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Motivation

@ Adversarial classification with differential privacy (DP)

dataset

L dp o Modified
output output output

o Adversary’s conflicting goals:
» s/he gives false data by modifying the released information, with the
biggest possible difference from the real data
» avoid being detected — adversary knows about the DP.
@ On the defender’s end, the mechanism wants to preserve DP and to
detect adversarial examples
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Preliminaries

o Differential privacy: the absence or presence of a single database item
does not affect the outcome of the analysis

Dataset 1 — ‘ DP mechanism M| ——» OQutput 1

+ one
user’s
data

Dataset 2 — | DP mechanism M | — Output 2

~
~

e (¢,0)— DP:

Definition (Dwork & Roth 2014)

A randomized algorithm ) is (¢, 6)— differentially private if VS C Range()’) and for
all neighboring datasets x and x within the domain of ) the following inequality
holds.

Pr[Y(x) € §] < Pr[Y(x) € S]exp{e} + 4

4/13



Preliminaries

e Laplace mechanism — (e,0)— DP:

Definition (Dwork et al. 2006)

Laplace mechanism is defined for a function f : D — R* as follows
y(x,f(')a 6) :f()C) + (Zla T 7Zk)

where Z; ~ Lap(b = s/e€),i =1, -,k denote i.i.d. Laplace random variables.

@ DP- the global setting: the noise is added by a trusted central server who
has access to raw data

data Sensitive
i data
owners Analyst

o query
i: > Server Q

(curator) — -

i — H dp output
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Problem definition

@ Query output is f(x) = >_7 | X; where the dataset is X = {X],

@ An adversary adds the record X, to the dataset

LX)

@ The noisy output is defined by Yo = > ", X; + Z where Z ~ Lap(s/¢)
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Performance criteria

@ The probability of false-alarm (type I error)
P = o = Pr[Hj reject|H) is true]
@ The power of the test (correct detection)
Pp = 3 = Pr [Hy reject|Hjis true]
@ The corresponding likelihood ratio for this problem yields

L(Lap(p1,b1);2)

A= K
L(Lap(no, bo)i2) 71

where x is some positive number to be determined.



Threshold to avoid being detected-One sided

Theorem

The threshold of the best critical region of size o for deciding between Hy and
H| for a Laplace mechanism with the largest possible power (5 is given as a

function of the probability of false alarm, privacy parameter € and global
sensitivity s as follows

L JHo +2In(2(1 — ) ifa€l0,.5]
o — In(2a) ifael5,1]

Then, the adversary’s hypothesis testing problem for iy — po > 0 is
Hy

Yo S k + f(x) where f(.) denotes the query function.
H,

H
By analogy for negative bias, we have Yy S k + f(x).
Hy
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Threshold(s) to avoid being detected-Two-sided

@ Two sided test

Hy:p=po,b=s/e
H, : at least one of the equalities does not hold
(b= p1,b = (s)/€) ()

Theorem

The threshold of the best critical region of size « for choosing between Hy and
H\ of the two-sided hypothesis testing problem with the largest power (3 is

ki = po—(s/e)loga
ky = o+ (s/€)loga

Then according to the adversary’s hypothesis testing problem, the defender
fails to detect the attack when Yy is confined in (f (x) + ka,f(x) + k1 ).




ROC Curves-One sided Test

1vs. =15

One-sided test for Laplace: s=p,,

One-sided test for Laplace: s<p,, 6=1vs.
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ROC Curves-Two sided Test

Two-sided test for Laplace: p,>s, 0=1vs.
O,eg@@*&@@—@@ﬁ%e@

123
A A
09 \ S -
| a b o
A A *
o8| ! A Eﬁ %
I s & | %
o7l g * ¥
] &
g | A o, * |
o | B *
2o6f o & * *
5 | o d * *
5 05 Sow *
g s f x
g |l 4 T
204 o 7k * *
= ? * -
“03H A T *
A
I oo -e
* *
02 ;o *
IS ]
01t/ ¥
/¥ °
0 01 02 03 04 05 06 07 08 09 1

a: probability of false alarm/ type I error

Two-sided test for Laplace: s, =s, 6=1vs. 0=1.5
B & & -
sogg 888 TEOTERE
0.9 67 00 A D,E/
20 ° aAlo g X
08 75 AP g ® o
@ an Uy ok
% 0.7 o 2 o ¥
K ! ALLE %
2osp/ I AE A *
5 gor ol >
Sos| ¢ ap
| &
Soul ! A3 a
< I A
& P *
L N P
A
02|l o *
R %
o1l
| &
01 02 03 04 05 06 07 08 09 1

a: probability of false alarm/ type I error

Two-sided test for Laplace: s, <s, 0=1vs. 0=1.5

o o o o
> 3 ® ©
0

N

@
©
*>

1-: power of the test
s o o o
S & 2

o
®

—e agg@"
2

0 01 02 03

04
a: probability of false alarm/ type | error

05 06

07 08 09 1

11/13



Kullback-Leibler DP for Adversarial Classification

Definition (Cuff & Yu 2016)

For a randomized mechanism Pyy that guarantees e— KL-DP, if the
following inequality holds for all its neighboring datasets x and x.

D(PY|X:xHPY|X:5c) < exp{e}

Kullback-Leibler DP with #=1.5 vs. =1
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