarely available for kernels running on network appliances, IoT devices, smartphones, or highly
optimized servers – thus effectively limiting the applicability of memory forensics. Moreover,
with the advent of cloud-based solutions, system administrators, cloud providers and forensics
analysts are faced with the challenge of diagnosing thousands of machines. This was also recently
highlighted by Project Freta’s developers, when they remarked how “no commercial cloud has
yet provided customers the ability to perform full memory audits of thousands of virtual machines
(VMs) without intrusive capture mechanisms and a priori forensic readiness.” and how they intend
“to automate and democratize VM forensics” to the point where it can be done “with the push of a

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

AutoProfile: Towards Automated Profile Generation for Memory Analysis 1:3

button” [32]. In this scenario, building a model through a trial and error process is unpractical and
no assumption can be made on how a kernel was configured and built.

To make things worse, the source code of the kernel module needs to be manually updated every
time a new kernel is released [17]. In fact, the definition of several structures used by memory
forensics tools is not exported from header files and therefore must be copied into the module
source code. For example, the definition of the mount structure contained in the current version of
the kernel module shipped by Volatility [45] does not match the one of the current stable kernel. A
similar problem arises also in the context of kernel backports, i.e. new features that are retrofitted
to older kernels by manufacturers and Linux distributions. In these cases, by only looking at the
kernel version of the machine under investigation is not possible to infer the correct definition of a
kernel structure used for memory forensics. This is a severe problem because an analyst does not
have any way to asses the integrity and the correctness of the profile and the target machine might
not be available anymore when the error is detected.
Finally, modern kernels include the ability to perform structure layout randomization, which

poses a serious “threat” to memory forensics. Originally developed as a protection mechanism by
Grsecurity [40] and later studied by other researchers [5, 19, 22], structure layout randomization
is nowadays present in the latest versions of the Linux kernel as well. This compile-time option
randomizes the layout of sensitive kernel structures, as an effective way to harden the kernel
against exploitation. As a side effect, the authors highlight that enabling this option will “prevent
the use of forensic tools like Volatility against the system”.
All of the previous limitations are also shared by Rekall [6], another well-known forensics

framework. In fact, even if Rekall stores the OS profiles in a different format, the process of
extracting the layout of kernel structures is identical to the one implemented by Volatility.

The memory forensics community is well-aware of all of these problems, as recently emphasized
once again by Case and Richard [4] in their overview of memory forensics open challenges. In
the paper, the authors urge the community to create a public database of Linux profiles - which
nowadays exists only in the form of a commercial solution. Unfortunately, they also note how
a “considerable amount of monetary and infrastructure” is needed to create such a database and
how, in any case, this approach can only cover settings used by pre-compiled kernel shipped as
part of Linux distributions. This is the case of the Volatility community repository [44], which
unfortunately has received only a few contributions in the past few years. While this repository
contains more than 230 profiles (both for x86 and x86_64), the latest versions of widely-used
distributions are not present. For example, the most recent profile for OpenSuse dates back to 2013,
while the latest profile for Ubuntu targets version 18.04.

In the past years, researchers have also proposed partial solutions to the profile generation
problem. For example, Case et al. [3] and subsequently Zhang et al. [48], suggested that the layout
can be retrieved from the analysis of kernel code. Unfortunately, their manual approach cover only
an handful of kernel structures layout, while nowadays memory forensics requires several hundreds
of them. On the other hand, approaches such as the proposed one by Socała and Cohen [38] still
requires the configuration that was used to build the kernel under analysis.

For these reasons, we believe it is time to move away from costly manually-curated profiles and
investigate the possibility to design a holistic and fully automated approach to memory analysis.
As a first step in this direction, in this paper we propose AutoProfile, a novel approach to
automatically create Linux profiles. To the best of our knowledge, this is the first solution to create
entire profiles based only on information publicly available or extracted from the memory dump
itself. Our experimental results show how the profiles extracted by AutoProfile support several
Volatility plugins - such as those that list the running processes and the open files - when targeting

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 Fabio Pagani and Davide Balzarotti

1 struct creds{
2 uint32_t uid;
3 uint32_t gid;
4 };
5
6 struct task{
7 struct task *next;
8 struct creds cred;
9 #ifdef CONFIG_TIME
10 uint64_t start_time;
11 #endif
12 char *name;
13 };
14
15 void setup_task(struct task *t,
16 char *new_name ,
17 int gid)
18 {
19 t->name = new_name;
20 t->cred.gid = gid;
21 #ifdef CONFIG_TIME
22 t->start_time = time(NULL);
23 #endif
24 }

1 CONFIG_TIME defined

1 push rbx
2 mov rbx ,rdi
3 mov QWORD PTR [rdi+0x18],rsi

4 mov DWORD PTR [rdi+0xc],edx
5 xor edi ,edi
6 call 0x1030 <time@plt >
7 mov QWORD PTR [rbx+0x10],rax
8 pop rbx
9 ret

2 CONFIG_TIME not defined

1 mov QWORD PTR [rdi+0x10],rsi
2 mov DWORD PTR [rdi+0xc],edx
3 ret

Fig. 1. On the left the C source code we use in our examples, on the right its compiled form

a very diverse set of kernels. This set includes a version of a Debian kernel that use structure layout
randomization, an Android kernel, a kernel running on Raspberry Pi devices, a kernel shipped by
Openwrt (a project targeting network devices), and an old version of the Ubuntu kernel released
more than a decade ago.

2 RECOVERING OBJECTS LAYOUT FROM BINARY CODE
In this section we discuss a practical example of how the layout of an object is shaped by the
configuration used at compile time, thus making it impossible to deduce the correct offsets of its
fields by reasoning only on its definition. We then introduce the core idea behind this paper and
how it can be generalized to recover the layout of all kernel objects used in memory forensics.

2.1 Problem Statement
The key ingredient that makes memory forensics possible is the availability of the kernel profile: a
detailed model of the symbols and data types required to perform the analysis. In the case of Linux
memory forensics, a profile contains two separate pieces of information: the addresses of global
variables and kernel functions, and the exact layout of kernel objects. The latter is of particular
interest for different reasons. First of all, this information is lost during the compilation process and
the only way to preserve it is to ask the compiler to emit the debugging symbols. This is often the
case for kernels shipped by common Linux distributions that usually provide them in a separate
debugging package. Moreover, the Linux kernel is a highly customizable piece of software, designed
to run on a large variety of devices and architectures and to suit different needs. This means that
the very same kernel version tailored to two different systems can result in dramatic differences
between the layout of the kernel objects.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

AutoProfile: Towards Automated Profile Generation for Memory Analysis 1:5

To illustrate how the customization of the Linux kernel is in fact a problem for memory forensics,
we present a practical example in Figure 1. In the left part of this figure we show a short code
snippet responsible for the set up of a task which, in this example, is represented by the task object.
Every task has a pointer to the next task, some credentials, and a name. Moreover, in case the macro
CONFIG_TIME was defined at compile time, a task also includes the field start_time. The function
setup_task initializes a task and its fields. In the right part of the Figure we instead report the
disassembly of two versions of this function, one in which the macro was defined at compile time
1 , and one in which it was not 2 .
The first difference between the two versions is present at lines 3 and 1, respectively. The

semantic of these two instructions is equivalent: they store the argument new_name (passed in
the rsi register) into the name field. However, the offset of this field is different between the two
version, and so is the displacement from rdi (which contains the t argument). This is a consequence
of the fact that in 1 the compiler had to reserve 8 bytes before the field name for the start_time
field, while in 2 the latter was entirely removed by the preprocessor. On the other hand, the same
displacement is used to access the field gid of creds at lines 4 and 2. This is because the field cred -
and subsequently the field gid therein contained - precedes start_time and thus is not concerned
by its presence or by its absence.
While this is a trivial example, it introduces a very common pattern that is present thousands

of times in the kernel codebase. For example, the definition of the task_struct alone - which
is one of the most important object in memory forensics - is shaped by more than 60 different
#ifdef s. The large number of combinations that derive from these definitions make it impractical to
enumerate all possible offsets where a field can be located. However, as we saw in our example,
this information is encoded into the compiled code and therefore we believe the only practical way
to precisely recover the layout of kernel objects is by extracting it from the kernel binary itself.

2.2 Data Structure Layout Recovery
The intuition behind this paper is that, while the precise structures’ layout is lost during the compi-
lation process, it affects the code generated by the compiler. More specifically, the displacement
used to access the fields of a given object must reflect the layout of the data structures and therefore
can be extracted if we know where each field is used across the entire codebase, and how the code
is accessing the field. These two pieces of information allow us to locate the functions that operate
on the requested field, and to follow the access pattern that led the code to a particular object. For
example, a piece of data can be passed as parameter, but it can also being referenced by a global
variable, reached by traversing another object, or obtained by calling a separate function.

Approach Limitations

Case and Zhang [3, 48] Manual approach which requires high knowledge of the kernel internals
ORIGEN [11] Requires dynamic analysis of a running kernel similar to the target one
Layout Expert [38] Requires the configuration file used to compile the kernel
Type Inference (discussed in Section 9) Designed to recover the types, and not to distinguish fields in a structure
Memory Carving (discussed in Section 9) Orthogonal to structured memory forensics, does not require a profile

Table 1. A review of previous attemps at automated profile generation

Back to our example, let’s assume we want to recover the offset of the name field. First, by looking
at the source code, we can tell that the function setup_task accesses this field and also that the
variable t is passed as parameter. Given that the Abstract Binary Interface (ABI) of x86-64 [24]

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Fabio Pagani and Davide Balzarotti

specifies that the first parameter is passed using the rdi register, we can perform a data-flow
analysis and track every memory access whose value depends on the rdi register. In version 1 ,
this happens at lines 3 and 4, but also at line 7 because rbx was initialized from rdi.

