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Abstract—Affine Frequency Division Multiplexing (AFDM)
is a new multi-chirp waveform that can be generated and
demodulated using the discrete affine Fourier transform (DAFT).
DAFT is a generalization of discrete Fourier transform charac-
terized with two parameters which can be adapted to better
cope with both doubly dispersive channels and impairments
at high-frequency bands. DAFT domain impulse response can
indeed convey a full delay-Doppler representation of linear time-
varying (LTV) channels, which allows AFDM to achieve the
full diversity. Moreover, AFDM signals are maximally spread
in time and frequency, thus providing a coverage gain that turns
out to be robust against radio frequency impairments, such as
carrier frequency offset and phase noise. In this paper, we show
that AFDM offers the aforementioned advantages while being
compatible with practical pilot-aided channel estimation and low-
complexity channel equalization. Our analytical and simulation
results evince that AFDM achieves significant throughput and
reliability gains over state-of-the-art multicarrier modulation.

Index Terms—AFDM, affine Fourier transform, chirp modu-
lation, linear time-varying channels, doubly dispersive channels,
extremely high frequency bands.

I. INTRODUCTION

Next-generation wireless systems (e.g., beyond 5G/6G) are
envisioned to support a wide range of services including
communication in high mobility scenarios and in extremely
high-frequency (EHF) bands. This calls for new waveform
design able to cope with various highly demanding require-
ments. Existing waveforms, orthogonal frequency division
multiplexing (OFDM) in particular, have proved to achieve
satisfactory or even optimal performance in time-invariant
frequency selective channels. Nevertheless, this ceases to be
true in high-mobility scenarios, double dispersive channels,
and high-frequency bands. OFDM does not achieve full diver-
sity in linear time-varying (LTV) channels [1]. Impairments
that become significant at high frequencies, such as carrier
frequency offset (CFO) and phase noise (PN) [2], could
destroy orthogonality among OFDM subcarriers deteriorating
performance. Moreover, high-frequency wireless links may
suffer from severe pathloss, thus requiring waveforms with
inherent coverage enhancement capabilities (not offered by
OFDM or single-carrier waveforms).

Chirp-based modulation is a promising alternative for com-
munication in time-varying channels. Finding an orthonor-
mal basis decomposition for general LTV channels is not
trivial. Employing an orthonormal basis formed by chirps
(i.e., complex exponentials with linearly varying instantaneous

frequencies) - despite not being optimal - can be adjusted to
the channel characteristics as a means to achieve near-optimal
performance. Using a chirp basis based on fractional Fourier
transform (FrFT) instead of the sine basis for transmission
over LTV channels is first introduced in [3]. A multicarrier
technique based on discrete affine Fourier transform (DAFT),
referred to as DAFT-OFDM in the sequel, is proposed in
[4]. Its parameters are properly tuned using partial channel
state information (CSI), namely the delay-Doppler profile of
the channel (known delays and the Doppler shifts of channel
paths), to reduce the inter-carrier interference (ICI). While this
property is useful for supporting low-complexity detection,
being equivalent to OFDM implies a diversity order close to
that of OFDM (which is known to be low without channel
coding). In addition, to tune the DAFT-OFDM parameters, the
delay-Doppler profile of the channel is required at the trans-
mitter side. Orthogonal chirp division multiplexing (OCDM)
[5] uses a discrete Fresnel transform, which can be obtained
as a special case of DAFT, and outperforms OFDM on
time-dispersive channels thanks to a higher diversity order.
Orthogonal time frequency space (OTFS) modulation [1] is
a two-dimensional (2D) modulation technique that uses the
delay-Doppler domain for multiplexing information. OTFS can
achieve the full diversity of LTV channels provided the data
constellation is rotated in a specific manner [6] and achieves
full effective diversity order, i.e., the diversity order in the finite
signal-to-noise ratio (SNR) regime as defined in [7]. However,
it comes with several drawbacks in terms of pilot overhead and
multiuser multiplexing overhead [8] due to the 2D nature of
the underlying transform. Other chirp-based waveforms, such
as chirp spread spectrum (CSS) [9], have been proposed for
power-limited wireless links and could be relevant for many
high-frequency scenarios. Indeed, CSS signals are maximally
spread in time and frequency, offering a coverage gain i.e.,
the possibility of increasing the signal-to-noise ratio (SNR)
at the receiver through spreading in time, thus doing away
with inefficient SNR enhancement schemes such as symbol
repetition. However, CSS achievable rates are limited due to
the non-orthogonality of its multiplexed chirps.

