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ABSTRACT
The production of European silk textile is an endangered intangible
cultural heritage. Digital tools can nowadays be developed to help
preserving it, or even to make it more accessible for the public
and the fashion industry. In this paper, we propose an image-based
retrieval tool that leverages on a knowledge graph describing the
silk textile production as well as rules formulated by experts of
this domain. Out of several possible similarity scenarios, two have
proven to work best and have been integrated into an exploratory
search engine.

CCS CONCEPTS
• Computing methodologies → Visual content-based index-
ing and retrieval.
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1 INTRODUCTION
The knowledge about the production of European silk across cen-
turies is an intangible cultural heritage that can unfortunately be
considered endangered. Many silk items that were originally pro-
duced in Europe do, however, still exist - mostly in museums and
other collections around the world. Many of these museums give
public access to the images and metadata of these objects through
their websites andmake it therefore possible to study them and their
material or get inspired from their design. This data has originally
not been made accessible from a single location or web address:
even if digitized, the information about these objects and their
images are scattered on the Web.

In this paper, we describe how we make use of domain-expert
rules and a knowledge graph about European silk textiles to develop
an image-based retrieval system to search and find related silk
fabrics. We briefly describe the development of this knowledge
graph and its underlying ontology, which has also been aided by
experts in the domain of silk textiles, as it offered semantically
annotated data about the depicted objects that could be used for
the image retrieval component. The domain experts have helped
to establish not only one of the definitions of image similarity
based on formulated rules. They also designed an important part of
an evaluation framework, which strongly shaped the assessment
process towards good results for other actual experts, but more
importantly the public and other users.

The aim of all developed tools is to make the history of the silk
heritage accessible to everyone: From domain experts to enthusiasts
and historians, it shall be possible to overcome physical distances
and learn about, see images of and study textile artefacts held in
many collections about European silk textiles. Using digital images
andmetadata makes it possible to make quick comparisons between
different search results and to study even those fragile fabrics that
are impossible to manipulate physically.

The remainder of this paper is structured as follows. In Sec-
tion 2, we describe some related work. In Section 3, we detail our
approach. We evaluate our method in Section 4 and we illustrate
the integration of this component into an exploratory search engine
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in Section 5. Finally, we conclude and outline some future work in
Section 6.

2 RELATEDWORK
Knowledge Graph. The fact that most Cultural Heritage (CH)

organisations or portals manage their own metadata using propri-
etary and ad-hoc formats makes integration often challenging and
time consuming. We hypothesize that using Semantic Web technol-
ogy, and in particular building a Knowledge Graph (KG) based on
an ontology that follows the CIDOC Conceptual Reference Model
(CRM) helps not only with making such integration tasks easier, but
provides also tools for further semantic annotation. The CIDOC-
CRM model was specifically developed for information in the field
of CH and is the outcome of more than 20 years of development
by ICOM’s International Committee for Documentation (CIDOC).
CIDOC-CRM [9] is an official ISO standard since 2006, which has
been renewed in 2014 and it can be found at ISO 21127:2014.

The experiments described in this paper used training data that
are extracted from a Knowledge Graph that relies on classes and
properties defined by CIDOC-CRM and its direct extensions CRMsci
(Scientific Observation Model) and CRMdig (Model for provenance
metadata). Many other similar CH projects and models rely on
or extend CIDOC-CRM, such as SCULPTEUR [1], which aims at
improving the integration, browsing and retrieval of museum meta-
data or the more recent example of WarSampo [20], a Knowledge
Graph about Finland in the Second World War. ArchOnto [19] is
another example, which tries to specifically address challenges of
integrating CH data from and for national archives.

Image Retrieval. In general, information retrieval aims to provide
useful information to a user [28]. The particular case of image
retrieval focuses on searching a database on the basis of images,
referred to as query images, provided by a user. In this context, an
abstract representation is calculated for all images in a database as
well as for the query image, and the images in the database having
the representation that is most similar to the representation of the
query image with respect to a similarity measure are provided to
the user.

Early works investigate content-based image retrieval (CBIR),
in which case the image representations are based on visual fea-
tures such as colour histograms [15, 17]. The drawback of CBIR
is the so called semantic gap [33], which describes the inability
to extract semantics from the images based on the low-level con-
tent features [31]. It is attempted to be overcome this challenge
by means of semantic-based image retrieval (SBIR), allowing for
retrieval results that are similar to the query image on a conceptual
level, which could be, for example, the depiction of the same object
type [31]. SBIR matches semantic information that is available for
images, e.g. text features like the image filename that is supposed
to be meaningful, the Alternate Text in a Web page or the title of
the Web page [5, 31].

