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Summary

We propose a method for identifying models with good predictive performance in the family of
Bayesian log-linear mixed models with Dirichlet process random effects for count data. Their wide
applicability makes the assessment of model performance crucial in many fields, including disclo-
sure risk estimation, which is the focus of the present work.

Rather than assessing models on the whole contingency table, we target the specific objective of
the analysis and propose a two-stage model selection procedure aimed at limiting a form of bias
arising in the process of model selection. Our proposal combines two different criteria: at the first
stage, a path in the model search space is identified through a strongly penalized log-likelihood; at
the second, a small number of semi-parametric models is evaluated through a context-dependent
score-based information criterion. Tested on a variety of contingency tables, our method proves
to be able to identify models with good predictive performance in a few steps, even in the presence
of large tables with many sampling and structural zeros. We carefully discuss the proposed method
in the context of the literature on model assessment and contextualize the illustrative application in
the recent debate on statistical disclosure limitation. Finally, we provide examples of further
applications in different research areas.

Key words: Bayesian model selection; Dirichlet process random effects; Disclosure risk; Log-linear
mixed models; Model’s predictive performance; Selection-induced bias; Statistical disclosure limitation.

1 Introduction

Log-linear modelling provides a convenient way of investigating relationships among cate-
gorical variables in contingency tables. However, when the set of classifying variables is large
or there are many categories, the induced table is not only large, but often sparse as well, with
a huge set of alternative log-linear specifications. This poses severe issues in both model fitting
and selection, such as unidentifiability of parameters, non-existence of maximum likelihood es-
timates, unreliability of degrees of freedom and indistinguishability of models with good
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predictive performance. (Refer to e.g. Fienberg & Rinaldo, 2012; Piironen & Vehtari, 2017, re-
spectively, and references therein). In Carota et al. (2015), we proposed a family of Bayesian
log-linear models for disclosure risk estimation where the presence of nonparametric random
effects allows to avoid the above-mentioned issues in model fitting. Capitalizing on the
strengths of this family of models, here we reconsider disclosure control and develop an
application-specific model selection method. Rather than assessing models on the whole contin-
gency table, we target the specific objective of the analysis and develop a two-stage procedure
aimed at limiting a form of bias arising in the process of model selection.

Under a Bayesian approach, models can be assessed and compared by evaluating their pre-
dictive accuracy on future datasets; the posterior predictive density can be used to assess the
out-of-sample predictive performance of a model. Measures of predictive accuracy are often
based on the log-predictive density, which represents a general summary of model fit. There-
fore, an ideal measure of predictive accuracy could be the expected log-posterior predictive den-
sity for a future dataset. However this quantity has to be estimated by a suitable ‘criterion’ that
can solely rely on the available data, thus measuring the within-sample predictive accuracy.
Clearly, out-of-sample predictions will typically be less accurate than suggested by the
within-sample predictive accuracy. This entails a form of bias that is referred to as
within-sample error. At the same time, the variance of the criterion used to estimate the predic-
tive accuracy is crucial in model comparison: indeed, in a large set of models to be compared, a
criterion with large variance may lead to pick a model by chance rather than by merit. This is
another form of bias that we refer to as selection-induced bias. Our model selection method
is meant to address both issues, with special emphasis on the second (described in detail in
Section 2.2). More precisely, we develop a two-stage procedure that combines the idea of
assessing models via scores customized to the end user’s utility (Underhill & Smith, 2016)
and the great flexibility of the class of models in Carota et al. (2015), with the declared purpose
of limiting the selection-induced bias. We also provide a careful discussion of this model
selection method in light of previous and alternative methods (Sections 2.1,3 and 5).

Indeed, in certain estimation problems, rather than focusing on the overall model perfor-
mance, it is sensible to favour the model that best estimates the quantity of interest; the criterion
may therefore be tailored to the specific objective of the analysis. Disclosure risk estimation of-
fers cogent evidence in favour of this approach. Specifically, we focus on disclosure control in
microdata from social surveys released by national statistical institutes or other organisations
(hereafter statistical agencies) for research purposes. This is a particularly challenging problem,
recently debated in various fields, from computer science and mathematical statistics to social
science and public health.

Microdata from social surveys typically include values of sensitive variables (such as income,
health status, political orientation, …) and values of demographic variables. Of course, such
data are disseminated without direct identifiers (name, surname, etc.), but some categorical var-
iables might still be used as indirect identifiers, that is to say as keys for re-identification of re-
spondents, because their values are also available from external sources in non-anonymized
files. Examples of key variables include gender, ethnicity, marital status, place of residence,
and so forth, also recorded in a number of administrative registers along with direct identifiers.
When the released sample includes rare combinations of values of the key variables, the risk of
disclosing respondents’ identities is high if those combinations of values are also rare in the
population. Actually, if variables are recorded without error, a potential intruder can easily dis-
cover the identity of data subjects by matching on keys, thus gaining access to their sensitive
information. Breaches of confidentiality carry very serious legal consequences and undermine
trust in the statistical agency, which becomes likely to get less, or less truthful, answers (i.e.
lower quality data) from future respondents.
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Disclosure risk estimation is a challenging inferential task since cross-classification of re-
spondents according to the values of the key variables often results in a large contingency table
with many sampling and structural zeros. For cells (combinations of values) with small sample
frequencies, statistical agencies have to infer how large are the corresponding population fre-
quencies. Traditionally, the literature focused on sample cells with frequency of 1, sample
uniques, but sample doubles, triples, etc. can also be considered (refer to Section 5). Here,
for simplicity, we follow the literature. Descriptions of the most common disclosure risk
measures and rich lists of references can be found in Forster & Webb (2007) and Taylor
et al. (2018).
Let Fk and fk denote the population and sample frequencies in the kth cell, respectively, and

let K be the total number of cells in the contingency tables spanned by the key variables. Two
interesting measures of the global risk of re-identification, or disclosure risks of the sample to be
released, are the number of sample uniques which are also population uniques,

τ1 ¼ ∑
K

k¼1
Iðf k ¼ 1; Fk ¼ 1Þ ¼ ∑

K

k¼1
Iðf k ¼ 1ÞIðFk ¼ 1jf k ¼ 1Þ; (1)

and the number of correct guesses if each sample unique is matched with an individual
randomly chosen from the corresponding population cell

