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Abstract

In the last few years, the natural language
processing community witnessed the ad-
vances in neural representations of free
texts with transformer-based language mod-
els (LMs). Given the importance of knowl-
edge available in relational tables, recent
research efforts extend LMs by developing
neural representations for tabular data. In
this work, we present the first survey that
analyzes these efforts. We first categorize
the downstream tasks where the models are
successfully utilized. The alternative solu-
tions are then characterized and compared in
terms of training data, input pre-processing,
model training, and output representation.
Finally, we provide insights on potential fu-
ture work directions.

1 Introduction

Several efforts are researching how to repre-
sent tabular data with neural models for tra-
ditional and new natural language processing
(NLP) applications. These models enable effec-
tive data-driven solutions that go beyond the lim-
its of traditional declarative specifications built
around first order logic and SQL. Examples in-
clude answering queries expressed in natural lan-
guage (Katsogiannis-Meimarakis and Koutrika,
2021; Herzig et al., 2020; Thorne et al., 2021),
performing natural language inference such as
fact-checking (Chen et al., 2020a; Yang and Zhu,
2021), doing semantic parsing (Yin et al., 2020; Yu
et al., 2021), retrieving relevant tables (Pan et al.,
2021; Kostić et al., 2021; Wang et al., 2021a), un-
derstanding table metadata (Suhara et al., 2021;
Deng et al., 2020; Du et al., 2021), and predict-
ing table content (Deng et al., 2020; Iida et al.,
2021). Indeed, tabular data contain an extensive
amount of knowledge, necessary in a multitude of
tasks, such as business (Chabot et al., 2021) and

medical operations (Raghupathi and Raghupathi,
2014; Dash et al., 2019). Hence, the importance
of developing models for representing tables ac-
curately. Given the success of transformer-based
models in developing pre-trained language mod-
els (LMs) (Devlin et al., 2019; Liu et al., 2019),
we focus our analysis on the extension to this ar-
chitecture for developing representations of rela-
tional tables. Indeed, attention-based approaches
are successful also on visual (Dosovitskiy et al.,
2020; Khan et al., 2021), audio (Gong et al., 2021)
and time series data (Cholakov and Kolev, 2021),
and they start gaining popularity for developing
representations for tabular data.

While all solutions have contributions to the
neural representation of tabular data, with alter-
native processes to develop and consume the en-
coded data, there is still no clear definition of
the problem nor a systematic method to compare
those representations given the different assump-
tions and target applications. In this work, we aim
at bringing clarity in this space and at providing
dimensions for a classification that highlights the
main trends and enables future work to clearly po-
sition new results. Our contributions are threefold:

1. We formalize the problem by providing gen-
eral definitions that are applicable to all pro-
cedures and that are agnostic to their assump-
tions and final application (Section 2).

2. We identify and describe the characteris-
tics of each dimension based on the refer-
enced works in terms of downstream tasks
(Section 3), datasets (Section 4), data pre-
processing (Section 5), transformer architec-
ture (Section 6), output characteristics and
usage (Section 7).

3. We discuss limitations of existing works and
propose future work directions (Section 8).

Our work is the first to study methods for neu-
ral representations of tabular data with transform-
ers. It is different from recent surveys and experi-



Figure 1: The generic framework for developing and consuming neural representations for tabular data.

mental analysis that cover the use of deep learning
for classification, regression, and generation tasks
with tabular data (Borisov et al., 2021; Gorishniy
et al., 2021; Shwartz-Ziv and Armon, 2021). Dif-
ferently from these efforts, we focus on the core
problem of rendering the transformer architecture
‘data structure-aware’ and relate design choices
and contributions to a large set of downstream
tasks in the NLP and database communities.

2 Transformers for Tabular Data

We start by introducing the terminology used in
the article. With tabular data, we refer to a rela-
tional table. A relational table consists of rows,
or records, and columns that together identify cell
values, or cell. Columns consist of attributes for
a given table, and each row represents an instance
of those attributes. All cells in a single column
share the same type. For example, a relational ta-
ble about countries can include as column labels:
Country, Capital, and Total Population. Exem-
plary rows for such table would contain cell values
“France”, “Paris”, “67.39m” and “Bolivia”, ’La
Paz”, “11.67m”. Notice how a cell value, such as
“La Paz”, can contain multiple tokens.

Relational tables can go beyond the mandatory
elements of tabular data and have richer meta-
data, such as attribute types (e.g., DATE), do-
main constraints, functional dependencies across
columns and integrity constraints such as primary
keys. In the example, column Country is a pri-
mary key. Most works focus on a single table,
with or without metadata, however there are some
exceptions. A few systems consume databases,
which are collections of relational tables, possibly
under referential constraints (Herzig et al., 2021;
Wang et al., 2021a; Yu et al., 2021). Other works
go beyond relational tables and handle spread-
sheets as input. Those are tabular data with richer

schema metadata and structure, such as multiple
labels associated to the same column and nesting
of cells (Wang et al., 2021b; Du et al., 2021).