It is important to note that it is very difficult to tell which of the three access is the one operating
on the field we are interested in. In fact, functions often access dozens of different fields and
compilers optimizations often change the exact order and number of those accesses in the binary
code. However, we can leverage the fact that the name field is also probably accessed in other
functions, and therefore we can combine and cross-reference multiple candidate locations to narrow
down its exact offset. In Section 7.1 we will describe in detail the numerous challenges the layout
recovery algorithm needs to face when dealing with complex kernel code and the solutions we
adopted to overcome these problems.

3 PAST APPROACHES
The forensics community is well aware of this problem and over the years have proposed some
preliminary solutions, which are summarized in Table 1. The first attempt at solving this problem
was published by Case et al. [3] in 2010 and, quite similarly, by Zhang et al. [48] in 2016. The two
approaches are quite straightforward: after locating a set of defined functions, the authors extracted
the layout of kernel objects by looking at the disassembly of these functions. While we believe this
was a step in the right direction, these approaches had several limitations. First of all, both the
functions and the corresponding objects were selected manually. This limited the scalability of the
solution, and in fact the authors were only able to manually recover a dozen fields in total—while
our experiments show how Volatility uses more than two hundred fields. Moreover, to locate the
functions in the memory dump, previous solutions rely on the content of System.map, therefore
suffering from some of the problems and limitations we discussed in Section 1. Finally, since the
authors used a simple pattern-matching algorithm to extract the offsets from the disassembled
code, those approaches worked only on small functions and only if the instructions emitted by the
compiler followed a certain predefined pattern.

ORIGEN [11] was one of the first attempts to automate these steps. The system combines both
static and dynamic analysis to generate a model for a base version of a program by identifying the
so-called Offset Revealing Instructions. Then, this model is matched against a subsequent version of
the program, allowing the system to perform a cross-version memory analysis. While their results
look promising, the system was only tested against six fields of task_struct and by their same
own admission, the system may not work “when a software version is significantly different from
the base version”. Moreover, this approach requires to perform dynamic analysis of a running
kernel configured in a way similar to the one under analysis. Our solution requires instead only to
perform static analysis of the kernel source code, independently of how the target system has been
configured. Finally, the authors assume that the program under analysis uses the structure they
want to recover during their dynamic labeling phase. While these uses are trivial to observe for
frequently used structures (such as task_struct), it might become more challenging for less used
ones.

Case et al. [3] and Zhang et al. [48] presented also another way to find the offset of a field based
on the relationship among global kernel objects. Both authors noted that, for example, the field
comm of the variable init_task always contains the string “swapper” and that the field mm of the
same variable always points to another global variable (init_mm). With this information is trivial to
extract the offsets of these two fields, because it is enough to find the starting address of init_task
and scan the following chunk of memory. Unfortunately, not all the object types in the kernel
have a corresponding global variable, thus limiting this approach to a very narrow subset of data
structures.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

AutoProfile: Towards Automated Profile Generation for Memory Analysis 1:7

Kernel
Source Plugin

Access
Chains Exploration

Volatility
Profile

AngrClang

Memory
Dump

Symbols + FunctionsKernel Version

Fig. 2. AutoProfile Overview.

Finally, in 2016 Socała and Cohen [38] presented an interesting approach to create a profile
on-the-fly, without the need to rely on the compiler toolchain. Their tool, Layout Expert, is based
on a Preprocessor Abstract Syntax Tree of kernel objects, that retains all the information about the
ifdefs. This special AST is created offline and then specialized to the system under analysis, only
when the analyst has access to it. Nevertheless, the specialization process still needs the kernel
configuration and the System.map, making this technique not applicable to our scenario.

4 APPROACH OVERVIEW
In this section we explain our approach to automatically extract a valid memory forensics profile
from a memory dump. Our system can be conceptually divided in three independent phases as
illustrated in Figure 2. In the first phase, we find the location of all symbols in the memory dump
and we identify the version of the running kernel. During the second phase we use a compiler
plugin to analyze the source code of the identified version and emit a set of models – which we
call access chains – that describe the way the code operates over a selected set of kernel objects.
It is important to note that we only need access to the public source code but not to the exact
configuration (kernel options, compiler settings, randomization seed, etc.) that was used to build
the kernel captured in the memory dump. The chains extracted in this phase are finally fed into
the third component, the exploration engine, which matches them to the actual kernel binary code
extracted from the memory dump. The final output of AutoProfile is a working memory forensics
profile, which can be used by Volatility to extract evidences from a memory dump.

For example, during the second phase AutoProfile would discover that the field vm_file of
the structure vm_area_struct is used in the function shm_close and that the variable at the base
of the access chain is the first parameter of the function. Then, during the third phase, our tool
locates the aforementioned function by using the symbols extracted in the first phase, and tracks
the offsets of every memory access that depends from the first parameter. This process produces
the position (or a set of candidate positions which are then compared and intersected with the
same information extracted from other functions) for the vm_file field.

5 PHASE I: KERNEL IDENTIFICATION AND SYMBOLS RECOVERY
The goal of the first phase is to recover two key pieces of information: the version of the kernel
and the location of its symbols (functions and global variables).

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Fabio Pagani and Davide Balzarotti

Locating Kernel Symbols
As we already explained in Section 1, existing memory forensics tools require to know the location
of certain global symbols to bootstrap their analysis. On top of that, AutoProfile also requires the
location of some kernel functions, which will serve as basis for our analysis.

The recovery of this information is greatly complicated by two different factors. First of all, unlike
other memory forensics tools, we cannot rely on the System.map file, which is instead always part of
a memory forensics profile. Moreover, we want AutoProfile to be resilient against Kernel Address
Space Layout Randomization (KASLR) - which is nowadays enabled by default by almost every
Linux distribution. To date, the forensics community already proposed several systems to recover
kernel symbols from a memory dump, for example ksfinder [15], volatility-android [41], and
the solution presented by Zhang et al. [48]. These approaches leverage the fact that some symbols of
the kernel are exported using the EXPORT_SYMBOLmacro that allows kernel modules to transparently
access kernel objects and functions. Whenever a symbol is exported with this macro, the kernel
initializes and inserts in the ___ksymtab section a kernel_symbol structure that contains two
fields: one with the virtual address of the exported symbol and the other one pointing to a string
representing the symbol name—which in turn is placed in the __ksymtab_strings section. To locate
a given symbol, all previous approaches scan the memory dump to find the physical address of the
string representing the symbol and then assume they can translate this physical address to a virtual
one by adding a constant, based on the virtual base address of the kernel. With this information
they are then able to scan the memory dump and match the corresponding kernel_symbol object.
The first problem with this solution is that exported symbols constitute only a tiny subset of

all the kernel symbols. For this reason, Zhang et al. [48] introduced a way to recover another
larger subset of symbols - called the kallsyms - which are usually accessible from userspace from
a file under /proc. However, since there are tens of thousands of symbols, in order to save space
they are stored in a compressed form using a table lookup algorithm. As a result, they are much
harder to locate in a memory dump, and several kernel global variables are needed to decode their
names. To overcome this problem, Zhang suggested to locate these variables from the disassembly
of the function update_iter - which can be found by carving the corresponding kernel_symbol.
Once these variables are found, by manually re-implementing the decoding algorithm the authors
were finally able to reconstruct the kallsyms. Unfortunately, this approach requires a considerable
manual effort and the authors did not discuss an automated way to retrieve the address of the
global variables used in their approach. The second, much more severe, limitation of all existing
solutions is that they fail on modern X86_64 platforms with KASLR, where both the virtual and
the physical base addresses are randomized.

For these reasons, we designed a novel and generic way to automatically extract the addresses of
all kernel functions and global variables. Our approach extends the ideas presented so far, but it relies
on automatically finding and executing the kallsyms_on_each_symbol function. This function
is present in the kernel tree since more than 10 years, it is exported with the EXPORT_SYMBOL
macro and it is responsible to handle the symbol decoding process, making it a perfect match for
our purpose. AutoProfile starts by carving a number of candidate ksymtab tables based on few
constraints (e.g., the structure needs to include include two side-by-side valid kernel addresses,
value and name, greater than 0xffffffff80000000 and at least 500 contiguous kernel_symbol
objects). We also know that the symbol representing the function kallsyms_on_each_symbol
must be contained in one of these candidates. To find the correct one, we leverage the fact that even
when KASLR is enabled, the randomization happens at the page granularity and hence offsets inside
a page are left unaltered. So we scan again the memory and record every physical address matching
the string kallsyms_on_each_symbol. Given the previous fact, we select the kernel_symbols

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

AutoProfile: Towards Automated Profile Generation for Memory Analysis 1:9

1 int free_next(struct task *task){
2 struct task *t = task ->next;
3 int gid = t->cred.gid;
4 if (strcmp(t->name , "init")){
5 free(t)
6 return gid;
7 }
8 return -1;
9 }

Fig. 3. Example used to explain how the Clang plugin works.

that have a name pointer with the same page offset of one of the matched strings. To translate the
value field from the virtual to the physical address space we leverage the fact that the kernel is
always contiguously mapped in the both address spaces and thus the following equation holds:
valueva − nameva = valuepa − namepa.

Therefore, to find the physical address of a candidate kallsyms_on_each_symbol function, we
sum the physical address of the string to the difference between the value and the name virtual
addresses. AutoProfile can now extract the function code from the memory dump and execute
its code by using the Unicorn emulator [30]. Since one of the function’s parameters is a callback
function that is invoked for each decoded symbol, we pass a function under our control and retrieve
from there the name and the address of each symbol, as they are processed. Finally, we will release
this technique as a standalone tool or to embedded it in current memory forensics tools to effectively
determine the kernel layout randomization shift1.