Affine frequency division multiplexing (AFDM) is a re-
cently proposed waveform [10] that employs multiple orthog-
onal information-bearing chirps generated using the inverse
DAFT (IDAFT). In this paper, after a brief overview of



S\P

Modulation

ΛH
c2 IFFT ΛH

c1
Add
CPP

P\S S\P
Remove

CPP

Demodulation

Λc1 FFT Λc2 P\S

Fig. 1. AFDM modulation/demodulation block diagram

AFDM, we analyze its performance in two scenarios: high-
mobility and high-frequency bands. In the former, AFDM is
shown to provide a full delay-Doppler representation of the
doubly dispersive channel, which allows to achieve full diver-
sity. Moreover, we propose a low-overhead pilot-aided channel
estimation scheme and a low-complexity linear minimum
mean square error (LMMSE) detector. In EHF bands, AFDM
is shown to be maximally spread in time and frequency, thus
providing a coverage gain. While maximal time-frequency
spreading can be offered by other waveforms (e.g., OTFS,
CSS), AFDM is distinguished by the fact that the benefits
of maximal spreading are achieved while detection is (i)
performed using one-tap equalization and (ii) robust to CFO
and phase noise.

The paper is organized as follows. AFDM is introduced in
Section II. Section III shows the optimality of AFDM in terms
of diversity gain in high-mobility scenarios. The potential of
AFDM for high-frequency scenarios is established in Section
IV. Simulation results are provided in Section V, while Section
VI concludes the paper.

II. AFFINE FREQUENCY DIVISION MULTIPLEXING

A. Modulation and Demodulation

DAFT, which is the basis of AFDM, is a discretized version
of the AFT [10]–[13]. Let x denote a vector of N quadrature
amplitude modulation (QAM) symbols. As shown in Fig. 1,
inverse DAFT (IDAFT) is used to map x to the time domain

sn =
1√
N

N−1∑
m=0

xmeı2π(c2m
2+ 1

N
mn+c1n

2), n = 0, · · · , N − 1.

(1)
In matrix form, (1) becomes

s = ΛH
c1F

HΛH
c2x. (2)

where F is the discrete Fourier transform (DFT) matrix
with entries e−ı2πmn/N/

√
N and Λc = diag(e−ı2πcn

2

, n =
0, 1, . . . , N−1). Like OFDM, AFDM needs a prefix to make
the channel seemingly lie in a periodic domain. However, this
prefix should be a chirp-periodic prefix (CPP) defined as

sn = sN+ne
−ı2πc1(N2+2Nn), n = −L, · · · ,−1. (3)

Here, L is any integer greater than or equal to the value in
samples of the maximum delay spread of the wireless channel.
Note that a CPP is simply a CP whenever 2Nc1 is integer and

N is even. After parallel to serial conversion and transmission
over the channel, the received samples as

rn =

∞∑
l=0

sn−lgn(l) + wn, (4)

where wn ∼ CN (0, N0) is additive Gaussian noise and gn(l)
is the impulse response of channel at time n and delay l. The
DAFT domain output symbols are obtained by

ym =
1

N

N−1∑
n=0

rne
−ı2π(c2m

2+ 1
Nmn+c2n

2). (5)

After discarding the CPP, the output can be written in matrix
representation as

y =Λc2FΛc1r = Heffx + w̃ (6)

where Heff = Λc2FΛc1HΛH
c1F

HΛH
c2 , H is the matrix

representation of the channel, w̃ = Λc2FΛc1w and w ∼
CN (0, N0I). Since Λc2FΛc1 is a unitary matrix, w̃ and w
have the same covariance.

