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Abstract—The deployment of 5G and 6G is highly motivated
by the emerging network services that demand more band-
width and very low latency. Besides, these services are shifting
from dominant Downlink (DL) Traffic to a more equilibrate
DL/UpLink (UL) and dominant UL traffic for specific emerging
services. One option to accommodate this new behavior is to use
Time Duplex Division (TDD), where the radio frame is shared
between UL and DL time slots, namely UL/DL pattern. While
4G TDD has a fixed number of configurations that cannot be
updated on runtime, SGNR allows complete flexibility to define
the UL/DL pattern. Therefore, SG base stations can dynamically
change the pattern to adapt to the type of traffic (i.e., UL or
DL). However, the 5G standard does not specify algorithms or
solutions to derive the UL/DL pattern. To fill this gap, we propose
a Deep Reinforcement Learning (DRL) that adds intelligence to
the base station to self-adapt to the traffic pattern of the cell type.
The proposed DRL algorithm monitors UL and DL buffers at the
5G base station to derive the optimal UL/DL pattern in respect to
the current traffic configuration. The proposed solution delivers
the optimal configuration in a timely and efficient manner.
Simulation results demonstrated the efficiency of the proposed
algorithm to avoid buffer overflow and ensure the generality by
reacting to traffic pattern changes.

I. INTRODUCTION

Emerging 5G and 6G network services are shifting from
Downlink (DL)-dominant traffic to more equilibrate DL and
Uplink (UL) traffic, even to more UL-dominant traffic [1].
Indeed, emerging network services such as Augmented and
Virtual Reality applications generate high UL traffic corre-
sponding to offloaded intensive computation to be run at
a remote application sitting at the Edge. Another example
is the high-quality video streaming captured by drones for
building surveillance that requires more UL traffic than DL.
One solution to accommodate this new trend in terms of traffic
model is Time Division Duplex (TDD). TDD allows using the
entire bandwidth by dividing it into time slots where some are
assigned to UL and some to DL.

Long Term Evaluation (LTE) or 4G proposes 7 different
configurations of the TDD frame, which allows configuring
the eNB according to the traffic patterns. But, one concern
with this solution is that the configuration is fixed in time and
cannot be adapted to the traffic dynamic, i.e., if in a certain
moment of time more DL or UL need to be accommodated,
then there is no possibility to increase the number of UL
or DL slots, without rebooting the eNB. To overcome this
issue, 5SG NR introduces a more flexible solution, where the
number of UL and DL slots in the TDD frame can be changed
dynamically. This flexibility will allow the gNB to adapt
to the frame configuration according to the traffic pattern
by selecting the number of slots dedicated to UL and DL.
However, the 5G NR specifications only cover the mechanism
allowing the gNB to inform the UE about the UL/DL slots

pattern in a TDD frame, leaving the algorithm deriving the
pattern UL/DL opens.

In this paper, we fill this gap by proposing a novel algo-
rithm, namely Deep Reinforcement Learning (DRL)-based 5G
RAN TDD Pattern (DRP), which allows deriving the UL/DL
pattern of TDD frames dynamically and accommodating cell
traffic whatever it is DL or UL dominant. DRP monitors UL
and DL traffic periodically and derives the optimal pattern.
DRP uses the Buffer Status Report (BSR) sent by UEs for
the UL traffic and the state of the radio bearer channel queues
at gNB, which avoids having an exact pattern of the traffic.
DRP is run by gNB before the MAC scheduling process. DRP
is particularly efficient for 5G private network deployment,
allowing to deploy gNB in a plug-and-play mode.

The remaining of the paper is organized as follows. Section
IT gives the necessary background and related work. Section
IIT introduces the main idea and the problem formulation
targeted by this paper. The DRP solution is described in
section IV, while section V shows the simulation results and
its discussion. Finally, section VI concludes the article.

II. BACKGROUND
A. 5G NR TDD

5G New Radio (NR) introduces several new features to
improve the performance of mobile networks. First, SG NR
uses larger bandwidth (up to 100 MHz in < 6 GHz frequency
band, and up to 400 MHz in > 6 GHz frequency band) to
accommodate data-rate demanding applications [2]. Second,
5G NR introduces different physical layer numerologies to
reshape radio units in time and frequency. Unlike LTE that
uses a (Time Transmission Interval) of 1ms, 5G NR reduces
TTI to 2, 4, 8, and 16 times smaller. For the sake of paper
readability, the used notations are summarized in Table I
Numerology in 5G, noted p € 0,1,3,4, is defined by a
Sub-Carrier Spacing (SCS) and a Cyclic Prefix (CP). 5G NR
specifies five numerologies, which result in different SCS and
slot durations. Indeed, the SCS and slot duration are given
as follows: 15 % 2# and 1/2*, respectively. While LTE uses
a fixed time slot duration (i.e., 0.5ms), 5SG NR reduces the
slot duration up to 16 times (when p = 4), which allows
decreasing the RAN latency considerably.