All of the methods cited so far use representations based on hand-
crafted features, which means that the performance is restricted
by the suitability of the selected features for the task. Most recent
techniques for image retrieval do not use hand-crafted features,
but learn the features by deep learning methods, in particular, by
means of convolutional neural networks (CNN) [22]. In order to

use CNN for image retrieval, pairs or triplets of images are passed
through two or three network branches having identical structures
and sharing their weights. Each branch delivers a feature vector
(descriptor) for its input image and the goal of training the CNN’s
free parameters is to produce similar descriptors for similar input
images and dissimilar descriptors for dissimilar input images. A
prerequisite for training is a mathematical formulation of both, the
similarity of image descriptors as well as the similarity of images,
in the form of an objective function (loss) to be minimized during
training. In this context, many works investigated different vari-
ants of defining similarity: [26] defines the similarity of two input
images, one showing a photograph of an object and the other one
showing a sketch of an object, in a binary way indicating whether
the depicted objects are similar or dissimilar. The image descriptors
in that work are computed by means of a Siamese CNN, being a
two branch neural network with shared weights, where the descrip-
tors are assumed to be similar (dissimilar) in case of a small (large)
Euclidean distance. Training of the network weights is performed
by minimizing the contrastive loss [6] forcing the network to learn
weights that similar descriptors are indeed close to each other after
training.

An alternative to a Siamese CNN architecture is using a triplet
architecture for descriptor learning like in [29]. Such an architecture
allows to present an image to a network with both a similar example
as well as a dissimilar example, where the actual similarity of images
in [29] is defined beforehand by a human operator. Minimizing a
triplet ranking loss, [29] train the network weights such that the
Euclidean distances between image descriptors serve as a measure
of the similarity of the associated images. As manual labelling of
pairs or triplets of images with respect to their similarity as needed
by [26, 29] is extremely time consuming, [32] defines similarity of
images based on class labels.

The authors of [32] propose to create binary hash codes out of
the class labels for all images, where the similarity of the images
is defined by the Hamming distance of the binary vectors. Their
image retrieval network is trained to produce these binary vectors
by means of minimizing the surrogate loss [18] such that images
with similar class labels obtain binary descriptors with a small
Hamming distance and vice versa.

Deep learning-based image retrieval has also been applied in the
field of indexing collections containing cultural heritage artefacts,
where the focus mainly is on querying painting databases. In this
context, it is not uncommon to investigate datasets with multiple
modalities, i.e. with both images and some textual annotations,
such as [12, 24]. In [11], context-aware descriptors are learned for
the image retrieval of art paintings from [12], where similarity
of images is defined by means of the cosine similarity of context-
aware embeddings. During training, their ContextNet jointly learns
a classifier and it learns to produce descriptors. The descriptors are
learned such that the L1 loss of the context embedding generated out
of the available information in a Knowledge Graph using node2vec
[14] and of the context embedding learned by the network becomes
small.

Even though there are works addressing image retrieval for fab-
rics [4, 8, 30], only [7] focuses on fabric image retrieval in the
context of cultural heritage. This work can be seen as an extension
of [7] that defines similarity on the basis of information derived



from a Knowledge Graph. In contrast to [12], we do not derive a
context embedding from a graph but from annotations describing
silk fabrics such as the production timespan or the production place
of the object. Like in [7], these annotations are interpreted as class
labels used to define the similarity of images by means of semantic
similarity, i.e. the degree of equivalent class labels while facing the
problem of missing annotations. Our contribution compared to [7]
is a modification of the semantic similarity that contains a more
intuitive interpretation of the unknown silk properties. Further, the
semantic similarity is extended by a rule-based similarity and an ad-
ditional colour similarity loss and a self similarity loss are combined
with the semantic losses to produce not only semantically similar
descriptors but also visually similar descriptors. The different pro-
posed losses are evaluated on a much larger dataset compared to
[7] and an additional evaluation by cultural heritage experts gives
an impression of how useful the developed methodology actually
is in application.

3 APPROACH
3.1 Knowledge Graph
We have collected museum records describing mostly silk textiles
and fabrics and other objects made out of silk from the last several
centuries. They all come from museums and collections around
the world, for which we developed a crawling and harvesting soft-
ware for their websites or APIs. For the full pipeline of data pre-
processing and knowledge graph integration, we follow a tradi-
tional extraction, transform and load (ETL) procedure. In all cases,
we start with choosing relevant museum and collection websites,
downloading their data as described above, converting all this meta-
data into a common intermediate JSON format, which is, however,
not semantically annotated at this point. All original fields and their
labels are then represented in the form of arrays. In addition to that,
all images of those museum records are downloaded as well.

Next, we convert these JSON files to create a knowledge graph
using the Resource Description Framework (RDF) as data model.
We mostly instantiate a subset of the CIDOC-CRM ontology using
domain-experts defined mappings between each original museum
field and the most appropriate properties and classes from the
CIDOC-CRM ontology. To give a simple example: most museums
have a field for describing the production time of a (silk) object, but
it is often called differently. Furthermore, the museums come from
all over the world and we have to deal with different languages
for both the field names and the values. Therefore a mapping is
created for, e.g, a field named "Date" (in the case of the Metropolitan
Museum of Arts) and the class E12_Production with the property
P4_has_time-span and another class E52_Time-Span. A similar
mapping rule will be written for the field named "date_text" (in the
case of the Victoria and Albert Museum) and for the field named
"Datación" (in the case of the Red Digital de Colecciones de Museos
de España). The values for those fields will also be harmonized and
the knowledge graph makes use of the Getty AAT thesaurus1 for
naming the time periods.

