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On the Traffic Impact of Risk-Aware Autonomous Vehicle
Routing Strategies

Duncan Deveaux and Jérôme Härri

Abstract

Connected and Autonomous Vehicles (CAV) face a variety of challeng-
ing driving situations in ever more complex road infrastructures designed
with human drivers in mind. Despite an increasing driving intelligence, a
possible answer to complex road infrastructure or the proximity of vulnera-
ble road users may be to alter CAV driving strategies to avoid potential risky
or complex driving situations. In this paper, we make a first study on the
impact of strict risk-aware routing strategies on urban traffic. Simulation-
based results showed that, if a large amount of CAV are statically routed to
avoid risky areas, mixed effects on traffic can be observed. While the travel
time for human-driven vehicles was reduced, an increased length of queues
among the road network led to increased pollutant emissions.
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1 Introduction

Connected and Autonomous Vehicles (CAV) are vehicles meant to drive pas-
sengers safely to their destinations without driver or human intervention. Through
information exchange, CAV are able to get knowledge of their environment and
improve driving safety. Various standards such as the American DSRC or the Eu-
ropean ITS-G5 have been developed for information exchange and communication
in vehicular networks. The ability to communicate for CAV brings a potential for
coordination among a fleet of autonomous vehicles, differing from the traditional
competitive driving behaviors of human drivers, as introduced in the survey by
Tettamanti et al. [2].

Even at low penetration rates, the introduction of Connected and Autonomous
Vehicles (CAV) on the roads is expected to show significant benefits for the fluidity
of traffic. Because CAV are able to exchange information, they are able to coor-
dinate their movements, bringing opportunities for regulating traffic, even mostly
composed of legacy human-driven vehicles. According to Wu et al [3], a uniform
penetration rate of autonomous vehicle as little as 6% of the overall traffic could
allow to efficiently stabilize traffic on highways by mitigating shockwaves of slow-
ing down vehicles. Alfaseeh et al. [4] suggested an architecture offloading all CAV
routing decisions to a centralized controller. By taking educated routing decisions,
the approach allowed to improve traffic conditions in a simulation of downtown
Toronto in terms of mean travel time and traffic throughput.

Coordination among autonomous vehicle can benefit to the greater number by
improving traffic conditions in various situations. However, this assumes coopera-
tion between autonomous vehicles and choices of routing that may in some cases
be against the interest of CAVs in terms of self-driving capabilities. An expected
key feature of CAV is to be able to use and share the current road infrastructure
with traditional human-driven vehicles, two-wheelers, and pedestrians. However,
most roads were not designed with autonomous traffic in mind, and CAV must
compose with ever more complex road infrastructures requiring implicit cooper-
ation and prediction of the intentions of human drivers and other vulnerable road
users.

Some driving conditions have been studied to be difficult to negotiate au-
tonomously in current states of automation [5]. In some situations, the perception
algorithms on-board CAVs reach a capacity limit and are not able to accurately
interpret a driving scene. In other situations, a road layout may be too complex for
the CAV on-board algorithms to compute safe trajectories, e.g., in the case of work
zones or temporary ground marks. Notwithstanding, poor visibility may also alter
sensor measurements, e.g., occlusion by buildings in city centers or poor weather
conditions and be an issue for self-driving capabilities of CAV [6].

Moreover, situations that require active cooperation with humans are known
to be difficult to negotiate for autonomous vehicles. Again, the issue comes from
both (i) the complex layout of road infrastructures designed for humans drivers,
such as unsignalized intersections, i.e., yield-type crossings or roundabouts and
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(ii) the need to develop algorithms to understand and impersonate human drivers’
implicit behavior and communication methods [7–9].

Combined with loaded traffic conditions, such situations may cause CAVs to
return the control to a human supervising driver [10], cruise at a reduced speed, or
stop completely. This breaches the autonomous character of the CAV and alters
the comfort of autonomous driving for passengers. To identify such situations, risk
metrics for autonomous vehicles have been defined, allowing a risk-aware routing
of CAVs [11]. In order to maximize the likelihood of being able to drive from A
to B in a fully automated manner, CAV can be routed away from risky zones that
may require take-over from a human driver.

In this paper, we make a first study on the impact on traffic of such a system-
atic rerouting of CAV to the most ”automated-friendly” paths. We summarize the
existing literature to understand what road conditions and topologies are challeng-
ing to negotiate for CAV. Based on this understanding, we perform a simulation-
based study using the SUMO-based city-wide MoST scenario [1] and investigate
the effect of such risk aware routing on traffic and pollutants emission metrics,
to compare it with strategies where autonomous vehicles would operate optimally
regardless of the complexity of the road infrastructure.