As shown in Figure 1, we distinguish two
problems. Our main focus is on the develop-
ment of pre-trained representations for tables us-
ing transformer-based deep neural network (1).
Given a relational table, the goal is to learn a
representation of the structured data (cell values,
rows, attributes) in a continuous vector space with
a small number of dimensions. As the final appli-
cation plays a key role in the design decisions in
the task, we also discuss the use of those represen-
tations in the downstream tasks (2).

For both settings, we identify as input the re-
lational table(s), as discussed above, and its con-
text. The context is a text associated to the table.
Depending on the dataset and application at hand,
it varies from table metadata, the text surround-
ing the tables or their captions up to questions, ex-
pressed in natural language, that can be answered
with the tabular data.

Figure 1 shows the general framework that we
propose to model existing solutions.

• Training Datasets: the relational datasets
used for training and fine-tuning the models.

• Input Processing: steps to prepare the data
for the model learning the representation.

• Transformer-based Model: training ob-
jectives and customization of the typical
transformer-based deep learning architecture.

• Output Representation: the final represen-
tations at the token, row, column, and table
level.

• Prediction/Classification System: solutions
consuming the representations or fine-tuning
them to tackle downstream tasks.

• Downstream Tasks: tasks where the models
have been utilized and evaluated.



As several insights for the first five dimensions
depend on the downstream task, we start by de-
scribing the latter. We then discuss the remaining
dimensions according to their framework order.

3 Downstream Tasks

Using neural representations for relational tables
show improvements in performance in several
downstream tasks. In this section, we describe the
tasks and define their input and output. However,
while they all consume tables as input, settings can
be quite heterogeneous, with different solutions
exploiting different information, even for the same
task. We detail here the mandatory input elements
and discuss the different contexts in Section 4.

Natural Language Inference (NLI): NLI re-
lates mainly to two different tasks: fact-checking
and text refusal/entailment. Several works har-
vested neural representations for tabular data to
tackle these tasks. In this setting, fact-checking
consists in verifying if a textual input claim is true
or false against a trusted relational database (Liu
et al., 2021; Yang and Zhu, 2021; Nakov et al.,
2021), also provided as input. Similarly, table-
based textual refusal/entailment consists of check-
ing whether a given input relational table can im-
ply or not the given input text (Dagan et al., 2013;
Korman et al., 2018; Chen et al., 2020a). In addi-
tion to the typical binary output (entailed/refused),
a third class for “not enough information” is some-
times used as output. Some systems also output
the cells as evidence (Aly et al., 2021).

Question Answering (QA): While in free text
setting, QA aims at retrieving passages that in-
clude the answer to a given question, in relational
table setting it consists of finding as output the
cells that answer an input consisting of a question
and a table. One can distinguish two levels of com-
plexity. Simple QA involves lookup queries on ta-
bles, while a more complex QA task involves ag-
gregation operations and requires support for nu-
merical reasoning. Most of the systems proposing
neural embeddings for relational data aim at im-
proving accuracy in QA (Glass et al., 2021; Pan
et al., 2021; Thorne et al., 2021; Eisenschlos et al.,
2021; Liu et al., 2021; Herzig et al., 2021, 2020).

Semantic Parsing (SP): Given a question and
a table as input, SP generates a declarative query,
expressed in SQL or SPARQL, that retrieves the
answer to the question over the table. While in

QA the interest is in directly getting the answer, SP
produces the (interpretable) query to obtain it (Yin
et al., 2020; Yu et al., 2021; Liu et al., 2021).

Table Retrieval (TR): Given a question and a
set of tables as inputs, TR identifies the table that
can be used to answer the input question. TR is
usually helpful when trying to reduce the search
space for a QA task. It is a challenging task given
the limited input size of transformers due to their
inability of handling sequences of more than 512
tokens (Wang et al., 2021a; Herzig et al., 2021;
Kostić et al., 2021).

Table Metadata (TM): Given an input table
with corrupted or missing metadata, the TM ob-
jective is to predict inter-table metadata, such as
column types and headers, and intra-tables rela-
tionships, such as equivalence between columns
and entity linking/resolution. Relevant efforts fo-
cus both on spreadsheets (Wang et al., 2021b; Du
et al., 2021) and relational tables (Deng et al.,
2020; Suhara et al., 2021).