τ2 ¼ ∑
K

k¼1
Iðf k ¼ 1Þ 1

Fk
; (2)

where I(A) denotes the indicator function of the event A. Usually, τ1 and τ2 are approximated by
their expected values (e.g. Skinner & Shlomo, 2008) ignoring the source of variability due to
the randomness of FK, which is the reason why recently several authors have preferred to esti-
mate Equations 1 and 2 (Carota et al., 2015; Manrique-Vallier & Reiter, 2012). As already men-
tioned, statistical agencies have a legal obligation to protect confidentiality by keeping the
disclosure risk below certain thresholds. At the same time, their core mission is to release
high-quality data effective for statistical purposes. Identifying the proper protection amounts
to finding the proper balance between disclosure risk and data utility prior to any data release.
This requires accurate and repeated estimates of suitable measures of the disclosure risk, which,
in turn, demand for ready and safe identification of good models for risk estimation. This article
tries attempts to provide a simple method to select useful models.
Before going into technical details, we recall that the debate on dissemination of microdata

from social surveys (crucial for policy-relevant research as well as for academic research) has
heated up after the US Census Bureau announced its plan to apply differential privacy for dis-
closure control in public use data products, including microdata derived from the 2020 Census
and the American Community Survey (Abowd, 2018a, 2018b). According to differential
privacy (a formal model of privacy protection emerged from the computer science literature
described, for instance, in Rinott et al., 2018), exclusively data that have been perturbed and
the corresponding perturbation mechanism can be released. This raised very strong reactions
(refer to e.g. Ruggles et al., 2019, and related references) that in August 2019 induced the
Census Bureau to announce that the earliest date for implementation of differential privacy
for the American Community Survey will be 2025. In the context of the European Statistical
System, the implementation of differential privacy in official statistics has been questioned
(refer to e.g. Eurostat, 2017), and it is not clear if the discussion will be reopened
(Eurostat, 2018). In the meanwhile, the General Data Protection Regulation (GDPR) entered
into force in all EU member states. The GDPR strengthens the rights of data subjects and
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obligations of data controllers; nevertheless, processing of personal data for statistical purposes
is firmly guaranteed by the two legal principles of ‘necessity’ and ‘proportionality’ (Art. 89). In
a nutshell, the differential privacy approach is elegant and aimed at an automated data dissem-
ination, but substantial work on statistical inference from perturbed data is still ongoing (given
that ‘naive’ inference is severely misleading) and the gap between legal and computer science
definitions of privacy has to be bridged. Moreover, differential privacy seems to be unnecessar-
ily protective and wasteful in terms of data quality when samples of microdata with small sam-
pling fraction are released for research purposes (usually under special license agreements)
(Shlomo et al., 2015, p. 307). These facts suggest to maintain the current approach to disclosure
control, under which statistical agencies estimate the disclosure risk of a sample assuming the
so-called matching on keys re-identification scenario.

The outline of the paper is as follows. Section 2 provides the necessary background. Section
3 presents our proposal and discusses its features. A detailed illustration is provided in Section
4. Finally, Section 5provides some concluding remarks, and discusses the generalizability of the
method to a variety of inferential problems arising in completely different fields of research.

2 Background

The literature has highlighted the crucial role of the model in the process of risk estimation
since the seminal paper by Bethlehem et al. (1990) (refer to e.g. Taylor et al., 2018, and
references therein). Estimating the risk measures (1) and (2) amounts to predicting the unknown
frequencies (Fk� fk) of the out-of-sample data exclusively for those cells where f k ¼ 1 .
In selecting a model for risk estimation, this will lead us to focus on measures of predictive
accuracy restricted to such specific subset.

In this section, we recall the family of semi-parametric log-linear models proposed in Carota
et al. (2015) and briefly discuss the issue of selecting a good log-linear model for disclosure risk
estimation in a fully parametric family. Then, we discuss the selection-induced bias in the
context of predictive methods for model selection.

2.1 Log-linear Models for Disclosure Risk Estimation and Previous Approaches to Model
Selection

Carota et al. (2015) model population and sample frequencies, Fk and fk , by independent
Poisson distributions with rates λk and πλk, respectively, where π denotes the sampling fraction
supposed to be known. The parameters λ ¼ ðλ1; …; λk ; …; λKÞ are described by a log-linear
model with mixed effects:

λk ¼ eμk ; μk ¼ w0
kβ þ ϕk ; β ∼ Nð0; Iσ2Þ; ϕk jG ∼i:i:d:G; G ∼ DPðm; G0Þ; (3)

where wk is a q × 1 design vector depending on the values of the key variables in cell k; β is a
q × 1 vector of normally distributed fixed effects, and ϕk is a random effect accounting for cell
specific deviations. The distribution of ϕk, denoted by G, is assumed to be unknown and a priori
distributed according to a Dirichlet process, DP, with expectation G0 and precision parameter m
(Ferguson, 1973). Interesting choices of G0 are a Normal or an Inverse Gaussian or a suitable
transformation of a Gamma distribution (details in Section 4). In all such cases, the DP prior
represents a relaxation of parametric distributional assumptions for the random effects whose
implications on disclosure risk estimation have been well established in the literature (refer
to Carlson, 2002; Elamir & Skinner, 2006; Skinner & Holmes, 1998, respectively). Conse-
quently, the specification (3) implements a standard strategy in Bayesian nonparametric
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(BNP) modelling (refer to e.g. Muller et al., 2015, chap. 7.1, and references therein). A DP prior
is the simplest, and often computationally convenient, way to relax the choice of a parametric
distribution G0 for the random effects that (unlike the prior for the fixed effects) is rarely based
on substantive prior information. A standard hyperprior for m is a gamma distribution and
possible hyperparameters indexing G0, in turn, can be easily modelled if additional flexibility
is desired.
Indeed, such BNP modelling is often grounded on careful analyses of the impact of

misspecification of G0. For example, in the context of generalized linear mixed models used
to analyse clustered or longitudinal data, McCulloch & Neuhaus (2011) elucidate situations
in which such specification may and may not matter. In the case of disclosure risk estimation,
instead, Elamir & Skinner (2006) show that any parametric distributional assumption for the
random effects is irrelevant, as they find that, in order to obtain good risk estimates, the inclu-
sion of random effects is not needed. For this reason, Skinner & Shlomo (2008) adopt a
log-linear model without random effects and address the delicate issue of model selection
(i.e. selection of suitable βs) from within this family. However, Carota et al. (2015) show that
the inclusion of DP-distributed random effects in a log-linear model with parametric fixed ef-
fects results in greatly improved risk estimates and a drastic reduction in the number of fixed
effects needed to achieve this goal. This radical change in perspective, consisting of a shift of
focus from parametric fixed effects to nonparametric random effects, along with the results in
Elamir & Skinner (2006) reveals a nonstandard rationale behind the otherwise standard BNP
modelling strategy of Equation 3. Under this different perspective the parametric fixed effects
are in a sense subordinate to the nonparametric random effects and not interesting for their
own sake1 For this reason, Carota et al. (2015) refer to their approach as BNP log-linear
modelling, though it is a semi-parametric approach.. Importantly, moreover, in small contin-
gency tables, the reduction in the number of fixed effects needed to achieve good risk estimates
is enough to make the vector β identifiable and to ensure existence of its maximum likelihood
estimate, two properties that are not guaranteed in a fully parametric model. But two questions
arise: what happens in larger tables? How is it possible to select a good model? In Section 3, we
will address the issue of model selection in the presence of inferential targets (τ1 and τ2) that
depend on a specific subset of values of the response fk in any log-linear model, no matter
how the priors of fixed and random effects are specified. All these facts will lead us to define
an application-specific model selection method within the family (3), rather than apply tech-
niques for variable selection based on a joint DP model for both fixed and random effects with
a spike and slab base measure for βs (refer to Barcella et al., 2017, for a recent survey). Such
approaches introduce a family of models larger than (3), namely the covariate-dependent
Dirichlet process mixture models, and target the problem of cluster-specific covariate selection.
As a consequence, observations are grouped on the basis of the potentially different effects of
the covariates on the response variable. Highlighting the different, cluster specific, role of a
large set of covariates, none of which in principle can be excluded from those larger models
is out of the scope of our work. Instead, we are interested in selecting a preferably small,
common to clusters, set of fixed effects βs that effectively supplements the nonparametric
random effects in estimating the risk measures τ1 and τ2 within the family (3). This is the reason
why we will pursue a forward search of a parsimonious model, imposing a strong penalty for
overfitting.
We next recall some of the previous approaches to model selection for risk estimation. In the

