
1

A Scalable Monitoring Framework for Network
Slicing in 5G and Beyond Mobile Networks

Mohamed Mekki, Sagar Arora, and Adlen Ksentini, Senior Member, IEEE

Abstract—An efficient and scalable monitoring system is a
critical component for any network to monitor and validate
the functioning of the running services and the underlying
infrastructure. This is more valid in 5G, as it relies on the
network slicing concept, which adds many challenges to the
monitoring system. Besides data isolation and multi-tenancy
support, network slices require monitoring different types of
resources, like RAN, computing, memory, network data rate,
which belong to different technological domains, managed by
different entities. Moreover, the monitoring system needs to be
scalable, as in 5G a high-number of running network slices
is envisioned. In this paper, we devise a novel monitoring
framework for network slicing ready mobile networks, which
features: 1) scalable monitoring system that supports a high
number of running network slices in parallel; 2) technological
domain agnostic thanks to a novel data collection (or monitoring)
communication protocol; 3) support of multi-tenancy in a cloud-
native environment. The framework has been implemented in a
5G facility, and its performance has been extensively evaluated.

Index Terms—Monitoring systems, 5G, Network Slicing, Bro-
kers.

I. INTRODUCTION

MOBILE networks are seeing a significant shift in the
last decade, with the development of a new generation

(5G) and the next generation’s foundation (6G). Although 5G
release 17 specifications are not finalized, several commercial
deployments are available using the NonStandalone (NSA)
model, i.e., using 5G New Radio (NR) with 4G Core Network
(CN). 5G introduces a radical evolution of the mobile network
system. Besides improving the throughput and data rate, 5G
introduces a new network architecture relying on the concept
of network softwarization. On one hand, 5G NR provides
larger bandwidth (up to 100 MHz in < 6 GHz frequency
band, and up to 400 MHz in > 6 GHz frequency band)
[1] to accommodate high data-rate demanding applications.
Moreover, 5G NR introduces new physical layer numerologies
that drastically reduce Radio Access Network (RAN) latency.
Combined with Mobile Edge Computing (MEC) capabilities
at the vicinity of the radio network [2], 5G NR will allow
achieving a very low latency for services. On the other hand,
5G network architecture builds on the concept of network
softwarization, which advocates for the usage of Software

Mohamed Mekki is with the Department of Communication
Systems, EURECOM, 06410 Sophia Antipolis, France (e-mail:
mohamed.mekki@eurecom.fr)

Sagar Arora is with the Department of Communication Systems, EURE-
COM, 06410 Sophia Antipolis, France (e-mail: sagar.arora@eurecom.fr)

Adlen Ksentini is with the Department of Communication Systems, EURE-
COM, 06410 Sophia Antipolis, France (e-mail: adlen.ksentini@eurecom.fr)

Defined Networking (SDN) and Network Function Virtual-
ization (NFV) to build an agile CN and shed light on the
concept of Network Slicing. The latter is a novel concept
that aims at the partitioning of mobile network infrastructure
into virtual network instances that are individually tuned
to accommodate diverse services characterized by different
requirements in terms of communication quality of service
(QoS) within a common physical infrastructure. Network
Slicing concept allows mobile operators to efficiently support
the three envisioned classes of services using the same physical
infrastructure: 1) enhanced mobile broadband (eMBB) for
applications requiring high data rates, 2) massive machine-type
communications (mMTC) intended to cover IoT applications
that require support for a massive number devices, and 3)
ultra-reliable and low-latency communication (uRLLC) for
applications with strict requirements of communication latency
and reliability.

A network slice is composed of sub-slices that use resources
from different technological domains: Radio Access Network
(RAN), CN, Edge/Cloud. The RAN sub-slice is constituted of
Physical Network Function - PNF (Radio Remote Unit - RRU)
and Virtual Network Function (VNF) (Central Unit - CU,
Distributed Unit - DU), which are usually shared with other
slices. The RAN sub-slice is also reserving enough Physical
Resource Blocks (PRB) to guarantee its performances [3]. The
CN sub-slice is composed of a set of VNF, which are shared
with other network slices or dedicated to the network slice.
Finally, the Cloud/Edge sub-slice is where the network service
functions are run as VNF; all the VNFs are slice specific. The
sub-slices are stitched together to build the end-to-end slice
that runs a 5G network service.

Monitoring the performances (or Key Performance Indica-
tors - KPI) of the running network slices is vital for both
the network operator and the slice owner. For the former,
measuring the KPI allows checking and troubleshooting the
performances of the entities running the components of net-
work slices, such as RRU, DU, CU, CN, Cloud/Edge, routers,
etc; while for the latter, measuring KPI allows for checking the
performance of the running services and validating the SLA
signed with the network operator. It is obvious that the KPIs to
measure for the network operator and for the slice owner are
different. The slice owner is more interested in service level
KPI [4] that corresponds to the service’s performances such as
the end-to-end latency, achieved throughput, consumed CPU,
and memory of the VNF running the service, etc. While, the
network operator is more interested in collecting KPI on the
infrastructure components, such as radio resource usage, the
radio latency, computing usage of shared VNF among slices,



2

etc.
However, monitoring network slice KPI introduces several

challenges. Among these challenges the fact that network
slices use resources from different technological domains
involving different entities based on different technologies.
Indeed, the monitoring of RAN components is completely
different from monitoring a NFV Infrastructure. Another chal-
lenge pertains to the scalability of the monitoring system,
as it is expected that the network operator will run several
parallel network slices on top of its 5G infrastructure. Finally,
multi-tenancy and isolation among network slices need to be
enforced; a slice related data should be seen only by its owner.

In this paper, we tackle these challenges by proposing a
novel monitoring platform for 5G and beyond. The proposed
framework natively supports network slicing and features a
scalable architecture to handle a high number of running slices
in parallel. To achieve this objective, we introduce metrics
collectors deployed per network slice and follow the life cycle
of the network slice (they are created when the network slice is
deployed and are removed after the network slice is deleted).
Besides, the proposed framework is technology agnostic when
it comes to data collection, where a novel and technological
agnostic monitoring protocol is introduced. Indeed, we pro-
pose a metric structure that unifies the management of the
collected metrics and allows the association of the metric with
the part of the network slice from which it was collected, hence
linking between metrics from different domains. This will
tackle the problem related to the heterogeneous monitoring
system used by the technological domains where a network
slice is running. Finally, the proposed monitor framework
supports multi-tenancy and is cloud-native compliant. Indeed,
besides supporting services that run in a cloud-native environ-
ment, all the framework components run as containers.