Table Content Population (TCP): Unlike TM
where the table metadata is noisy or missing, TCP
deals with corrupted cell content. Given an input
table with missing cell values, the objective is to
output the respective values (Tang et al., 2021; Iida
et al., 2021; Deng et al., 2020).

We observe that most tasks can be seen as tra-
ditional NLP tasks involving structured data as a
new modality, replacing the free text. NLI applied
on tabular data involves retrieving cells that entail
or refute a given statement whereas on free text the
objective is to select sentences as evidence. TR
on tabular data corresponds to passage retrieval on
free text. TCP is analogous to predicting missing
words or values in a sentence. SP and TM are
more specific to relational tables.

4 Training Datasets

We present in this section the datasets that are
commonly utilized for the downstream tasks that
we have introduced. We identify several character-
istics for these datasets including the context pro-
vided in addition to the tables.

Table 2 summarizes our findings about the most
commonly used datasets. Column “Task Cate-
gories" includes the tasks for which the dataset has
been used for model training. It is important to
note that the top five datasets are mostly used for



Task
ID

Task Label Tasks Coverage Input Output Representative Exam-
ples

NLI Natural Language
Inference

Fact-Checking
Text Refusal/Entailment

Table + Claim
True/False
Refused/Entailed
(Data Evidence)

(Yang and Zhu, 2021)
(Chen et al., 2020a)

QA Question Answer-
ing

Retrieving the Cells for the
Answer

Table + Question Answer Cells
(Herzig et al., 2020)
(Eisenschlos et al., 2021)
(Herzig et al., 2021)

SP Semantic Parsing Text-to-SQL Table + NL Query Formal QL
(Yin et al., 2020)
(Yu et al., 2021)
(Liu et al., 2021)

TR Table Retrieval Retrieving Table that Con-
tains the Answer

Tables + Question Relevant Table(s) (Wang et al., 2021a; Pan
et al., 2021)

TM Table Metadata

Column Type Prediction
Header Detection
Cell Role Classification
Column Relation Annotation
Column Name Prediction

Table

Column Types
Header Row
Cell Role
Relation between Two Columns
Column Name

(Suhara et al., 2021)
(Du et al., 2021)
(Deng et al., 2020)

TCP Table Content
Population

Cell Content Population Table with Corrupted Cell
Values

Table with Complete Cell Val-
ues

(Deng et al., 2020; Iida
et al., 2021)

Table 1: List of tasks utilizing neural representations for tables.

pre-training, while the others can be used for fine-
tuning as well since they include annotations for
the ultimate application, e.g., questions in natural
language for QA. The column “Data Reduction”
is a metric to assess the average size of tables in
the datasets, where 4 and 8 indicate whether or
not some pre-processing is needed to filter out ta-
ble content to meet the limits of LMs (512 input
tokens in most cases). Some works apply filtering
in any case to reduce noisy input (Yin et al., 2020;
Pan et al., 2021). Finally, the “Context” column
describes the additional texts that come with the
tables. This can be text describing the table, such
as a caption, a title or a description of the docu-
ment containing the table; table metadata such as
table orientation, header row, and keys; or ques-
tions and claims that can be addressed with the ta-
ble.

Combination of these datasets are used by dif-
ferent systems. For instance, Yin et al. (2020)
use Wikipedia and WDC, Wang et al. (2021b) use
Wikitables, WDC and spreadsheets (Dong et al.,
2019), Yu et al. (2021) use Wikitables, SPIDER
and WikiSQL, and Kostić et al. (2021) use NQ-
Tables, WikiSQL and OTT-QA.

We observe that TCP and TM downstream tasks
use minimal context, i.e., only table metadata,
while NLI, SP, QA, and TR need additional text
information whether in the form of a question,
claim, table caption or description.

5 Input Pre-processing

In addition to the typical tokenization executed be-
fore feeding the tokens to the neural network (Lan

et al., 2020), some pre-processing steps are per-
formed mainly to reduce and filter the table con-
tent, to reshape the filtered table content, i.e., table
serialization, and to combine the serialized table
with the context information.

5.1 Data Retrieval and Filtering

While some models objective is to retrieve ta-
bles that contain the answer to a given ques-
tion (Wang et al., 2021a; Herzig et al., 2021), oth-
ers (Pan et al., 2021) use a ranking function, such
as BM25 (Robertson et al., 1995), to retrieve rele-
vant tables prior to training the model or to gener-
ate negative examples (Kostić et al., 2021).