III. AFDM FOR HIGH MOBILITY COMMUNICATION

In this section we assume that the wireless channel is time-
varying and has the following impulse response

gn(l) =

P∑
i=1

hie
−ı2πfinδ(l − li) (7)

where P ≥ 1 is the number of paths, δ(·) is the Dirac delta
function, and hi, fi and li are the complex gain, Doppler shift
(in digital frequencies), and the integer delay associated with
the i-th path, respectively. It should be noted that this model
is general and covers the case where each delay tap can have
a Doppler frequency spread by simply allowing for different
paths i, j ∈ {1, . . . , P} to have the same delay li = lj while
satisfying fi 6= fj . We define νi , Nfi = αi+ai, where νi ∈
[−νmax, νmax] is the Doppler shift normalized with respect to
the subcarrier spacing, αi ∈ [−αmax, αmax] is its integer part
while ai is the fractional part satisfying −1

2 < ai ≤ 1
2 . For the

sake of simplicity, we assume that the fractional parts ai are
zero. In addition, we assume that the maximum delay of the
channel satisfies lmax , max(li) < N . The channel matrix is

H =

P∑
i=1

hiΓCPPi∆fiΠ
li (8)

where Π is the forward cyclic-shift matrix, ∆fi ,
diag(e−ı2πfin, n = 0, 1, . . . , N − 1) and

ΓCPPi ,

diag(

{
e−ı2πc1(N2−2N(li−n)) n < li

1 n ≥ li
, n = 0, . . . , N − 1).

(9)
Defining Hi , Λc2FΛc1ΓCPPi∆fiΠ

liΛH
c1F

HΛH
c2 , (6) can

be rewritten as

y =

P∑
i=1

hiHix + w̃. (10)
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Fig. 3. Received DAFT domain samples (‘∆’: pilot samples, ‘x: data’)

It is shown in [10] that if c1 is chosen such that 2Nc1 is an
integer, the entry in row p and column q of Hi writes as

[Hi]p,q =

{
eı

2π
N (Nc1l

2
i−qli+Nc2(q2−p2)) q = (p+ loci)N

0 otherwise
,

(11)
where loci , αi + 2Nc1li. Hence, there is only one non-zero
element in each row of Hi and its location in the p-th row is
(p+ loci)N . The input-output relation in (10) becomes

yp =

P∑
i=1

hie
ı 2πN (Nc1l

2
i−qli+Nc2(q2−p2))xq+w̃, 0 ≤ p ≤ N−1

(12)
where q = (p + loci)N . Parameters c1 and c2 can be set in
a way that the DAFT domain impulse response constitutes
a full delay-Doppler representation of the channel. For that
sake, the unique non-zero entry in each row of Hi for each
path i ∈ {1, . . . , P} should not coincide with the position of
the unique non-zero entry of the same row of Hj for any
j ∈ {1, . . . , P} \ {i}. It is shown in [10] that by setting

c1 =
2αmax + 1

2N
. (13)

and assuming N is large enough so that 2αmaxlmax+2αmax+
lmax < N , channel paths with different delay values or
different Doppler frequency shifts get separated in the DAFT
domain, resulting in Heff having the delay-Doppler represen-
tation of the channel in the DAFT domain. With c1 satisfying
(13) and c2 set to be an arbitrary irrational number or a rational
number sufficiently smaller than 1

2N , AFDM achieves the full
diversity of the LTV channels [10].

A. Embedded pilot transmission and channel estimation

Channel estimation can be performed by inserting in the
AFDM frame x one pilot symbol, xpilot, surrounded by Lg
guard symbols with N−1−Lg data symbols occupying the rest
of the frame. To perform channel estimation and data detection
without data/pilot interference, the number of guard symbols
should satisfy Lg ≥ 2Q where Q , 2lmaxαmax + 2αmax +
lmax. Fig. 2 shows an AFDM frame with xpilot occupying
the first entry of x. At the receiver, the samples yp, 0 ≤ p ≤
αmax, NQ+αmax +1 ≤ p ≤ N−1 where NQ = N−(Q+1)
are the entries of y relevant for channel estimation as can be
seen from Fig. 3. Referring to (12), these samples are given

by

yp =

{
h′ixpilot + wp, ∃i ∈ {1, . . . , P}, p = (N − loci)N ,

wp, otherwise
.