family of log-linear models without random effects, Skinner & Shlomo (2008) address model
selection with the declared purpose of limiting the bias of risk estimates. Their proposal has
a twofold justification. On the one hand, standard tools for assessing and selecting models, such
as χ2 goodness-of-fit tests and Akaike’s information criterion, ‘are not very successful in
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deciding whether the disclosure risk measures will be well estimated’ (Skinner & Shlomo, 2008,
p. 991). On the other hand, in controlled settings, the bias of maximum likelihood
estimators of the global risks Eðτ1Þ ¼ ∑K

k¼1Iðf k ¼ 1ÞPrðFk ¼ 1jf k ¼ 1Þ and Eðτ2Þ ¼
∑K

k¼1Iðf k ¼ 1ÞEð1=FkÞ evolves monotonically from overestimation to underestimation when
going from the independence model (I), to the all two-way interactions model (II), to the all
three-way interactions model (III), and so on. Building on these findings, they develop a crite-
rion (B̂ ) that detects underfitting, being able to estimate the positive bias of risk estimators.
Then, among models I, II, III,…, they select the least underfitting as the starting model and pro-
pose a stepwise forward model search aimed at minimizing the positive bias of the maximum
likelihood estimators of E(τ1) and E(τ2). The authors anticipate that most likely a number of
‘reasonable models’ may exist, between which their criterion B̂ is not able to discriminate
(Skinner & Shlomo, 2008, pp. 993–994). Indeed, the real limitation of their approach is that
it is highly exposed to the severe issues recalled at the beginning of Section 1 because reason-
able models are very often too complex to be identifiable (details in Carota et al., 2015, p. 529).
All these issues are instead avoided by Forster & Webb (2007), who focus exclusively on
graphical decomposable log-linear models and account for model uncertainty by averaging
inferences over that special sub-family of log-linear models.

2.2 Selection-Induced Bias

The literature on predictive methods for model assessment, selection and comparison
(Vehtari & Ojanen, 2012; Gelman et al., 2014; Underhill & Smith, 2016; Piironen &
Vehtari, 2017, and references therein ) points out two critical issues in estimating model
predictive accuracy. These points stem from the decomposition of the estimation error into bias
and variance of any criterion and form the backdrop to our proposal:

(i) the need to correct for the bias arising from a double use of the data (within-sample-error),
when model evaluation relies on predictions of the data used to fit it; and

(ii) the need to limit the variance in some way, since a criterion with a non-negligible variance
has the potential for overfitting in the process of model selection by exploiting meaningless
peculiarities of the sample over which it is evaluated. This form of overfitting, analogous to
the more familiar one occurring in training the model, is termed selection-induced bias
because it results in the undesirable optimistic bias in predictive performance evaluation
that, in the presence of scarce data and large sets of models, often leads to select a model
by chance rather than by merit.

It has long been known that any criterion suffers from selection-induced bias, and in the last
decade the severity of such problem has been re-affirmed and quantified for a series of
established and recent criteria, including cross validation, the Akaike Information Criterion
(AIC), the Deviance Information Criterion (DIC), the Widely Applicable Information Criterion
(WAIC), and many others (refer to e.g. Linhart & Zucchini, 1986; Miller, 1990; Chatfield, 1995;
Zucchini, 2000; Vehtari & Ojanen, 2012; Gelman et al., 2014; Piironen & Vehtari, 2017).
About (i) and (ii) Piironen & Vehtari (2017), p. 718, wrote: ‘[…] the unbiasedness is intrinsi-
cally unimportant for a model selection criterion’ and ‘it is more important to be able to rank
competing models in an approximately correct order with a low variability’. They also comment
that, nonetheless, most literature focuses on unbiased estimates of the model predictive
accuracy and provides little guidance on how to reduce the selection-induced bias. However,
the solution they provide to this problem (detailed in Piironen & Vehtari, 2017, p.775) cannot
be easily implemented in many applications since it assumes that the true data generating model
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can be conceptualized in some way (M-completed view), which is often an unrealistic assump-
tion. This is the case, for instance, in the presence of large datasets with a complex dependence
structure or when the search for good models is pragmatically, rather than theoretically moti-
vated, as in disclosure risk estimation. So, we are left with traditional remedies against the
selection-induced bias: restricting selection to a small number of well-considered models (this
includes regularization and/or early stopping), or, alternatively, model averaging(Cawley &
Talbot, 2010; Zucchini, 2000). In the next section we will argue that all of these remedies
are, in various ways, implemented in our proposal, under the assumption that a good model
is just a convenient proxy of the true model, neither included in the search space nor conceptu-
alized in any way (M-open view). Once one accepts this assumption, ‘[…]the focus immedi-
ately shifts to identifying which aspects of the model performance are most important to the
end user’ (Underhill & Smith, 2016, p. 1006), paving the way for a context-dependent utility
based approach to model selection. In our application, the context will be disclosure risk esti-
mation, and we define a specific utility function for this particular target. However, this is not
the only possible applied context; other possible applications are discussed in the final section.

3 New Model Selection Method

Our proposal is motivated by two ideas. First, standard tools for assessing and selecting
models are not very successful in deciding whether the disclosure risk measures will be well es-
timated because of the peculiar structure of the problem at hand. In Equations 1 and 2 interest is
restricted to a specific subset of the contingency table (the sample unique cells). It seems there-
fore inappropriate to assess whichever model by exploring its performance across all cells of the
table. Second, we aim to leverage the potential of the family (3) to make model selection a
feasible task, manageable with reasonably simple tools, given that, conversely, it is a daunting
challenge in a fully parametric framework as in Skinner & Shlomo (2008) or Skinner &
Holmes (1998) and Elamir & Skinner (2006). Driven by these motivations, we develop an
application-specific method for selecting models within the family (3), which is also
deliberately intended to limit the selection-induced bias, thus filling a gap in the literature.
The proposed method relies on a suitable combination of two different criteria, and consists
of two distinct yet complementary stages. One identifies a path of search, that is which
semi-parametric models have to be evaluated and in which order. The other assesses the candi-
dates and selects an optimal model through a measure of model predictive accuracy specifically
tailored to the target, namely global disclosure risk estimation. The detail of the procedure is as
follows.