It should be noted that each slot in 5G NR is constituted by
14 OFDM symbols, while the subframe and the radio frame
length are similar to LTE, i.e., Ims and 10ms, respectively.
Table II summarizes the number of slots in a subframe/frame
for each numerology for normal CP.

Like LTE, 5G NR supports both Frequency Division Duplex
(FDD) and Time Division Duplex (TDD) operations. How-
ever, unlike LTE that specifies seven predefined patterns for



TABLE I: Summary of Notations & Variables.

Notation / Description

Variable

B the gNB.

I the set of UEs in the network.

¥ AUE~vyel.

0 TDD period.

m A numerology used by gNB.

Ts The number of slots during a period §. 75 =
{1,2,3---16}.

)\Z,/Y’ The uplink traffic generated by UE ~.

A? The downlink traffic of UE ~.

)\zl:’ The uplink traffic generated by all UEs I'. Formally, )\Zli’ =
> M
yerl’

)le The downlink traffic of all UEs I'. Formally, /\1? =
S AP
yer

u The uplink buffer of UE ~.
,? The downlink buffer of UE .
vl The uplink buffer of all UEs I'. Formally, ¥% = Ze:r o
ol

\III? The downlink buffer of all UEs I'. Formally, \IJ? =
> P
yerl’

S OFDM symbol.

uns The amount of traffic in bytes transmitted by S.

«@ A constant that specifies the priority between the uplink
and downlink traffics.

<I>Z:f The initial amount of stored data in bytes in the uplink
buffer w%.

@5 The initial amount of stored data in bytes in the downlink
buffer 2.

X, A real variable that denotes the percentage of uplink slots
reserved for the UE v € T'.

YV~ A real variable that denotes the percentage of downlink
slots reserved for the UE ~ € T'.

UL and DL allocation in a radio frame, 5G NR allows defining
UL/DL patterns more flexibly. Indeed, it is possible that a slot
may not be configured to be fully used for DL or for UL.
OFDM symbols in a slot can be classified as “downlink”,
“flexible”, or “uplink”. Flexible symbols can be configured
either for UL or for DL transmissions. Finally, like LTE, a
guard period is necessary for the transceiver to switch from
DL to UL and allow timing advance in UL.

The slot configuration, or DL/UL pattern, is indicated to
UE either via Broadcast or RRC configuration message. We
distinguish between a common configuration that concerns all
the slots marked as DL or UL, and a dedicated configuration
that covers all slots and symbols noted as Flexible. The
DL/UL pattern is repeated periodically according to dl—U L—
TransmissionPeriodicity, noted §. The value of § depends
on the NR numerology (u). For instance, § = 0.625ms can
be used only with p € 3,4, while § = 2.5ms can be used
for all numerology expecting 1 = 0. Hence, depending on
the numerology and ¢, the number of slots (noted 7s) varies
completely. It is derived as follows: 75 = § x 2. For instance,
if § = 2.5ms and p = 2, the number of available slots is equal
to 10. If 6 = 5ms and p = 4, the number of available slots
equal to 80.

In addition to §, the common configuration includes the
number of slots for downlink (dg;.¢s) located at the beginning
of the transmission period and for uplink (ug;0ts) located at
the end of the transmission period. dsy,, symbols within the
slot immediately following the last full downlink slot and
last gy, symbols in the slot preceding the first full uplink
slot are also indicated in the common configuration. The
remaining symbols are considered flexible symbols. These
flexible symbols can further be allocated to either downlink
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Fig. 1: 5G NR TDD example pattern

or uplink by making use of dedicated configuration. Figure 1
illustrates a UL/DL pattern. For more details on TDD pattern
management in 5G NR, readers may refer to [3].