(14)
Here, h′i , hie

ı 2πN (Nc1l
2
i−Nc2p

2). As can be seen from (14),
the entries yp which are not pure noise are used for the channel
estimation. The delay-Doppler profile of the channel can be
estimated from their locations p and the complex gains are
estimated using the value of these entries as they are the
complex gains scaling xpilot.

B. Data detection

To recover the transmitted data symbols, we apply channel
equalization to the entries of the demodulated samples vector
y occupied by data-related samples (marked as ‘x’ in Fig. 3).
Let y , Try be the truncated version of y corresponding to
these entries where Tr , [IN ]αmax+1:NQ+αmax,:. Then

y = Heffx + w̃, (15)

where x , Ttx, Tt , [IN ]Q+1:NQ+1,: and Heff ,
TrHeffTH

t . Referring to (15), the LMMSE estimate of x is

x̂ = HH
eff(HeffHH

eff +N0INQ)−1y. (16)

Matrix M , HeffHH
eff + N0INQ is a Hermitian band matrix

with lower and upper bandwidth Q. This structure can be
exploited to compute M−1 using, say, the LDLH decom-
position. It can be shown that instead of cubic order com-
plexity, computing x̂ using such a decomposition only needs
(2Q2 + 11Q+ 4)NQ complex operations.

IV. AFDM FOR HIGH FREQUENCY BANDS

We now turn our attention to communication at high fre-
quency bands without mobility. Wireless transmissions in these
bands suffer from impairments such as carrier frequency offset
(CFO), phase noise (PN) and severe pathloss (PL) [2], [14]. In
this section, we configure AFDM by setting c1 to 1

2N (a value
that can be obtained by plugging αmax = 0 into (13)). The
relevance for high-frequency scenarios of setting c1 to different
values will be addressed in future works. We next show that
AFDM with this configuration can provide a coverage gain
that is robust under CFO and PN and which is compatible
with one-tap equalization. This remarkable property is thanks
to the way AFDM with c1 = c2 = 1

2N becomes a waveform
with both single-carrier and multi-carrier features, as shown in
the following subsection. Without loss of generality, we only
consider receiver side CFO and PN.

A. AFDM input-output relation under CFO and PN

In the remainder of this section, we reuse the notation
Heff originally introduced in (6) to make it refer to the
effective DAFT domain channel matrix in presence of the
considered impairments. We then introduce the new notation
Heff,free (“free” as in free from impairments) to designate the
DAFT domain channel matrix when transmission undergoes
no such impairments. Note by referring to (11) that Heff,free



is circulant for the no-mobility scenario considered here. Let
P be a diagonal matrix having as its main diagonal entries
the multiplicative time domain complex exponentials resulting
from a receiver side CFO equal (when normalized with respect
to the subcarrier spacing) to νCFO and the N time domain
receiver side PN samples {ϕn}n=0...N−1

[P]n,n = eı2π
νCFO
N neı2πϕn . (17)

The effective channel matrix in presence of receiver side CFO
and PN thus writes as

Heff = Λc2FΛc1PΛH
c1F

HΛH
c2Heff,free

= Λc2FPFHΛH
c2Heff,free, (18)

where the second equality is due to the fact that Λc1 is
diagonal. Note that in the case with no impairments, P = IN
and Heff = Heff,free. In the general case, the absolute value
of Λc2FPFHΛH

c2 is circulant because Λc2 is diagonal. To
get better insight into the input-output relation of AFDM as
conveyed by (18) we first consider two scenarios in both of
which the transmission undergoes only one impairment: only
CFO in the first and only PN in the second.

Only-CFO scenario: It is reasonable to assume that
νCFO < 1 since in practice at least rough frequency synchro-
nization is implemented. Under this assumption and ϕn = 0
for all n in (17), it can be shown that the absolute value
of the q-th entry (q ∈ {0, . . . , N − 1}) of the first row of
matrix Λc2FPFHΛH

c2 is
∣∣∣ sinπ(q−νCFO)

sin π
N (q−νCFO)