(1) Building on findings in Carota et al. (2015), we take the semi-parametric independence
model, shown to be a sort of ‘default’ model in that paper, as the starting model. We denote
it by the shorthand NP + I, to emphasize both the nonparametric (NP) nature of the random
effects ϕ and the structure (I) of its parametric component, that is, the fixed effects
β ∼ Nð0; Iσ2Þ. Hereafter σ2 is assumed to be large, so as to express vague prior informa-
tion. At this stage we focus on the parametric component of the model, and do a preliminary
stepwise search in the space of graphical decomposable log-linear models without random
effects. This prevents the unidentifiability issues recalled in Sections 1 and 2.1. Starting
from the independence model (I), we repeatedly use a penalized log-likelihood with large
penalty factor γ. We gradually move γ down on a grid selecting, at each step, the interaction
terms that maximize
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C0ðγÞ ¼ ∑
K

k¼1
logðpðf k jβ̂MLÞÞ � d � γ; (4)

where

pðf k jβ̂MLÞ ¼
πf k

f k !
ef kw

0
k β̂MLe�πew

0
k
β̂ML

;

β̂ML is the vector of maximum likelihood (ML) estimates of fixed effects, d is the difference
between the number of parameters estimated under the current model and under the inde-
pendence model, and γ controls the strength of the penalty. Being σ2 large, at this stage β̂ML
is used as an approximation to Bayesian estimates of fixed effects. Although C0(γ) bears
some resemblance to the Akaike information criterion, it is indeed a ‘sieve’ criterion, de-
voted to drastically limit the number of interactions terms introduced in the model. As a
starting value of γ, we select the penalty that allows to add the first interaction term to
the independence model I; similarly, all subsequent steps are aimed at including only those
interaction terms that satisfy the severe constraint of simplicity imposed through γ at each
step. This results in a set of alternative, increasingly complex, parametric components (one
for each step). Finally, we add DP random effects to each parametric component (set of
fixed effects) identified at this stage of the procedure, thereby identifying a small number
of candidate models in the family (3).

(2) Each semi-parametric candidate identified at stage (1) is then evaluated through the
application-specific criterion C1,

C1 ¼ ∑
K

k¼1
Iðf k ¼ 1Þ � log

∫
pðf k jλkÞpðλk jf 1; ::; f kÞdλk

� �
; (5)

where

pðf k jλkÞ ¼
1

f k !
ðπλkÞf k e�ðπλkÞ

and λk is defined as in Equation 3. This is the log pointwise predictive density (lppd, refer to
Gelman et al., 2014, p. 1000) restricted to the unique cells, namely those crucial for
estimating the global risks (1) and (2).C1 is a Bayesian measure of the model’s predictive ac-
curacy, or performance. Rather than conditioning on a point estimate as at stage (1), it aver-
ages over the full posterior distribution and is computed using posterior simulations λ(h):

∑
K

k¼1
Iðf k ¼ 1Þ � log

1

H
∑
H

h¼1
pðf k jλðhÞk Þ

 !
;

where H denotes the number of simulation draws necessary to fully capture the posterior of
λ (see the Appendix A for implementation details). The higher C1, the better the model.

Restricting model assessment to the sample uniques implies that we make the judgement on
model performance relative to this subset of cells for each semi-parametric candidate in the path
of search identified by means of C0. As such, this does not necessarily imply a good fit on those
cells, simply a relatively better fit. Following Underhill & Smith (2016), and their approach to
utility based model selection, an alternative presentation of C1 is provided next. In estimating
the disclosure risk measures (1) and (2) good model performance over the sample uniques is
the sole concern to statistical agencies. In this application, use of logarithmic scores restricted
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to that subset of cells is therefore a very reasonable description of the end user’s utility and
model selection can proceed on the basis of the highest scoring model. In this sense, C1 is a
context-dependent score based Bayesian information criterion. However, unlike the
context-dependent score-based Bayesian information criteria presented in Underhill &
Smith (2016) and unlike standard criteria assessing the model’s performance across the full joint
distribution, C1 does not include a correction for the within-sample-error. To prevent a negative
impact on the selection-induced bias, we intentionally omit such estimated bias correction term,
as it would introduce additional variability in the criterion. Refer to Zucchini (2000, p. 53) for
general comments on the trade-off between (i) and (ii) and the advantages in terms of (ii) of
avoiding a data-based correction for bias. This choice is particularly appropriate in our context
where the within-sample-error is low. Indeed, here the number of sample uniques (hereafter de-
noted by U) is much smaller than the size of the data used to fit the model (the number of cells
K, or the number of cells K minus the number of structural zeroes). Quoting Underhill and
Smith (2016, p. 1027), the lack of such bias correction term can be interpreted as an
extremization of the general benefit represented by the lower correction applicable when a
criterion is ‘based on the relevant marginal and conditional logarithmic scores of the variables
of interest within a larger model’.
Let us now turn to C0(γ), the sieve criterion used at the first stage of the procedure to select

suitable semi-parametric candidates. This intermediate, instrumental, criterion is based on a
double use of the data (all K sample frequencies). Nevertheless, we do not correct it for the
within-sample-error. Instead, we introduce in C0 a heavy penalty for complexity, d × γ, due to
the large values of γ that we employ in the search. This choice indirectly implies a strongly
non-uniform prior on models of the family (3), that is, a form of regularization by virtue of
which limiting the selection-induced bias through a careful restriction of candidate models (re-
fer to Section 2.2) reduces to identify the ones having the simplest parametric specification.
With regard to the number of candidates to be considered, C0(γ) is not endowed with a stopping
rule because it is used jointly with the criterion C1. The semi-parametric models of increasing
complexity selected by means of C0 are assessed by C1, and the search stops when C1 begins to
decline. A sound guarantee that a good model will be reached very quickly in the space of
extremely simple candidates identified through C0 is provided by a special feature of models be-
longing to the family (3). All of them are weighted averages of a huge collection of parametric
models, which makes them extremely flexible, as illustrated next. In particular, we aim at
clarifying why the complexity of good semi-parametric log-linear mixed models is scarcely
sensitive to the size of the table under consideration, which is a peculiar and appealing feature
of our model selection procedure.
That each candidate in the search space is an average model can be seen by writing the cor-

responding likelihood, Lðβ; mjf 1; …; f K ; G0Þ (refer to, e.g. Lo, 1984; Liu, 1996), as follows:

∑
K

c¼1

P
C : jCj ¼ c

ΓðmÞmc

Γðmþ KÞ ∏
c

j¼1
ΓðnjÞ

� �
� ∏

c

j¼1

∫ ∏
k ∈ cluster j

πf k

f k !
e f kðw0

kβ þ ϕjÞe�πeðw
0
k
β þ ϕjÞ

dG0ðϕjÞ�;
�

(6)

where each summand reads as the product of the two factors in square brackets. The first factor
is the probability assigned to a given partition C of the K sample frequencies in c non-empty
clusters by the multivariate Ewens distribution (Johnson et al., 2004, chap. 41): we denote it
by Prfn1; …; ncjm; C; cg where nj is the number of cells in the cluster j. The second
factor is the likelihood corresponding to a log-linear model with the same fixed effects and a
G0-distributed random effect specific to each cluster j belonging to that partition, hereafter
denoted by Lðβ; mjf 1; …; f K ; G0; C; cÞ. Because the sum in (6) is over all possible partitions
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C in c non-empty clusters (C: |C|=c) with c ¼ 1; ::; K, the total number of summands is equal to
BK, the Bell number. Hence, we can rewrite (6) as