The rest of this article is organized as follows: Section 2 summarizes the liter-
ature for situations known to be challenging to drive autonomously for the current
CAVs. Based on this understanding, Section 3 describes a case study applied on a
simulated city of Monaco, which investigates the effect for traffic and the environ-
ment of rerouting CAV away from a set of predefined autonomy-challenging areas.
We discuss the results of the case study and lay out future research opportunities in
Section 4, while Section 5 summarizes the article.

2 A measure of risk for automated features

A scale of automation for vehicles as been defined in the SAE J3016 stan-
dard [12] and widely accepted. Levels 0 to 2 refer to partial or no automation,
whereas Level 5 refers to full automation, in which case the vehicle does not re-
quire a driver at all. Although aiming at Level 5 by the industry, personal vehicles
currently being tested or available on the road typically operates at automation
Levels 3 or 4, that is: conditional to high automation. In these systems, the vehi-
cle is able to autonomously control the vehicle in a set of known situation, but the
presence of a supervising human driver is still required.

For these CAV systems, certain road situations and driving contexts are more
difficult or risky to negotiate than others. The objective of CAV at that stage is to
minimize the risk of accident for its passenger while maintaining an optimal self-
driving feature, that is, maintaining a reasonable driving speed and avoiding the
return of the vehicle’s control to a human supervisor. Situations where a CAV is
not able to handle the driving task and must return the control to a human driver
are especially dangerous. Due to the vehicle being at the edge between human
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driving and full automation, the supervising driver – driver or passenger – is likely
to suffer from a lack of attention at critical moments when it is supposed to take
back control [13].

To mitigate the risk of requiring a human driver’s take over, CAVs could con-
sider the possibility to avoid areas and situations that are known to be risky or
challenging to the continuous capability of the CAV to drive in an automated man-
ner. We perform a summary of the literature in order to determine which areas
imply such risk or perturbation for current automated vehicles. We consider the
problem from two approaches, namely:

1. Technical risk, areas that may be prone to technical failures of the on-board
sensors and algorithms of the automated vehicle, leading to risk.

2. Human Interaction risk, which involves areas where complex interaction
with human beings is required.

Moreover, in complex situations involving various factors of risk, CAVs may
be unable to pursue autonomous driving. As a consequence, a take-over might be
triggered by the CAV, in which a supervising human driver is asked to take back
control of the vehicle. In a third subsection, and to consolidate the summarized
risk factors, we summarize the literature for situations that are specifically known
to involve a risk of take-over of a CAV by a supervising human driver.

2.1 Technical Risk

Pink et al. [5] surveyed the various challenges that automated vehicles face
while driving on public roads. One of the main features required for automated
driving is perception by a CAV of its driving environment. CAVs come equipped
with various sensors built for that purpose, such as cameras, lidars, and radars.
Then, perception algorithms fuse the sensed information with external sources,
e.g., map data, in order to properly classify the sensed objects and understand the
current driving scene. Such understanding of the scene and recognition of other
vehicles, pedestrians or obstacles is essential to a safe and continued automated
driving by a CAV. The paper suggests a list of situations that challenge the technical
quality of the retrieved sensor data or the proper accomplishment of perception
algorithms.

On the one hand, technical issues may appear at the sensor information acqui-
sition level. As studied independently by Zang et al. [6], poor weather conditions,
such as rain, snow or fog can significantly alter sensor data quality, in turn alter-
ing the perception capabilities of the CAV. Occlusion is another scenario in which
a part of the scene is hidden, e.g., by a building or another vehicle. Pink el al.
give the example of driving next to a lumbertruck. Recent works have studied the
impact of occlusion for self-driving vehicles [11, 14].

On the other hand, issues may arise in the scene understanding algorithm, even
with good sensor data quality. Pink el al. use the example of driving in construc-
tion zones, where temporary road markings – unexpected by the CAV – overlap
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with the original marks. The lack of training of highly automated vehicles’ scene
recognition algorithms for temporary construction zones situations may lead the
vehicle to temporarily return control to a human supervisor.