The paper is organized as follows. Section II presents
related work and summarizes the main differences with our
proposed framework. Section III presents and details the
different components constituting our proposed framework.
Section IV presents the results obtained when running the
proposed framework on top of a 5G facility.

II. RELATED WORKS

Several works addressed the challenge related to monitoring,
especially in the context of cloud computing, which has
been extensively studied in the literature. Different monitoring
solutions have been designed to monitor traditional IT in-
frastructures and cloud environments, such as Prometheus1.
In [5] a survey of cloud monitoring tools is conducted. It
presents common characteristics, differences, strengths, and
weaknesses of each reviewed monitoring tool. However, these
solutions alone are not suitable for 5G relying on network
slicing. Firstly, these solutions cover only one technological
domain, the Cloud domain, while a network slice spans
over different technological domains. Secondly, they cannot
easily scale with the number of network slices, as only one
component is in charge of collecting data, hence it constitutes
the system bottleneck.

1https://prometheus.io/

As stated earlier, our objective is to provide a framework
featuring an end-to-end monitoring solution for 5G supporting
network slicing. To the authors’ best knowledge, the proposed
framework in this paper is the first end-to-end monitoring
solution for 5G network relying on network slices, covering
all the needed technological domains to deploy end-to-end
network slices.

The work in [6] introduces a system that monitors multiple
domains of a 5G infrastructure. The system consists of a
metrics extraction function (MEF) that extracts and translates
metrics, one MEF per monitored infrastructure component.
The MEF extracts the metrics from the monitored component
and exposes them to the upper layer where a broker system
is deployed. A metrics aggregation component consumes the
metrics provided by the MEFs from the broker and provides
them to other tools responsible for metrics analysis and
data visualization. Finally, a metric management entity is
responsible for configuring the system entities. The system
does not take into account network slicing and does not
differentiate metrics from different slices. In addition, metrics
are transferred without specific format or identifying elements,
making it more suitable for one network slice at a time since
deploying multiple services or slices will result in multiple
unidentified data being stored in the system.

In [7] the authors introduce a prototype for RAN monitoring
implemented on top of ElasticSearch2 and FlexRAN [8]. It
includes a producer API that writes measured data and statis-
tics from the southbound control plane (using the FlexRAN
controller) to the data store. The SDK has a filtering module
that performs filtering operations such as selecting data or
aggregating results. The solution focuses on RAN KPIs and
can be considered a source of metrics for the RAN domain.

In [9], the authors propose an elastic monitoring solution for
end-to-end cloud slices. The proposed system relies on other
monitoring systems, called Monitoring Entities (MEs), and de-
ploys adapters per ME and slice. The adapters collect the KPIs
from the monitoring entities and send them to a distribution
mechanism using RabbitMQ3 to be then consumed by a slice
aggregator that stores the KPI in a dedicated database. The
slice identification is made at the adapter level, which creates
a coupling between the management and deployment levels. In
contrast, in our solution, the metric is mapped with the network
slice part at the SO slice-specific collector using information
coming from the sub-slice orchestrators (technological domain
orchestrator), which allows keeping independence between the
different entities involved in the monitoring process and the
technological domain orchestrators. Last but not least, this
solution does not collect RAN metrics.

In [10], the authors introduce a slice monitoring abstrac-
tion mechanism for data center slices relying on Lattice
[11]. Monitoring a network slice resources is done via slice
monitoring adapters using Lattice data sources, which are in
charge of collecting the different KPI using probes. The latter
collects relevant measurements for a segment of the end-to-end

2https://www.elastic.co/elasticsearch/
3https://www.rabbitmq.com/



3

slice. Besides disregarding the slice elasticity, the solution is
designed for data center slices ignoring the RAN monitoring.

Work in [12] proposes a flexible monitoring framework that
creates monitoring slices integrating cloud-specific and non-
cloud monitoring solutions. Again, the authors did not discuss
the scenarios of multi-clouds and multiple technological do-
mains.

DASMO, introduced in [13], proposes the modification of
the NFV architecture to support monitoring by embedding the
monitoring elements into the Element Manager (EM) of a
VNF. The work also tackles the monitoring’s scalability, but
no implementation nor performance evaluation of the solution
have been conducted; it stays at the conceptual level.

Table I presents a comparison of our solution with [6], [9]
and [10]. The three solutions share the same objective, which
is monitoring platforms for network slicing.

III. A MONITORING FRAMEWORK FOR END-TO-END
NETWORK SLICES

In this section, we will introduce the proposed monitoring
framework of network slices in 5G and beyond networks. The
section is divided into three parts: (1) the considered archi-
tecture for enabling monitoring in 5G; (2) the data collection
servers and the monitoring protocol; (3) the data presentation.

A. Architecture
1) Network Slicing Management and Orchestration archi-

tecture: Before detailing the proposed monitoring framework
architecture, we first introduce the network slicing architec-
ture we build on. The latter is a generic architecture that
allows orchestrating and managing the life-cycle of a network
slice, including the monitoring process. It is based on the
architecture introduced in [14] and shown in Fig. 1. The
proposed architecture is composed of a SO, which is in
charge of the Life Cycle Management (LCM) of network
slices and monitoring its performance. The SO is equivalent
to the 3GPP Network Slice Management Function (NSMF)
[15] and exposes Northbound API (NBI) for the OSS/BSS
or Communication Service Management Function (CSMF) as
specified by 3GPP. The NBI covers the LCM of a network slice
and the management of the monitoring process. The NS LCM
API is already specified in [15] and manages the different steps
of the network slice life-cycle, like commissioning, operation,
and decommissioning. However, no API is specified to manage
the monitoring of network slices’. Therefore, in this work we
devised a new NBI to be exposed by SO to manage monitoring
of network slices.

In the envisioned network slice architecture, each tech-
nological domain is managed and orchestrated by its own
entity, known in 3GPP as Network Sub Slice Management
Function (NSSMF). Depending on the technological domain,
a NSSMF may correspond to NFV Orchestrator (NFVO) for
Cloud/Edge domain, RAN Orchestrator (RANO) for RAN do-
main, and SDN controller for the case of the transport network
domain. Examples of existing tools covering these functions
are ONAP4 and OSM5 for NFVO, FlexRAN controller [8]

4https://www.onap.org/
5https://osm.etsi.org/

Fig. 1. Network slicing architecture

for RANO, and OpenDayLight6 and ONOS7 for transport
orchestrators.