This conversion process involves at the same time a semantic
enrichment process which is mostly based on a domain-expert

1https://www.getty.edu/research/tools/vocabularies/aat/

designed thesaurus for silk textiles. If a string value for a material,
technique or motif depiction can be matched with one of several
labels in this thesaurus full of textile related concepts, the value
gets replaced by a unique identifier of this concept, which is a fixed
and language independent number after a base URI. The matching
itself is string based and triggered when the field value is simple as
opposed to complete paragraphs of texts. Not all of these concepts
are necessarily linked, however, as they have been defined before
actual data from the museums has been downloaded. Finally, we
use additional controlled vocabularies such as Geonames2 to link
and normalise location values and use a more elaborate parsing
mechanism to properly detect the production dates and time spans.

The resulting knowledge graph is finally loaded in a triple store
while the images are separately uploaded onto a media server. The
knowledge graph contains descriptions of 36210 unique objects
illustrated by 74527 images (Figure 1).

Figure 1: Excerpt of the knowledge graph: a textile object
coming from the CDMT Terasse museum which has been
produced in Italy in the 16th century, with the Brocatelle
technique, using silk bombyxmori as material and showing
the motif of a crown.

3.2 Domain Experts Rules for Image Similarity
Training of the method for image-based retrieval requires pairs of
images (𝑥𝑛, 𝑥𝑜 ) for which it is known whether they are similar or
not, as it will be described in Section 3.3. One way of obtaining
these data is to provide rules defining sets of images that should be
similar and sets of images that should be dissimilar based on the
content of the knowledge graph.

Such rules have been formulated by cultural heritage experts on
the basis of an analysis of early image retrieval results. The rules
are used to formulate SPARQL queries to the European silk textile
knowledge graph. The results of these queries are transformed
into a set 𝑇𝐶𝐸 of image pairs (𝑥𝑛, 𝑥𝑜 ) with known similarity status.
This state is binary, i.e. a pair can be similar according to the rules
formulated by the experts or not. An overview of the rules that are
used is given in Table 1.

These rules correspond to different aspects of similarity. Rule 1
corresponds to self-similarity but is based on real images; for the
2https://www.geonames.org/
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Nr. Rule: Two images are supposed to be similar if ...
1 they belong to the same record in the knowledge graph,

i.e. if they show the same fabric
2 they both correspond to objects in the Garín dataset

and the production material is “graph paper” or the
technique is “gouache sobre papel” or “gouache sobre
papel milimetrado”

3 for both corresponding fabrics, the information about
production material or production technique is “pile-
on-pile velvet”

4 for both corresponding fabrics, the information about
production material or production technique is “ciselé
velvet”

5 for both corresponding fabrics, the information about
production material or production technique is "ciselé
velvet" and the sub-depiction is “pomegranate”

6 anywhere in the corresponding records, “plain fabric”
is mentioned

7 for both corresponding fabrics, the colour feature vec-
tors belong to the same colour cluster among clusters
identified to be relevant for defining similarity because
the corresponding objects were found to be similar ac-
cording to the cultural heritage experts. These clusters
are clusters 9 and 11 (saturated red), cluster 5 (blue), clus-
ter 22 (blue damasks) and cluster 27 (green damasks),
see also Section 3.3.2.

Table 1: Rules defined by the cultural heritage experts to de-
fine pairs of similar images. Nr: number of the rules.

image pairs affected by it, the loss in eq. 11 is equivalent to the one
in eq. 8 (see Section 3.3.2). Rules 2-6 consider semantic properties
of silk fabrics and can be seen as variants of semantic similarity.
However, they only consider one or two semantic properties and
disregard all of the others, and a binary concept of similarity is used.
Finally, rule 7 considers the colour distribution and, thus, an aspect
of visual similarity. This rule has been designed based on the results
of a cluster analysis of colour feature vectors as follows. First, a
large set of images has been exported from the knowledge graph.
From these images, colour feature vectors ℎ(𝑥𝑛) were computed in
the way described below (Section 3.3.2) in the context of the colour
similarity loss. After that, k-means clustering using 𝑘 = 30 clusters
was carried out. Some clusters, identified by their cluster indices in
Tab. 1, were found to contain images which should be considered
similar.

Originally, the domain experts have also defined one dissimi-
larity rule (i.e. a negative rule example). However, this rule did
not produce a sufficient number of examples to be useful and only
positive rules (i.e. pairs of images considered to be similar) have
been considered. Consequently, as there are no dissimilar pairs,
the loss in eq. 11 can only be used in combination with other loss
functions in training. However, the principle could be expanded by
additional rules to produce dissimilar pairs in the future.

3.3 Image-Based Retrieval
The goal of image retrieval is to use images as input to search for
records in the knowledge graph. The core of the method is a con-
volutional neural network (CNN) [21] that converts images into
feature vectors (descriptors) so that the descriptors of similar image
pairs have a small Euclidean distance and descriptors of dissimilar
pairs have a large one. Using the CNN to compute descriptors for
all images in the knowledge graph and using a k-d tree as a spatial
index, image retrieval itself becomes a 𝑘 nearest neighbour (𝑘𝑛𝑛)
search in the k-d tree [2]. The prerequisite of our method is a knowl-
edge graph with records containing both images and annotations
in one or more semantic variables. In this work, the knowledge
graph containing images of silk fabrics with annotations in the five
variables production timespan, production place, production material,
production technique and subject depicted is used for that purpose.
This section describes the CNN used to compute descriptors, fo-
cusing on the training procedure, which leverages the contents of
the knowledge graph to generate training samples automatically
without any human intervention.