Filtering methods on the table content are ap-
plied to stay within the size limits of LMs, to im-
prove the training time of the model, and to elim-
inate potential noise in the neural representations.
Yin et al. (2020) use content snapshot to keep the
top-k most relevant rows in the table. Such content
is identified with the tuples with highest n-gram
overlap with respect to the given context. In addi-
tion to keeping tables with number of columns be-
low a fixed threshold, Wang et al. (2021b) and Du
et al. (2021) split large tables into smaller ones
(horizontal partition). Liu et al. (2021) randomly
select rows at each iteration and Glass et al. (2021)
down-sample rows that are not relevant using term
frequency inverse document frequency (TF-IDF)
score. Thorne et al. (2021) handle rows as sen-
tences. For this task, they train a neural support
set generator using T5 (Raffel et al., 2020) to se-
lect relevant rows that are transformed into facts in
natural language text.



Dataset Reference Task Categories Number
of Tables

Data
Reduction Context Application

ExampleNLI QA SP TR TM TCP

Wikipedia
Tables

Wikipedia 4 4 4 - 4

Surrounding Text: table
caption, page title, page de-
scription, segment title, text
of the segment.

(Herzig
et al., 2020)

WDC Web
Table Cor-
pus

(Lehmberg
et al.,
2016)

4 4 233M 4

Table Metadata: Table ori-
entation, header row, key col-
umn, timestamp before and
after table. Surrounding
Text: table caption, text be-
fore and after table, title of
HTML page.

(Yin et al.,
2020)

WikiTables (Bhagavatula
et al.,
2015)

4 4 4 4 1.6M 4

Surrounding Text: caption,
page title, section title. Table
Metadata: statistics about
number of headings, rows,
columns, data rows.

(Herzig
et al., 2021)

VizNet (Hu et al.,
2019)

4 1M 8
Table Metadata: Column
Types.

(Iida et al.,
2021)

Spreadsheets (Dong
et al.,
2019)

4 3,410 8

Table Metadata: Cell Roles
(Index, Index Name, Value
Name, Aggregation and Oth-
ers).

(Du et al.,
2021)

NQ-Tables (Herzig
et al.,
2021)

4 169,898 4 Questions: 12K. (Herzig
et al., 2021)

TABFACT (Chen
et al.,
2020a)

4 16K 8
Textual Claims: 118K
claims.

(Yang and
Zhu, 2021)

WikiSQL (Zhong
et al.,
2017)

4 4 4 24,241 8 Questions: 80,654. (Kostić
et al., 2021)

TabMCQ (Jauhar
et al.,
2016)

4 4 68 8 Questions: 9,092. (Glass et al.,
2021)

SPIDER (Yu et al.,
2018)

4 200
databases

8
Questions: 10,181 Queries:
5,693.

(Yu et al.,
2021)

WikiTable
Question
(WikiTQ)

(Pasupat
and
Liang,
2015)

4 4 2,108 8 Questions: 22,033. (Liu et al.,
2021)

Natural
Questions
(NQ)

(Kwiatkowski
et al.,
2019)

4 169,898 4 Questions: 320K. (Kostić
et al., 2021)

OTT-QA (Chen
et al.,
2021)

4 400K 4

Surrounding Text: page ti-
tle, section title, section text
limited to 12 first sentences.
Questions: 45,841.

(Kostić
et al., 2021)

Web
Query
Table

(Sun
et al.,
2019)

4 273,816 8
Surrounding Text: cap-
tions. Queries: 21,113.

(Wang et al.,
2021a)

HybridQA (Chen
et al.,
2020b)

4 13K 8

Questions: 72K. Surround-
ing Text: first 12 sentences
surrounding the table.

(Eisenschlos
et al., 2021)

Table 2: Datasets for the development and evaluation of neural representation models of tabular data. 4/8 denotes
that pre-processing is either needed/not needed to filter out table content to meet the limits of LMs. The top five
datasets are mostly used for pre-training models with unsupervised tasks. The rest of the datasets also come with
a context that is used in the downstream task for training and evaluation. Application example refers to samples of
the referenced work where they utilized the respective dataset.



Context and Table parsed by row:
[CLS] Population of Countries [CLS] Country |
Capital | Population [SEP] France | Paris | 67.39m
... [SEP] Italy | Rome | 59.55m
Context and Table parsed by column:
[CLS] Population of Countries [CLS] Country |
France | ... | Italy | ... [SEP] Capital | France | ...
| Rome | ... [SEP] Population | 67.39m | ...

Figure 2: Examples of context (table caption, in italic)
concatenated with row and column data linearization.

Regardless of the eventual downstream applica-
tion, most works filter and reduce the size of the
input data to meet the limits of transformers tech-
nology. However, methodical sampling is more ef-
ficient than random one since it reduces noise in
data representations.