To deploy and instantiate a network slice, the CSMF or
OSS uses the NBI exposed by SO to describe the needed
resources (Compute and network) through a Network Slice
Template (NST). It includes attributes and meta-data on the
network slice (ex. the start date and end date, slice owner, type
of slice, etc.), and information on each sub-slice composing
the network slice. GSMA is providing examples of NST
available in [16], namely Generic Slice Template (GST). To
enable on-demand monitoring, we propose to extend the NST
to indicate if monitoring is needed. If so, the slice owner
should include the KPI list to monitor for each technological
domain where the network slice is deployed. The template
is created by the slice owner using an existing Blueprint
provided by the operator or defining a new one through Intent.
Each sub-slice (technological domain) composing the network
slice is described in NST. For instance, in the case of the
computing resource (i.e., Cloud/Edge domain), the NST may
include information such as the number of CPUs, memory,
and the virtualization technology (i.e., Virtual Machines - VM
or containers) to be used. For the RAN domain, resources
may be related to the functional split type [17], the MAC
scheduler algorithm, the number of PRBs, and others. Finally,
for the transport domain, resources may include the type
of link (bandwidth, latency), number of Virtual Local Area
network (VLAN), front haul link capacity, Virtual Private
Network (VPN) links, and QoS. Each technological domain
needed-resources are enclosed in the NST in the form of
a technological domain-specific descriptor. For instance, for
the Cloud/Edge domain, the resources are described using a
Network Service Descriptor (NSD) that includes the VNF(s)
list, the link to their VNF Descriptor (VNFD) or Application
Descriptor (AppD) [18], how they should be interconnected,
and the number of computing resources needed by each VNF.
NST is passed by CSMF to NSMF when a network slice

6https://www.opendaylight.org/
7https://opennetworking.org/onos/



4

TABLE I
COMPARISON BETWEEN [6], [9], [10], AND OUR MONITORING SYSTEM

Aspect [9] [10] [6] Our system

Metrics
source

From Monitoring Entities
(Prometheus, NetData). Lattice data sources. Metrics generated by Infrastruc-

ture Components.

Kubernetes API, FlexRAN, plu-
gins for Prometheus, Ceilome-
ter.

Slice
deployment

Support multiple slice parts on
top of the same VIM. Consider a VIM per slice. Does not support network slic-

ing.
Support multiple slice parts on
top of the same VIM.

Monitoring
management
component

Engine Controller that commu-
nicates with the Slice Orches-
trator.

Monitoring controller
that communicates with the
Slice Orchestrator.

Metrics Management Entity
configures the system entities.

Monitoring engine integrated
with the SO that Communicates
with the NFVO and RANO.

Dynamic
deployment Use adapters per slice part. Uniform on-demand monitoring

layer per slice.
Metrics Extraction Function per
infrastructure component. Collection agent per slice part.

Slice
elasticity

Horizontal elasticity is han-
dled by deploying new adapters
and monitoring entities. Vertical
elasticity is handled by default.

Does not consider slice elastic-
ity techniques.

Introduction of a new infras-
tructure component is by de-
ploying a new Metrics Extrac-
tion Function.

Slice horizontal elasticity and
the integration of new techno-
logical domains is handled by
the deployment of new metrics
collectors. Vertical elasticity is
handled by default.

Metrics
exposition

Expose the metrics to the Slice
Orchestrator.

The metrics can be consumed
by the Slice Orchestrator as
feedback for the execution of its
services and functions.

Expose metrics to data visuali-
sation and analysis tools.

Expose Metrics using Rab-
bitMQ and Grafana to the slice
tenant.

Technological
domains

Cloud, with support of multiple
clouds.

Cloud, with support of multiple
clouds. Cloud and RAN.

Cloud with support of multiple
clouds, and RAN with support
of the FlexRAN controller.

Metrics
abstraction

provide the element ID with the
metrics. No abstraction. No abstraction.

Introduces a data collection pro-
tocol for multi-domain network
slices.

creation is requested.
2) The proposed monitoring framework architecture:

Building on the network slicing architecture (Fig. 1), we intro-
duce in Fig. 2 the overall architecture of the proposed mon-
itoring framework, where two technological domains (RAN
and Edge/Cloud) are considered and detailed. Besides the
management and orchestration entities mentioned earlier (i.e.,
SO, NFVO and RANO), the proposed architecture includes
Data Collection Servers, a Data Presentation Server, and
network slice specific components. The data collection servers
are composed of Brokers deployed at two different levels:
a high-level Broker is used to expose collected monitoring
data to the end-users in RAW format, and a low-level Broker
to collect data from the different technological domains. The
high-level Broker is based on RabbitMQ, while the low-level
Broker is relying on Kafka. In one of the next sections, we
will explain in more details the motivation behind this choice.
On the other hand, the presentation server is in charge of
displaying the collected data per slice to the slice owners via
a dashboard and graphical user interfaces. The presentation
server consumes the monitored data per network slice stored
in a Database (DB) at the SO, known as KPI DB.

It should be noted that the proposed framework’s critical
components are the slice collection agents that collect monitor-
ing data of each sub-slice and aggregate them per slice. These
agents are instantiated when the network slice is created and
active throughout its life-cycle. In the considered scenario of
two technological domains, three agents are instantiated per
network slice, one by the SO and two by the technological
domain orchestrators, i.e., at the RANO and NFVO. The role
of the SO-level agent is to consume the data published by
the slice specific agents, add meta-data on the network slice,

and push it to the high-level Broker. After that, the data will
be consumed by (i) the slice owner as RAW data; (ii) the
data presentation server to be displayed via the dashboard.
Whereas the role of the agents instantiated by the technological
domain orchestrators is to collect data from the infrastructure,
format the obtained data by adding meta-data, and push it to
the lower-level Broker of the data collection server, i.e., Kafka.

Once the network slice is terminated, these three elements
are deleted. Note that we assume that the slice agents are
instantiated as containers and run in the Cloud/Edge domain.
Obviously, using slice specific agents will guarantee that the
proposed monitoring framework scales with the number of
slices. Besides, if another technological domain is used, such
as the transport network domain, only another collector agent
is added; without impacting the overall system and the other
agents’ functions.