B. Related work

Many dynamic TDD resource allocation algorithms for op-
timizing both power efficiency and transmission performance
in LTE were investigated [4]-[6]. T. Ding et al. analyze the
performance of employing dynamic TDD for dense small
cell networks towards 5G [7]. In [8], authors considered a
cluster-based dynamic UL/DL re-configuration considering a
centralized-RAN scenario in dense deployments. The central
control unit uses a low complexity trellis exploration algorithm
to reconfigure the UL/DL ratio aiming at maximizing the
overall RAN throughput. In [9], the authors presented a
game-theoretic approach where each eNB re-configures its
TDD frame aiming at minimizing the UL/DL delay while
considering cross-slot interference. As mentioned earlier, all
these works consider the LTE TDD configuration, ignoring
the new flexibility of 5G NR.

In [10], the authors explored employing deep reinforcement
learning to adaptively allocate TDD UL/DL resources in the
high mobility 5G HetNet. As high mobility of users leads
to the high dynamic network traffic and unpredicted link
state change, a new method to predict the dynamic traffic
and channel condition and schedule the TDD configuration in
real-time is proposed. However, this work does not consider
the 5G NR specificities and requires additional information
that is not available at the base station. In [11], the authors
proposed a service-oriented soft spectrum slicing for 5G TDD.
The objective is to use the flexibility of TDD to adjust the
UL/DL dynamically using forecasted traffic and user mobility.
The problem has been modeled using weighted optimisation.
Although the paper tackles 5G, it uses the TDD LTE con-
figuration (i.e., fixed patterns). In addition, the optimization
problem needs to be solved periodically to define the new
pattern, which is not realistic in a real deployment.

III. NETWORK MODEL AND PROBLEM FORMULATION
A. Network model

In the system, we focus only on one gNB B, whereby a
set of UEs are connected. Let I" denote the set of UEs in
the system. UEs v € I' are attached to the same gNB. We
assume that gNB is using TDD operations. Each TDD period
0 is fixed by gNB.Each UE ~ € I" has uplink and downlink
traffics that can vary from an industrial vertical to another.
While uplink traffic is generated and transmitted from the UE
~ to the gNB B, the downlink traffic is sent from the gNB 5
to the UE ~. Let A and AP denote the amount of uplink and
downlink traffic in bytes of UE +, respectively.

In contrast to LTE, where the downlink traffic )\3 is
more critical than the uplink one A in the 5G system
and beyond the amount of traffic in uplink and downlink



TABLE II: number of slots in a subframe/frame for each numerology for normal CP

" SCS No. of slots per subframe = 2# | No. of slots per radio frame = 10¥2# | Slot duration
0 15khz 1 10 1

1 30khz 2 20 0.5

2 | 60khz 4 40 0.25

3 | 120khz 8 80 0.125

4 | 240khz 16 160 0.0625

is application dependent. For instance, in a network slice
that manages autonomous driving or unmanned aerial vehicle
(UAV), high uplink traffic /\Z:Y’ is expected. On another side,
in some verticals, such as video on demand (VOD) and live
streaming, the downlink traffic )\3 is more important. Other
industrial verticals and network slices, such as immersive
applications (virtual reality, augmented reality, and holograph
communication), require high data rates in both directions.
The players in these applications are characterized by colossal
collaborative interactions, tremendous precision, and high
data synchronization. Furthermore, the same UE v can be
subscribed in multiple network slice, which makes hard to
predict the uplink A and downlink A?' traffic of a UE 7.
For the sake of simplicity and without loss of generality, we
assume that each UE ~ has limited uplink \I/lj and downlink
U2 buffers, respectively. Let | #¥] and |¥?| denote the size of
uplink and downlink buffers in bytes, respectively. While \I/Z’
is located at the UE 7, \Iﬂf is located at the gNB 5. The UE
~ periodically keeps informing the gNB 5 about the state of
\IIZ,’Y’ . In 5G NR, this operation corresponds to the Buffer Size
Report (BSR) sent by UE when requesting uplink resources.
Meanwhile, the downlink buffers are monitored by gNB, as
it corresponds to the radio bearer data channels maintained
by gNB for each UE. Let \Iﬂl{ and \111? denote the uplink and
downlink buffer of all the UEs. Formally, \Iﬂf’ => w“, and
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B. Problem formulation

In this work, we assume that the number of slots T is fixed
in each frame A. However, their distribution on uplink and
downlink traffic is unknown, and it is the target of this paper.
The main research question targeted by this paper is how to
distribute the slots among the uplink and downlink traffic,
such that the service level agreement (SLA) is preserved and
the uplink W% and downlink W% buffers do not overrun their
boundary. The main challenge faces the paper is both uplink
)\Zj and downlink /\? traffics are unknown and hard to predict.