Kernel Version Identification
Multiple techniques exist to identify the version of a kernel contained in a memory dump. The
straightforward approach consists in grepping for strings that match the format of a Linux kernel
banner. However, even thought the kernel is generally loaded in the first few megabytes of the
physical address space and therefore the correct version should be in the first few matches, this
technique can potentially result in several false positives, depending on the content of the memory
dump. Because of this, we resort to a more precise identification by extracting the global variable
init_uts_ns and the corresponding textual representation contained in the variable linux_banner.
The location of these variables is retrieved together with all other symbols as described in the
previous section. Others orthogonal approaches to retrieve this information were presented by
Roussev et al. [33] and Lin [21] and are based on matching fuzzy hash and SigGraph signatures
previously generated from a set of kernels.

6 PHASE II: CODE ANALYSIS
At the end of the first phase we identified the version of the running kernel, which we can use to
download its corresponding source code. In this second phase we automatically analyze the code
to extract three pieces of information: the type definitions, the pre-processor directives, and the
access chain models.

The bulk of our analysis is performed by a custom plugin for the Clang compiler, which operates
on the Abstract Syntax Tree (AST) of the Linux kernel. While the analysis we need to perform
would be much easier and more practical if performed at a later stage of the compilation process –
i.e. by working on the compiler intermediate representation – working on the AST provides the

1https://github.com/pagabuc/kallsyms-extractor

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Fabio Pagani and Davide Balzarotti

advantage of being compatible with all version of the Linux kernel. In fact, while recent versions of
the kernel can compile with Clang and few older versions are supported through a set of manually
created patches, for the vast majority of kernel versions Clang is not able to produce an intermediate
representation. However, Clang is “fault tolerant” when it builds the AST and thus it creates one
for all versions of the Linux kernel, regardless of being able to compile the sources.
To recover the aforementioned pieces of information, we compile the kernel configured with

allyesconfig with our plugin, which is triggered every time an AST representing a function or a
record is created. The choice of this particular configuration comes from the fact that, by turning
on all the configuration options, it increases the coverage of our plugin over the kernel codebase.
Nevertheless, we decided to manually turn off several debugging configuration options which are
never present in production kernels. The actual analysis starts at the root node of a function and
recursively visits the whole tree by using a depth-first strategy.

6.1 Pre-processor directives
The first piece of information we save from the compilation process is the position of macro and
ifdef directives. To extract this information we use pp-trace, a standalone tool from the Clang
framework that traces the preprocessor activity. For each of the previous directives pp-trace emits
where they begin, where they end and, in the case of macros, also their names. This information
is used for several purposes. First of all, we ignore chains extracted from lines included in ifdef
statements, because their code is dependent on a specific configuration setting and thus might not
be included in the kernel under investigation. Our tool also saves where the compiler directives
related to structure randomization are used. In this way, by matching this information with the
definition of a structure, our system knows which structures are affected by layout randomization.
Finally, as we will explain in Section 7.1, by combining this information with the definition of
kernel objects, it is possible for our tool to safely deduce the offset of certain fields.

6.2 Types Definition
Along with the functions’ AST, our plugin also visits the AST representing the definition of kernel
objects. When traversing this tree it saves the type of each object along with the name, the type,
and the definition line of its fields. As a special case, when exploring unions, the tool marks the
fields they contain accordingly.

The information gathered from parsing a record definition plays an important role in our system.
For example, by looking at the order in which the fields are defined, our exploration system can
constrain the candidate offsets for a given field. Moreover, the offset of certain fields can be statically
deduced (e.g., we safely assume the first field in a structure is always at offset zero).

6.3 Access Chains
To model the way the code accesses kernel objects we introduce the concept of access chain, defined
as a triple {Location, Transitions, Source}. In the triple, the Location defines where the access is
performed, in terms of a file name, a function name, and a line number. The Transitions element is
a list containing the type of the objects and the name of the fields of every data structure involved
in the chain. For example, the chain describing the access at line 3 of Figure 3 would contain three
elements:

struct task ->next|struct task ->cred|struct creds.gid

Finally, the third element of an access chain is its Source, that represents how the first variable of the
chain is initialized. This information is essential to select among the memory accesses contained in
a function only those belonging to a target object. In the previous example, since the base variable

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

AutoProfile: Towards Automated Profile Generation for Memory Analysis 1:11

is task, the source of the chain would be marked as the first parameter of the function free_next.
AutoProfile supports three different types of sources: function parameters, global variables, and
values returned from a function invocation (function returns). The representation of the source
depends on its category: parameters are expressed as numerical position in the argument list, while
the other two categories are expressed respectively through the name of the global variable or the
name of the function.
Local variables, which can be legitimately used as base variables for an access, are not valid

sources. This is because local variables must be initialized before they can be used and their
initialization must fall in one of the previous categories. As we will explain in the next section, a
core aspect of the plugin is that it keeps a map from variables to their initialization. This enables
the plugin to correctly determine the source for each access chain.

The plugin extracts access chains from the kernel source code by parsing three types of nodes in
the AST: assignments and declarations, object accesses, and function calls and returns.

Assignments and Declarations are used to maintain the map of all variables and the way they
are initialized. For instance, when we encounter the node representing the declaration at line 2
of Figure 3, the plugin first extracts the variable used in the left-hand side (LHS) of the statement.
If the type of the variable is a struct or a void pointer, the plugin proceeds by analyzing the
right-hand side of the statement (RHS). In case the RHS is already a valid source (parameter, global
variable, function call) or an object access then we update the map with this information. On the
other hand, if the RHS represents another local variable, then we lookup in the map how this other
local variable was initialized and copy this information in the map entry of the LHS variable. This
mechanism ensure that, at any given point inside a function, our plugins knows how a variable is
initialized.
To simplify the analysis, our plugin only keeps track of one path, and not all possible paths

where a variable can be assigned. However, to extract the offset corresponding to a given access is
sufficient to find one path inside a function that reaches that access, rather than exploring all of
them.

Object Accesses (as modeled by MemberExpr in Clang terminology) are the nodes that, for
example, represent the right part of the statement at line 3 of Figure 3. Since in this case there
are several objects chained together, the plugin keeps track of every field name and object type
when traversing this sub-tree. When it reaches the base of the access, represented in this case by
the variable t, a number of things can happen. If the base is a valid source itself (e.g., a parameter,
a global variable, or a function) then the chain can be already emitted. Otherwise, if the base is
a local variable then we recursively visit its initialization, appending in front of the chain the
object types and the field names. This recursive process ends when a valid source is found and
thus the chain can be emitted. For example, when the plugin traverses the sub-tree representing
line 3, it first extracts the type of the object and the field name, i.e. struct creds.gid and struct
task→ creds, and appends them to the chain. Then, since the variable t is a local variable, it
checks in the definition map how this variable is initialized. Since t is initialized from an object
access at line 2, it recursively traverses this access and it appends to the chain the element struct
task→ next. At this point the process ends because the base variable task is a valid source.

When traversing the objects involved in a chain, the plugin keeps track of how fields are accessed.
While the C standard defines the arrow and the dot operator as the only way to access a field,
we are also interested in other operators that may affect an access. The first is related to the
offset_of extension and in particular to the macro container_of, which is built on top of it.
This macro is extensively used in linked list and trees implementations, and it defines a sort of
parent-child relationship between kernel objects. In fact, given a child structure and its offset inside

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Fabio Pagani and Davide Balzarotti

the parent structures, the macro is used to retrieve a pointer to the parent object. For example,
supposing that c is a pointer to a struct creds, the task containing it can be retrieved by calling
t = container_of(c, struct task, cred). A chain containing this macro needs to be treated
carefully – not only because an offset is rather subtracted than added to the base pointer – but also
because the compiler often merges a container_of element and the subsequent displacement in a
single instruction. The other operator the plugin keeps track of is the reference operator (&). As we
will explain in the next section, this is of particular importance when chains are joined, because it
may transform an arrow in a dot operator. Finally, fields defined as array are generally accessed in
a different way and thus need a particular technique during the exploration process. Therefore, if
an element of a chain is a container_of, an array, or it contains a reference operator we mark it
accordingly in our model.

Function Calls and Returns are the last two types of nodes explored by the plugin. This
information is essential to extract accesses in functions which are inlined by the compiler. When
our plugin encounters a function call, we save the name of the called function and its arguments.
Similarly to how object accesses are represented, every argument is expressed as an access chain.
The only difference is that these chains might have an empty Transitions element. This happens for
example when one function calls another and it passes as parameter one of its own arguments or a
global variable. A similar approach is applied to return statements.

6.4 Non Unique Functions
Another problem when dealing with projects in the size of the Linux kernel is that function names
are not always unique. In fact, the static identifier is used to limit the scope of a function to a file.
For example, this happens with the function s_next that, in kernel version 5.1, is defined 5 different
times. This is a problem for our system, because whenever we analyze a function we must ensure
that we are dealing with the correct “instance” of the function. Since there is no straightforward
way to extract this information using Clang, we employed Joern [47]. This tool, among other things,
contains a fuzzy parser for C and C++. The output of Joern after parsing the kernel sources, is
a list of functions and the filename where they are defined. This information is used whenever
AutoProfile extracts a function from a memory dump. In case the function has a non-unique
name, we exploit the fact that functions defined in the same compilation unit ends up in the same
object file and thus are also contiguous in the kernel binary. In this way, by checking the functions
in the vicinity of the target one, our system is able to select the correct function.

Finally, for optimization reasons, the compiler can decide to remove a parameter from a function
or even split a function in two or more parts. Fortunately, when these optimizations are applied,
the compiler also adds a suffix - respectively .isra and .part - to the name of the function. In the
first case we simply ignore the function, while in the second one AutoProfile is able to extract
and join all the different pieces.