3) Data Collection procedures: As mentioned in the prece-
dent section, the data collection is done by the slice specific
collectors, which are instantiated by the different entities
involved in the network slice LCM, i.e., SO, and technological
domain orchestrators when the network slice is created. In
this section, we will detail the instantiation process of the
slice specific collectors and their functions, considering two
technological domains RAN and Cloud/Edge, managed by
RANO and NFVO, respectively.

a) SO: SO is the entry point of the system. It interfaces
with the slice owner via OSS/BSS or via CSMF. It receives
requests to deploy a network slice in the form of a NST.
To recall, the NST includes details and attributes on the
network slice to deploy, including the list of KPI to measure
for each technological domain. The SO relies on the API
exposed by the NSSMF (in our case RANO and NFVO)



5

Fig. 2. Architecture of the monitoring system

to first deploy the network slice. Once NFVO and RANO
create the sub-slices, an Id for each sub-slice is returned to
the SO, namely RANId and NSDId, respectively. SO stores
that information on a local DB and links the RANId as well
as NSDId to the NSId of the created slice. The second step
is the instantiation of the three slice-specific collectors. To do
so, SO sends a request to both RANO and NFVO to create the
technological domain slice-specific collectors by indicating the
sub-slice Id and the list of KPI to collect per domain. Once
the RANO and NFVO validate the request, SO instantiates and
configures the slice collector agent. The configuration consists
of providing information on the Slice ID, the IP addresses
of the Brokers, DB where to store the data pushed by the
technological domain collectors, and the topics to be used
to fetch data at the low-level Broker (i.e., sub-slices ID) as
well as topics to publish to at the high-level Broker (i.e., slice
ID). SO also needs to inform the presentation server about
the creation of a new slice by communicating the Slice ID.
As a response, the presentation server communicates a URL
and credentials to observe the measured KPI in real-time via a
dashboard. SO acknowledges the creation of the network slice
and the monitoring system to CSMF by providing (1) URL and
credentials for the dashboard; (2) URL and the topic where to

fetch raw data of the collected monitoring KPI.
b) RANO: Once receiving the request to create a slice-

specific data collector from SO for a sub-slice identified by its
RANId, RANO instantiates a slice-dedicated collector agent.
The latter is configured with the list of KPI to measure as
well as the IP address of the message Broker and the topic to
publish to.

To collect KPI from the RAN infrastructure (i.e., eNB/gNB),
we rely on the concept of programmable RAN under investiga-
tion by the O-RAN initiative [19]. Programmable RAN allows
opening RAN through a NBI to be exposed by the eNB/gNB to
extract monitoring information or update the configuration on
the run-time of eNB/gNB. O-RAN is currently standardizing
the different interfaces between the eNB/gNB and a remote
RAN controller or a RAN orchestrator. In the proposed
framework, we use FlexRAN, a programmable RAN initiative
on top of the OpenAirInterface (OAI) eNB/gNB. FlexRAN
is composed of an agent sitting at the eNB/gNB. Its role
is to extract information from the eNB/gNB, send them to
the FlexRAN controller, and enforce at run-time an eNB/gNB
configuration policy received from the FlexRAN controller;
for instance, to create a new radio slice and assign resources
to the network slice. Fig. 3 illustrates the interaction between
the RAN data collector and FlexRAN controller as well as



6

RANO. The RAN data collector periodically requests data
on the performance of the sub-slice using the RANId. The
collected data includes all information regarding the sub-slices.
Therefore, some KPIs can directly be mapped to information
provided by FlexRAN, while others need to be obtained
by combining different information. The list of RAN KPI
supported by our framework is summarized in Table II.

The RAN slice-specific data collector first extracts the
data regarding KPI from FlexRAN, or uses a local logic
to deduce the KPI if not directly available with FlexRAN.
Then, it formats the data by adding meta-data and creates a
message using the monitoring protocol described later. Finally,
it publishes the message to the low-lever Broker using RANId
as a topic.

Fig. 3. RAN KPIs collection sub-system

TABLE II
RAN KPIS LIST

KPI Level Details
Latency-RAN RAN Latency at the RAN (aggregated per slice)

Uplink-data-rate RAN Uplink data rate (aggregated per slice)
Downlink-data-rate RAN Downlink data rate (aggregated per slice)

Packet-Loss-rate RAN Packet loss at the RAN after attempts
(RLC layer) (aggregated per slice)

IP-rate RAN Packet rate (at PDCP) (aggregated per slice)
Latency-eNB-CN RAN Measured RTT between the RAN and CN

Bandwidth RAN Bandwidth of cells

c) NFVO: The Cloud/Edge slice-specific data collector
shares similar features with the RAN data collector. It is

instantiated by NFVO per the request of SO using the NSDId
as an identifier. All the collected data on KPI are published
on the same message Broker (the low-level) using the NSDId
as a topic. It formats data by adding meta-data and generates
a message using the same monitoring protocol. In contrast,
the Cloud/Edge slice-specific collector relies on other tools to
collect KPI on the running sub-slices, particularly for the VNF.
Indeed, the KPI to measure for Cloud/Edge domain covers
the computing resources and virtual network resources used
by the running VNF. Therefore, to collect this data, we rely,
in our proposed framework, on the API provided by VIM.
However, as we consider in the proposed framework that all
VNFs run as Cloud-native Network Function (CNF), i.e., using
container-based virtualization, CIS (Container Infrastructure
Service) as defined by ETSI [20] replaces the VIM. The CIS
is managed by CIS Manager (CISM), which, technologically
speaking, corresponds to the Kubernetes8. Indeed, Kubernetes
provides an NBI that allows collecting several KPIs on the
running containers, hence on VNFs. The Cloud/Edge data
collector collects the KPI list communicated by the NFVO by
consuming the Kubernetes NBI API. It is worth noting that
Cloud/Edge sub-slice is composed of a set of VNFs. Thus,
NFVO, when instantiating the Cloud/Edge data collector, it
communicates the list of VNF instances (Id, names) known
by NFVO and linked to the NSD Id. At the CISM level (i.e.,
Kubernetes), VNFs are identified with their Instance ID. It
should be noted that in this work, we relied on Kubernetes
NBI to collect KPI, but the platform can use other monitoring
collection systems on top of Kubernetes, such as Prometheus.
Table III summarizes the list of KPIs that we consider impor-
tant in the context of network slicing and can be measured by
the Cloud/Edge data collector.