5.2 Table Serialization

The methods for table serialization can be grouped
into three main types. The first one consists of
scanning the table by row: this can be simply a
flattened table (Herzig et al., 2020, 2021; Eisen-
schlos et al., 2021; Kostić et al., 2021; Yang and
Zhu, 2021; Deng et al., 2020), a flattened table
with special token separator to indicate the begin-
ning of new row, new cell, or header row (Liu
et al., 2021; Wang et al., 2021b); a flattened ta-
ble where each cell is represented as concatenation
of column name, column type, and cell value (Yin
et al., 2020); or just the row of column headers (Yu
et al., 2021).

The second linearization is done by scanning
the table by column again either by simple con-
catenation of column values or by using a special
token as separator (Suhara et al., 2021).

The third technique consists of combining the
output from both types of serialization (Glass
et al., 2021; Du et al., 2021; Pan et al., 2021; Iida
et al., 2021). Representative row and column se-
rializations for the country population example in
Section 2 are reported in Figure 2.

It is not clear whether row encoding is bet-
ter than column encoding or vice versa. Chen
et al. (2020a) experiment with different settings
and there is no significant difference in perfor-
mance. Multiple efforts incorporate both aspects
either by appending column headers to cell con-
tent, combining row and column encoding, or by
adding structure aware indicators as we discuss in
Section 6.

5.3 Context and Table Concatenation

In most systems, the table content is concatenated
with the available context information detailed in
Table 2. The context can be combined by concate-
nating it in the serialization before the table con-
tent (Yin et al., 2020; Herzig et al., 2020, 2021; Yu
et al., 2021; Yang and Zhu, 2021), or appended to
it (Liu et al., 2021). Chen et al. (2020a) test both
strategies and report minor improvements in per-
formance when context is appended to table data.
In some cases, the table and the context are en-
coded separately and then are combined at a later
stage in the model (Kostić et al., 2021; Pan et al.,
2021; Glass et al., 2021).

Some works do not include context in their pre-
training input besides the column headers (Iida
et al., 2021; Du et al., 2021; Suhara et al., 2021). A
richer context is used when the downstream tasks
are similar to the corresponding NLP task applied
on free text. For instance, all models for QA use
table captions or descriptions as context.

6 Model Characteristics

To account for structured tables in the input, sev-
eral pre-trained transformer-based language mod-
els (LMs) and systems have been developed.
Vanilla LMs are customized to make the model
more “data structure-aware”, thus rendering a
modified transformer-based encoder to be utilized
on other tasks. These encoders deliver the table
representation, as depicted in part (1) of Figure 1.
To exploit such representation and build applica-
tions, as in part (2) of Figure 1, several systems
build on top of the encoder, usually with more
modules and fine tuning. Other systems instead
use the encoder as part of a bigger architecture in
a more task-oriented fashion rather than encoder-
oriented. We first briefly revise the transformer
architecture, then discuss customizations to LMs.

6.1 Vanilla Transformer

The vanilla transformer (Vaswani et al., 2017) is a
seq2seq model (Sutskever et al., 2014) consisting
of an encoder and a decoder, each of which is a
stack of N identical modules. The encoder block
is composed of a multi-head self-attention module
and a position-wise feed-forward network. Resid-
ual connections and layer-normalization modules
are also utilized. On the other hand, decoder
blocks consist of cross-attention modules be-
tween the multi-head self-attention modules and



the position-wise feed-forward networks, where
masking is used to prevent each position from at-
tending to subsequent positions.
Attention Modules. The transformer relies on
the "Scaled Dot-Product Attention" mechanism,
where three matrices are used: the query Q ∈
RO×dk , the key K ∈ RP×dk , and the value V
∈ RP×dv matrices, where O and P denote respec-
tively the lengths of queries and keys/values, and
dk and dv denote respectively the dimensions of
keys/queries and values. The scaled dot-product
attention is given by:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

The matrix softmax(QKT
√
dk

) is often called the
attention matrix, as it portrays how much each
element attends to all elements of the sequence.
For input with large size, computing the attention
matrix is infeasible and sparse methods are uti-
lized (Tay et al., 2020). Instead of relying on a
single head, transformers use multi-head attention,
where the original queries, keys, and values with
dimension dm are projected into dk, dk, and dv
dimensions, respectively, with h attention heads
each with a different set of learned projections.
Each head output is computed with Eq. (1), and
all outputs are concatenated and projected back to
a dm-dimensional representation.