3.3.1 CNN architecture. The CNN architecture used for image
retrieval is based on [7]. Using an RGB image 𝑥 scaled to 224 x 224
pixels as an input, a ResNet-152 [16] backbone is applied to generate
a 2048-dimensional feature vector. This is followed by two fully
connected (FC) layers with ReLU (Rectified Linear Unit) activations
[25] of 1028 and 128 dimensions, respectively. The output of the last
layer is normalized to unit length, resulting in the 128-dimensional
feature vector 𝑓 (𝑥) which represents the input image.

3.3.2 Training. For the ResNet-152 backbone, the pre-trained pa-
rameters from [16] are used and they remain constant during train-
ing. Thus, the only parameters that are determined in training
are those of the two FC layers of the network. Training is based
on standard stochastic minibatch gradient descent (SGD) using
backpropagation for computing gradients. The training procedure
requires pairs of images (𝑥𝑛, 𝑥𝑜 ) for which it is knownwhether they
are similar or not. It is based on the assumption that descriptors for
similar image pairs should have a small Euclidean distance, whereas
for dissimilar images this distance should be large [3, 13]. The loss
function 𝐸 (x,𝑤) minimized in training to determine the parameters
𝑤 of the network using the data x available for training, which can
be derived automatically from the contents of the knowledge graph,
is the weighted sum of four loss terms:

𝐸 (x,𝑤) = 𝛼𝑡 ·𝐸𝑡 (x,𝑤)+𝛼𝑠 ·𝐸𝑠 (x,𝑤)+𝛼𝑐 ·𝐸𝑐 (x,𝑤)+𝛼𝑟 ·𝐸𝑟 (x,𝑤). (1)

The four loss terms (𝐸𝑡 , 𝐸𝑠 , 𝐸𝑐 , 𝐸𝑟 ) in eq. 1 correspond to different
definitions of similarity and are explained in the subsequent para-
graphs. The weights (𝛼𝑡 , 𝛼𝑠 , 𝛼𝑐 , 𝛼𝑟 ), which have to sum to 1, can
be modified to define different similarity scenarios. Compared to
[7], the innovation of our method lies in an improved formulation
of the semantic similarity loss 𝐸𝑡 and the integration of the other
three loss terms.

𝐸𝑡 : Semantic Similarity. This loss term considers two images
(𝑥𝑛, 𝑥𝑜 ) to be similar if the semantic information associated with
them is similar. Thus, "similarity" becomes a gradual concept: the
more annotations are shared, the more similar a pair of images is
considered to be. This definition of semantic similarity 𝑌𝑠 of a pair



of images (𝑥𝑛, 𝑥𝑜 ) has to consider the fact that a sample might have
annotations for a subset of the considered variables only:

𝑌𝑠 (𝑥𝑛, 𝑥𝑜 ) =
1
𝑀

·
𝑀∑
𝑚=1

𝑣𝑚 · 𝑑𝑚 (𝑥𝑛, 𝑥𝑜 ) · 𝜋𝑛𝑚 · 𝜋𝑜𝑚 . (2)

In eq. 2,𝑚 is the index of a semantic variable and 𝑀 denotes the
number of variables considered. The binary variables 𝜋𝑖𝑚 indicate
whether for the image 𝑖 ∈ {𝑛, 𝑜} the annotation for variable𝑚 is
available (𝜋𝑖𝑚 = 1) or not (𝜋𝑖𝑚 = 0). Thus, the term

𝑢 (𝑥𝑛, 𝑥𝑜 ) = 1 − 1
𝑀

·
𝑀∑
𝑚=1

𝜋𝑛𝑚 · 𝜋𝑜𝑚, (3)

the percentage of variables for which there is no annotation in at
least one of the images (𝑥𝑛, 𝑥𝑜 ), expresses the level of uncertainty
of the similarity. The weight 𝑣𝑚 of a variable 𝑚 can be used to
give more or less importance to certain variables. In accordance
with cultural heritage experts, these weights were set to 0.30, 0.25,
0.20, 0.15, 0.10 for the variables subject depicted, production mate-
rial, production place, production technique and production timespan,
respectively, i.e. the depicted subject was considered to be most
relevant. Finally, the function 𝑑𝑚 (𝑥𝑛, 𝑥𝑜 ) computes the level of
agreement between the annotations of (𝑥𝑛, 𝑥𝑜 ) for variable𝑚:

𝑑𝑚 (𝑥𝑛, 𝑥𝑜 ) =
1

𝑚𝑎𝑥 (𝐾𝑛, 𝐾𝑜 , 𝜀)
·
𝐾∑
𝑘=1

𝛿 (𝑙𝑚𝑘 (𝑥𝑛) = 𝑙𝑚𝑘 (𝑥𝑜 )), (4)

where 𝑙𝑚𝑘 (𝑥𝑖 ) is an indicator variable with 𝑙𝑚𝑘 = 1 if for variable𝑚,
the class label 𝑘 applies to image 𝑥𝑖 with 𝑖 ∈ {𝑛, 𝑜}, 𝐾 is the number
of class labels for variable𝑚, and 𝛿 (·) denotes the Kronecker delta
which returns 1 if the argument is true and 0 otherwise. 𝐾𝑖 , 𝑖 ∈
{𝑛, 𝑜}, is the sum of all values 𝑙𝑚𝑘 (𝑥𝑖 ) for the image 𝑥𝑖 and 𝜀 is a
small constant to avoid division by zero. Formost semantic variables
𝑚, 𝐾𝑖 = 1, i.e. the class labels are mutually exclusive. However, for
some classes, multiple class labels are permitted for a sample, e.g. a
sample may consist of multiple production materials.