2.2 Human Interaction Risk

Communication with human beings is a key issue and challenge for the de-
velopment of autonomous vehicles. Mechanisms to efficiently understand human
drivers’ intents and communicate the machine intentions’ back to them must be im-
plemented for a successful transition from human-driven vehicles to autonomous
vehicles. Even with a high penetration rate of autonomous vehicles, the human
factor can never be completely eliminated, as pedestrians and two-wheelers must
still be considered.

[15] defines safety-critical events for CAVs. Erratic behavior from other road
actors or unplanned events such as pedestrians on roads at unexpected places are
listed. The unpredictability of human road actors makes their interaction with CAV
challenging. In turn, situations where interaction with human drivers is unavoid-
able can be risky for CAVs and force them to return control to a human driver. In
unsignalized intersections, i.e., yield type stops, give-way, or roundabouts, particu-
larly in loaded traffic conditions, negotiation with humans is necessary to proceed.

Rasouli et al. [7] have surveyed the challenges and papers dedicated to au-
tonomous vehicle interaction with pedestrians. The main difficulties and open is-
sues that arise include understanding and predicting pedestrian behavior. What is
more, it is reasonably expected that pedestrians, as well as human drivers, might
adopt a different behavior when facing and recognizing an automated vehicle as
opposed to in a traditional situation. Few studies have investigated this issue, rais-
ing uncertainty in current stages for autonomous driving in areas of high pedestrian
occupancy.

Another identified challenge is defining means of communicating with road
users. This requires not only estimating their intentions, as studied by Fisac et
al. [8] or Zyner et al. [9], but also defining means of communicating the CAV’s
intentions to human drivers. Until these issues are addressed in further details and
studies, areas of high-pedestrian concentration, especially featuring unsignalized
pedestrian crossings as studied by Chen et al. [16], can challenge the ability of CAV
to drive autonomously. Similarly, unsignalized intersections, i.e., yield type, stop
intersections or roundabouts, require communication with human drivers as well
as behavior understanding and prediction and may trigger a human supervisor’s
take-over.

2.3 Risk and Human Take-over

Xin et al. [10] surveyed the literature for reasons that are typically considered to
trigger a take-over of the CAV, i.e., the CAV returns control to a human supervising
driver. They are found to be linked to a capacity limit of the scene perception
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algorithms on board highly automated vehicles. In the studied systems, a capacity
limit can be reached when one or more of the following conditions are met:

• Complex driving situation, e.g., lane change.

• Weather conditions affecting visibility.

• Occlusion, e.g., caused by road-side buildings.

• Large number of vehicles and objects on the road.

The authors give a list of example situations in which such conditions are likely
to be met, and trigger a take-over by a human driver. Work zones are challenging
to navigate for CAV for several reasons. The lack of ground marks or the presence
of temporary ground marks overlapping with permanent marks can be ambiguous
and thus challenging for the perception algorithms of autonomous vehicles. This
is especially true for those that have not been trained or designed to recognize
overlapping temporary ground markings. What is more, the temporary road layout
in work zones is typically unexpected by the CAV, as map data possessed by the
vehicle may not immediately incorporate the updated topology.

Complex driving situations that can cause human driver take-over include lane
change or lane merging situations, or situations of packed traffic where the number
of neighboring vehicles to consider is high. The paper also quotes irregular driving
behaviors of other road drivers that can be encouraged by unclear ground markings.
Finally, the interaction with pedestrians and small vehicles such as nonmotorized
vehicles or two-wheelers can trigger a take-over. This is caused by the potentially
unexpected trajectories they take, for example, in high pedestrian density areas or
unsignalized pedestrian crossings.

3 Case Study: Urban Driving in Monaco

To study the impact on traffic and the environment of routing CAV away from
a set of identified autonomy-challenging areas, we develop a case study applied
to the city state of Monaco. After identifying a set of such areas in Monaco, we
use a microscopic traffic simulation tool to investigate the effects of rerouting a
gradually more important proportion of vehicles away from them.

3.1 Autonomy challenges in Monaco

Based on the literature review, we define a list of the most challenging-to-
drive intersections and areas for CAV in the city state of Monaco. We especially
consider (i) the nature of the area, e.g., roundabout or yield type, (ii) the presence
of occlusion in the area, (iii) the presence of unsignalized pedestrian crossings, (iv)
the clarity of ground marks, e.g., typically poor in a work zone, (v) the presence of
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a lane merging and (vi) the typical traffic conditions in the studied morning rush-
hour period. Figure 1 illustrates the location of the selected areas, and Table 1
summarizes their addresses and characteristics.