TABLE III
NFVO KPIS LIST

KPI Level Details
CPU-utilization NFVO Aggregated per CNF

Memory-utilization NFVO Aggregated per CNF
Number-instances NFVO Number of ReplicaSets per CNF

Network-Rx NFVO Aggregated per CNF
Network-Tx NFVO Aggregated per CNF

B. Data Transfer

1) Monitoring protocol and message format: One of the
big challenges that we need to overcome when monitoring the
network slice performances (i.e., KPI) is the span of resources
over different technological domains. Indeed, each domain has
its own system to collect data from the infrastructure. Besides,
to the authors best knowledge, there is no existing data
collection protocol available in the literature that can address
the mentioned concern.Therefore, we propose a novel data
collection protocol that defines common monitoring messages
for all the technological domains, aiming to abstract lower-
level technological domains’ infrastructure specificities. Each
domain slice-specific data collector will use these messages

8https://kubernetes.io/



7

to encapsulate a monitoring measure and publish it. By doing
so, we first simplify the aggregation process to be done by
the slice data collector at the SO level. Second, adding a new
technological data collector does not impact the other compo-
nents of the monitoring platform, making it easy to extend
the platform in the future. The monitoring communication
protocol relies on the Publish/Subscribe concept, where the
data collectors produce monitoring data while the slice data
collector consumes that data.

Fig. 4. KPI message structure

All data collected by the technological domain collectors
are encapsulated in a common message format shown in Fig.
4. All the fields are detailed in Table IV.

TABLE IV
KPI MESSAGE FIELDS DESCRIPTION

Field Description Type

SubSliceId
(required) The Id of the subslice
(the slice part) from which the

metric was collected.
String

NSSMF (required) The type of the subslice
orchestrator (NFVO, RANO) String

Timestamp (required) The time of the metric
collection Long

Metric name (required) The name of the metric String

Source (required) If the Controller Id == NFVO
then it should include th VNF name String

Labels A set of key-value pairs that help
in adding information to the metrics

Key: string
value: string,

integer,
boolean

Value (required) The value of the metrics Double,
Integer

Each message shall include the sub-slice ID, Controller
ID, Timestamp, metric (or KPI) name, and value. The latter
corresponds to the measured data. The sub-slice ID indi-
cates the ID of the sub-slice used as a topic for the Pub-
lish/Subscribe protocol. The NSSMF field indicates the name
of the orchestrator of the technological domain where the
data is coming from. The Timestamp field indicates the time
when the message is generated. This information is very
important as it allows to correlate the KPI coming from
different technological domains, which will help to understand
the network slice performances’ behavior from an end-to-end
perspective. Therefore, all the technological domains should be
synchronized using the same clock based on GPS and IEEE
Precision Time Protocol (PTP). The metric name indicates
to which KPI the measured data belongs. The Source field
is mandatory only if NSSMF corresponds to NFVO. Indeed,

the source field indicates the VNF name concerned with the
measured data. The last field, namely label, is not mandatory.
It helps to provide multidimensional metrics; for example, if
we consider measuring the Channel Quality Indicator (CQI)
as calculated by UE in RAN, the label field should include
the UE Id (International Mobile Subscriber Identity - IMSI or
other identifiers).

2) Data collection servers: The data collection servers are
in charge of collecting data from the domain slice-specific data
collector deployed for each running network slice. The data
collection servers are hard components of the framework as
they need to be run in parallel to SO, NFVO, and RANO.
The data collection servers use Publish/Subscribe protocol
with two levels. The first level (high-level) is allowing the
slice owner to consume the monitoring data regarding its
run slice in RAW format. The Broker used at this level is
based on RabbitMQ, a push-based system. This choice is
motivated by the fact that RabbitMQ allows more control
over the message routing. It offers more elaborate routing
capabilities by providing various exchanges (direct, fan-out,
headers, topic). Therefore, using this type of Broker allows
the monitoring platform to control what metrics to send to
each user and avoid requesting that the consumer manages the
messages offset from which it needs to consume. Moreover,
the messages are deleted after consumption, which avoids
storing redundant data on a metric for a long period of time.
Finally, in RabbitMQ, an interesting feature is the possibility
of creating a virtual host (vHost) containing the exchanges
and their corresponding queues of each user. Those vHosts
are used to define the users’ permissions and constitute the
user space in the Broker. Based on vHosts, we can ensure
multi-tenancy and isolation between network slices.

The second level (low-level) is internal to the framework
components. It allows collecting the monitoring data generated
by the technological domain slice-specific data collector and
pushing the data to the concerned slice data collector (at SO
level). The Broker at this level is based on Kafka. We argue
this choice by the fact that Kafka provides routing by topic,
which gives a simple and robust model for internal metrics
transfer. Kafka is a pull-based system where the consumers
use an offset to access the messages in a topic, and the
messages in a topic have a retention period, which allows
the consumption of the messages multiple times; this cannot
be done using RabbitMQ in which the messages are deleted
after consumption. Such a feature allows more control over
the consumed messages. SO can change the offset of the
messages to consume, hence allowing to collect messages
multiple times if needed (in case of database writing problems
or collector failure, which results in the deployment of a new
collector that can access the metrics that were not handled
correctly). Another feature is the notion of partitions within
a topic. It allows a group of competitive consumers to get
metrics from the same topic in a round-robin way, making
the system’s scaling easier while keeping a simple model of
message routing. Indeed, if the metrics’ rate gets higher, new
slice collectors can be instantiated for the concerned slice.



8

C. Data presentation

How data is presented to the user is a very important
criterion of a monitoring system. Indeed, the presentation of
monitoring data should be adapted to the level of technical
knowledge of users. Some users may be satisfied only by
visualizing the data through a friendly GUI or dashboard and
react to any degradation. Other users may want to have access
to the RAW data to store it, and later on, do further analysis
using Machine Learning (ML) tools to build models predicting
performances or detecting when a parameter is causing an
issue. Therefore, the proposed platform covers both ways to
present data, i.e., using a GUI and providing RAW data.

Regarding the RAW data, as previously explained, we used
the high-level Broker, which is based on RabbitMQ, to expose
the collected data, aggregated by the slice data collector. The
user can fetch the queue identified by the Slice ID, which
stores the monitoring messages. It is then the slice owner’s
responsibility to write a program or use a RabbitMQ client to
connect to the message queue and consume data.