The loss term 𝐸𝑡 is based on the the triplet loss of [7, 27]:

𝐸𝑡 (x,𝑤) = 1
𝑁𝑡

·
𝑁𝑡∑
𝑛1=1

𝑚𝑎𝑥

(
𝑀 (𝑥𝑛1𝑎 , 𝑥𝑛1𝑝𝑠 , 𝑥

𝑛1
𝑛𝑔) + Δ𝑛1𝑎,𝑝𝑠,𝑤 − Δ𝑛1𝑎,𝑛𝑔,𝑤 , 0

)
.

(5)
The sum in eq. 5 is taken over 𝑁𝑡 triplets of images 𝑥𝑛1𝑎 , 𝑥

𝑛1
𝑝𝑠 , 𝑥

𝑛1
𝑛𝑔 ,

where 𝑛1 is the index of a triplet and each triplet consists of an
anchor sample 𝑥𝑛1𝑎 , a positive sample 𝑥𝑛1𝑝𝑠 (i.e., a sample considered
to be similar to 𝑥𝑛1𝑎 ), and a negative sample 𝑥𝑛1𝑛𝑔 (a sample considered
to be dissimilar from 𝑥

𝑛1
𝑎 ). The term

Δ𝑛1
𝑎,𝑖,𝑤

= | |𝑓𝑤 (𝑥𝑛1𝑖 ) − 𝑓𝑤 (𝑥𝑛1𝑎 ) | |2 (6)

denotes the Euclidean distance of the feature vectors 𝑓𝑤 (𝑥𝑛1𝑖 ) com-
puted for the image 𝑥𝑖 , 𝑖 ∈ {𝑝𝑠, 𝑛𝑔}, of triplet 𝑛1 and the feature
vector 𝑓𝑤 (𝑥𝑛1𝑎 ) of the anchor pixel.𝑀

(
𝑥
𝑛1
𝑎 , 𝑥

𝑛1
𝑝𝑠 , 𝑥

𝑛1
𝑛𝑔

)
is a margin:

𝑀

(
𝑥
𝑛1
𝑎 , 𝑥

𝑛1
𝑝𝑠 , 𝑥

𝑛1
𝑛𝑔

)
= 𝑌𝑠 (𝑥𝑛1𝑎 , 𝑥𝑛1𝑝𝑠 ) −

(
𝑌𝑠 (𝑥𝑛1𝑎 , 𝑥𝑛1𝑛𝑔) + 𝑢 (𝑥𝑛1𝑎 , 𝑥𝑛1𝑛𝑔)

)
>!0
(7)

Minimizing this loss forces the learned descriptors of 𝑥𝑎 and 𝑥𝑝𝑠
to be close together in feature space and the descriptor of 𝑥𝑛𝑔 to
have a larger distance from 𝑥𝑎 than 𝑥𝑝𝑠 . The restriction expressed

by𝑀
(
𝑥
𝑛1
𝑎 , 𝑥

𝑛1
𝑝𝑠 , 𝑥

𝑛1
𝑛𝑔

)
>!0 in eq. 7 is used to select triplets. For each

minibatch consisting of a set 𝑆 of images with annotations, all pos-
sible triplets are considered as potential training triplets. For each
such triplet, the margin is computed, and all the 𝑁𝑡 triplets fulfilling
the constraint are used to compute the loss and, consequently, to
update the parameters. The constraint implies that the similarity
𝑌𝑠 (𝑥𝑎, 𝑥𝑝𝑠 ) of the anchor and the positive sample has to to be larger
than the sum of the similarity𝑌𝑠 (𝑥𝑎, 𝑥𝑛𝑔) of the anchor and the neg-
ative sample and the potential positive similarity according to the
unknown properties expressed by the uncertainty term 𝑢 (𝑥𝑎, 𝑥𝑛𝑔 .

𝐸𝑠 : Self-Similarity. This loss function considers a visual aspect of
similarity: an image should be considered similar to a synthetically
adapted version of itself. It should help the CNN to learn that
images of the same fabric that were captured, e.g. from different
perspectives should be considered to be very similar. For every
image 𝑥𝑛 in a minibatch consisting of 𝑁𝑀𝐵 images, a synthetic
image 𝑥 ′𝑛 is generated by applying random rotations by 90𝑜 , a
random horizontal and vertical flipping, and the cropping of a
window containing a random percentage 𝑏𝑐𝑟𝑜𝑝 ∈ [0.7, 1] of the
pixels of 𝑥𝑛 . Furthermore, a random zero mean Gaussian noise with
a standard deviation 𝜎𝐺 = 0.1 is added to the grey values. The
loss is forces the Euclidean distance between the feature vectors
generated by the CNN for an image 𝑥𝑛 and its synthetic partner 𝑥 ′𝑛
to be close to zero:

𝐸𝑠 (x,𝑤) = 1
𝑁𝑀𝐵

·
𝑁𝑀𝐵∑
𝑛=1

| |𝑓𝑤 (𝑥𝑛) − 𝑓𝑤 (𝑥 ′𝑛) | |2 . (8)

𝐸𝑐 : Colour Similarity. This loss takes into account a visual as-
pect of similarity: two fabrics should be considered similar if the
corresponding images have a similar colour distribution. To avoid
dependencies on the intensity, the images to be compared are trans-
formed into the 𝐻𝑆𝑉 (hue 𝐻 , saturation 𝑆 , value 𝑉 ) colour space,
with 𝐻 ∈ [0, 1] and 𝑆 ∈ [0, 1]. In order to compensate for the pe-
riodic definition of 𝐻 , which is usually interpreted as an angle, 𝐻
and 𝑆 are considered to be polar coordinates and used to determine
Cartesian coordinates (𝑥𝑐 , 𝑦𝑐 ), both in the interval [0, 𝑟 ]:

𝑥𝑐 (𝐻, 𝑆) = 𝑟

2
+ 𝑟
2
· 𝑆 · 𝑐𝑜𝑠 (2 · 𝜋 · 𝐻 ) (9)

𝑦𝑐 (𝐻, 𝑆) = 𝑟

2
+ 𝑟
2
· 𝑆 · 𝑠𝑖𝑛(2 · 𝜋 · 𝐻 ),

where 𝑟 defines the scale of the transformation. In this Cartesian
coordinate system, a 2D grid of r x r cells and grid size 1 is defined.
A 2D histogram is determined by assigning each transformed point
to the grid cell in which it is situated and counting the number of
points per grid cell. The histogram obtained for an input image 𝑥𝑛 is
converted into a colour feature vector ℎ(𝑥𝑛) having 𝑟2 components
by stacking the columns of the 2D histogram on top of each other; it
represents the colour distribution of 𝑥𝑛 . Unless otherwise noted, we
used 𝑟=5 in all experiments involving the colour loss, i.e. each colour
vector had 25 elements. Using the 𝑁𝑀𝐵 images of a minibatch,
𝑁𝑐 = 𝑁𝑀𝐵 · (𝑁𝑀𝐵−1)/2 pairs of images (𝑥𝑛21 , 𝑥

𝑛2
2 ) can be generated,

where 𝑛2 is the index of a pair, and the colour feature vectorsℎ(𝑥𝑛21 )
and ℎ(𝑥𝑛22 ) can be computed. Using the symbol Δ𝑛2 to denote the
Euclidean distances of the feature vectors 𝑓𝑤 (𝑥𝑛21 ) and 𝑓𝑤 (𝑥𝑛22 )
delivered by the CNN for the two images of pair 𝑛2 and 𝜌𝑛2 ∈



[−1, 1] to denote the normalized cross correlation coefficient of the
corresponding colour feature vectors ℎ(𝑥𝑛21 ) and ℎ(𝑥𝑛22 ), the colour
similarity loss is formulated as:

𝐸𝑐 (x,𝑤) = 1
𝑁𝑐

·
𝑁𝑐∑
𝑛2=1

𝑚𝑎𝑥
(
0, |Δ𝑛2 −

(
1 − 𝜌𝑛2

)
|
)
. (10)

For image pairs having a similar colour distribution, i.e. a value of
𝜌𝑛2 close to 1, this loss will force the Euclidean distance to be close
to 0, i.e. the feature vectors to be similar. The smaller the correlation
coefficient, the more the Euclidean distance will be pushed away
from 0; for 𝜌𝑛2 = −1, the distance will be pushed to 2, the maximum
possible value because of the normalization (section 3.3.1).

𝐸𝑟 : Similarity Rules. The last loss function is based on the rules
for defining sets of images that should be similar and sets of im-
ages that should be dissimilar described in section 3.2 (cf. Tab. 1.
Assuming that a minibatch contains 𝑁𝑟 such pairs (𝑥𝑛31 , 𝑥

𝑛3
2 ) ∈ 𝑇𝐶𝐸

(cf. section 2), where 𝑛3 is an index of such a pair, and denoting the
Euclidean distances of the feature vectors 𝑓𝑤 (𝑥𝑛31 ) and 𝑓𝑤 (𝑥𝑛32 ) by
Δ𝑛3 , a standard loss to train the CNN to produce similar descriptors
for similar images and dissimilar descriptors for dissimilar images
can be applied:

𝐸𝑟 (x,𝑤) = 1
𝑁𝑟

·
𝑁𝑟∑
𝑛3=1

𝛿
𝑛3
𝑠 · Δ𝑛3 + (1 − 𝛿𝑛3𝑠 ) ·𝑚𝑎𝑥

(
2 − Δ𝑛3 , 0

)
. (11)

In eq. 11, the variable 𝛿𝑛3𝑠 indicates whether the pair (𝑥𝑛31 , 𝑥
𝑛3
2 ) ∈

𝑇𝐶𝐸 is similar (𝛿𝑛3𝑠 = 1) or not (𝛿𝑛3𝑠 = 0). For pairs which are similar
according to the rules defined in section 3.2, only the first term is
active, and the loss will try to minimize the Euclidean distance of
the descriptors of the two images. For dissimilar pairs, only the
second term is active, and the loss will try to push the Euclidean
distance close to the maximum possible distance of 2.