MultiHeadAttn(Q,K, V ) =

Concat(head1, . . . , headH)WO
(2)

where

headi = Attention(QWQ
i ,KWK

i , V W V
i ) (3)

Feed-forward network. The position-wise feed-
forward network is a fully connected feed-forward
module operating separately on each position:

FFN(x) = ReLU(xW1 + b1)W2 + b2 (4)

Positional Encoding. Since transformers do not
incur any form of recurrence, positional informa-
tion is designated by absolute sinusoidal position
encodings added to each token embedding of the
transformer (Vaswani et al., 2017). Such embed-
dings can also be learned (Devlin et al., 2019).
Transformer Usage. The transformer architec-
ture can be used as an encoder-decoder (Vaswani
et al., 2017; Raffel et al., 2020), an encoder-
only (Devlin et al., 2019; Liu et al., 2019), or

decoder-only (Radford et al., 2019; Brown et al.,
2020) model. Encoder-only models are mainly
used for classification where pre-training is done
with a task called masked language modeling
(MLM) whose goal is to predict masked token(s)
of the altered input (Devlin et al., 2019).

6.2 LM Extensions for Tabular Data

To properly model the structure of data in tables,
the vanilla models are extended and updated by
modifying components at the (i) input, (ii) inter-
nal, (iii) output, and (iv) training-procedure levels.
We discuss each of them in the following. A sum-
mary of the extensions is provided as a taxonomy
in Figure 3.

6.2.1 Input Level
Modifications on the input level are usually desig-
nated with additional positional embeddings to
explicitly model the table structure. For example,
embeddings that represent the position of the cell,
indicated by its row and column IDs, are common
for relational tables (Wang et al., 2021b; Herzig
et al., 2020; Iida et al., 2021). For tables with-
out a relational structure (such as entity and ma-
trix tables), tree-based positional embeddings have
been proposed that encode the position of a cell
using top and left embeddings of a bi-dimensional
coordinate tree (Wang et al., 2021b). Other sup-
plementary embeddings include those that provide
relative positional information for a token within a
caption/header (Deng et al., 2020) or a cell (Wang
et al., 2021b). For tasks such as QA, segment em-
beddings are used to differentiate between the dif-
ferent input types, question and table (Tang et al.,
2021; Herzig et al., 2020). Embeddings for num-
bers are introduced where discrete features are
used (Wang et al., 2021b).

6.2.2 Internal Level
Most modifications on the internal level are to ren-
der the system more “structure-aware”. Specifi-
cally, the attention module is updated to integrate
the structure of the input table. For example, verti-
cal self-attention layers were produced where the
aim is to capture cross-row dependencies on cell
values by performing the attention module in a
vertical fashion (Yin et al., 2020). Other systems
employ a masked self-attention module which at-
tends to structurally related elements such as el-
ements in a row or a column, unlike the tradi-
tional transformer where each element attends to
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Objectives
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Ranking Point-wise Ranking GTR (Wang et al., 2021a)

Figure 3: Taxonomy of extensions to transformer-based LMs for handling tabular data.

all other elements in the sequence (Deng et al.,
2020; Wang et al., 2021b).

Other modifications address the input size con-
straint of attention modules, where large tables are
often neglected. Sparse attention methods are pro-
posed to cope with this ordeal (Tay et al., 2020).
For instance, Eisenschlos et al. (2021) sparsified
the attention matrix to allow transformer heads to
efficiently attend to either rows or columns.

6.2.3 Output Level

Additional layers can be added on top of the feed-
forward networks (FFNs) of the LM depending
on the task at hand. Tasks such as cell selec-
tion (Herzig et al., 2020), NLI (Chen et al., 2020a),
TM (Suhara et al., 2021), and QA (Herzig et al.,
2020) require to train one or more additional lay-

ers. Classification layers for aggregation opera-
tions and cell-selection are used to support aggre-
gating cell values (Herzig et al., 2020; Eisensch-
los et al., 2021; Glass et al., 2021; Yang and Zhu,
2021; Yu et al., 2021). Aggregation operations
could be also “learned” end-to-end in a seq2seq
task (Liu et al., 2021).

6.2.4 Training-Procedure Level

Modifications on the training-procedure level can
be attributed to the pre-training task or the pre-
training objective.
Pre-training Tasks. Systems are either trained
end-to-end or fine-tuned after some pre-training
procedure. Almost all pre-training tasks fall un-
der the category of reconstruction tasks, where
the idea is to reconstruct the correct input from



a corrupted one. Aside from MLM, other pre-
training tasks are employed. Such methods rely
on masking tokens of table cells (Wang et al.,
2021b) or masking the whole cell (Yin et al., 2020;
Wang et al., 2021b), column names and types (Yin
et al., 2020). Other pre-training tasks detect if
a cell/tuple is corrupted or not (Iida et al., 2021;
Tang et al., 2021). Text headers of tables are uti-
lized to learn representations of tables in a self-
supervised manner (Wang et al., 2021b). One pre-
training task adopts an SQL engine to train the
model to act as a neural SQL executor, thus en-
abling it to mimic the SQL semantics with rela-
tional tables (Liu et al., 2021).
Pre-training Objectives. The majority of the sys-
tems minimize cross-entropy loss. One system uti-
lizes a point-wise ranking objective for end-to-end
training after pre-training (Wang et al., 2021a).