∣∣∣. Since this matrix is
circulant in absolute value, it follows that the power of the
entries of its diagonals decreases the farther they are from the
main diagonal. Moreover, due to the quadratic phase of the
entries of Λc2 , the phase of the entries of each diagonal of
the matrix Λc2FPFHΛH

c2 is affine in the column (or row)
index with a frequency equal when normalized with respect
to the subcarrier spacing to the index of the diagonal (with
the main diagonal having the zero index). More precisely, the
k-th entry of y = Heffx (k ∈ {0, . . . , N − 1}) is

yk =

P∑
i=1

N−1∑
q=0

hie
ı(φi,q+2π qkN ) sinπ (q − νCFO)

sin π
N (q − νCFO)

x(k+li+q)N
,

(19)
where φi,q only depends on li, q and N . Due to the decay
profile of

∣∣∣ sinπ(q−νCFO)
sin π

N (q−νCFO)

∣∣∣ as function of q, the root mean
square (RMS) of the frequency shifts q expressed in Hz
i.e., 1

NTs

√∑N−1
q=0 q2 sin2 π(q−νCFO)

sin2 π
N (q−νCFO)

/
∑N−1
q=0

sin2 π(q−νCFO)
sin2 π

N (q−νCFO)
,

where Ts is the sampling period, can be shown to be 1)
increasing with νCFO and 2) approximately constant in N .

Only-PN scenario: Assuming the PN is modeled as a first-
order auto-regressive AR(1) process and νCFO = 0 in (17), it
can be shown as in [15, Appendix A] that the entries of the
diagonals of the circulant matrix FPFH (and hence those of
the matrix Λc2FPFHΛH

c2 which is circulant in absolute value)
have mean powers averaged over the PN process realizations
that decay the farther the diagonal is from the main diagonal
[15]. As in the CFO scenario, the phase evolution of the

entries of each diagonal of Λc2FPFHΛH
c2 has a frequency

equal when normalized with respect to the subcarrier spacing
to the index of the diagonal. Also, the RMS of these frequency
shifts in Hz can be shown to be increasing with the RMS of
the AR(1)-PN process and approximately independent of N .

Both-CFO-and-PN scenario: Combining the two scenarios
and referring to (18), the effect of both CFO and phase
noise on the DAFT domain channel response can be verified
to be cumulative and amounting to mapping each diagonal
in Heff,free representing a channel path to a “spectrum” of
frequency shifted and attenuated diagonals in Heff , possibly
partially overlapping with the spectra corresponding to other
channel paths, and whose effective width increases with the
CFO value and the RMS of the PN process while being
approximately constant in N when normalized by it.

Result 1. The input-output relation of AFDM in presence
of CFO and AR(1)-PN is that of an equivalent time domain
channel subject to a Doppler spread whose RMS is increasing
with the CFO value and with the RMS of the PN process and
approximately constant in N when expressed in Hz.

B. AFDM robust spreading gain

By robustness in presence of impairments we mean relative
advantage to other waveforms in terms of relevant performance
metrics e.g., bit error rate (BER), when channel estimation and
data detection are done without knowing the values of these
impairments e.g., the CFO in Hz or the time domain phase
noise samples in radians. In the case of OFDM, impairment-
agnostic detection amounts to ignoring ICI and using one-tap
equalization based on (an estimate of) the main diagonal of
the frequency domain channel matrix1. In the case of AFDM
with c1 = c2 = 1

2N , an impairment-agnostic receiver would
do channel estimation and equalization assuming the DAFT
domain channel matrix Heff to be circulant (while it is only
circulant in the absence of the impairments as can be seen from
(18)). One possible detection method when Heff is assumed
circulant is one-tap equalization applied using an estimate of
the main diagonal of the DFT factorization of this matrix.
Consider a N -point AFDM frame x = Auxu composed of
Nu > 1 (‘u’ for “used”) data symbols represented by vector xu

and occupying contiguous positions within x with Nu ≤ N .
Here, Au is the N ×Nu matrix that maps the non-zero data
symbols to their positions. Let

y = HeffAuxu + w (20)

be the N -long vector of received DAFT domain samples
(after AFDM demodulation). Note that HeffAu is not a
square matrix and hence not circulant even in the absence
of impairments. The effective channel matrix associated with
xu can though be made square (and circulant in the absence

1The estimate of the main diagonal of the channel matrix of an OFDM
symbol in presence of these impairments can be obtained either based on
pilots embedded in the same symbol or based on pilots embedded in previous
symbols. Note that common phase error (CPE) estimation and compensation
is needed in the latter case but not in the former.