Minibatch generation. The training data x consist of images with
annotations exported from the knowledge graph. In each training
iteration, 𝑁𝑀𝐵 images are randomly selected from these data to
form a minibatch (we used 𝑁𝑀𝐵 = 150 in training). If 𝛼𝑟 ≠ 0, i.e.
if the rule-based loss 𝐸𝑟 (equ. 11) is used, 50% of the samples in
the minibatch are drawn from the subset of images found to be
affected by one of the rules described in Section 3.2 to ensure that
the number 𝑁𝑟 of pairs considered in 𝐸𝑟 is sufficiently high. Note
that the loss function terms are based on a comparison of different
numbers of images. If the semantic similarity loss 𝐸𝑡 (eq. 2) is
used, all triplets fulfilling the constraint expressed by eq. 7 will be
considered. If colour similarity 𝐸𝑐 (eq. 10) is used, all possible pairs
of images will be considered. For the self-similarity loss 𝐸𝑠 (eq. 8),
every image in the minibatch and a synthetically modified version
of it will be considered. Finally, if the loss 𝐸𝑟 (eq. 11) is to be used, all
pairs of images in the minibatch affected by one of the rules will be
considered. Note that the formulation of the total loss 𝐸𝑡𝑜𝑡𝑎𝑙 (eq. 1)
is flexible w.r.t. the combination of the loss terms. However, at least
one of the two terms 𝐸𝑡 and 𝐸𝑐 has to be considered, because 𝐸𝑠
and 𝐸𝑟 do not contribute for dissimilar pairs, in the first case by
design and in the second case because the rules in Tab. 1 do not
define any dissimilar pairs.

One iteration of SGD starts by extracting a minibatch from the
training data and defining the required sets of image pairs and

triplets in the way just described. Afterwards, all images are prop-
agated through the network, and the loss 𝐸𝑡𝑜𝑡𝑎𝑙 is computed and
back-propagated through the network to compute the gradient of
the loss with respect to the unknown parameters𝑤 . Finally, these
gradients are used to update the parameter values.

4 EVALUATION
The evaluation was carried out in three steps and all test data was
exported from the knowledge graph. The test data consisted of
25,825 images with annotations in at least one of five semantic
variables mentioned in Section 3.3 and an additional set of records
affected by at least one of the rules described in Section 3.2. The
first step involved a set of experiments for finding the optimal set
of hyperparameters training and classification. These experiments
were based on semantic similarity only. As we involved domain
experts in the development of definitions of similarity, we also
wanted to make sure we do not only evaluate the model with
regards to a general similarity. Based on the different defined types
of similarity, 5 different scenarios have been created together with
the cultural heritage domain experts of our project in the second
step:

• Scenario A: Semantic similarity and self-similarity.
• Scenario B: Colour similarity and self-similarity. Only sce-
nario with exclusively visual similarities.

• Scenario C: Augmentation of semantic similarity with the
rules defined by cultural heritage domain experts.

• Scenario D: Augmentation of colour similarity with the
rules defined by cultural heritage domain experts.

• Scenario E: Combination of all concepts of similarity, which
is meant to be a compromise between semantic and visual
aspects of similarity.

As part of the second step, a purely technical evaluation has
been performed based on five-fold cross validation and performing
a k-nearest neighbour classification based on the optimal hyperpa-
rameters identified in step 1. This part of the evaluation focused on
the ability to find images having similar semantic properties. The
average accuracies and F1 scores of step 2 can be seen in Tables
2 and 3. As can be seen in these results, the overall F1 scores and
accuracies are relatively similar, with Scenario E being altogether
the best case.

The third step relied on these five scenarios, but the evaluation
was performed by cultural heritage experts through an interactive
analysis of the results. This type of expert evaluation is very time
consuming, therefore only a limited amount of test data has been
chosen and a fixed split into training and test data was used. 100
images were selected to be retrieved as test images, for which the k
= 10 most similar images should be retrieved by the image retrieval
tool. All remaining samples were used for training. Images of objects
that contribute to the test set were excluded from training. This is
especially important as one object can have several images.

The evaluation criteria used by the domain expert were based
on the following concepts:

• Pattern: This concept is about decorative motives, for ex-
ample flowers or birds. Therefore it is related to aspects of
semantic similarity, as some records have explicit textual
metadata descriptions about those.



• Colour : The perception of the colour of an image is relatively
easy for most users. This term represents a visual type of
similarity here.

• Appearance: The domain experts use this term for a concept
of a generic evaluation of the outward form of the silk fabric
in the image. This includes shape, the geometric form, but
also colour again. The domain experts consider this to be a
characteristic that can also be easily perceived by a typical
user.

If a pair of images matches at least two criteria it was considered
a meaningful pair, otherwise not. A graphical representation of the
top-k-scores and the percentage of meaningful images for values k
between 1 and 10 can be seen in Figure 2 and 3. For Step 3, we can
see Scenario B performing by far the best, with Scenario E actually
being mostly second best, but with a significant distance.

Based on these results two best scenarios have been chosen:
Scenario E led to the highest F1 scores and overall accuracies based
on semantic similarity, whereas Scenario B proved to be the best
one according to the evaluations by the domain experts.