7 PHASE III: PROFILE GENERATION
It is important to point out that a profile includes the layout of only a small subset of all kernel data
structures – those that are needed to complete the forensic analysis tasks supported by a given tool.
For this reason, our system focuses on recovering only the information actually used by Volatility.
However, manually listing the objects used by every Volatility plugin is a tedious and error prone
process, and it is further complicated by the fact that some of these objects vary depending on
the kernel version. Therefore, for our tests we decided to instrument Volatility to log every field
it traverses and then we recovered the full list by executing each plugin against a memory dump
containing the same kernel version of the one under analysis.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

AutoProfile: Towards Automated Profile Generation for Memory Analysis 1:13

As a result, the actual number of different fields and unique data structures vary among the
experiments, ranging from 234 and 239 targets. As we will explain in the next sections, finding the
correct offset of a field enables AutoProfile to test other chains that depends on this field. For this
reason, we add to the initial set of targets any field that represent a dependency of a field used by
Volatility in any access chain. Moreover, to constrain even more the offsets extracted for a structure,
we expand the set of targets by adding three fields which are defined before or after any Volatility
target.

7.1 Binary Analysis
To match the chains extracted during the source code analysis against the functions extracted
from an actual memory dump we use angr [35] and its symbolic execution capabilities as a taint
engine [16, 31]. Therefore, we decided to perform our exploration by symbolizing the source of a
chain and run the function while tracking every time the symbolic variable is used as a base for a
memory access. To avoid state explosion – one of the major problem of symbolic execution – we
wrote a custom exploration technique. An exploration technique drives the symbolic engine and
decides how the program is explored, by selecting which states can advance and which should be
discarded. In our case, it keeps track of every state generated by the symbolic execution engine and
prunes those which have already been explored more than a certain amount of time, effectively
limiting the state space. Since the constraints associated with a state evolve during the symbolic
exploration, our technique uses the instruction pointer as a mean to decide whether a state must be
explored or discarded. Moreover, we also instruct angr to check the satisfiability of the constraints
belonging to a state as infrequently as possible, rather than checking them when a new state is
created. For example, assuming two states are created from a branch instruction then both states
will be kept, regardless of their satisfiability. These two expedients allow the number of state to be
contained but also to entirely cover the code contained in a function.

While tracking the memory accesses is independent from the source of a chain, it dictates how
the system is initialized and run. Parameters and function returns are the most straightforward
sources to handle. In the first case a symbolic variable is stored in the corresponding register, while
in the second - whenever the function specified in the source is called - we set the rax register
as symbolic. On the other hand, global variables require two different strategies to handle both
pointers and normal variables. In both cases, whenever the address of the variable is stored in a
register we symbolize the register itself. Moreover, when the variable is not a pointer, the compiler
might have already pre-computed the address of the field. If this is the case, we directly extract the
offset and append it to the list of results. Since the size of non-pointer variables is known from the
kallsyms – by subtracting the address of the kallsym following the one representing the global
variable – our system can discern cases where more than one non-pointer variables are accessed in
the same function.

Field Dependencies – AutoProfile often needs to deal with chains spanning multiple objects.
For instance, let us consider again our sample chain:

struct task ->next|struct task ->cred|struct creds.gid

The code reaches the target gid by first traversing the next pointer of the task structure, thus
defining a dependency among the two fields. In other words, we first need to recover the offset of
next before we are able to extract the second half of the chain.

In this case we create multiple symbolic variables and appropriately store them when a memory
access belonging to an element is detected. However, since the final assignment of a field offset

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Fabio Pagani and Davide Balzarotti

is obtained by a global algorithm by majority voting, it is possible that a chain cannot be fully
analyzed in one pass, but instead requires a recursive approach to first identify all its dependencies.

Nested Structures – A particular type of dependency occurs when the target field is accessed
through a nested structure. In C, thismay appear for example in the form of struct a.struct b.target.
In this case, the compiler may split the access in two parts, by first loading the base address of
struct b (for instance located at 0x20 bytes from the beginning of struct a) and then adding
the offset of the field (e.g., 0x16 bytes into struct b). However, this is often optimized by comput-
ing the total offset from the base structure at compile time, resulting in a single instruction like
lea rax, [rsi+0x36].
This requires our tool to keep track of this displacement, as 0x36 is not the correct offset of

struct b.target, and to obtain the right value we need to remove the offset of struct b, which
(like in the case of field dependencies) needs to be already discovered in a previous pass.

7.2 Dealing with Inlined Functions
Since the kernel is always compiled with the optimizations turned on, the compiler is quite ag-
gressive when it comes to function inlining. For example, compiling the Linux kernel 5.1 with the
default configuration results in the inlining of more than 200,000 call sites. For this reason, being
able to cope with function inlining dramatically increase the number of chains our exploration
system can test.

When we analyze a memory dump and discover that a given function call has been inlined, we
trigger a dedicated routine in charge of merging and inheriting its chains. Our process starts by
labeling every chain of the inlined function as forward or backward. Forward chains are those that
starts from a parameter, while backward ones are those that terminates in return statements. For
example, in the following snippet:
1 inline struct task* foo(struct task *t, char *n){
2 t->name = n;
3 if(t->cred)
4 return t->next;
5 else
6 global_task ->next = 0;
7 ...

the chain at line 2 is a forward chain, while the one at line 4 is both a forward and backward chain.
Our algorithm is divided in two independent parts: in the first one chains are joined, while in the
second one they are inherited.

The first one starts by iterating over every pair of caller and callee. If the callee is not inlined, and
thus is present in the list of functions extracted from the memory dump, then no action is required.
Otherwise, each argument - which is also represented with a chain - is joined with every forward
chain of the callee that has the same parameter position as source. Joining is not a commutative
operation: the source and the location of the argument chain are left untouched, while the list of
objects of the callee chain are appended to the one of the argument chain. A similar treatment is
reserved for backwards chain, but this time in the opposite direction. Every chain of the caller that
has source equal to an inlined function, is joined with the backward chains of this function. Since
the inlining depth can be greater than 1, i.e. functions called from inlined functions can be inlined
as well, we repeat this process in a loop to propagate the presence of freshly joined chains, until
any new chain is generated.

The second part of the process deals with inheriting from inlined functions all the chains which
are not forward or backwards one, for example those who access a global object. In this case the
chain is left unaltered and only added to the set of chains of the caller. In our example, as result of

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

AutoProfile: Towards Automated Profile Generation for Memory Analysis 1:15

this process, a function that calls foo will have as well the chain representing the global access
at line 6. Similarly to the previous process, we also propagate inherited chains by repeating this
process in a loop.
Once this two steps are finalized, AutoProfile passes over the resulting chains to clean and

adjust them. The cleaning process is needed because a target can be present in multiple same-source
chains of a function. For this reason, given a target, we delete the chains which are a superset of
others, thus ensuring that the target is tested only once. On the other hand, the adjustment deals
with chains containing the reference operator or container_of. In the first case, we translate the
arrow following a reference in a dot, but only if the chain is not used as parameter for a function.
Given the following example:

1 void set_gid(struct creds *c, int g){
2 c->gid = g;
3 }
4 ...
5 struct creds *c = &t->cred;
6 set_gid(c, 0);

if set_gid is inlined, then the compiler will most likely merge the accesses to fields cred and gid
in a single one. As we explained in section 7.1, this chain can be explored only if the offset of either
cred or gid is known. On the other hand, if the function is not inlined, no action is required and
the chain containing cred can be safely explored.

The adjustment of container_of deals with a similar problem. In the following example:

1 t = container_of(c, struct task , cred);
2 t->next = NULL;

the compiler may effectively subtract from c the offset of cred and then add the offset of next, or
merge the previous two operations and add to c the distance between cred and next. In this case,
to represent these two possibilities, we duplicate the chain, explore both of them and merge their
results.

7.3 Object Layout Inference
At the end of the binary exploration phase, each target (i.e., each field whose offset we need to
extract) has its own list of candidate offsets. Since the lists associated to different fields can overlap,
it is now a global optimization problem to find the set of offsets that maximizes the number of
recovered fields. For instance, let’s assume that, according to our chain-matching algorithm, three
fields of the same data structure can be located respectively at offsets {72, 74}, {40, 72} and
{40}. In this example, since the third field was found to be at offset 40, we can exclude that the
second field can be located at the same offset 40, and in turn this rules out the possibility of the
first to be at offset 72.

We solve this problem by creating a z3 model [8] where all the fields and respective candidates
are added in the form of constraints. We call these constraints soft, in contrast to hard constraints
that are based on the definition of a structure. In particular, we add hard constraints based on the
position of a field, because the order of the fields in the source code definition must be respected
in the offsets layout (e.g., cred < name), and we also assert that the first field in a structure is
always at offset zero (next == 0). Moreover, since pointers have a predictable size on 64 bit
machines, we assert that the 8 bytes following a pointer must also respect the definition order

(
8∧

𝑖=1
𝑛𝑒𝑥𝑡 + 𝑖 < 𝑐𝑟𝑒𝑑). Similarly, if a field represents a nested structure, then we can count how

many pointers (not enclosed in any ifdef directive) it contains and use this as a constraint of the

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Fabio Pagani and Davide Balzarotti

Version Release Date Configuration Used Fields Extracted Fields

4.19.37 04/2019 Debian 234 220 (94%)
4.19.37 04/2019 Debian + RANDSTRUCT 234 194 (83%)
5.6.19 03/2020 Raspberry Pi 227 217 (95%)
4.4.71 06/2017 OpenWrt 236 216 (92%)
3.18.94 05/2018 Goldfish (Android) 239 220 (92%)
2.6.38 03/2011 Ubuntu 226 213 (94%)

Table 2. The Linux kernels used in our experiments.

minimum distance between this field and the next. Special care is given to unions, since in this case
we assume the fields they contain have the same offset. Some of the previous constraints cannot
be applied when structure randomization is in place. For example, when this feature is enabled,
the first field of a structure might not be at offset 0. Moreover we also relax other predicates, by
changing the arithmetic operators from less than (<) to not equal (! =).
A problem with this approach is that if the candidates of a field are wrong and contradict the

position constraints, then the model become unsatisfiable. To overcome this limitation, when we
run into an unsatisfiable model, we explore the solution space by recursively removing a soft
unsatisfiable constraints.
Finally, the knowledge gained from the previous modeling process is added to the system. This

new piece of information will most likely satisfy the dependency or the displacement of other
chains that were previously not testable. Hence, we go back and forth between the binary analysis
component that resolve the chains and the layout inference component that solves the extracted
candidates and constraints until no other chain is available.