As aforementioned, each slot has 14 OFDM symbol S,
each of which can transmit s bytes. Thus, each slot t € T
transmits 14 x ps. Let &, a real variable that denotes the
percentage of uplink slots reserved for the UE ~ € T.
Similarly, let ), a real variable that denotes the percentage
of reserved slots for downlink traffic. Formally, the following
statements should hold (2), (3) and (4).

If we denote by Ar a real variable that denotes the
percentage of uplink slots reserved for all the UEs I', then
AT = \T1| > A,. Similarly, if Vr is a real variable that denotes

y
the percentage of downlink slots reserved for all the UEs T,
then Yr = I%I Z Y. Also, the following statement holds:

Y

Ar+Vr =1

Let o a given constant (0 < o < 1) that defines the priority
between the uplink and downlink traffics. This parameter can
be defined by the customer to specify the priorities between

the two traffics. If « = 1, then we are interested only to
optimize the uplink traffic, whereas, if a = 0, then we are
interested only to optimize the downlink traffic. The proposed
solution should be periodically applied to specify X, and ),
in order to prevent the overflow of uplink buffer \I!Z,’Y{ and
downlink buffer U2 Let % and ® denote the initial stored
data of the uplink and downlink buffers. Both ® and ® are
initialized by zero. At each iteration, we aim to optimize the
following linear integer programming:

min%xZ(@%Jr)\lijxung@x’ﬁ;)
7] vyer
11—«
oD ><2<<I>$+)\5714><,u$><3}7><73> (1)
| F‘ ~yer
St,
0<Xx, <1 @
0<Y, <1 3)
X’y“l’y'y:l (4)
Vy e : Y + N — 14 x pg x Xy x T < [WY] )
Vy el : P + AT — 14 x s x Yy x T5 < |UF| (©6)
VyeT : X, x T = A, 0]
VyeTl: Yy xTs =B, 6)
Vy €T : (Ay, By) € N2 ©)

The objective function (1) aims to minimize the amount
of stored data in the uplink and downlink buffers to prevent
their overflow. While | >~ X, x 75| denotes the number of

er

-
slots reserved for the uplink traffic, [ )" X, x Ts] is the
T

number of slots reserved for the downi{iik traffic. We have
used weighted normalized sum method to prevent an objective
(i.e., buffer) dominant the other. Meanwhile, constraints, (2),
(3) and (4), ensure that the variables X', and ), are rates
of slots distribution for uplink and downlink. Meanwhile,
constraints 5 and 6 ensure that the uplink and downlink buffer
of v € I is not overflow, respectively. Meanwhile, constraints,
(7), (8) and (9), ensure that the number of uplink and downlink
solts distributed on each UE v € I' is an integer. Note that
A, and B, are two integer variables should be fixed by the
system. While A, denotes the number of uplink slots of ~,
A., denotes the downlink slots.

Unfortunately, we cannot use the optimization problem
mentioned above for distributing the slots mainly due to
two reasons: i) Solving the optimization problem is time-
consuming while we should take decisions within few mil-
liseconds as the solution is online and acting at the RAN
level; 4i) The amount of uplink A% and downlink /\? traffics
are unknown and it is hard to predict them a priory.



IV. DRP: DRL-BASED 5G RAN TDD PATTERN

As aforementioned, it is hard to distribute OFDM slots
using optimization efficiently and without prior knowledge
of the traffic generation patterns. For this reason, we have
proposed the DRP system that leverages DRL, more precisely
the Deep Deterministic Policy Gradient (DDPG) Algorithm, to
define the 5G NR TDD pattern dynamically. The DRL hides
the complexity and stochastic of the environment and helps
the DRP framework to make efficient and quick decisions
that adapt according to the traffic patterns. Moreover, the
DRP framework gains the ability to learn with time and
adapts to different and unseen situations. In the balance of
this section, we will present the DRP system overview and
DRL background, more precisely the DDPG Algorithm, and
a detailed description of the DRP system.