Figure 2: Top-k-scores as a function of k for all evaluated
scenarios. The score gives the percentage of query images
for which there was at least one meaningful result among
the k most similar images delivered by the image retrieval
module.

The investigated scenarios for similarity are based on different
definitions of the loss function; they indicate that the consideration
of the additional loss terms beyond those used in Scenario A do
indeed contribute to a better performance if the focus of retrieval
is on semantic aspects of similarity, whereas the new colour loss
is essential for retrieving meaningful results according to the eval-
uation by domain experts. A full ablation study considering the
contributions of all loss terms is beyond the scope of this study.
Note that the method described in [7] is very similar to Scenario A;
the difference is in the use of an improved version of the semantic
loss and in the self-similarity loss.

Figure 3: Percentage 𝑃𝑚 [%] of query images for which the
image retrieval module delivered at least m meaningful im-
ages among the k=10 nearest neighbours for Scenarios A-E.

5 AN EXPLORATORY SEARCH ENGINE FOR
FINDING SIMILAR OBJECTS

The knowledge graph that we used to train the models is accessible
via a RESTful API that has been developed using the grlc framework
and the SPARQL Transformers library [23]. A web based applica-
tion has been developed using this API to provide an exploratory
search engine for silk textiles. It offers a user-friendly interface
with facetted search to apply filters corresponding to the different
properties of the silk textiles, like the material or technique being
used or the production place and time [10].

We have integrated in this exploratory search engine the image-
based retrieval module described in this paper. More precisely, we
have integrated the two scenarios B and E described above under
two buttons named "visually similar images" and "objects with
similar properties". The user can upload any image of his choice
(preferably depicting a silk textile) and invoke one of these two
methods to retrieve up to 20 similar objects from the knowledge
graph. Similarly, when browsing the knowledge graph, the user can
request what are the similar objects (either visually or semantically)
with respect to the one being viewed (Figure 4).

6 CONCLUSION
In this paper, we have presented an image retrieval module that
considers different aspect of similarity between cultural heritage
objects that silk textiles are. One of our contribution is to use a
knowledge graph in order to convert domain-expert similarity rules
into queries that generate vast amount of training data. The design
and the evaluation of the image retrieval models benefit from the
knowledge of domain experts. The code of the image retrieval
method is available under Github3.

While exploring different scenarios, we observe that the sim-
plest visual only similarity provides the best accuracy: At least one
meaningful image was retrieved per query image in 83% of all cases.
The semantic similarity proves also to be useful for domain experts
who appreciate to switch from one to the other and observe the

3https://github.com/silknow/image-retrieval

https://github.com/silknow/image-retrieval


Variable 𝛼𝑠 Material
Production
Place Technique Timespan Depiction Average

Scenario A 1⁄2 78.2 / 73.6 44.4 61.8 54.0 88.0 65.3 / 64.4
Scenario B 0 77.1 / 72.6 40.6 57.3 52.5 89.6 63.4 / 62.5
Scenario C 1⁄3 77.9 / 73.3 43.3 60.2 54.4 90.1 65.2 / 64.3
Scenario D 0 77.9 / 73.2 43.3 61.1 54.1 89.4 65.2 / 64.2
Scenario E 1⁄4 78.2 / 73.4 44.1 61.6 53.8 89.1 65.4 / 64.4
SIR_LR_4 1 78.2 / 73.9 44.6 61.6 55.3 88.9 65.7 / 64.9

Table 2: Overall accuracies [%] per variable for the different scenarios of similarity as well as the best performing experiment
of test step 1 (SIR_LR_4). The highest score per variable is highlighted in bold font. The second column contains the weight 𝛼𝑠
of the loss function term related to semantic similarity and, thus, indicates whether semantic similarity is considered (𝛼𝑠 >0)
or not (𝛼𝑠 = 0); the last column gives average values over all variables. In case of the variable ProductionMaterial, the first value
refers to the classification results based on a binary classification procedure; the second value refers to the results including
the most probable class of samples assigned to the background for all classes.

Variable 𝛼𝑠 Material
Production
Place Technique Timespan Depiction Average

Scenario A 1⁄2 28.3 / 29.6 27.0 57.8 42.8 63.1 43.8 / 44.1
Scenario B 0 25.1 / 26.7 22.8 52.8 41.2 62.0 40.8 / 41.1
Scenario C 1⁄3 27.7 / 29.0 26.3 56.1 43.4 66.3 44.0 / 44.1
Scenario D 0 28.1 / 29.3 26.0 57.0 43.0 63.3 43.5 / 43.7
Scenario E 1⁄4 29.6 / 29.7 26.7 57.3 42.9 65.6 44.4 / 44.4
SIR_LR_4 1 29.2 / 30.2 26.8 56.9 43.0 58.0 42.8 / 43.0

Table 3: Average F1-Scores [%] per variable for different scenarios of similarity as well as the best performing experiment of
test step 1 (SIR_LR_4). For more details, see the caption of Table 2

Figure 4: Objects that are visually similar with respect to
an object produced in 1725-1735 in France using the em-
broidery technique and coming from the Art Institute of
Chicago (ARTIC) museum.

differences. The integration of this module in a user friendly inter-
face, an exploratory search engine, enables to conduct additional
human evaluations.
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