Lðβ; mjf 1; …; f K ; G0Þ ¼ ∑
BK

Prfn1; …; ncjm; C; cg Lðβ; mjf 1; …; f K ; G0; C; cÞ; (7)

showing that the likelihood corresponding to a given semi-parametric candidate is an average of
BK parametric likelihoodsLðβ; mjf 1; …; f K ; G0; C; cÞ according to specific weights on ran-
dom partitions of f1,… , fK. This implies various, useful consequences. Of special interest for
model selection is that, as K increases, the stimulus received by the mechanism of model aver-
aging in (7) is extraordinarily strong, because the number of terms summed in the likelihood
increases as follows:

BK þ 1 ¼ ∑
K

s¼0

K

s

� �
BK :

In practice, even with extremely large tables, this massive model averaging, implied by the pres-
ence of DP random effects, strongly limits the need for additional interaction terms to obtain
‘reasonably good’ models. More precisely, the number of models averaged in (7) grows so
much with K to nearly compensate for the simultaneous worsening of risk overestimation due
to the poorness of fixed effects, as explained by Skinner & Shlomo (2008). This is the reason
why, when describing the proposed method, we claim that the criterion C1 is used to evaluate
a small set of semi-parametric candidates, and also why we can invariably start the search from
the semi-parametric independence model, NP + I. In contrast, under the approach of Skinner &
Shlomo (2008), the complexity of the optimal model increases remarkably with K (refer to p.
999, tables 5–7). There we can also observe an evolution of the starting model from the inde-
pendence (I) to the all two-way interactions (II) model. Manrique-Vallier & Reiter (2012,
supporting information) select the best log-linear model according to the criterion B̂ of Skinner
& Shlomo (2008): their results over samples of 5000 and 10 000 individuals confirm that the
complexity of the starting as well as the selected model strongly depends on the table size.

The extreme flexibility of each model belonging to the family (3), originating from the fitting
ability of BK parametric log-linear mixed models and expressed by formula (7), is also the basic
reason why the combination of two simple and quite rough criteria like C0 and C1 succeeds in
selecting a good model. As a matter of fact, under the family (3), the challenging problem of
selecting a model which leads to good estimates of the Fks on cells where f k ¼ 1 (i.e. good pre-
dictions of (Fk� 1) on such cells) reduces to the much easier selection of few interaction terms
useful to enrich the parametric likelihoods Lðβ; mjf 1; …; f K ; G0; C; cÞ in (7) so as to enhance
the above-mentioned correction for overestimation of the risks. This amounts to selecting a
small, common to clusters, set of fixed effects βs that effectively supplement the DP random ef-
fects in inferring on a specific subset of the whole table. The sieve criterion C0(γ) allows us to
identify few alternative sets of βs, thus strongly narrowing the search space. Roughly, it requires
a good fit on all cells under a severe constraint of simplicity, sufficient to prevent any form of
overfitting throughout the procedure. The goal of selecting the most appropriate interactions
terms among the candidates identified by C0 is then achieved through C1, which focuses on
unique cells. This makes the judgement on the performance of the semi-parametric candidates
relative to that subset of cells, in the spirit of Underhill & Smith (2016). Both criteria are simply
log-likelihoods adapted to achieve the above-mentioned goals, whose combined use within the
family (3) implements an original mix of established remedies against the selection-induced
bias. Traditionally, instead, these are often alternative remedies to each other. In Section 4,
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we test the predictive ability of models selected by the pair (C0,C1) on different samples arising
from very different settings. In all cases, an extremely small number of nonparametric candi-
dates need to be evaluated to reach a ‘reasonably good’ model within the family (3). This makes
the first-stage restriction to graphical decomposable models irrelevant in practice.

4 Illustration of the Proposed Method

We illustrate and test our model selection procedure in a range of contingency tables differing
in size, reference population and spanning variables obtained from different sources, as detailed
next. We consider two large datasets, taken here as reference pseudo-populations, from which
we draw simple random samples with fraction π ¼ 0:05. Because the pseudo-populations are
known, we can compute the true risk measures and assess the performance of the proposed
method. The first pseudo-population is the set of N ¼ 1 150 934 individuals aged 21 and over
in the 5% public use microdata sample of the US 2000 census for the state of California
(IPUMS, Ruggles et al., 2017). The second consists of the N ¼ 794 986 individuals recorded
in the 7% public use microdata sample of the Italian National Social Security Administration,
2004 (source: Work Histories Italian Panel, WHIP). For the California pseudo-population, we
first reconsider the same table of 3 600 000 cells used in Manrique-Vallier & Reiter (2012), ob-
tained by cross-classifying the ten key variables listed in Table 1 (left panel). In addition, two
new contingency tables are obtained by global suppression of variables DISAB and VETST,
yielding a ‘medium’ table of 900 000 cells, and global suppression of variable INCR, yielding
a ‘small’ table of 360 000 cells. Because, by design, the previous tables do not include structural
zeroes, we also consider a contingency table of 844 800 cells, half of which are structurally
empty, obtained from the WHIP pseudo-population by cross-classification of the eight key
variables listed in the right panel of Table 1.
For each of the four contingency tables just described, we consider a set of semi-parametric

models labelled SPx, x = a, b, .., listed in Table 2 (first column). Such models have been selected
by the criterion C0(γ), except for two models, SPd and SPe in the WHIP table, introduced in
order to test the impact of a richer fixed effects specification on models’ assessment.
For comparison, we also include the parametric counterparts of some of the selected

semi-parametric models SPx; these can be obtained from (3) as m→ ∞ and are labelled Px. They
are Bayesian log-linear models with the same fixed effects and a parametric (Gamma distrib-
uted, as detailed in the last column) random effect specific to each cell k, for k ¼ 1; ::; K. Con-
ditionally on the random effects described in the second column of Table 2 (either
nonparametric, NP, or parametric, P), the models we are considering only differ for the

Table 1. Key variables under consideration (number of categories in parentheses) and their labels in the California (left) and
WHIP—Work Histories Italian Panel—(right) data

Large California WHIP

Label Variable Label Variable

CHIL Number of children (10) AORIG Area of origin (11)
AGE Age (10) AGE Age (12)
SEX Sex (2) SEX Sex (2)
MARST Marital status (6) RWORK Region of work (20)
RACE Race (5) ESEC Economic sector (4)
EDU Education (5) WAGF Wage guaranteed fund (2)
EMPST Employment status (3) WORKP Working position (4)
INCR Income (10) FSIZE Firm size (5)
DISAB Disability (2)
VETST Veteran status (2)
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specification of the vector β. For this reason, in the third column, we describe the structure of the
parametric component. For instance, when the fixed effects comprise the main effects of all key
variables and, in addition, the two-way interaction parameters between all levels of key variables
SEX and WETST, we use the shorthand I + SEX *WETST.

Model complexity can be summarized by the number d of extra parameters implied by the
interaction terms (e.g. SEX *WETST) added to the independence model; this is reported in
the second last column of Table 2.