A. DRP System Overview and DRL Background

Deep Reinforcement Learning (DRL) will play a crucial
role in communication, and networking [12] with the ability
to provide a self-configured and self-optimized network that
easily adapts to the network changes. Moreover, DRL is
a lightweight framework that enables for providing quick
decisions, and hence takes real-time actions in the network that
is characterized by its dynamicity and needs fast decisions. As
depicted in Fig. 2, DRL techniques are based on the interaction
of the DRP Agent with its environment by applying different
actions and receiving rewards according to the taken actions.
The DRP agent interacts with the environment at discrete time
steps. At each step t (i.e., interaction), the environment in a
state s;, the agent takes the action a; and receives the reward
r++1, and hence the environment moves to the next state
s¢+1- DRL enhances legacy Reinforcement Learning (RL) by
considering continuous states. In contrast to Markov Decision
Processes (MDPs), DRL is a model-free approach and does
not require transition probabilities between states.

The ability of DRL-based solutions to deal with unknown
and unseen environments makes them the best fit for address-
ing the 5G TDD pattern configuration problem. The DRL
Algorithm mainly consists of two steps: i) The learning (ex-
ploration) step; i7) The exploitation step. In order to overcome
the need of model (i.e, transition probability), during the
learning step, the agent interacts with the environment by
following stochastic policy (i.e., random actions) to explore
and build the knowledge about the environment. While, in the
exploitation step, the agent exploits the acquired knowledge
by following the optimal policy 7, that provides the optimal
action a;, to take in each state sy, in a way that maximizes
future cumulative discounted reward G; defined as follows:

T

Gy = Z Yoriprer = rer1 +7Gep1 10)
k=0

With v € [0,1] defined as the discount rate that penalises
the future rewards, and 7' equal to the time horizon which
is finite for episodic problems (i.e., problems that ends when
the environment is a final state) and infinite for continuing
problems.

In general, DRL methods are classified into three categories

i) value-based methods, such as Monte Carlo, SARSA,
Q-Learning, and DQN; i) policy-based methods, such as

DRL-based RAN Scheduler Agent
DDPG Algorithm

P ., Predicted (77
(10) (" TargetActor |Next Actions—~ | Target Critic
| Network | Network
(14)Update Critic

Target Critic Values

Update Target Crilic
)

(13) Critic Values

@
L
s
12}

3
E4

Soft Update

p
)
() Update Target Actor

&/

States, Actions

Soft Update,

Replay Buffer J Sla;s Actor Network
—
ar

State & Reward 1

(3) Action

(5) Action + Noise | iAction
Percentage
of uplink
slots

@ 8
(7 )Action + Noise ¥

Downiink buffers.

(2)State (4)[Noise

Uplink bufers [ Exploration
Noise Generator

Environment

(t
@
Observation & Reward

o 7NN

— Update Policy Networks

Uphnk buﬂer Upllnk buﬁer Upl\nk buﬂer Upllnk buﬂer Upllnk buﬂer

Adjust slots distribution (o)

Downlink
buffers

ﬂDHHH

—> Update Target Networks
__ Interaction with the
Environment

Fig. 2: Envisioned DRL—based SG RAN TDD Pattern (DRP) System

REINFORCE (i.e., Monte-Carlo Policy Gradient) and REIN-
FORCE with baseline; ii) actor-critic methods that combine
the two previous methods, such as A2C, A3C, DDPG, and
PPO [13]. In actor-critic approach, we have mainly two
families, the stochastic policy approach (e.g., A2C and A3C)
and the deterministic approach (e.g., DDPG). In the stochastic
policy approach, the actions are selected from the Actor with
different probability using the softmax activation function. The
agent should pick the action that has a high probability. Unfor-
tunately, the main limitation of the stochastic policy approach
is the number of actions should be limited. In contrast, in the
deterministic approach, the actions are generated directly from
the actor-network, enabling continuous actions. In this paper,
we are interested in specifying the percentage of uplink and
downlink slots as depicted in Fig. 2. For this reason, we have
adapted DDPG Algorithm. We will explain further the DDPG
Algorithm when explaining our DRP approach.