Overall, a more data structure-aware LM re-
quires modifications to the input level, through
additional embeddings, and to the internal level,
through adjustments of the attention module. Pre-
training on table-related tasks, such as masking or
corrupting table cells, also enhances encoding ca-
pabilities for structured data on fine-tuned tasks.
Modifications on the output level are more task
specific and have less impact on making the LM
‘understand’ the data structure.

7 Output Model Representation

We first describe the final data representations and
then how those are used in target systems.

7.1 Output Characteristics

The output characteristics of the neural represen-
tations of relational data are the result of the model
pre-training. The output can be fine-tuned or uti-
lized as-is, as features with standard supervised
machine learning algorithms. The systems expose
different granularity of the output table represen-
tation. Almost all systems provide token and cell
output representations. The majority also expose
column and row representations and few works
provide table and pairwise column (Suhara et al.,
2021) or pairwise table representations (Yang and
Zhu, 2021). The pre-trained models are usually
available out-of-the-box, while in some cases the
users have to retrain the models. In case of special
separator token preceding the context appended to
the table content, a representation of that context
is also provided (Herzig et al., 2021; Chen et al.,

2020a; Pan et al., 2021; Kostić et al., 2021).
We observe a relationship between the granu-

larity of the output representations and the target
downstream tasks. For instance, table represen-
tations are used for the TR task, while column-
pairs representations for the TM task to support
columns relation annotation. Cell representations
are used for the QA task, since the cells includ-
ing the answer should be returned. Finally, col-
umn representations are used for the SP task, as
columns are needed to formulate the output query.

7.2 Prediction/Classification Systems

As pre-trained transformer-based LMs act as en-
coders of the input, they are used in many settings
as a building block to process the input. Novel
layers are added on top of the LM and the entire
model is then fine-tuned for a specific task (Deng
et al., 2020; Wang et al., 2021b). While this is a
common use of pre-trained LMs, other works em-
ploy LMs as components in a larger system, where
encoding the input is not a first-class citizen, and
rather the aim is to develop an end-to-end trained
system oriented towards a certain task.

Most of these larger systems focus on the re-
trieval of tables from an input natural-language
query. Herzig et al. (2021) answer a natural-
language question from a corpus of tables in two
steps. First, their approach retrieves a small set
of candidate tables (TR), where encoding of ques-
tions and tables are learned through similarity
learning. The similarity score is obtained through
an inner product. Then, it performs the standard
answer prediction (QA) with each candidate table
in the input. Kostić et al. (2021) study a multi-
modal version of this system using both tables and
text passages by proposing several bi-encoders
and tri-encoders. Similarly, Pan et al. (2021) in-
troduce an end-to-end system for QA over a table
corpus, where the retrieval of candidate tables is
performed by a coarse-grained BM25 module, fol-
lowed by an RCI-interaction model (Glass et al.,
2021) that concatenates the question with the
row/column and classifies whether the associated
row/column contains the answer. Other systems
support retrieval of non-relational tables where
tables are represented by graphs (Wang et al.,
2021a). In this setting, stacked layers of a vari-
ant of Graph Transformers (Koncel-Kedziorski
et al., 2019) are employed for obtaining node fea-
tures that are combined with query embeddings.



These combined embeddings are then aggregated,
through a multi-layer perceptron, with BERT em-
beddings of the table context and query, and a rel-
evance score is then obtained.

8 Future Directions

While there has been progress in representing tab-
ular data, several challenges remain unaddressed.

Interpretability. Some systems expose a justifi-
cation of their model output (Yang and Zhu, 2021;
Pan et al., 2021; Thorne et al., 2021; Eisensch-
los et al., 2021; Herzig et al., 2020), but the ma-
jority does not, and model usage remains a black
box. One direction might be to use the attention
mechanism to derive interpretations (Serrano and
Smith, 2019; Dong et al., 2021). Looking at self-
attention weights of particular layers and layer-
wise propagation w.r.t. the input tokens, we can
capture the influence of each input on the output
through back-propagation (Huang et al., 2019).

Error Analysis. Besides developing explain-
able models, error analysis can help understand
the model behavior. Most works focus on the
downstream evaluation scores rather than going
through manual evaluation of errors. In the down-
stream task level, this analysis could trace back
misclassified or mispredicted examples to get evi-
dence of issues in the tabular data representation.

Complex Queries. Several works handle
queries with aggregations by adding classification
layers (Thorne et al., 2021; Eisenschlos et al.,
2021; Liu et al., 2021). However, such methods
fail short with queries that join tables. Indeed,
most works assume a single table as input. A nat-
ural direction is to develop models able to handle
multiple tables, for example with classification
layers predicting when a join is needed.