8 EXPERIMENTS
To test AutoProfile we collected a number of memory dumps from systems running different
Linux kernels. The list of kernels (summarized in Table 2) was chosen to reflect different major
versions (including 2.6, 3.1, 4.4, 4.19 and 5.6) and different configurations. In particular, the first
experiment was conducted with the latest version of the kernel shipped by Debian. In the second
experiment we reused the same configuration, but this time with structure layout randomization
turned on. To study how different randomization seeds can impact our approach, we recompiled the
kernel 10 times and reported an average value in Table 2. The last four experiments aimed instead to
test AutoProfile against less common memory forensics scenarios, when the traditional approach
to create a profile would be difficult to apply. For one test we retrieved the kernel used for Raspberry
Pi devices, for another test we targeted the kernel used by OpenWrt, a project that targets network
devices; in another we recreated a scenario involving a memory dump of an Android device, and
for our last test we chose a 10 years old version of the Linux kernel that does not support Clang.
While certain of the aforementioned kernels are targeted towards the embedded and IoT world, the
current implementation of AutoProfile supports only x86-64, and we therefore configure and
compile the kernels accordingly. The only architecture-dependent components of AutoProfile are
the kallsyms extractor and the symbolic exploration. However, these components are respectively
based on Unicorn and angr, and therefore we believe that AutoProfile can be engineered to
support other architectures as well.

To run our experiments we downloaded the kernel sources and configurations from the respective
repositories. Each kernel was compiled twice, one time to be used in our experiments and the

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

AutoProfile: Towards Automated Profile Generation for Memory Analysis 1:17

other to perform our source-code analysis. The first version was configured with the configuration
shipped with the distribution, and compiled it with a supported version of gcc, while the second
version was instead configured with allyesconfig and analyzed with our Clang compiler plugin.
We then proceeded by installing the first version in a QEMU virtual machine, booting the machine
and acquiring an atomic memory dump using the QEMU console. Moreover, we also used the first
version to manually create a ground truth Volatility profile. We were able to create this profile for
each experiment except for the ones using RANDSTRUCT. While we empirically checked that the
kernel code was correctly reflecting this option and that the randomization seed was present in
the kernel tree – the debugging information did not reflect the change in the structures layout.
We later discovered this to be a known issue already discussed by several researchers in online
forums [1, 7]. It is still unclear if the problem is due to a bug in gcc or in the randomization plugin,
but in any case the erroneous information prevents Volatility from generating a profile even when
the randomization seed is available.

For this reason, to generate the ground truth required to perform this test, we developed a custom
kernel module that, using inline assembly statements, loads in a specific register the offset of a field
using the offsetof compiler builtin. Therefore, by compiling and disassembling this module, we
were able to write a script to automatically extract the correct offset of every field used by Volatility.

8.1 Analysis Time
Building the profiles using our automated system took approximately eight hours in each exper-
iment. The first phase was the fastest and the only one that depends on the size of the memory
dump. Nevertheless, since the kernel is usually loaded in the lower part of the physical memory,
our prototype required few seconds to analyze 2GB of memory and retrieve all kernel symbols. The
static analysis performed in Phase two took three hours on a eight-core machine. In this phase,
most of the time is spent compiling the kernel configured with allyesconfig and extracting the
access chains using our compiler plugin. Finally, the exploration of kernel functions using angr
and the generation of the final profile is the most time-consuming phase of our experiments and
took in average five hours on a cluster of 64 cores.

8.2 Results
The fourth column of Table 2 shows how many unique fields are used by Volatility for the given
image. The value range from 227 to 239 but, quite surprisingly, the intersection of these fields
counts more than 180 elements. This means that, even if new features frequently land in the kernel
tree, a large fraction of fields used by memory forensics is not affected by the kernel development.
These fields are mostly related with process management (e.g., task_struct), process memory (e.g.,
mm_struct and vm_area_struct), and filesystem information (e.g., dentry and file_operations).
The last column of Table 2 shows instead how many fields AutoProfile was able to correctly
extract from the memory dump. The recovery rate ranged from 83% to 95%, but this value alone
does not tell us much about how many Volatility plugins are working with the extracted profile. In
fact, in most of the cases it is enough that one field was wrongly extracted to undermine the result
of an entire plugin.
To answer this question, Table 3 breaks down, for each plugin, the number of fields that were

correctly located by AutoProfile and the number of fields for which we extracted a wrong offset.
Unfortunately, it is not sufficient to compare the list of fields accessed by a plugin to tell which
plugin is correctly supported by our profile. For example, our instrumented version of Volatility
reports that the plugin linux_pstree accesses the field gid of struct cred but this information is
neither used in the analysis nor displayed to the analyst. Therefore, we decided to compare two runs
of Volatility against the same memory dump: one by using the profile extracted by AutoProfile

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Fabio Pagani and Davide Balzarotti

Volatility
Plugin

Debian RANDSTRUCT Raspberry PI Openwrt Android Ubuntu

S C W S C W S C W S C W S C W S C W

linux_arp 11 0 # 8 3 11 0 11 0 12 0 12 0
linux_banner 0 0 0 0 0 0 0 0 0 0 0 0
linux_check_afinfo 10 0 # 6 4 10 0 40 0 42 0 # 35 4
linux_check_creds 4 0 4 0 4 0 4 0 4 0 4 0
linux_check_fop # 73 3 # 70 9 # 69 5 # 73 1 73 0 65 0
linux_check_idt 0 0 0 0 0 0 0 0 0 0 0 0
linux_check_modules 11 0 # 7 1 11 0 10 0 # 9 1 10 0
linux_check_syscall # 31 0 # 30 1 # 31 0 # 30 0 30 0 29 0
linux_check_tty # 13 1 # 11 3 14 0 # 12 1 13 0 12 1
linux_cpuinfo 2 0 H# 1 1 2 0 2 0 2 0 2 0
linux_dmesg # 0 0 # 0 0 # 0 0 # 0 0 # 0 0 0 0
linux_dump_map 9 0 9 0 9 0 9 0 9 0 9 0
linux_dynamic_env 6 0 6 0 6 0 6 0 27 0 26 0
linux_elfs 24 0 H# 23 1 23 0 23 0 24 0 22 0
linux_enumerate_files 24 0 24 1 24 0 24 0 24 0 23 0
linux_find_file -L 24 0 24 1 24 0 24 0 24 0 23 0
linux_getcwd 16 0 16 0 16 0 16 0 16 0 16 0
linux_hidden_modules # 8 0 # 8 0 # 8 0 # 7 0 7 0 7 0
linux_ifconfig H# 11 1 H# 11 1 # 11 1 12 0 12 0 H# 11 1
linux_info_regs — — — — — — — — — 11 0 # 9 2 11 0
linux_iomem 5 0 5 0 5 0 5 0 5 0 5 0
linux_keyboard 1 0 1 0 1 0 1 0 1 0 1 0
linux_ldrmodules 30 0 H# 28 2 29 0 # 27 2 30 0 28 0
linux_library_list 9 0 9 0 9 0 8 0 9 0 9 0
linux_librarydump 9 0 9 0 9 0 9 0 9 0 9 0
linux_list_raw # 32 0 # 27 3 # 32 0 # 4 2 # 32 0 # 31 0
linux_lsmod 6 0 6 0 6 0 5 0 5 0 5 0
linux_lsof 24 0 H# 22 2 24 0 24 0 24 0 23 0
linux_malfind 15 0 # 14 1 15 0 # 13 2 15 0 15 0
linux_memmap 6 0 6 0 6 0 6 0 6 0 6 0
linux_moddump # 8 3 # 7 4 # 8 3 # 8 3 # 8 3 # 7 3
linux_mount 20 0 H# 20 1 20 0 20 0 20 0 19 0
linux_netscan H# 16 1 H# 15 2 # 16 1 H# 15 2 H# 15 2 H# 15 2
linux_netstat # 29 1 # 27 3 # 29 1 # 29 1 # 29 1 # 29 1
linux_pidhashtable # 18 4 # 19 3 # 21 1 # 21 3 # 18 6 H# 20 1
linux_plthook 25 0 24 1 24 0 22 0 25 0 22 0
linux_plthook -a 25 0 24 1 24 0 22 0 25 0 22 0
linux_proc_maps 37 0 H# 34 3 37 0 35 2 37 0 35 0
linux_proc_maps_rb 39 0 H# 35 4 39 0 37 2 39 0 37 0
linux_procdump 7 0 # 6 1 7 0 7 0 7 0 7 0
linux_psaux 11 0 11 0 11 0 11 0 11 0 11 0
linux_psenv 8 0 7 1 8 0 8 0 8 0 8 0
linux_pslist H# 13 3 H# 14 2 16 0 H# 15 1 H# 13 3 H# 12 1
linux_psscan H# 10 1 H# 10 1 11 0 11 0 11 0 H# 12 1
linux_pstree 11 0 11 0 # 9 2 # 9 2 # 9 2 11 0
linux_psxview H# 16 1 H# 16 1 H# 16 1 H# 18 2 H# 17 3 20 0
linux_recover_fs # 34 1 # 35 1 # 35 0 # 31 4 # 32 3 # 33 1
linux_threads 6 0 6 0 6 0 6 0 6 0 6 0
linux_tmpfs -L 20 0 20 1 20 0 20 0 20 0 19 0
linux_tmpfs -D — — — — — — — — — — — — — — — # 30 0
linux_truecrypt 3 0 3 0 3 0 3 0 3 0 3 0