The last column shows the prior on the random effects. Throughout in this section, we
reparametrize the random effects so that ωk ¼ eϕk is drawn from a Dirichlet process with
Gamma base measure, Ga(a, b), where b denotes the rate parameter. Consequently, all Px
models in Table 2 are members of the family defined in Elamir & Skinner (2006). In practice,
the latter is equivalent to the family of log-linear models without random effects of Skinner &

Table 2. Log-linear models (in order of increasing complexity) for California and WHIP tables: model label, type of random
effects, structure of fixed effects (parametric component), number of additional parameters compared to those included in the
independence model, and prior on the random effects

Label
Random
effects Shorthand for fixed effects

Number of extra
parameters

Prior for
random effects

California
large
SPa NP I + SEX * VETST 1 DP(m,Ga(a, b))
SPb NP I + EMPST * INCR 18 DP(m,Ga(a, b))
SPc NP I+ SEX * VETST + EMPST * INCR 19 DP(m,Ga(a, b))
Pa P I + SEX * VETST 1 Ga(a, b)
Pb P I + EMPST * INCR 18 Ga(a, b)
Pc P I+ SEX * VETST + EMPST * INCR 19 Ga(a, b)
California
medium
SPa NP I + EMPST * SEX 3 DP(m,Ga(a, b))
SPb NP I + EMPST * INCR 18 DP(m,Ga(a, b))
SPc NP I + EMPST * SEX + EMPST * INCR 21 DP(m,Ga(a, b))
NP + I NP I — DP(m,Ga(a, b))
Pa P I + EMPST * SEX 3 Ga(a, b)
Pb P I + EMPST * INCR 18 Ga(a, b)
Pc P I + EMPST * SEX + EMPST * INCR 21 Ga(a, b)
P+I P I — Ga(a, b)
California
small
SPa NP I + SEX * VETST 1 DP(m,Ga(a, b))
SPb NP I + MARST * RACE 20 DP(m,Ga(a, b))
NP+I NP I — DP(m,Ga(a, b))
Pa P I + SEX * VETST 1 Ga(a, b))
Pb P I + MARST * RACE 20 Ga(a, b))
P+I P I — Ga(a, b)
WHIP
SPa NP I + ESEC *WORKP 9 DP(m,Ga(a, b))
SPb NP I + ESEC * FSIZE 12 DP(m,Ga(a, b))
SPc NP I + ESEC *WORKP + ESEC * FSIZE 21 DP(m,Ga(a, b))
SPd NP I + ESEC *WORKP + ESEC * SEX + ESEC *

WAGF + ESEC * FSIZE
27 DP(m,Ga(a, b))

SPe NP I + ESEC *WORKP + ESEC * SEX + ESEC *
WAGF + AGE *WORKP

48 DP(m,Ga(a, b))

NP + I NP I — DP(m,Ga(a, b))
P+I P I — Ga(a, b)

For the last three tables, the starting model, NP + I, and its parametric counterpart, P + I, are also considered.
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Shlomo (2008) because the corresponding risk estimates are nearly identical (Elamir &
Skinner, 2006). Finally, we assume a standard prior for the precision parameter m, say Ga
(e, f). The hyperparameters are fixed so as to specify vague priors: we take a ¼ 1; b ¼ 0:1; e ¼
1; f ¼ 0:1; and σ2 ¼ 10.
Values of C1 for all models in Table 2 are presented in the fourth column of Table 3, with

model rankings in parentheses (computational details are provided in the Appendix A). In col-
umns 2 and 3, we also rank models according to the true estimation errors,

jτ̂ i � τij; i ¼ 1; 2;

that is the distance between the Bayesian estimate under the model, τ̂ i, and the true value of the
risk τi computed by using the pseudo-population. Finally, to illustrate the impact that a data
based correction for the within-sample-error (point (i) in Section 2.2) may have on the

Table 3. Risk estimates under the models listed in Table 2, predictive measures and models’ ranks (in brackets) based on the
true estimation error jτ̂ i � τij; i ¼ 1; 2, on C1 and WAICU

Model τ̂1 τ̂2 C1 WAICU

California large
U = 11 421
PU = 44 572 τ1 ¼ 2205 τ2 ¼ 3949:7
SPa 2,245.2 (1) 4022.5 (1) �21 914.5 (1) �30 608.8 (5)
SPb 2323.5 (3) 4090.5 (3) �22 010.4 (2) �30 676.1 (6)
SPc 2272.2 (2) 4034.3 (2) �22 032.9 (3) �30 199.5 (4)
Pa 2706.6 (5) 4431.9 (5) �29 745.4 (6) �29 773.4 (3)
Pb 2727.1 (6) 4458.4 (6) �29 594.9 (5) �29 631.1 (2)
Pc 2652.9 (4) 4374.4 (4) �29 299.7 (4) �29 336.2 (1)
California medium
U = 7669
PU = 24 124 τ1 ¼ 1169 τ2 ¼ 2314:6
SPa 1185.4 (1) 2340.6 (1) �13 624.5 (1) �18 215.9 (4)
SPb 1223.0 (3) 2371.8 (3) �13 805.9 (3) �18 133.6 (2)
SPc 1225.0 (4) 2373.4 (4) �13 812.5 (4) �18 098.1 (1)
NP + I 1189.2 (2) 2345.3 (2) �13 632.6 (2) �18 195.9 (3)
Pa 1424.8 (8) 2523.6 (8) �18 706.7 (8) �18 734.6 (8)
Pb 1386.2 (5) 2487.3 (5) �18 352.6 (5) �18 387.9 (5)
Pc 1399.4 (6) 2500.9 (6) �18 364.4 (6) �18 399.1 (6)
P+I 1415.2 (7) 2511.7 (7) �18 644.3 (7) �18 670.4 (7)
California Small
U = 3575
PU = 10 355 τ1 ¼ 498 τ2 ¼ 1023:4
SPa 479.8 (3) 1003.2 (3) �6212.9 (3) �7886.3 (1)
SPb 483.8 (1) 1011.3 (1) �6183.8 (2) �7993.0 (3)
NP + I 480.3 (2) 1008.6 (2) �6175.9 (1) �7982.6 (2)
Pa 581.6 (6) 1072.9 (5) �8951.8 (4) �8972.9 (4)
Pb 568.5 (4) 1065.0 (4) �9023.4 (5) �9055.2 (5)
P+I 579.9 (5) 1077.6 (6) �9109.1 (6) �9131.4 (6)
WHIP
U = 7176
PU = 17 630 τ1 ¼ 915 τ2 ¼ 1948:1
SPa 917.9 (1) 1981.2 (3) �12 022.0 (2) �16 107.4 (5)
SPb 1003.1 (5) 2078.4 (5) �12 261.6 (5) �16 413.3 (7)
SPc 921.2 (3) 1987.0 (4) �12 128.4 (3) �15 977.5 (3)
SPd 908.9 (2) 1972.2 (2) �12 134.7 (4) �15 767.7 (2)
SPe 874.8 (4) 1930.2 (1) �12 010.1 (1) �16 084.5 (4)
NP + I 1010.4 (6) 2083.4 (6) �12 149.9 (5) �16 195.7 (6)
P+I 1184.9 (7) 2289.9 (7) �15 633.6 (7) �15 650.3 (1)