Regarding the graphical presentation, the data presentation
server entity is in charge of this task. The data presenta-
tion server relies on Grafana9 to expose via a Dashboard
the monitoring messages. Grafana is an open-source, multi-
platform, interactive web application for metrics analysis and
visualization. It offers fast and flexible visualizations with a
multitude of options like tables, graphs, and alerts. A large
number of data sources are supported by Grafana, from which
we use the InfluxDB10 data source.

Once the data is available at the lower-level Broker, the slice
data collector consumes the message, identifies the subslice,
and adds the Slice Id to the metric. The metric then is stored
in the KPIs database, and a measurement per metric name is
provided and sent to the corresponding topic in the external
Broker from which the slice owner can consume it. Grafana
is configured when a Network Slice is created by the SO. The
SO’s monitoring engine creates a dedicated space for the slice
owner and its running slices by preparing a folder that contains
the dashboards that represent the performances of the user’s
slices.

It is worth noting that the network operator is granted full
access to all the platform’s monitoring information. Through
Grafana, the network operator can see all the collected mon-
itoring data, aggregated per slice, or aggregated per techno-
logical domain. The same information is available as RAW
data in the KPI DB that can be used to run ML algorithms for
troubleshooting prediction and mitigation, and resource usage
optimization.

D. Data privacy and isolation

Multi-tenancy and network slice isolation are an important
feature that the devised monitoring framework ensures. It
is vital that a slice owner has access to monitored data
corresponding to only its running slices. The network slice
isolation needs to be mainly enforced when presenting the data

9https://grafana.com/
10https://www.influxdata.com/

to the network slice owners. In the proposed framework, the
presentation server and the high-level Broker need to guarantee
isolation, as they are interfacing the network slice owners.

In order to ensure data isolation at the high-level Broker,
the Slice ID and vHost are used to segregate the monitored
data on running network slices. The Slice ID is unique and
known only by SO and shared by the latter with the slice
owner. The slice owner uses the Slice ID as a topic to fetch
the monitoring data. The Slice ID is also communicated to
the presentation server along with the User ID (Identifier of
the Slice owner). By using a combination of User ID, Slice
ID, and vHost, the presentation server can ensure that a slice
owner (User ID) can access only data in respect to its running
slices (identified via the Slice ID). It is worth recalling that
the User ID is communicated by CSMF to SO when creating
a network slice. SO stores and associates the User ID with the
Slice ID when a network slice is created.

IV. PERFORMANCE EVALUATION

A. Testing environment

We have implemented the proposed monitoring frame-
work on top of the 5G facility of EURECOM deployed
in the context of the 5GEvE11 and 5G!Drones12 projects.
EURECOM 5G facility includes all the element introduced
in Fig. 1, i.e., SO, RANO and NFVO. Besides, it uses
OpenAirInterface (OAI) 13 for the RAN infrastructure and a
Openshift/Kubernetes for Cloud/Edge. We have implemented
all the components described in Fig. 2. Table V. summarizes
the used technologies, which have been adapted and improved.

TABLE V
THE IMPLEMENTED COMPONENTS AND THE USED TECHNOLOGIES

Component Technology
SO (NSMF) Python-based

RANO (NSSMF) Python-based
NFVO (NSSMF) Python-based

CISM Kubernetes
Data collection servers RabbitMQ, Kafka

Data presentation server Grafana
NBI API REST

Our experiments were performed on two hosts (Intel(R)
Core(TM) i5-9400F CPU @ 2.90GHz 32GB RAM, 6 CPUs
without hyper-threading: 1 Thread per core), which form
a Kubernetes cluster using Kubeadm v1.19.5. The cluster
represents the CIS infrastructure on top of which the cloud
sub-slices will be deployed. All the platform components run
as containers. It should be noted that the data collector servers
(Kafka and RabbitMQ servers), the Data presentation server
(Grafana), KPI DB, and the KPIs engine run in the same
Kubernetes name-space to measure their resource consumption
more precisely.

To get insight into the monitoring platform’s performance,
we have focused on evaluating two critical aspects. Firstly,
we concentrate on the scalability issue when the number of

11https://www.5g-eve.eu/
12https://5gdrones.eu/
13https://openairinterface.org/



9

running slices is high, where we measured the resource con-
sumption of the whole system when increasing the number of
deployed slices. Secondly, we shed-light on the performances
of the system, where we measured the latency to present a
collected data to the external consumer that a tenant deploys
to consume a slice metrics. For all the experiments we used
two values of the polling interval (i.e., interval of time to
collect data), 1s and 5s. This will allow us to see the impact
of polling interval on the measured KPI, knowing that 1sec
is very demanding in terms of computing and networking
resources. Finally, we collected eight KPI, four on the RAN
and four on the Cloud/Edge.

B. System Scalability

The first presented results correspond to the performance of
the monitoring system in terms of scalability. To obtain these
results, we increase the number of network slices to monitor
and measure the consumed computing resources, i.e., CPU
and memory. We measured the consumed CPU and memory
of the whole monitoring system, but also per component: data
presentation, data collection, and the slice-specific collectors.

1) Memory: Fig. 5 represents the RAM consumption of
the whole system (including the slice-specific collectors, the
data collector serves, and the presentation server) in respect
to the number of network slices. As it is expected, the
RAM consumption increases (linearly) with the number of
network slices to monitor. Besides, when the poling interval
is small, the CPU consumption is high. We also remark that
when the number of network slices is equal to 50, the RAM
consumption exceeds 7 Gb and 8 Gb, for 5s and 1s of polling
interval, respectively.

Fig. 5. The RAM consumption of the system as a whole in relation to the
number of slices and the polling interval

Now we investigate the RAM consumption per component.
Fig. 6 and Fig. 7 illustrate the RAM consumption of the
slice-specific data collectors and the data collection servers
(Brokers), respectively. Notice that 1 MiB = 220 Bytes and
1GiB = 230 Bytes. It is worth noting that only one curve is
shown for both polling intervals as the RAM consumption
is merely the same (only 0.1 MiB of difference). This is
explained by the fact the poling interval does not impact the
consumption of the collectors. Indeed, the memory space used

by the collector is not affected by the polling interval, since
its role is to request the measurements, structure them, and
send them to the Brokers of the data collection servers, which
do not require high computing resources. We recall that three
collectors are instantiated per slice; one at SO, and one for
each technological domain. We remark that the slice-specific
collectors are consuming merely 80% of the RAM of the
whole system. Obviously, the RAM consumption increases
linearly with the number of monitored network slices; the
RAM consumption reaches 6 GiB for a high number of
monitored network slices. On the other hand, we remark that
the brokers consume less RAM; less than 2 GiB and 2.4 GiB,
when the number of slices is equal to 50 and for a polling
interval of 5s and 1s, respectively.