Total Working Plugins 34 22 36 34 40 40

Table 3. Column S reports the status of a plugin: symbol denotes a plugin is working, H# partially working,

not working, and — not supported by Volatility. Columns C andW represents the number of fields used by

a plugin, that were correctly and wrongly extracted by AutoProfile, respectively.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

AutoProfile: Towards Automated Profile Generation for Memory Analysis 1:19

and the other by using the one we manually created. The result of this comparison is shown in
‘Working’ columns in Table 3. Each cell represents whether our profile contains all the necessary
information for a given plugin () or not (#). In addition, in certain cases it is possible that, even if
one field was not correctly extracted, the plugin is still able to function with reduced functionality
(H#). For example, this happens in 3 out of 6 cases for the linux_ifconfig plugin where the name
and the IP address of a network interface are listed correctly by our profile, but the MAC address has
a value not associated with any vendor. Finally, cells containing the dash sing (–) denotes that the
corresponding plugin was not supported on the kernel under analysis or that it crashed while using
the ground truth profile. The only exception to this approach are those plugins that do not produce
any output in our tests. For example, the linux_malfind plugin searches for traces of malware
infection but if the machine is not infected – like in our experiments – then the plugin does not
produce any output. Similarly the plugin linux_hidden_modules searches for kernel modules that
were un-linked from the modules list. Therefore, for these cases we resorted to check that the offsets
of all fields accessed by the plugins were correctly recovered to determine whether the plugin was
supported or not by our profile. We use the same comparison metrics for the randomized tests and
report an average value by counting how many plugins are supported by the extracted profiles.

Overall, on the non-randomized memory dump, between 68% (for Openwrt) and 78% (for Ubuntu)
of the plugins worked correctly with our profile, and between 74% (for Openwrt) and 88% (for
Ubuntu) of the plugins had at least reduced functionality. In particular, the profile automatically
created by AutoProfile was able to support many plugins which are fundamental for a forensics
analysis. This include the support to extract the list of running process – except their starting time
– and many related information such as their memory mappings, credentials, opened files, and
environment variables. Moreover, our profile can be used to successfully list the content of tmpfs
and to list the loaded kernel modules.

In other cases, AutoProfile was not able to recover the right offsets for the required fields. For
instance, the field num of struct tty_driver prevents the linux_check_tty plugin to run in the
Debian experiment. However, even if we report the plugin as not supported in the results of Table 3,
in practice an analyst could often overcome this limitation by testing different profiles. For instance,
for the previous field, our system extracted two possible offsets, one of which was the correct one.
In other words, our technique could be used to generate two profiles and simply ask the analyst to
try both during the analysis. Overall, the percentage of fields for which AutoProfile extracts a
wrong or empty model is 4%, while the number of models that contains two or three offsets – one
of which is the correct one – accounts for almost 40% of the missing fields.

Another interesting observation is that in rare cases plugins are reported as not functional, even
if all the involved fields were correctly extracted by our framework. By carefully inspecting these
cases, we discovered that some of them also require to know the total size of certain structures.
For example, the hidden_modules plugin requires the size of the latch_tree_root structure.
While AutoProfile can find the offset of the last field, in some cases this may not be sufficient, as
discussed in Section 10.
Finally, the experiment on the randomized kernel shows that the hard constraints play an

important role in our system. More than 140 of the 234 fields used by Volatility are contained in
structures affected by layout randomization, and currently AutoProfile is able to correctly extract
the offset of 79% of them.

8.3 Chains Extraction
Table 4 shows detailed statistics about our analysis. Because of space constraints we could not
include all 230 fields and we decided therefore to limit the table to the fields belonging to mm_struct
and vm_area_struct. For each field, the table reports the number of chains extracted in Phase two

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Fabio Pagani and Davide Balzarotti

Step 1 Step 2

Total Expl. Dep. Disp. Model Total Expl. Dep. Disp. Model

mm_struct→ mmap — — — — ✓ — — — — ✓

mm_struct→ arg_end 5 3 2 0 ✓ 2 2 0 0 ✓

mm_struct→ arg_start 6 3 3 0 ✓ 3 3 0 0 ✓

mm_struct→ brk 9 2 7 0 ✓ 7 7 0 0 ✓

mm_struct→ context 34 2 19 13 ✓ 32 0 0 32 ✓

mm_struct→ env_end 5 3 2 0 ✓ 2 2 0 0 ✓

mm_struct→ env_start 5 3 2 0 ✓ 2 2 0 0 ✓

mm_struct→ mm_rb 13 7 6 0 ✓ 6 6 0 0 ✓

mm_struct→ owner 8 3 5 0 ✓ 5 5 0 0 ✓

mm_struct→ pgd 77 64 13 0 ✓ 13 11 2 0 ✓

mm_struct→ start_brk 8 1 7 0 4 7 7 0 0 ✓

mm_struct→ start_code 5 4 1 0 2 1 1 0 0 2
mm_struct→ start_stack 7 1 6 0 ✓ 6 6 0 0 ✓

vm_area_struct→ vm_start — — — — ✓ — — — — ✓

vm_area_struct→ vm_end 158 127 31 0 ✓ 31 22 9 0 ✓

vm_area_struct→ vm_next 57 48 9 0 ✓ 9 8 1 0 ✓

vm_area_struct→ vm_mm 135 126 9 0 ✓ 9 5 4 0 ✓

vm_area_struct→ vm_flags 198 180 18 0 ✓ 18 15 3 0 ✓

vm_area_struct→ vm_pgoff 100 92 8 0 ✓ 8 6 2 0 ✓

vm_area_struct→ vm_file 130 124 6 0 ✓ 6 5 1 0 ✓

Table 4. An excerpt of the fields used by Volatility and some statistics associated to their exploration

(Total), the number of chain explored in Phase three (Expl.), the number of chain that contained
at least one dependency or displacement not satisfied (Dep. and Disp.), and finally the number of
offsets generated by AutoProfile (a ✓ sign means that the tool identified the right offset, while a
number means that the model was not only containing the correct offsets, but also other possible
candidates). There are several interesting information that can be deducted from this table. First
of all, both the mmap and the vm_start fields were never explored, because they are the first field
of the respective structures and thus their offset (zero) was automatically deducted. Moreover, it
shows the first two iterations of our recursive approach. For example, the model of start_brk
contained four candidates at the end of the first step because some chains were not analyzed as they
depended on the offset of other fields that were still unknown. However, at the second iteration
AutoProfile was able to analyze seven more chains, and that additional information was sufficient
to narrow down the choice to a single, correct, offset.

8.4 Comparison with Past Attempts
The first approach to extract a valid profile from a memory dump was presented by Case [3], and
subsequently refined by Zhang et al [48]. Unfortunately, neither of these papers reports how many
structure fields they were able to extract. Moreover, both approaches target a restricted number of
manually-picked kernel functions to extract a field’s offset. This design restricts the applicability
of these techniques. For instance, it does not deal with cases where a target function was inlined
by the compiler, and the list of target functions must be kept in par with the kernel source code.
In comparison, AutoProfile is able to automatically deal with these situations, and once we
completed the development no changes had to be made to analyze any of the evaluated kernels.
Finally, Zhang’s approach to extract the kernel symbols does not support kernels randomized with
KASLR.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

AutoProfile: Towards Automated Profile Generation for Memory Analysis 1:21

A second attempt to solve this problem was ORIGEN [11]. While this paper reports a precision of
90%, it is difficult to draw conclusions on the effectiveness of this tool, because it was tested on only
6 fields (5 fields of task_struct, and 1 of mm_struct). Unfortunately, as we highlighted with our
experiments, nowadays memory forensics uses hundreds of structure fields. Moreover, ORIGEN is
heavily based on a dynamic labeling phase, where instructions reading or writing structure fields
are collected. This dynamic phase is problematic in real world investigations: on one hand, tracing
a kernel running in production might undermine its stability, on the other, we are not aware of any
solution that is able to extract and run a kernel from a memory dump.

9 RELATEDWORK
Type inference on binary code has been a very active research topic in the past twenty years. In fact,
the process of recovering the type information lost during the compilation process involves several
challenges and can be tackled from different angles. The applications that benefit from advances in
this field are the most diverse, including vulnerability detection, decompilation, binary code reuse,
and runtime protection mechanisms. Recently, Caballero and Lin [2] have systematized the research
in this area, highlighting the different applications, the implementation details, and the results of
more than 35 different solutions. Among all, some of these systems are able to recover the layout
of records, and in some cases to associate a primitive type (for example char, unsigned long..) to
every element inside a record. Examples of these systems are Mycroft, Rewards, DDE, TDA, Howard,
SmartDec, ObjDigger and dynStruct [13, 18, 23, 25, 26, 36, 37, 42]. Unfortunately, these approaches
have limited applicability to our problem because they fundamentally answer a different question.
While AutoProfile tries to retrieve, for example, the offset of a specific field X inside an object
Y, previous approaches were instead interested in reconstructing the types of the fields inside Y.
There is an important difference between being able to locate a particular integer field (e.g., a
process identifier) among dozen of other integer fields within the same data structure – which is
the goal of our paper– from pinpointing that a field at a particular offset in a data structure is an
integer—which is what previous techniques were designed for. For example, task_struct contains
more than 60 integers and 30 unsigned longs. Therefore, even assuming a perfect accuracy of the
aforementioned systems (which is far from their real results), an analyst would be left with dozens
of possible choices. As this is for just a single field, the process should then be repeated hundreds
of time. Finally, many previous approaches assume they can run dynamic analyses on the target
program, for example to collect execution traces. Unfortunately, this represent a great challenge in
our current scenario because resurrecting a kernel from a memory dump is not as straightforward
as executing a userspace program.
An orthogonal approach to structured memory forensics is memory carving, where pattern

matching techniques are used to locate kernel structures. The different approaches presented in
literature can be roughly divided in two different categories. On the one hand we have solutions
that focus on generating constraints at the field level. For example, Dolan-Gavitt et al. [10] proposed
a system to find the invariants of a kernel structure—i.e. those fields which cannot be tampered
by rootkits without affecting the stability of the operating system. The authors then used this
information to automatically generate signatures for a given structure. Dimsum [20] uses instead
a mix of boolean constraints generated from the definition of a data structure and then applies
some probabilistic inference to match data structures in dead memory. On the other hand we
have techniques that rely on points-to relations between kernel objects to generate graph-based
signatures [12, 21, 43]. A common problem of all these previous approaches is that they require to
build their model for each target OS/kernel the analyst wants to analyze [39]. But again, at least
when targeting the Linux kernel, this is only possible if the models were built with a kernel similar
to the one under analysis. To overcome this limitation, Song et al. [39] recently presented DeepMem.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Fabio Pagani and Davide Balzarotti