For each contingency table, we report the number of sample uniques (U), the number of population uniques (PU) and the true values of τ1
and τ2.
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variability of C1, we rank models according to the Widely Applicable Information Criterion
(WAIC, Watanabe, 2009) restricted to the sample uniques,

WAICU ¼ ∑
K

k¼1
Iðf k ¼ 1Þ � log

∫

pðf k jλkÞpðλk jf 1; ::; f kÞdλk
� �

� varpostðlog pðf k jλÞÞ
� �

:

WAICU is obtained by introducing the indicator function Iðf k ¼ 1Þ in the WAIC expression (in

order to focus exclusively on the U sample uniques), and it is nothing but C1 plus an estimated
bias correction term analogous to pWAIC2 (refer to formula 11 Gelman et al., 2014, p. 1002), usu-
ally referred to as the effective number of parameters. The latter is computed considering the pos-
terior variance of the log-predictive density for each data point fk, that is,V

H
h¼1log pðf k jλhÞ, where

VH
h¼1 represents the sample variance VH

h¼1ah ¼
1

H � 1
∑H

h¼1ðah � aÞ2.
Although the Px models are not candidates (but just parametric counterparts of the

semi-parametric candidates selected at the first stage of the procedure), they are included in
the rankings presented in Table 3 to show that these largely underfitting models—leading to
systematic overestimation of the global risks, as explained by Skinner & Shlomo (2008)—are
preferred by the WAICU in two contingency tables (Large California and WHIP). This is the
empirical evidence of substantial selection-induced bias and optimism in model performance
evaluation due to the increase of the variance of the criterion because of an additional estimated
term in C1. Quoting Zucchini (2000), these are two examples of damage, rather than benefit,
that may result from the attempt to correct for the within-sample-error. Such an attempt is par-
ticularly inappropriate in our problem: indeed C1 is based solely on the U sample uniques and
U=K ≤ 0:001 for all California tables, U=ðK � structuralzeroesÞ ≤ 0:0169 for the WHIP table.

The good performance of C1 in all contingency tables can be appreciated by benchmarking
the corresponding models’ rankings against the ones based on the true estimation error (second
and third columns). First, the semi-parametric models, SPx, are always preferred to their para-
metric counterparts, Px, which will be ignored from now on. Second, the three criteria largely
agree in ranking the SPx models for all California tables. Importantly, moreover, in the rare
cases where they disagree (second and third positions in the large California table; second
and first positions in the small California table) the values of C1 are so close to each other that
we are actually warned about possible inversions of the corresponding positions in both rank-
ings. Thirdly, in the awkward situation of disagreement between the two rankings based on
the true estimation error of τ1 and τ2 (WHIP table), the ranking based on C1 proves to be a very
reasonable compromise between such two ‘true’ rankings. Put together, all these points show
that the criterion C1 is able to rank competing models in an approximately correct order, with
a variability not dangerously inflated by an estimated bias correction term.

In addition to the previous points, in all contingency tables we observe that the two-stage pro-
cedure based on the pair (C0,C1) is able to identify a good model after very few steps in the
search space. While this is not surprising in the small and medium California tables where
NP + I confirms to be a good default model (in both tables there are no cogent reasons for ad-
ditional interaction terms), this is an important result in the WHIP table where NP + I is just a
starting model, inadequate for risk estimation, and in the large California table where it is even
more inadequate (result not reported). In the latter table, 95% and 99% credible intervals under
the model labelled SPa include the true values of τ1 and τ2, respectively. As regards the WHIP
table, we have four models under which 95% credible intervals include the true risks: SPa, SPc,
SPd and SPe. Recall that SPd and SPe have been introduced in the evaluation (refer to Table 2)
just to discuss the impact of enriching the fixed effects specification. Notably, they turn out to be
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good models essentially because of the presence of a two-way interaction (ESEC *WORKP)
already selected by C0 and already included in SPa and SPc, two of the candidates identified
at the first stage of our procedure. We stress that, among the latter models, C1 prefers SPa. In-
deed, in a series of additional tests (not reported here for brevity), we observed that often a sin-
gle two-way interaction is enough to enter the range of ‘reasonably good’ semi-parametric
models. This leads us to conclude that, under the family (3), good risk estimates can be achieved
by a very slight and easily identifiable adjustment of the parametric component in the starting
model. This also implies that the restriction to decomposable graphical models imposed at stage
(1) turns out to be a mere formality, irrelevant in practice.

5 Final Comments

We presented a new Bayesian method to select a good model for disclosure risk estimation in
the family of log-linear mixed models with DP random effects.
In the literature, there is a lack of alternative methods for selecting log-linear models for dis-

closure risk estimation. The only available method (Skinner & Shlomo, 2008) has a number of
severe issues essentially resulting from unidentifiability of fixed effects. More generally, outside
the class of decomposable graphical models, such issues arise whenever the underlying contin-
gency tables are sparse. These issues, the lack of genuine observed covariates and the peculiar
nature of the problem at hand deterred us from adopting a formally more sophisticated approach
like tackling model selection from within the nonparametric family of covariate-dependent
Dirichlet process mixture models (refer to e.g.Barcella et al., 2017, and reference therein). Vice
versa, all previous reasons solicited the proposal of a context-dependent method for selecting
good models within the semi-parametric family of Carota et al. (2015). In such models, the
DP random effects have a preeminent role in leading to good risk estimates, while the number
of parametric fixed effects can be drastically limited. Therefore, we implemented a forward
search for a parsimonious model within this family, under a pragmatic approach consonant with
the problem at hand. We also recognize and capitalize on the nature of the problem at hand in
two further important ways. The risk measures (1) and (2) are nonstandard estimands, because
they are not entirely specified before observing the sample. Indeed, they are sums of functions
of observable and unobservable variables (fk and FK, respectively), exclusively over cells where
f k ¼ 1 (refer to Zhang, 2005). Thus, τ1 and τ2 clearly highlight a specific subset of values of the
observed response fk as the only subset of interest. In addition, estimating τ1 and τ2 amounts to
predicting the unobserved quantities Fk� fk on that subset. As a consequence, on the one hand,
we decided to focus on predictive measures of model’s performance and work with a ‘local’ cri-
terion, rather than assessing model fit on the whole contingency table. On the other hand, in a
very natural way, we were induced to address the often neglected issue of selection-induced
bias, while keeping down the within-sample-error.
In a nutshell, our proposal works as follows. Building on the great flexibility of the family of

models under consideration, we defined two criteria, C0 and C1, to be jointly used in the forward
search. C0 identifies a small number of very simple candidate models (thereby also reducing the
computational effort required in model selection) and the order in which they have to be eval-
uated. C1 measures the predictive accuracy of the candidates on specific cells. According to
Underhill & Smith (2016) and their utility-based approach to model selection, C1 is a
context-dependent scoring rule, and a good model is just a convenient proxy of the true model,
neither included in the search space nor conceptualized in any way (M-open view). However,
unlike Underhill & Smith (2016), we adapt our context-dependent scoring rule to face the
selection-induced bias (ii), rather than the within sample error (i). Typically, (i) is addressed
by including an estimated bias correction term in the criterion, with the drawback of exposing
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it to (ii) because of an increase of its variance. Taking advantage of a natural reduction of the
within-sample-error (the data are not used twice, because only a small subset of them—the U
sample uniques—is re-used to evaluate C1), we deliberately refrain from adding a data based
correction for bias to C1, as this would exacerbate the selection-induced bias, as shown in
Section 4.