B. DRP Detailed Description

We have designed the DRP agent to be lightweight to ensure
fast interaction with the environment. Also, we have designed
the DRP agent to ensure generality and then work in an unseen
environment. The DRP agent has been designed to work
independently from the number of slots and the size of the
buffers. Moreover, it considers the variation and correlation in
the buffer states to predict the traffic patterns. In what follows,
we define the elements of the DRP agent, including the state,
the reward, and the action.

i) State: Let £/ and ¢P denote the amount of traffic in the
uplink ¥¥ and the downlink WX at the step ¢, respectively.
To ensure the generalization, we define the observation OY
and OP of the uplink and downlink buffers as normalized

values (Fig. 2: 1). Formally, OY = \pM and OP = \%D,
respectively. The benefits of the normalization are twofold:
i) It ensures the generality by enabling the DRP agent to be
agnostic to the scenario scale. It works similarly in different
buffers with different sizes. The most important is to catch the
buffer fullness ratio of ¥ and WX; 44) It is well known that
the activation functions in the neural network work well for
small values, which positively impacts DRP’s convergence.
Moreover, to capture the traffic patterns, we define the state
s; as follow:
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In the state s;, the DRP agent, besides the current obser-
vation, considers K previous observations before taking any
action. This enables to capture the behavior of both buffers
and traffics before making any action.

ii) Action: We have only one continuous action a; that
presents the percentage of slots should be reserved for the
uplink traffic at the step ¢. The DRP agent enforces the taken
decisions as depicted in Fig. 2:6. Accordingly, the |a; X Ts]
slots are reserved for the uplink traffic, and [(1—a;) x T5] slots
are reserved for the downlink traffic. It is worth noting that the
action is independent on the number of slots 75, which ensures
the generality and enables the DRP agent to be agnostic to
the scenario scale.

iii) Reward: We have adapted an episodic approach,
whereby each episode runs for max 7" steps before ends. The
reward r; has been defined as follow:

= {a x(1-0%)+(1-a)x (1-0P) 1f0¥|<1A|0P|<1
-M Otherwise
(12)
Where, « is the priority between the uplink and downlink
traffics. The DRP agent receives a positive reward for each
step succeeds to keep the buffers ¥ and WX do not exceed
their threshold. Moreover, the emptiest the buffers are, the
highest reward becomes. When one of the buffers exceeds its
capacity, then the agent receives a penalty —M, such that M
is a significant number. This strategy will enforce the DRP
agent to keep both buffers empty as much as possible and
prevent their overflow, which has a positive impact on the
QoS.

As depicted in Fig. 2, DRP system leverages DDPG al-
gorithm and executed on three different steps: i) Decision
making (Fig. 2: 1—6) presented with blue color; i) Updating
policy networks (Fig. 2: 7— 17) presented with red color; i%)
Updating target networks (Fig. 2: 18 — 19) presented by green
color. In DDPG, we have two networks: a) Policy networks
that consist of the Actor and the Critic neural networks. These
networks are used to predict the deterministic action a;. While
the actor network has as input the state s; and it is used to
predict the action ay, the critic network has as inputs s; and
a; and returns the Q value that is used for criticizing the
taken action; b) The target network that consists of target actor
and target critics. These two networks are frozen and used to
help the convergence of policy networks and stabilize their
learning. In deep learning, the optimizer (i.e., ADAM) should
update the neural network parameters of the policy networks

closer to the labels, which are the fixed target neural network
values. Moreover, to stabilize the learning, a replay buffer is
used. The training is performed using a random sample from
the replay buffer, which reduces the correlation between the
agent’s experiences.

Decision making: At the reception of the observation
(0%, OP), the DRP agent generates the state s, using the
equation (11) (Fig. 2: 2). The received state is used by
the actor network to predict the deterministic action a; (11)
(Fig. 2: 3). In order to enable the DRP agent to explore the
environment, a noise  is added to the action (11) (Fig. 2:
4). Accordingly, the uplink and downlink slots are reserved
(Fig. 2: 5 —6).

Updating policy network: In order to take optimal actions,
the policy network should be updated (Fig. 2: 7 — 17). The
taken action with noise should be stored in the replay buffer
(Fig. 2: 7), as well as their corresponding state and reward
(Fig. 2: 8). First the critic network is updated by leveraging a
random batch sample (s;, a; + N, 7;) from the replay buffer
(Fig. 2: 9 — 14). Using mean square error (MSE) and ADAM
optimizer, the parameters of the critic network are optimized
by considering the critic values and target critic values. Then,
the actor network is also optimized by leveraging the gradient
generated against the critic network.

Updating policy network: The target networks (actor and
critic) should be updated slowly and periodically towards the
policy networks using soft update (Fig. 2: 18 —19). This strat-
egy helps the Algorithm for providing optimal deterministic
action.