This approach is divided in two stages. In the first one, the training stage, a Graph Neural Network
model is trained by using several different memory graphs, a labeled representation of a memory
dump. Then, in the detection phase, the neural network model accepts an unlabeled memory graph
and classifies it. Using this machine learning approach, DeepMem is able to automatically learn
the features of a kernel object across different operating system versions. Unfortunately, even
DeepMem does not solve our problem. In fact, its memory graph relies on the concept of segments—
that represent contiguous chunks of memory between two pointer fields. However, the presence of
ifdefs or the use of structure randomization change the distance between two pointer fields, thus
breaking the DeepMem segments.
Recently, the need to recover kernel structure layouts has also manifested in areas different

from memory forensics. For example, Pustogarov et al. [29] solved the problem of analyzing
Android device drivers of an host kernel, by loading them in a second evasion kernel running inside
QEMU. In order to correctly load the driver, the layouts of the structures device and file must
match between the two different kernels. The authors solved this problem by hand-picking a few
kernel functions that access the aforementioned structures. Then, by extracting and comparing the
function’s binary code from the two kernels, they are able to recompile the evasion kernel after
adjusting its configuration.
Finally, the area of Virtual Machine Introspection (VMI) has been quite flourishing in the past

decade [17]. Systems such as Virtuoso [9], VMST [14] and HyperLink [46] are all able to extract
different information from a running virtual machine but also require to operate from the vantage
point of the virtual machine monitor (VMM).

10 DISCUSSION AND FUTUREWORKS
In this section we discuss the limitations and some potential improvements to our approach.

KALLSYMS_ALL – Through our experiments we assume that the kernel was compiled with the
configuration option KALLSYMS_ALL. When this configuration is enabled, kallsyms does not only
contain kernel functions but also the address and the name of kernel global variables. Fortunately,
a subset of global variables—precisely those variables which are exported—can still be recovered
from the candidate ksymtab, independently from this configuration option. This configuration is
enabled by default in all major distributions, and in four out of six of the images we used in our
experiments, but we acknowledge that it might not always be the case.
To assess the impact of the possibly missing information, we run our experiments twice: once

with KALLSYMS_ALL enabled and once without. The results show that the percentage of correctly
extracted fields is similar between the two experiments. However, some of the missing global
variables were later required by Volatility to apply the generated profile to a memory dump. In fact,
at first the framework was not able to run any analysis because init_level4_pgt (the symbol that
points to the kernel page tables) was missing from both the kallsyms and the ksymtab. Luckily,
this can be easily solved for the Linux kernel by extracting a reference to this global variable from
the function startup_64. Alternatively, more general solutions for this problem also exists, for
instance by employing an algorithm to automatically locate kernel paging structures, as the one
proposed in 2010 by Saur and Grizzard [34].
Once the page tables have been located, 30 out of 50 plugins were working correctly. The

remaining twenty were still malfunctioning because of a missing global variable—with two variables
(modules and mount_hashtable) responsible for 50% of the errors.

Nevertheless, we believe this problem might be tackled by instructing our compiler plugin to
save in which functions these global variables are used and then make use of this information to
extract their addresses from the kernel binary code itself. This is also facilitated by the fact that

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

AutoProfile: Towards Automated Profile Generation for Memory Analysis 1:23

global variables can be easily identified in the code as their address is typically loaded in specific
way (e.g., in x86_64 they are expressed as constants or loaded via rip relative addressing).

CONFIG_IKCONFIG – This particular configuration option saves the configuration used to build the
kernel in the kernel image itself and makes this information available to user-space through the
/proc filesystem. From a memory forensics standpoint, this means that the configuration file is
included in the memory dump and can thus be used to build a valid profile. To the best of our
knowledge, none of the existing memory forensics framework tries to recover this information, and
none of the major distributions ship a kernel compiled with this option. Nevertheless, since this
information is referenced by a kernel symbol (kernel_config_data), could be trivially expand
our kallsyms recovery technique to extract the kernel configuration.

Threat Model – One of the most important applications of memory forensics is investigating
attacks and malicious behaviors. Therefore, forensics tools must be resilient against attacks that
tamper with their inner workings. We argue that any modification to kernel memory done with the
intent of tricking AutoProfile to extract a wrong profile, is highly unlikely. First of all, kernels
can be hardened against malicious modification of their code and data [27]. Moreover, even if these
defenses are not deployed, certain modification might have negative consequence on the stability
of the running kernel; something that rootkit authors certainly want to avoid. In particular, the
only two pieces of information extracted and used by AutoProfile are the kernel symbols and
the kernel code. Tampering with the first can negatively impact any kallsyms user – for example,
kernel modules or the perf subsystem. On the other hand, modifying the offsets used in kernel
instructions will most certainly bring the kernel into an unstable state, or even to a crash, when
the modified instructions are executed.

Access Chains Improvements – The operation of accessing structure fields is ubiquitous across
the kernel code base and the number of functions which only access a single field of a structure is
rather small. For this reason, a major improvement to AutoProfile is to save more details about an
access chain. For example, our compiler plugin could save the type of access performed on a field,
i.e. if the field is only read or also written. In this way, during the exploration phase, AutoProfile
could automatically filter memory accesses belonging to one type or the other. Moreover, when a
field is written with a constant defined at compile time, this value could be saved in the access chain
and used during the matching process. Finally, another distinctive feature might be the destination
of a chain to know, for example, if the chain is used as a parameter to another function or used as
return value. Overall, we believe that all these new details can drastically reduce the number of
candidates extracted from a function and thus improving the layout models.

Extracting the size of a structure – Despite having a correct model for all the used fields, four
plugins also require to know the size of certain structures to working properly. A first way to
extract this information would be to find the offset of the last field of a structure and adding its
size. A problem is that the compiler might have decided to add some padding at the end of this
structure, thus the computed value might need some adjustment. However, this does not depend
from the user config, but only on the compiler toolchain – and padding is often limited to few
values. Moreover, if a global variable has the type of the this structure, then the structure size can
be deducted from the distance between the following global variable. Also in this case, the compiler
might have padded the global variable instance, so minor adjustment are required. Finally, this
value might also be present in the kernel binary, when the sizeof operator is used.

Volatility Targets – Instead of trying to reconstruct the layout of each and every structure defined
in the kernel codebase, in this paper we focused on extracting the offsets of the fields used by a

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 Fabio Pagani and Davide Balzarotti

considerable number of Volatility plugins. For this reason, we acknowledge that the list of targeted
fields might be not exhaustive or cover every possible forensics analysis that will be developed in
the future. On the other hand, we don’t believe this is a limitation of AutoProfile itself, because
a way to solve this problem is simply to re-run our Phase three analysis whenever a new field is
needed.

11 ARTIFACTS
We will share all the artifacts generated by our study to foster more research in this field at
the following url: https://github.com/pagabuc/autoprofile. This includes the prototype tool we
developed to generate the profiles, the tool to retrieve the kernel symbols from a memory dump,
and all the memory images we used in our experiments.

ACKNOWLEDGMENTS
This project was supported by the European Research Council (ERC) under the European Unions
Horizon 2020 research and innovation programme (grant agreement No 771844 BitCrumbs) and by
the European Unions Horizon 2020 research and innovation programme under grant agreement
No. 786669 (ReAct).

REFERENCES
[1] Bugzilla, G. Bug 84052 - using randomizing structure layout plugin in linux kernel compilation doesn’t generate

proper debuginfo. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84052, 2018.
[2] Caballero, J., and Lin, Z. Type inference on executables. ACM Computing Surveys (CSUR) 48, 4 (2016), 65.
[3] Case, A., Marziale, L., and Richard III, G. G. Dynamic recreation of kernel data structures for live forensics. Digital

Investigation 7 (2010), S32–S40.
[4] Case, A., and Richard III, G. G. Memory forensics: The path forward. Digital Investigation 20 (2017), 23–33.
[5] Chen, P., Xu, J., Lin, Z., Xu, D., Mao, B., and Liu, P. A practical approach for adaptive data structure layout

randomization. In European Symposium on Research in Computer Security (2015), Springer, pp. 69–89.
[6] Cohen, M. Rekall memory forensics framework. DFIR Prague (2014).
[7] crash utility Mailing List, R. Using crash with structure layout randomized kernel. https://crash-

utility.redhat.narkive.com/WZYTWez6/using-crash-with-structure-layout-randomized-kernel, 2018.
[8] De Moura, L., and Bjørner, N. Z3: An efficient smt solver. In International conference on Tools and Algorithms for the

Construction and Analysis of Systems (2008), Springer, pp. 337–340.
[9] Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., and Lee, W. Virtuoso: Narrowing the semantic gap in virtual

machine introspection. In 2011 IEEE symposium on security and privacy (2011), IEEE, pp. 297–312.
[10] Dolan-Gavitt, B., Srivastava, A., Traynor, P., and Giffin, J. Robust signatures for kernel data structures. In

Proceedings of the 16th ACM conference on Computer and communications security (2009), ACM, pp. 566–577.
[11] Feng, Q., Prakash, A., Wang, M., Carmony, C., and Yin, H. Origen: Automatic extraction of offset-revealing

instructions for cross-version memory analysis. In Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security (2016), ACM, pp. 11–22.