For the Data presentation server, the RAM consumption is
practically constant and is around 20 MiB.

Fig. 6. The RAM consumption of the slice-specific data collectors in relation
to the number of slices and the polling interval

Fig. 7. The RAM consumption of the data collection servers (data brokers)
in relation to the number of slices and the polling interval

2) CPU: To calculate the CPU consumption of the mon-
itoring system elements, we rely on cAdvisor14, which is a
daemon that collects, aggregates, processes, and exports infor-
mation such as resource usage and performance characteristics
about running containers. CAdvisor is integrated into Ku-
bernetes and provides a ”container cpu usage seconds total”

14https://github.com/google/cadvisor



10

metric that shows the cumulative CPU time consumed by a
given container. This metric is scrapped periodically using
Prometheus. Then, we apply a rate on the time series, i.e.,
we use a function that calculates the per-second average rate
of increase of the time series in the given time interval,
representing the CPU consumption of a container. Using this
way of computing CPU explains the decimal values of CPU
shown in the figures.
Fig. 8 shows the entire monitoring system CPU consumption
with respect to the number of monitored network slices for the
two polling intervals. Clearly, we observe a similar behavior
as for the RAM, where the CPU consumption increases with
the increase of the number of monitored slices. Besides, the
CPU consumption is higher when the polling interval is small;
it reaches 4.5 CPU and 3 CPU for 1s and 5s polling interval
respectively while the number of monitored slices is 50. This
means that in a saturated situation, the whole system uses
merely 5 CPU and 9 GiB of RAM, which is an acceptable
value in modern hardware.

Fig. 8. The CPU consumption of the system as a whole in relation to the
number of slices and the polling interval

As for the RAM, we will investigate which components
are consuming more CPU. Fig. 9 and Fig. 10 show CPU con-
sumption of the slice-specific collectors and the data collection
servers, respectively. As for the RAM, we remark that the
slice-specific collectors consume more CPU, reaching 2.5 CPU
and 3.7 CPU when the number of monitored network slices is
50 and for a polling interval of 5s and 1s, respectively. We also
observe that reducing the polling interval has a strong impact
on CPU consumption. When the number of monitored slices is
high, the difference could reach merely a double. Meanwhile,
the difference is less obvious for the Brokers, where CPU
consumption is not highly impacted by the polling interval.
We remark the same behaviour when increasing the number
of monitored slices; i.e., a small impact on CPU consumption.
For instance, for a polling interval of 1s, the difference of
consumed CPU between 10 monitored slices and 50 is around
0.4 CPU. This indicates that the Brokers scale well with the
number of network slices.

Regarding the data presentation server the CPU usage is
very low and is around 0.004 CPU.

Fig. 9. The CPU consumption of the slice-specific data collectors in relation
to the number of slices and the polling interval

Fig. 10. The RAM consumption of the data collection servers (data brokers)
in relation to the number of slices and the polling interval

C. End to end messages latency

Now we turn our attention to the performance of the
monitoring system in terms of latency to deliver the monitored
data to the slice owner. To this aim, we measured the time
taken by the system to collect data and present them to the slice
owner. We measure this latency for the two data collection
polling intervals while increasing the number of monitored
network slices. We clearly observe that the latency increases
linearly in the case of a polling interval of 5s but exponentially
for 1s. It reaches 160 ms and around 40 ms for a polling
interval of 1s and 5s, respectively. This clearly proves the
strong impact of the polling interval on the latency. However,
it remains acceptable, less than 1s in each case, and even when
the number of monitored network slices is very high.

V. CONCLUSION

In this paper, we introduced a novel monitoring framework
for network slicing in 5G. The proposed framework solves
many issues that arise when monitoring the performances of
network slices. First, it is a scalable framework, as slice data
collectors are instantiated within a network slice and deleted
when the network slice ends. Second, it allows monitoring
resources of different technological domains and abstracts
each domain’s specificity by devising a novel data collection



11

Fig. 11. The end-to-end messages latency in relation to the number of slices
and the polling interval

protocol. Third, aggregate the measured data at the slice level
and provided it to the slice owner as raw data or via a graphical
interface. The proposed framework has been implemented in a
5G facility and extensively evaluated. Obtained results indicate
that even if a high number of network slices are deployed
and monitored, the CPU and memory consumption remain
sustainable by current hardware. In addition, the latency to
present the data to the slice owner remains under 1s when a
high number of network slices are deployed.

VI. ACKNOWLEDGMENT

This work was partially supported by the European Union’s
Horizon 2020 Research and Innovation Program under the
5G!Drones project (Grant No. 857031).

REFERENCES

[1] “Sma public policy position,” (2020, March) 5G Spectrum.
[2] A. Ksentini and P. A. Frangoudis, “Toward slicing-enabled multi-access

edge computing in 5g,” IEEE Network, vol. 34, no. 2, pp. 99–105, 2020.
[3] A. Ksentini, P. A. Frangoudis, P. Amogh, and N. Nikaein, “Providing

low latency guarantees for slicing-ready 5g systems via two-level mac
scheduling,” IEEE Network, vol. 32, no. 6, pp. 116–123, 2018.

[4] B. Brik and A. Ksentini, “On predicting service-oriented network slices
performances in 5g: A federated learning approach,” in 2020 IEEE 45th
Conference on Local Computer Networks (LCN). IEEE, 2020, pp.
164–171.

[5] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T. Lynn,
“A survey of cloud monitoring tools: Taxonomy, capabilities and objec-
tives,” Journal of Parallel and Distributed Computing, vol. 74, no. 10,
pp. 2918–2933, 2014.

[6] R. Perez, J. Garcia-Reinoso, A. Zabala, P. Serrano, and A. Banchs, “A
monitoring framework for multi-site 5g platforms,” in 2020 European
Conference on Networks and Communications (EuCNC). IEEE, 2020,
pp. 52–56.