V. PERFORMANCE EVALUATION

We have implemented our simulation environment using
Python, and Pytorch . We have used a physical machine
with 8 Core 17-8665U 1.90GHz and 16 GB of memory using
Centos 7 as an operating system. We have employed two fully
connected hidden layers of 400 and 300 nodes for both policy
and target networks. We have also used layer normalization
between the hidden layers to enable smoother gradients, faster
training, and better generalization accuracy. While Rectified
Linear Unit (ReLU) activation function has been used in
the two hidden layers, Hyperbolic Tangent (fanh) activation
function has been used in the output layer. We have employed
a discount factor «y of 0.99, batch size of 64, and the learning
rates of the actor and critic networks are set to 10~° and 1073,
respectively. We have used the soft update with coefficient 7
0.001. Also, ADAM optimizer has been leveraged in both
actor and critic networks.

A. DRP Training mode

As depicted in Fig. 3, we have trained our DRP agent
using 2000 independent episodes. We have fixed the maximum
number of steps at each episode 7' by 100. We have set the
penalty reward M to -100, and the number of slots 75 to
40. We have considered three successive observations (i.e.,
K = 3). From the figure, we observe that the DRP agent
converges at 500 episodes.

B. DRP Inference mode

We have evaluated the DRP agent in terms of: i) The
percentage of the fullness of the uplink and downlink buffers;
1) The number of buffer overflows. In the figure 4, the left
Y-axis represents the percentage of the fullness of the uplink
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Fig. 4: Performance evaluation of DRP system during the inference mode

and downlink buffers, whereas the right Y-axis represents the
number of overflows. In all the experiments, we have fixed
the maximum number of steps 7' by 200. We have conducted
three sets of experiments: i) We have varied the number of
episodes while fixing the number of slots 75 by 40 and the
amount of uplink )\Z and downlink AP traffic by 400; i) We
have varied 75 while fixing /\ff’ and /\é by 400 and number of
episodes by 100; iii) We have varied \Y and A\? while fixing
Ts by 40 and number of episodes by 100.

Fig. 4(a) depicts the impact of the execution steps on the
DRP agent. The first observation that we can draw from this
figure is the average amount of traffics in the uplink, and
downlink buffers are 20%. Also, we observe that the fullness
of the buffer did not exceed 45% in the 12000 execution steps.
We also witness that the number of times a buffer overflow
happens did not exceed 10 times, which is less than 0.083%.
This figure also confirms the ability of the DRP agent for
generalizing. While it is trained with 7" = 100, it has been
tested with 7" = 200 without feeling any difference.

Fig. 4(b) depicts the impact of X and AT on the DRP
agent. Each plotted point presents the average of 100 episodes,
each of which with 200 steps. The first observation that we
can draw from this figure is the amount of traffic hurts the
DRP agent. The more data traffic generation rate is, the higher
likelihood to get buffer overflow becomes. We observe that
whatever the amount of traffic, the average fullness of both
buffers does not exceed 60%. The number of buffer overflows
did not exceed 100 cases, which is 0.5% in the worst-case
scenarios. The obtained results demonstrate the DRP agent’s
ability to make the generality and perform well in unseen
environments.

Fig. 4(c) shows the impact of the number of slots on the
DRP agent. We observe that the number of slots has a positive
impact on the fullness of the buffers and the number of buffer
overflows. The more number of slots is, the higher capacity
for transmitting the packets becomes. We observe that DRP
agent succeeded to get empty buffers when more 60 slots are
used. These results demonstrate the efficiency of the proposed
solution for making the generality and achieving its main
design goals. We also observe that the percentage of buffer
fullness does not exceed 45% in the worst-case scenarios.
Also, the number of buffer overflows did not exceed 90, which
is less than 0.45%.

VI. CONCLUSION

In this paper, we introduced DRP, a Deep Learning Re-
inforcement (DRL)-based solution that allows to derive and
adjust the TDD pattern in 5G NR. DRP is used by 5G base
station before the UE scheduling process to compute the

number of slots dedicated to UL and DL in a TDD frame.
Without knowing the UEs traffic model, DRP can derive
the optimal TDD pattern aiming at reducing both UL and
DL buffers. DRP uses available information at the gNB, i.e.,
BSR, and DL buffer size, to deduce the optimal TDD pattern.
Simulation results clearly showed that DRP could avoid buffer
overflow and dynamically adapt to the cell traffic. Our future
focus on implementing DRP on top of OpenAirlInterface (OAI)
5G to demonstrate self-adapted and plug-and-play deployment
of 5G base station.
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