Round-point Du Portier The roundabout Du Portier is, at the time of writing, un-
dergoing construction works, and ground marks have been mostly removed.
This adds to the difficulty of driving for CAV, combined with the presence
of unsignalized pedestrian crossings at every arm of the roundabout and the
need for cooperation with human drivers, due to a high traffic at rush hour.

Place d’Armes Some arms of the roundabout of Place d’Armes are occluded by
buildings. Pedestrian activity is high combined with several unsignalized
crossings.

Boulevard des Moulins The roundabout of Boulevard des Moulins features very
congested traffic at rush hour. Moreover, it lacks ground marks clearly iden-
tifying lanes, and some of its smaller arms are occluded by surrounding
buildings.

Boulevard d’Italie In the vicinity of Boulevard des Moulins, the roundabout of
Boulevard d’Italie suffers from similarly congested traffic at peak times, as
well as unclear ground markings for lane separation.

Avenue de la Madone Near the heart of the busy Monte Carlo area, the intersec-
tion between the Casino Square and Avenue de la Madone is highly con-
gested at peak times. It is a yield-type intersection, requiring negotiation
with human drivers, as well as with many pedestrians coming from the
nearby Square and Jardin de la petite Afrique park. The left-hand side of
the intersection is occluded by a building. Finally, the intersection features
an unsignalized pedestrian crossing.

Avenue de France Located at the East border with France, the intersection at Av-
enue de France, 1 connects two-lane roads on the French side with single
lane roads in Monaco. It is implemented by a set of yield-type intersections,
requiring active negotiation with human drivers, especially at peak times,
when the traffic is congested. Unsignalized pedestrian crossings are located
near the intersection.

Pont Sainte-Dévote Similarly to Avenue de France, the Sainte-Dévote bridge is
a yield-type intersection with several lane merging areas. It requires active
negotiation with human drivers under congested traffic conditions at peak
times.

6



Figure 1: Difficult zones considered for CAV in Monaco
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Table 1: Summary of the considered risky zones
Type Occlusion Pedestrian Crossings Lane merging Marks clarity Rush-Hour Traffic

Rond point du portier Roundabout 7 Work zone ++
Rond point Place D’armes Roundabout 7 7 ++
Boulevard des moulins Roundabout 7 7 Low +++
Boulevard d’Italie Roundabout Low +++
Avenue de la Madone Yield 7 7 +++
Avenue de France Yield 7 7 ++
Pont Sainte-Dévote Yield 7 ++

Figure 2: Overview of the MOsT scenario [1]

3.2 Simulation Framework

Simulation of Urban MObility (SUMO) [17] is a free software general-purpose
microscopic traffic simulator that includes various tools to model traffic mobility.
The Traffic Control Interface (TraCI) APIs allow complex interactions with the
simulations, making the implementation of various scenarios possible. In this pa-
per, we use Monaco SUMO Traffic (MoST) scenario [1], a realistic model of the
city of Monaco and its traffic during a typical morning rush hour from 5:00 to
12:00.

MoST is a 3D model of the city state of Monaco, including elevation data. Due
to the geographical position of the city close to the Alps mountain chain, the ele-
vation of various roads differs greatly as well as their slope. In order to accurately
model the emissions of the vehicles simulated in the SUMO MoST environment,
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we use the PHEMLight [18] emissions model. PHEMLight is a simplified version
of the Passenger Car and Heavy Duty Emission Model developed by TU Graz.
It takes the current road slope into account when estimating emissions, making it
suitable for our study.

3.3 Evaluation setup

We run several MoST simulations, each simulating a typical morning rush hour
in Monaco. The simulation includes various modes of transportation in addition
to passenger cars, such as buses, trains, VTC, pedestrians, or two-wheelers. In
total, about 22700 passenger vehicles are inserted in a simulation, each with their
own itinerary made of a departure point, potential stops, and a final destination
point. However, the routing of each passenger vehicle is not fixed once it has been
computed. It is dynamically reevaluated based on the current traffic conditions
every P=300s of simulated time. If a new path with a shorter estimated trip time is
found, the vehicle is routed to follow the shortest available path to its destination,
computed using the Dijkstra algorithm. The costs of possible paths are computed
as their overall distance divided by the current mean speed of vehicles driving them,
thus taking the current traffic conditions into account.

What is more, in each simulation, we divide passenger vehicles into two cate-
gories: Each passenger vehicle is either flagged as a Human-driven vehicle or as a
CAV.