[7] X. Vasilakos, B. Köksal, D. H. Izaldi, N. Nikaein, R. Schmidt, N. Fer-
dosian, R. F. Sari, and R.-G. Cheng, “Elasticsdk: A monitoring software
development kit for enabling data-driven management and control in 5g,”
in NOMS 2020-2020 IEEE/IFIP Network Operations and Management
Symposium. IEEE, 2020, pp. 1–7.

[8] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Konto-
vasilis, “Flexran: A flexible and programmable platform for software-
defined radio access networks,” in Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies,
2016, pp. 427–441.

[9] A. Beltrami, P. D. Maciel, F. Tusa, C. Cesila, C. Rothenberg, R. Pasquini,
and F. L. Verdi, “Design and implementation of an elastic monitoring
architecture for cloud network slices,” in NOMS 2020-2020 IEEE/IFIP
Network Operations and Management Symposium. IEEE, 2020, pp.
1–7.

[10] F. Tusa, S. Clayman, and A. Galis, “Dynamic monitoring of data center
slices,” in 2019 IEEE Conference on Network Softwarization (NetSoft).
IEEE, 2019, pp. 286–290.

[11] S. Clayman, A. Galis, and L. Mamatas, “Monitoring virtual networks
with lattice,” in 2010 IEEE/IFIP Network Operations and Management
Symposium Workshops. IEEE, 2010, pp. 239–246.

[12] M. B. de Carvalho, R. P. Esteves, G. da Cunha Rodrigues, L. Z.
Granville, and L. M. R. Tarouco, “A cloud monitoring framework
for self-configured monitoring slices based on multiple tools,” in Pro-
ceedings of the 9th International Conference on Network and Service
Management (CNSM 2013). IEEE, 2013, pp. 180–184.

[13] S. Kukliński and L. Tomaszewski, “Dasmo: A scalable approach to
network slices management and orchestration,” in NOMS 2018-2018
IEEE/IFIP Network Operations and Management Symposium. IEEE,
2018, pp. 1–6.

[14] I. Afolabi, T. Taleb, P. A. Frangoudis, M. Bagaa, and A. Ksentini,
“Network slicing-based customization of 5g mobile services,” IEEE
Network, vol. 33, no. 5, pp. 134–141, 2019.

[15] 3rd Generation Partnership Project (3GPP), 2018b. “Study on manage-
ment and orchestration of network slicing for next generation network”.
3GPP TS 28.801 version 15.1.0 Release 15.

[16] “Generic network slice template”, version 3.0,” NG.116,May 2020.
[17] C.-Y. Chang, N. Nikaein, O. Arouk, K. Katsalis, A. Ksentini, T. Turletti,

and K. Samdanis, “Slice orchestration for multi-service disaggregated
ultra-dense rans,” IEEE Communications Magazine, vol. 56, no. 8, pp.
70–77, 2018.

[18] Multi-access Edge Computing (MEC); MEC Management; “Part 1:
Application lifecycle, rules and requirements management”, ETSI GS
MEC 010-1 V1.1.1 (2017-10).

[19] ORAN Alliance, 2020b. “Operator defined next generation ran archi-
tecture and interfaces”. URL:https://www.o-ran.org/.

[20] Network Functions Virtualisation (NFV) Release 3; Virtualised Network
Function; “Specification of the Classification of Cloud Native VNF
implementations”, ETSI GS NFV-EVE 011 V3.1.1, Oct 2018.

Mohamed Mekki received his engineering degree
in Computer Systems from the Higher School of
Computer Science in Algiers, Algeria in 2020. He
is currently a 1st-year doctoral student at EURE-
COM, Sophia Antipolis. His doctoral thesis is on
Cloud Edge Continuum (CEC) to support emerging
network services that require low latency and high
bandwidth usage.

Sagar Arora (sagar.arora@eurecom.fr) received his
Masters in Mobile Communication from Eurecom,
Sophia Antipolis in 2019. He is currently a 2nd-year
doctoral student at EURECOM, Sophia Antipolis.
His doctoral thesis is on designing a network slice
orchestration framework for cloud-native container
based 5G network functions and MEC applications.



12

Adlen Ksentini is a COMSOC distinguished lec-
turer. He obtained his Ph.D. degree in computer
science from the University of Cergy-Pontoise in
2005, with a dissertation on QoS provisioning in
IEEE 802.11-based networks. From 2006 to 2016,
he worked at the University of Rennes 1 as an
assistant professor. During this period, he was a
member of the Dionysos Team with INRIA, Rennes.
Since March 2016, he has been working as a pro-
fessor in the Communication Systems Department
of EURECOM. He has been involved in several

national and European projects on QoS and QoE support in future wireless,
network virtualization, cloud networking, mobile networks, and more recently
on Network Slicing and 5G in the context of H2020 projects 5G!Pagoda,
5GTransformer, 5G!Drones and MonB5G. He has co-authored over 120
technical journal and international conference papers. He received the best
paper award from IEEE IWCMC 2016, IEEE ICC 2012, and ACM MSWiM
2005. He has been awarded the 2017 IEEE Comsoc Fred W. Ellersick
(best IEEE communications Magazine’s paper). Adlen Ksentini has given
several tutorials in IEEE international conferences, IEEE Globecom 2015,
IEEEE CCNC 2017, IEEE ICC 2017, IEEE/IFIP IM 2017. Adlen Ksentini
has been acting as TPC Symposium Chair for IEEE ICC 2016/2017, IEEE
GLOBECOM 2017, IEEE Cloudnet 2017, and IEEE 5G Forum 2018. He is
in the editorial board of IEEE Network and IEEE Networking Letters. He
acted as Guest Editor for IEEE Journal of Selected Area on Communication
(JSAC) Series on Network Softwerization, IEEE Wireless Communications,
IEEE Communications Magazine, IEEE Transactions on Network Science
and Engineering (TNSE), and two issues of ComSoc MMTC Letters. He
has been on the Technical Program Committees of major IEEE ComSoc,
ICC/GLOBECOM, ICME, WCNC, and PIMRC conferences. He acted as the
Director of IEEE ComSoc EMEA region and member of the IEEE Comsoc
Board of Governor (2019-2020). He was the chair of the IEEE ComSoc
Technical Committee on Software (TCS) (2019-2020).


