A Statistical Threshold for Adversarial Classification in Laplace Mechanisms

Ayşe ÜNSAL, Melek ÖNEN

Digital Security Dept., EURECOM

November 22, 2021 3IA Workshop, Toulouse

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のみの

- Motivation
- Preliminaries
- Problem definition and performance criteria

<ロ> <四> <四> <四> <三</td>

- Threshold(s) to avoid being detected
- ROC curves
- Kullback-Leibler differential privacy
- References

Motivation

• Adversarial classification with differential privacy (DP)

- Adversary's conflicting goals:
 - s/he gives false data by modifying the released information, with the biggest possible difference from the real data
 - avoid being detected \rightarrow adversary knows about the DP.
- On the defender's end, the mechanism wants to preserve DP and to detect adversarial examples

Preliminaries

• Differential privacy: the absence or presence of a single database item does not affect the outcome of the analysis

•
$$(\epsilon, \delta) - DP$$
:

Definition (Dwork & Roth 2014)

A randomized algorithm \mathcal{Y} is (ϵ, δ) – differentially private if $\forall S \subseteq Range(\mathcal{Y})$ and for all neighboring datasets *x* and \tilde{x} within the domain of \mathcal{Y} the following inequality holds.

$$\Pr\left[\mathcal{Y}(x) \in S\right] \le \Pr\left[\mathcal{Y}(\tilde{x}) \in S\right] \exp\{\epsilon\} + \delta$$

Preliminaries

• Laplace mechanism $\rightarrow (\epsilon, 0)$ – DP:

Definition (Dwork et al. 2006)

Laplace mechanism is defined for a function $f: D \to \mathbb{R}^k$ as follows

$$\mathcal{Y}(x,f(.),\epsilon) = f(x) + (Z_1,\cdots,Z_k)$$

where $Z_i \sim Lap(b = s/\epsilon)$, $i = 1, \dots, k$ denote i.i.d. Laplace random variables.

• DP- the global setting: the noise is added by a *trusted* central server who has access to raw data

(日) (同) (E) (E) (E)

Problem definition

- Query output is $f(x) = \sum_{i=1}^{n} X_i$ where the dataset is $\mathbf{X} = \{X_1, \dots, X_n\}$
- The noisy output is defined by $Y_0 = \sum_{i=1}^n X_i + Z$ where $Z \sim Lap(s/\epsilon)$
- An adversary adds the record X_a to the dataset
- What is the statistical threshold for detecting the adversary's attack?

 H_0 : defender does not detect X_a

▲ロト ▲聞 → ▲ ヨ → ▲ ヨ → ○ ヨ → ⊘

 H_1 : defender detects X_a

Performance criteria

• The probability of false-alarm (type I error)

$$P_{FA} = \alpha = \Pr[H_0 \text{ reject}|H_0 \text{ is true}]$$

• The power of the test (correct detection)

$$P_D = \bar{\beta} = \Pr[H_0 \text{ reject}|H_1 \text{ is true}]$$

• The corresponding likelihood ratio for this problem yields

$$\Lambda = \frac{\mathcal{L}(\operatorname{Lap}(\mu_1, b_1); z)}{\mathcal{L}(\operatorname{Lap}(\mu_0, b_0); z)} \underset{H_1}{\overset{H_0}{\lessgtr}} \kappa$$

where κ is some positive number to be determined.

Threshold to avoid being detected-One sided

Theorem

The threshold of the best critical region of size α for deciding between H_0 and H_1 for a Laplace mechanism with the largest possible power $\overline{\beta}$ is given as a function of the probability of false alarm, privacy parameter ϵ and global sensitivity s as follows

$$k = \begin{cases} \mu_0 + \frac{s}{\epsilon} \ln(2(1-\alpha)) & \text{if } \alpha \in [0,.5] \\ \mu_0 - \frac{s}{\epsilon} \ln(2\alpha) & \text{if } \alpha \in [.5,1] \end{cases}$$

Then, the adversary's hypothesis testing problem for $\mu_1 - \mu_0 > 0$ is $Y_0 \underset{H_1}{\leq} k + f(x)$ where f(.) denotes the query function.

By analogy for negative bias, we have $Y_0 \underset{H_0}{\overset{H_1}{\leq}} k + f(x)$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Threshold(s) to avoid being detected-Two-sided

Two sided test

$$H_0: \mu = \mu_0, b = s/\epsilon$$

$$H_1: \text{ at least one of the equalities does not hold}$$

$$(\mu = \mu_1, b = (\theta s)/\epsilon)$$
(1)

Theorem

The threshold of the best critical region of size α for choosing between H_0 and H_1 of the two-sided hypothesis testing problem with the largest power $\bar{\beta}$ is

$$k_1 = \mu_0 - (s/\epsilon) \log \alpha$$

$$k_2 = \mu_0 + (s/\epsilon) \log \alpha$$

Then according to the adversary's hypothesis testing problem, the defender fails to detect the attack when Y_0 is confined in $(f(x) + k_2, f(x) + k_1)$.

ROC Curves-One sided Test

ROC Curves-Two sided Test

Kullback-Leibler DP for Adversarial Classification

Definition (Cuff & Yu 2016)

For a randomized mechanism $P_{Y|X}$ that guarantees ϵ – KL-DP, if the following inequality holds for all its neighboring datasets *x* and \tilde{x} .

$$D(P_{Y|X=x}||P_{Y|X=\tilde{x}}) \le \exp{\{\epsilon\}}$$

< ≣⇒

References

- A. Ünsal and M. Önen, "A Statistical Threshold for Adversarial Classification in Laplace Mechanisms", IEEE ITW 2021
- C. Liu, X. He, T. Chanyaswad, S. Wang and P. Mittal, "Investigating Statistical Privacy Frameworks from the Perspective of Hypothesis Testing", Privacy Enhancing Technologies, pgs. 233-254, 2019
- J. Giraldo, A.A. Cardenas, M. Kantarcioglu and J. Katz, "Adversarial Classification under Differential Privacy", Network and Distributed Systems Security Symposium 2020, Feb. 2020, San Diego, CA, USA
- P. Cuff and L. Yu, "Differential Privacy as a Mutual Information Constraint", ACM SIGSAC Conference on Computer and Communications, Oct 24-28 2016, Vienna, Austria
- C. Dwork, Roth, A. "The Algorithmic Foundations of Differential Privacy", Foundations and Trends in Theoretical Computer Science, pgs. 211-407, 2014
- C. Dwork, F. McSherry, K. Nissim, and A. Smith, "Calibrating Noise to Sensitivity in Private Data Analysis", Theory of Cryptography Conference, 2006, pp. 265–284.