• Human-driven vehicle’s behavior is left unchanged. Their goal is to reach
their destination through the fasted possible route among the available routes
in the network. As explained earlier, their route is reevaluated every P=300s
of simulated time to take current traffic conditions into account.

• Vehicles flagged as CAV take risk into account when computing routes to
their destination. In this study, risk is a simplified static and binary value.
At all times in the simulation, the seven areas of Monaco that we defined in
Table 1 are considered risky to navigate for CAV. As a consequence, vehicles
flagged as CAV are systematically routed away from these risky areas.

Routing of vehicles flagged as CAV in each simulation is dynamically re-
computed every P=300s of simulated time, taking traffic and risk into ac-
count. CAV take the fastest route to their destination that does not involve
crossing any of the aforementioned risky, autonomy-challenging areas of
Monaco.

In each simulation, a random subsection of {N ∈ [0, 10, 20, 35, 50, 60]}% of
the passenger cars are flagged as CAV vehicles. They are dynamically routed to
reach their destination while avoiding the aforementioned autonomy-challenging
areas of Monaco. The objective of this evaluation is to study the potential impact
on traffic and the environment of systematically routing CAV away from risky,
autonomy-challenging areas.

9



Various metrics and statistics are collected from each completed simulations,
including:

• General statistics on the traffic flow conditions at each step of the simulation,
e.g., the mean speed of vehicles.

• Statistics on queues forming in the road network and their length.

• The trips data of each car, including their trajectories, trip duration, fuel
consumption.

• The emissions’ statistics of each car in the simulation, including CO2, CO
and NOx gases, PMx particles and hydrocarbon emissions. The extracted
emissions data take the elevation and the slope the car is driving at into ac-
count.

After running several simulations for {N ∈ [0, 10, 20, 35, 50, 60]}% of CAV,
i.e., rerouted passenger cars in the MoST scenario, we analyze the results on the
impact on the environment and traffic of rerouting a gradually greater amount of
CAV away from autonomy-challenging areas.

3.4 Evaluation Results

3.4.1 Routes

We notice a clear separation between routes taken by CAV and human-driven
vehicles. Figure 3 illustrates on a map the routes taken by both types of vehicles for
a proportion of 50% of CAV and 50% of human-driven vehicles. For each road, the
difference between the number of CAV and the number of human-driven vehicles
that have been driving it during a complete simulation is computed and normalized
into the interval [-1,1]. The blue colors indicate lanes where the number of CAV
was superior to the number of human drivers, whereas the red colors indicate lanes
mostly occupied by human drivers.

Primary roads leading to the city-centre and Monte Carlo are overwhelmingly
occupied by human-driven vehicles, especially from the south border with France.
Boulevard du Jardin Exotique, leading to the Sainte-Dévote area where CAV do
not drive, until the main artery Boulevard des Moulins to Boulevard d’Italie are the
primary roads that human drivers occupy more, benefiting from a shift of CAV to
secondary roads. CAV shift on parallel roads in the French side, such as the Avenue
Paul Doumer. Although they are less risky to drive autonomously, they typically
increase the route length and can feature lower speed limits and traffic throughput
than those of the primary roads of Monaco.

Furthermore, we notice that human drivers favor primary roads even more as
the proportion of CAV increases. Fig. 4 shows the difference in preferred roads
chosen by human drivers (i) in the absence of CAV and (ii) with a proportion of
60% of CAV on the roads. In each case, a normalized value of the most driven roads
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Figure 3: Difference of routes between CAV and human-driven Vehicles for a ratio
of CAV of 50%

by human drivers is computed in the range [0,1], with 0 being a road that no human
vehicle has taken during a simulation, and 1 the most frequented road by human
drivers. The roads are colored by the difference of those normalized most driven
road values for a ratio of 60% and 0% of CAV. The blue colors indicate roads that
were preferred by human drivers when 60% of the overall vehicles where CAV. The
red colors indicate the roads taken by vehicles with no CAV in the road network.

As the proportion of CAV increases, human drivers favor the primary roads we
listed earlier even more. We argue that this is caused by the space freed on those
roads by CAV choosing other, secondary roads. This could indicate an improve-
ment in the traffic conditions on primary roads. In the next section, we analyze
further results on traffic conditions in the road network.

