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Motivation

Adversarial classification with differential privacy (DP)

Adversary’s conflicting goals:
I s/he gives false data by modifying the released information, with the

biggest possible difference from the real data
I avoid being detected→ adversary knows about the DP.

On the defender’s end, the mechanism wants to preserve DP and to
detect adversarial examples
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Preliminaries

Differential privacy: the absence or presence of a single database item
does not affect the outcome of the analysis

+ one
user’s
data

DP mechanismM

DP mechanismM

Dataset 1 Output 1

Dataset 2 Output 2

≈

(ε, δ)− DP:

Definition (Dwork & Roth 2014)
A randomized algorithm Y is (ε, δ)− differentially private if ∀S ⊆ Range(Y) and for
all neighboring datasets x and x̃ within the domain of Y the following inequality
holds.

Pr [Y(x) ∈ S] ≤ Pr [Y(x̃) ∈ S] exp{ε}+ δ
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Preliminaries

Laplace mechanism→ (ε, 0)− DP:

Definition (Dwork et al. 2006)
Laplace mechanism is defined for a function f : D→ Rk as follows

Y(x, f (.), ε) = f (x) + (Z1, · · · ,Zk)

where Zi ∼ Lap(b = s/ε), i = 1, · · · , k denote i.i.d. Laplace random variables.

DP- the global setting: the noise is added by a trusted central server who
has access to raw data
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Problem definition

Query output is f (x) =
∑n

i=1 Xi where the dataset is X = {X1, · · · ,Xn}
The noisy output is defined by Y0 =

∑n
i=1 Xi + Z where Z ∼ Lap(s/ε)

An adversary adds the record Xa to the dataset

What is the statistical threshold for detecting the adversary’s attack?

H0 : defender does not detect Xa

H1 : defender detects Xa
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Performance criteria

The probability of false-alarm (type I error)

PFA = α = Pr [H0 reject|H0 is true]

The power of the test (correct detection)

PD = β̄ = Pr [H0 reject|H1is true]

The corresponding likelihood ratio for this problem yields

Λ =
L(Lap(µ1, b1); z)
L(Lap(µ0, b0); z)

H0
<>
H1

κ

where κ is some positive number to be determined.
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Threshold to avoid being detected-One sided

Theorem
The threshold of the best critical region of size α for deciding between H0 and
H1 for a Laplace mechanism with the largest possible power β̄ is given as a
function of the probability of false alarm, privacy parameter ε and global
sensitivity s as follows

k =

{
µ0 + s

ε ln(2(1− α)) if α ∈ [0, .5]

µ0 − s
ε ln(2α) if α ∈ [.5, 1]

Then, the adversary’s hypothesis testing problem for µ1 − µ0 > 0 is

Y0

H0
<>
H1

k + f (x) where f (.) denotes the query function.

By analogy for negative bias, we have Y0

H1
<>
H0

k + f (x).
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Threshold(s) to avoid being detected-Two-sided

Two sided test

H0 : µ = µ0, b = s/ε

H1 : at least one of the equalities does not hold

(µ = µ1, b = (θs)/ε) (1)

Theorem
The threshold of the best critical region of size α for choosing between H0 and
H1 of the two-sided hypothesis testing problem with the largest power β̄ is

k1 = µ0 − (s/ε) logα

k2 = µ0 + (s/ε) logα

Then according to the adversary’s hypothesis testing problem, the defender
fails to detect the attack when Y0 is confined in (f (x) + k2, f (x) + k1).
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ROC Curves-One sided Test

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

: Probability of false-alarm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-
: P

ow
er

 o
f t

he
 te

st
One-sided test for Laplace: s<

1
, =1 vs. =1.5

=.015, =1
=.60, =1
=1, =1
=3, =1
=.015, =1.5
=.60, =1.5
=1, =1.5
=3, =1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

: Probability of false-alarm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-
: P

ow
er

 o
f t

he
 te

st

One-sided test for Laplace: s=
1
, =1 vs. =1.5

=.015, =1
=.60, =1
=1, =1
=3, =1
=.015, =1.5
=.60, =1.5
=1, =1.5
=3, =1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

: Probability of false-alarm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-
: P

ow
er

 o
f t

he
 te

st

One-sided test for Laplace: s>
1
, =1 vs. =1.5

=.015, =1
=.60, =1
=1, =1
=3, =1
=.015, =1.5
=.60, =1.5
=1, =1.5
=3, =1.5

10 / 13



ROC Curves-Two sided Test
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Kullback-Leibler DP for Adversarial Classification

Definition (Cuff & Yu 2016)
For a randomized mechanism PY|X that guarantees ε− KL-DP, if the
following inequality holds for all its neighboring datasets x and x̃.

D(PY|X=x||PY|X=x̃) ≤ exp{ε}
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