The applications investigated in this paper reveal that the proposed procedure is generally
able to rank competing models in terms of their ability to produce good estimates of global dis-
closure risks in rather different settings and in a relatively simple and fast way.

Outside the application discussed in the paper, the same method can be directly adapted to
different inferential problems involving datasets with a similar structure, but arising in
completely different fields of research. Consider, for instance, the examples provided next. (a)
In a given area, the observed number of animals in a species is extremely small in the presence
of certain cultivation methods (such as specific combinations of type of seed, type and dose of
fertilizer, and type and dose of herbicide). Ultimately, said cultivation methods are deemed dan-
gerous for the survival of the species if the estimate of the number of animals living in the whole
territory cultivated with those specific combinations falls below a given threshold. (b) In a clin-
ical trial, a drug turns out to be effective only on subjects who have certain characteristics rare in
the sample (e.g. genetic traits). The trial stops if said characteristics in the population of subjects
affected by the disease are not frequent enough to make the production of the drug economi-
cally sustainable. (c) A sample survey aimed at studying innovation in industry shows that
the top management of the most innovative companies, all other things being equal, includes
subjects with degrees in Humanities, or of female gender, or of a different ethnicity than the
one prevailing in the country where the company is based. This raises the question of whether
uncommon cultural backgrounds or sensitivities are, together with the other things (values of
other variables such as sector of activity, export-orientation, and so on), a stimulus for
innovation. Testing this conjecture requires estimating the number of units in the population
that exhibit certain specific characteristics (combinations of values) highlighted by the
sampled units.

Indeed, all previous examples share with disclosure risk estimation the same structure: given
certain combinations of values with small frequencies in the sample, we have to estimate how
large the corresponding population frequencies are. This, in turn, implies that the observed
sample contributes to define the estimand, which is not entirely specified before observation.

In all previous cases, an application-specific model selection criterion can be reasonably de-
fined on the subset of cells indicated by the observed sample as ‘cells of interest’, and appropri-
ately bent to face (ii) rather than (i). In order to achieve the latter goal, omitting an estimated
bias correction term, as we have done in the illustrative application to disclosure risk estimation,
is only apparently an extreme choice suitable only for extreme cases like the four contingency
tables presented in Section 4 (where U is invariably negligible compared to K). Indeed,
Zucchini (2000) discusses the advantages of such omission, in terms of (ii) versus (i), in a
general criterion, that is, a criterion concerned with model’s performance across the full joint
distribution (all K cells in our case). Clearly, for any application-specific criterion the cost of
omitting an estimated bias correction term is lower (Underhill & Smith, 2016, p.1027). For
the same reasons our method can be easily adapted to deal with different disclosure risk
measures based not only on sample uniques, but, more generally, on the whole subset of cells
with small sample frequencies (sample doubles, triples, and so on). All these facts and the great
flexibility of our family of semi-parametric models, ensuring that a good model can be obtained
by a slight and easily identifiable enrichment of the starting model, contribute to guaranteeing a
wide generalizability and adaptability of the proposed model selection procedure to different
circumstances.
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Notes

1For this reason, Carota et al. (2015) refer to their approach as BNP log-linear modelling,
though it is a semi-parametric approach.
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APPENDIX A

A1 Implementation of the Markov chain Monte Carlo approach

The Markov chain Monte Carlo (MCMC) sampler employed here is a Gibbs sampler, where
groups of parameters are sampled one after the other. In particular, the sequence of MCMC
steps amounts in drawing samples from the conditionalsβjrest; ϕjrest, andmjrest. Samples from
the posterior distribution over β; ϕ, and m allows one to estimate per-cell risks through Monte
Carlo averaging.

Sampling β—The conditional distribution of βjrest is not of known form, given that the prior
on β is Gaussian and the likelihood is Poisson. Therefore, we employ Metropolis-within-Gibbs
samplers, where a proposal is accepted or rejected according to a Metropolis ratio (Roberts &
Rosenthal, 2009); these can include, for example, Metropolis–Hastings (Metropolis
et al., 1953) or Hybrid Monte Carlo (Duane et al., 1987; Neal, 1993), but in this work, we em-
ploy the so-called simplified manifold adjusted Langevin algorithm (SMMALA) (Girolami &
Calderhead, 2011). SMMALA is one instance of manifold MCMC methods, which are
characterized by the fact that they exploit the curvature of the log-likelihood, allowing for
efficient moves in the parameter space. SMMALA has been shown to be effective for problems
similar to the ones considered here, where the posterior is unimodal and is not characterized by
strong skewness. SMMALA approximates the diffusion on the statistical manifold
characterizing pðf 1; …; f K jβ; restÞ . Defining Mto be the metric tensor obtained as the
Fisher Information of the model plus the negative Hessian of the prior, and ϵ to be a
discretization parameter, SMMALA can be thought of as a Metropolis-Hastings sampler
with a position-dependent proposal. The curvature of the log-likelihood determines the
step-size of the proposal through the metric tensorMas follows pðβ0jβÞ ¼ Nðβ0jμ; ϵ2M�1Þ, with
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μ ¼ β þ ϵ2

2
M�1∇βlog½pðf 1; …; f K jβ; restÞ�. The complexity of the update is OðKD3Þ where K

is the number of cells and D is the size ofβ; the linearity in Kmakes it well suited in applications
where the number of cells is large, while the cubic scaling in D makes it suitable for models
with a small number of β parameters.
Sampling ϕ—In Sections 3 and 4 of this work, we exploit the conjugacy between the base

Gamma measure and the Poisson likelihood to derive an efficient sampler for ϕ. We imple-
mented the MCMC sampler proposed in the review paper of MCMC methods for DP
models in Neal (2000) as Algorithm 3. In a nutshell, we choose a distribution for G0 such that
ω = eϕ is given a gamma base measure, for which we can exploit conjugacy with the Poisson
likelihood. A similar argument holds when ϕ is given the IG distribution. This allows us to

integrate out the values of ϕ analytically

∫

pðf k jβ; ϕÞdG0ðϕÞ , where we expressed

pðf k jβ; ϕÞ as the likelihood for a single point. As a result, it is possible to derive a sampler that
allocates cells to an unknown number of clusters and to draw directly a value for the random
effect for each cluster. The complexity of the update is OðKÞ.
Sampling m—We choose a gamma prior for the m parameter. With this choice, it is possible

to draw samples from the posterior distribution over mjrest directly following Escobar &
West (1994).

[Received April 2020; accepted August 2021]

19Assessing Bayesian Log-Linear Models

International Statistical Review (2021)
© 2021 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.