[12] Feng, Q., Prakash, A., Yin, H., and Lin, Z. Mace: High-coverage and robust memory analysis for commodity operating
systems. In Proceedings of the 30th annual computer security applications conference (2014), ACM, pp. 196–205.

[13] Fokin, A., Derevenetc, E., Chernov, A., and Troshina, K. Smartdec: approaching c++ decompilation. In 2011 18th
Working Conference on Reverse Engineering (2011), IEEE, pp. 347–356.

[14] Fu, Y., and Lin, Z. Space traveling across vm: Automatically bridging the semantic gap in virtual machine introspection
via online kernel data redirection. In 2012 IEEE symposium on security and privacy (2012), IEEE, pp. 586–600.

[15] Graziano, M. ksfinder - retrieve exported kernel symbols from physical memory dumps. https://github.com/emdel/
ksfinder, 2016.

[16] Hauser, C., Menon, J., Shoshitaishvili, Y., Wang, R., Vigna, G., and Kruegel, C. Sleak: automating address
space layout derandomization. In Proceedings of the 35th Annual Computer Security Applications Conference (2019),
pp. 190–202.

[17] Jain, B., Baig, M. B., Zhang, D., Porter, D. E., and Sion, R. Sok: Introspections on trust and the semantic gap. In 2014
IEEE symposium on security and privacy (2014), IEEE, pp. 605–620.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://github.com/pagabuc/autoprofile
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84052
https://crash-utility.redhat.narkive.com/WZYTWez6/using-crash-with-structure-layout-randomized-kernel
https://crash-utility.redhat.narkive.com/WZYTWez6/using-crash-with-structure-layout-randomized-kernel
https://github.com/emdel/ksfinder
https://github.com/emdel/ksfinder

AutoProfile: Towards Automated Profile Generation for Memory Analysis 1:25

[18] Jin, W., Cohen, C., Gennari, J., Hines, C., Chaki, S., Gurfinkel, A., Havrilla, J., and Narasimhan, P. Recovering
c++ objects from binaries using inter-procedural data-flow analysis. In Proceedings of ACM SIGPLAN on Program
Protection and Reverse Engineering Workshop 2014 (2014), ACM, p. 1.

[19] Kim, J., Jang, D., Jeong, Y., and Kang, B. B. Polar: Per-allocation object layout randomization. In 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) (2019), IEEE, pp. 505–516.

[20] Lin, Z., Rhee, J., Wu, C., Zhang, X., and Xu, D. Dimsum: Discovering semantic data of interest from un-mappable
memory with confidence. In Proc. NDSS (2012).

[21] Lin, Z., Rhee, J., Zhang, X., Xu, D., and Jiang, X. Siggraph: Brute force scanning of kernel data structure instances
using graph-based signatures. In Ndss (2011).

[22] Lin, Z., Riley, R. D., and Xu, D. Polymorphing software by randomizing data structure layout. In International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (2009), Springer, pp. 107–126.

[23] Lin, Z., Zhang, X., and Xu, D. Automatic reverse engineering of data structures from binary execution. In Proceedings
of the 11th Annual Information Security Symposium (2010), CERIAS-Purdue University, p. 5.

[24] Matz, M., Hubicka, J., Jaeger, A., and Mitchell, M. System v application binary interface. AMD64 Architecture
Processor Supplement, Draft v0 99 (2013).

[25] Mercier, D., Chawdhary, A., and Jones, R. dynstruct: An automatic reverse engineering tool for structure recovery
and memory use analysis. In 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering
(SANER) (2017), IEEE, pp. 497–501.

[26] Mycroft, A. Type-based decompilation (or program reconstruction via type reconstruction). In European Symposium
on Programming (1999), Springer, pp. 208–223.

[27] Openwall.org. Lkrg - linux kernel runtime guard. https://www.openwall.com/lkrg/, 2020.
[28] Pagani, F., and Balzarotti, D. Back to the whiteboard: a principled approach for the assessment and design of

memory forensic techniques. In 28th {USENIX} Security Symposium ({USENIX} Security 19) (2019), pp. 1751–1768.
[29] Pustogarov, I., Wu, Q., and David, L. Ex-vivo dynamic analysis framework for android device drivers. In Symposium

on Network and Distributed System Security (NDSS) (2020).
[30] Quynh, N. A., and Vu, D. H. Unicorn-the ultimate cpu emulator.
[31] Redini, N., Machiry, A., Das, D., Fratantonio, Y., Bianchi, A., Gustafson, E., Shoshitaishvili, Y., Kruegel, C.,

and Vigna, G. Bootstomp: on the security of bootloaders in mobile devices. In 26th {USENIX} Security Symposium
({USENIX} Security 17) (2017), pp. 781–798.

[32] Research, M. Toward trusted sensing for the cloud: Introducing project freta. https://www.microsoft.com/en-
us/research/blog/toward-trusted-sensing-for-the-cloud-introducing-project-freta/, 2020.

[33] Roussev, V., Ahmed, I., and Sires, T. Image-based kernel fingerprinting. Digital Investigation 11 (2014), S13–S21.
[34] Saur, K., and Grizzard, J. B. Locating× 86 paging structures in memory images. digital investigation 7, 1-2 (2010),

28–37.
[35] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A., Grosen, J., Feng, S., Hauser,

C., Kruegel, C., and Vigna, G. SoK: (State of) The Art of War: Offensive Techniques in Binary Analysis. In IEEE
Symposium on Security and Privacy (2016).

[36] Slowinska, A., Stancescu, T., and Bos, H. Dde: dynamic data structure excavation. In ApSys (2010), pp. 13–18.
[37] Slowinska, A., Stancescu, T., and Bos, H. Howard: A dynamic excavator for reverse engineering data structures. In

NDSS (2011).
[38] Socała, A., and Cohen, M. Automatic profile generation for live linux memory analysis. Digital Investigation 16

(2016), S11–S24.
[39] Song, W., Yin, H., Liu, C., and Song, D. Deepmem: Learning graph neural network models for fast and robust memory

forensic analysis. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (2018),
ACM, pp. 606–618.

[40] Spengler, B. Grsecurity. Internet [May 27, 2006]. Available on: http://grsecurity. net/lsm. php (2006).
[41] Sviderski, P. Universal memory forensic analysis of android systems. https://github.com/psviderski/volatility-android,

2016.
[42] Troshina, K., Derevenets, Y., and Chernov, A. Reconstruction of composite types for decompilation. In 2010 10th

IEEE Working Conference on Source Code Analysis and Manipulation (2010), IEEE, pp. 179–188.
[43] Urbina, D., Gu, Y., Caballero, J., and Lin, Z. Sigpath: A memory graph based approach for program data introspection

and modification. In European Symposium on Research in Computer Security (2014), Springer, pp. 237–256.
[44] VolatilityFoundation. Volatility profiles for linux and mac os x. https://github.com/volatilityfoundation/profiles/,

2021.
[45] Walters, A. The volatility framework: Volatile memory artifact extraction utility framework, 2007.
[46] Xiao, J., Lu, L., Wang, H., and Zhu, X. Hyperlink: virtual machine introspection and memory forensic analysis without

kernel source code. In 2016 IEEE international conference on autonomic computing (ICAC) (2016), IEEE, pp. 127–136.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.openwall.com/lkrg/
https://www.microsoft.com/en-us/research/blog/toward-trusted-sensing-for-the-cloud-introducing-project-freta/
https://www.microsoft.com/en-us/research/blog/toward-trusted-sensing-for-the-cloud-introducing-project-freta/
https://github.com/psviderski/volatility-android
https://github.com/volatilityfoundation/profiles/

1:26 Fabio Pagani and Davide Balzarotti

[47] Yamaguchi, F., Golde, N., Arp, D., and Rieck, K. Modeling and discovering vulnerabilities with code property graphs.
In 2014 IEEE Symposium on Security and Privacy (2014), IEEE, pp. 590–604.

[48] Zhang, S., Meng, X., and Wang, L. An adaptive approach for linux memory analysis based on kernel code reconstruc-
tion. EURASIP Journal on Information Security 2016, 1 (2016), 14.

[49] Zhang, S., Meng, X., Wang, L., and Liu, G. Research on linux kernel version diversity for precise memory analysis.
In International Conference of Pioneering Computer Scientists, Engineers and Educators (2017), Springer, pp. 373–385.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.

	Abstract
	1 Introduction
	2 Recovering Objects Layout from Binary Code
	2.1 Problem Statement
	2.2 Data Structure Layout Recovery

	3 Past Approaches
	4 Approach Overview
	5 Phase I: Kernel Identification and Symbols Recovery
	6 Phase II: Code Analysis
	6.1 Pre-processor directives
	6.2 Types Definition
	6.3 Access Chains
	6.4 Non Unique Functions

	7 Phase III: Profile Generation
	7.1 Binary Analysis
	7.2 Dealing with Inlined Functions
	7.3 Object Layout Inference

	8 Experiments
	8.1 Analysis Time
	8.2 Results
	8.3 Chains Extraction
	8.4 Comparison with Past Attempts

	9 Related Work
	10 Discussion and Future Works
	11 Artifacts
	References