3.4.2 Trip duration

We investigate on the effect of such different routing of CAV and Human-
driven vehicles on their respective mean trip duration and mean speed. Figure 5
shows the evolution as the proportion rCAV of CAV increases of the mean trip
duration during a simulation of (i) CAV in blue, (ii) Human-driven vehicles in
orange and (iii) all vehicles. For each value of rCAV , we perform n = 10 distinct
simulations with a different random choice of vehicles flagged as CAV. The 97.5%
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Figure 4: Difference of preferred routes by human-driven vehicles for 0 and 60%
of CAV

confidence intervals are computed using a Student t-distribution with t = 2.262,
for the corresponding n = 10 sample size.

We observe that an increased rate of CAV resulted in an increase of the travel
duration for CAV, compensated by a significant reduction of the travel time for
human-driven vehicles. All vehicles considered, the trip duration does not vary.
This confirms the benefits on trip time for human drivers as the occupancy of pri-
mary, faster roads decreases in favor of secondary roads, mostly occupied by CAV.

Similarly, Figure 6 shows the evolution as rCAV increases of the mean speed of
different types of vehicles during a simulation. The mean speed of vehicles remains
stable regardless of the amount of CAV vehicles on the road. We notice that the
mean speed of human-driven vehicles however increases with rCAV . In parallel,
the mean speed of CAV decreases as their number increases. This can be explained
by a difference of speed limits in the secondary roads taken, or potentially by the
formation of longer queues in those paths, due to an increased presence of CAV. In
the next section, we investigate on the evolution of queues length and mean speed
during a simulation.

3.4.3 Queues and congestion

Figure 7 shows the evolution of the combined length of queues on the road
every 5 minutes of a simulation, for different ratios of CAV, with a confidence
interval of 95%. We notice an increase of approximately 1km of the overall queue
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Figure 5: Mean trip duration of vehicles during a simulation

Figure 6: Mean speed of vehicles during a simulation
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Figure 7: Evolution of the overall queues length through a simulation

length at peak time – 8:30 to 9:00 – starting from a proportion of 20% of connected
vehicles on the road.

Figure 8 illustrates the evolution of the mean speed of passenger vehicles (both
Human-Driven and CAV) every 5 minutes of the simulation, depending on the
proportion rCAV of CAV in the simulation. The shown values are mean speeds
relative to the roads’ limit speeds, in the interval [0,1], 1 representing a vehicle
driving at the limit speed. This graph comforts the analysis on the evolution of
queue lengths, as we notice a similarly less significant mean speed reduction for
vehicles at peak time for r = 0 and 10%.

Longer queues leading to lower relative mean speeds and greater delays can be
observed in the road network for rCAV > 10%. This suggests an important role
of CAV rerouting in the formation of queues. Starting from a threshold of rCAV

located between a proportion of 10 and 20% of CAV, secondary roads become
congested, affecting the trip times of CAV, and potentially increasing pollutants
emissions during peak time.

3.4.4 Pollutant emissions

Figure 9 shows with a 97.5% confidence interval the evolution as rCAV grows
of the mean CO2 emissions of vehicles by driven distance in g/km, provided that
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Figure 8: Evolution of the mean relative speed of vehicles through a simulation

both CAV and human-driven vehicles are gasoline-powered and follow the EURO
4 emission standard. We observe a stable increase of about 5% of CO2 emitted by
kilometer for CAV compared with human-driven vehicles. The amount of emis-
sions for CAV and human-driven vehicles taken separately are stable, potentially
growing slightly. All vehicles considered, the growth of the number of CAV leads
to an increase in the emissions. We get similar results for other pollutants, with
CAV emitting 7% more NOx gases, 6% more CO gases and HC hydrocarbons,
5% more PMx particles, and burning 5% more fuel than human-driven vehicles
per kilometer. Although some emissions could be mitigated by a shift to electric
or hybrid vehicles, these results demonstrate an increase in energy consumption by
CAV by kilometer, most likely linked to their presence in queues and more elevated
secondary roads.

What is more, we observe an increase in the global pollutants emissions during
simulations as rCAV increases. Figure 10 shows the evolution of the total CO2
emissions by Human-driven vehicles and CAV in metric tons depending on rCAV

with 97.5% confidence intervals. We observe an increase of 4%, i.e., about 2 metric
tons of globally emitted CO2 every morning rush-hour in Monaco between rCAV =
0 and rCAV ≥ 50%. The increase is especially significant between rCAV = 10 and
20%, as well as between rCAV = 35% and 50%. When looking into the total
emissions separated by vehicle type, we notice that CAV proportionally emit more
CO2 than human-driven vehicles. The dark blue bars represent the proportional
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Figure 9: Evolution of the emissions of CO2 by driven distance by vehicle type

exceeding of CO2 emissions of CAV with regard to their representation in the road
network.