Model Efficiency. Transformer-based ap-
proaches suffer from the upper bound on the
supported input size (typically 512 tokens). This
is a concern with large tables. In this direction,
several architectures have made improvements
around computational and memory efficiency
by using locality-sensitive hashing to replace
the attention mechanism (Kitaev et al., 2020),
approximating the self-attention mechanism by a
low-rank matrix (Wang et al., 2020), and applying
kernels to avoid the computational complexity of
the attention mechanism (Katharopoulos et al.,

2020; Choromanski et al., 2020). While there
exist methods to make transformers more efficient
for long context (Tay et al., 2020), all of them
consider the input to be unstructured. We believe
more traction is needed for efficient transformers
on structured data, where ideas such as limiting
attention heads to rows/columns (obtained natu-
rally from the structured input) can be utilized for
efficiency (Eisenschlos et al., 2021).

Benchmarking Data Representations. There
are no common benchmark datasets where re-
searchers can assess and compare the quality of
their data representations in a level playing field.
Current evaluation is extrinsic, i.e., at the down-
stream task level, where each work has its own as-
sumptions. Intrinsic methods to evaluate the qual-
ity of the representations, such as those for word
embeddings (Bakarov, 2018), can include pre-
dicting table caption given table representation or
identifying functional dependencies. A set of pre-
cise tests can be designed to assess data-specific
properties, such as the ability of the transformer-
based models, designed to model sequences, to
capture that row and attributes are sets in relational
tables. Also, it is not clear whether the model rep-
resentations are consistent or not with the table
structure. For example, given two cell values in
the same row/column, are their embeddings closer
than values coming from different rows/columns?
For this, following the lines of CheckList (Ribeiro
et al., 2020), basic tests should be designed to
measure the consistency of the data representation.

9 Conclusion

In this article, we conducted a survey on the ef-
forts in developing transformer-based representa-
tions for tabular data. We introduced a high level
framework to categorize those efforts and charac-
terized each step in terms of solutions to model
structured data, with special attention to the exten-
sions to the transformer architecture.

As future work, we envision a system to per-
form an experimental study based on our sug-
gested problem formulation. The first part of the
system would develop tabular data representations
with alternative design choices, while the second
part would evaluate them in different downstream
tasks. This work would help identifying the im-
pact of choices, made to develop those represen-
tations, on the performance on the final applica-
tions.
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Customization Categories Details Task Categories Referenced WorkNLI QA SP TR TM TCP

Encoding
Row Encoding 4 4 4 4 (Liu et al., 2021)
Column Encoding 4 4 4 (Suhara et al., 2021)
Combined Row & Column Encoding 4 4 4 (Pan et al., 2021)

Table Structure Aware Representation
Positional Embeddings 4 (Herzig et al., 2020)
Visibility Matrix 4 4 (Deng et al., 2020)
Tree-based Positional Embedding 4 (Wang et al., 2021b)

Direction of Attention
Vertical Attention 4 (Yin et al., 2020)
Tree Attention 4 (Wang et al., 2021b)
Sparse Attention 4 (Eisenschlos et al., 2021)

Addition of CLS Layers

Cell Representation 4 4 4 (Herzig et al., 2020)
Aggregation Operator Prediction 4 (Thorne et al., 2021)
Column/Row Representation 4 4 4 4 (Glass et al., 2021)
Table Representation 4 (Wang et al., 2021a)
Column Pairs Representation 4 (Suhara et al., 2021)
Final Verdict 4 (Chen et al., 2020a)

Pre-training Objectives

Masked Language Model 4 4 4 4 4 (Eisenschlos et al., 2021)
Masked Cell/Entity Recovery 4 4 4 (Deng et al., 2020)
Masked Column Prediction 4 (Yin et al., 2020)
Inverse Cloze Task 4 4 (Herzig et al., 2021)
Table Context Retrieval 4 (Wang et al., 2021b)

Fine-tuning for Supervised Tasks
Fine-tuning without Pre-training 4 4 (Kostić et al., 2021)
Using Embeddings as Features 4 (Du et al., 2021)

Fine-tuning Objectives
Cross-Entropy Loss 4 4 (Eisenschlos et al., 2021)
Binary Cross-Entropy Loss 4 4 4 (Suhara et al., 2021)
Logistic Loss 4 (Herzig et al., 2021)

Numerical Value Reasoning
Yes: Model Handles Aggregations 4 4 4 (Herzig et al., 2020)
No: Model Handles Value Selection only 4 4 4 4 4 4 (Iida et al., 2021)

Table 3: Summary of Model Customizations.
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Table 4: A summary of model customization adopted by a sample of the surveyed works.