We obtained similar results for the overall emissions of other pollutants by
vehicle type. Total emissions of NOx and CO2 as well as total fuel consumption
grow by steps between 10-20% and 35-50%, whereas emissions of CO gases, PMx
particles and Hydrocarbons grow linearly with rCAV .

4 Discussion

We investigated the effects of routing CAV away from a set of predefined risky
areas hypothetically tagged as potentially likely to challenge the ability of the CAV
of undisturbed automated driving. Conducted on a city-wide simulation of the
SUMO MoST scenario, and although considering hypothetical risky situations, this
first study brought light on the impact on traffic and the environment of potential
CAV risk-aware routing strategies.

The first noticeable effect is that, as their proportion increases, CAVs are in-
creasingly redirected on secondary roads. Human-driven vehicles benefit from an
increasingly reduced occupancy on primary, faster roads, allowing them to reduce
their mean travel duration. On the contrary, the mean trip duration of CAV de-
creases as their proportion grows. There seems to exist a threshold in the propor-
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Figure 10: Total CO2 emissions by vehicle type in a simulation

tion of CAVs choosing a static risk-aware routing strategy starting from which the
secondary roads they favor get saturated, located in the case of Monaco between
10 and 20% of vehicles. After this threshold, longer queues form, reducing the
relative mean speed of vehicles and increasing the emission of pollutants.

The energy consumption and pollutants emissions of CAV by kilometer have
been measured as high as around 5% increased compared with human-driven ve-
hicles. What is more, the overall CO2 emissions have increased by about 4%, i.e.,
2 metric tons when switching from a proportion of 0 to 50% of CAV. This is a
significant increase in daily morning rush emissions.

Although such mechanisms of independently routing CAV away from risky
zones has been beneficial for human-driven vehicles in terms of mean speed and
trip duration, it is negatively balanced by equivalent losses for CAV. Moreover,
the increasing proportion of CAV has worsened the environmental footprint of the
Monaco road network. The routing of CAV away from predefined risky zones has
created longer queues on secondary roads, arguably moving the risk for CAV, e.g.,
of rear-end crashes from primary to secondary roads.

This opens the need for a finer risk-level assessment algorithm based on the
characteristics of roads. The creation of knowledge about risky zones by con-
nected vehicles and its exchange in vehicular networks in order to take educated
routing decisions based on the current risk in various road areas could improve the
traffic conditions and environmental impact of CAV while minimizing the risk of
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automated driving perturbations.

5 Conclusion

CAVs are expected to improve traffic throughput and reduce congestion, pro-
vided they cooperate in their routing choices to control traffic. However, at current
levels of automation, certain road infrastructures and driving situations are diffi-
cult to negotiate autonomously for CAV without requiring the intervention of a
supervising human driver. A strategy to mitigate the risk of human take-over is to
systematically route CAV to the most autonomous-friendly paths. As a first study
on the impact of risk-aware routing for CAV, we first summarized the literature for
the road structures and situations that are likely to disrupt a CAV’s automated driv-
ing ability. We identified a list of such roads in the city-state of Monaco and set up a
SUMO simulation using the MoST scenario to explore the impact on traffic and on
the environment of systematically and unconditionally rerouting CAV away from
these autonomy-challenging zones. While an increased proportion of CAV reduced
the travel time of legacy human-driven vehicles, the traffic conditions worsened for
CAV as longer queues formed in secondary roads, their mean speed dropped and
trip duration raised. Moreover, the global pollutants emissions raised by up to 4%
and 2 metric tons of CO2 as the proportion of risk-based routed vehicles grew from
0 to 50%. This emphasizes both a need for further study on autonomous vehicles’
routing algorithms taking risk into account, but also the potential negative impact
on traffic of the ever more complex road infrastructures designed for humans with-
out considering autonomous vehicles. As a future work, a cooperative knowledge
creation and exchange mechanism by connected vehicles regarding the level of risk
of road areas will be studied. Taking educated routing decisions based on the cur-
rent distribution of risk in a given city could elevate CAV to their full potential of
traffic and environmental impact reduction, while reducing the driving risk.
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