of impairments) by applying overlap-add (OLA) [16] to the
entries of y corresponding to the N −Nu zero samples of x.
Let yu , AOLAy be the resulting vector with AOLA being
the Nu ×N matrix representing the OLA operation. Then

yu = Heff,uxu + AOLAw, (21)

where

Heff,u , AOLAHeffAu. (22)

It follows that the one-tap LMMSE estimate of xu is

x̂u = IDFT

{(
diag

(
H̃eff,u

)H

diag
(
H̃eff,u

)
+ Σw

)−1

ỹu

}
(23)

where ỹu , DFT {yu}, H̃eff,u , FNu
Heff,uFH

Nu
and Σw

is the Nu × Nu (diagonal) covariance matrix of the noise
samples vector AOLAw. Of course, when the transmission
is subject to CFO or PN, Heff as given by (18) and Heff,u

as given by (22) are not circulant. As a result, H̃eff,u is not
diagonal. The main diagonal of H̃eff,u can still be estimated
based on one embedded pilot symbol as in subsection III-A
but the performance of the one-tap equalizer in (23) based
on this estimate suffers from ICI due to the off-diagonal
entries of H̃eff,u. However, due to the property summarized
by Result 1, this degradation will be of the order of what
would be undergone by an equivalent Nu-point (and not N -
point) OFDM transmission with Nu active subcarriers taking
place on the same wireless channel in presence of the same
impairments. It will then have the higher robustness of the
larger subcarrier spacing 1

Nu
≥ 1

N .
Now, refer to (1) and note that a constraint on the time

domain transmit power such as E
[
|sn|2

]
≤ Ptx translates

into E
[
|xm|2

]
≤ N

Nu
Ptx. This means that increasing N at

a constant Nu and Ptx provides a N
Nu

-times increase in the
effective SNR associated with detecting x̂u in (23). Combining
this fact with the higher-robustness property described above
shows that for small-enough values of Nu compared to N ,
this SNR increase translates into an increase in the signal-to-
interference-plus-noise ratio (SINR).

Result 2. The one-tap equalization in (23) for a N -point
AFDM signal with Nu ≤ N active data symbols and a
transmit power equal to Ptx has under CFO and AR(1)-PN
the SINR performance of an equivalent Nu-point OFDM with
a N
Nu
Ptx transmit power under a Doppler spread with a RMS

proportional to the CFO and the PN RMS values.

One application of this result is coverage enhancement in
power-limited scenarios that are also subject to CFO and
PN e.g., mmWave, sub-THz and THz communications under
severe pathloss [2], [14] and/or imperfect antenna beam align-
ment between the wireless transmitter and receiver.

Remark 1. In multiple-access settings, the robust spread-
ing gain offered by AFDM does not come at the cost of
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Fig. 4. BER performance of OCDM, and AFDM with N = 256 and OTFS
with NOTFS = 16 and MOTFS = 16 using QPSK and LMMSE detection
assuming a 21-path LTV channel with lmax = 2 and αmax = 3

reduced system spectral efficiency. Indeed, while each mul-
tiplexed spread AFDM signal occupies the frequency band-
width and time duration of the whole multicarrier symbol,
different spread AFDM signals occupy orthogonal resources
in the DAFT domain. This is in contrast to coverage gain
enhancement using symbol repetition for single-carrier (SC)
waveforms with time-division multiple access (TDMA).

V. SIMULATION RESULTS

We first compare the BER performance of AFDM to that of
OFDM, OCDM [5] and OTFS [1] in a high-mobility scenario.
Fig. 4 which is obtained using 106 different channel realiza-
tions with complex gains hi generated as independent complex
Gaussian random variables with zero mean and 1/P vari-
ance shows the performance of OFDM, OCDM, AFDM with
N = 256 and OTFS with NOTFS = 16 and MOTFS = 16,
using QPSK symbols and LMMSE detection in a 21-path LTV
channel with lmax = 2 and αmax = 3. For each delay tap, there
are 7 paths with different Doppler shifts from -3 to 3. It can be
seen that due to the destructive addition of overlapping paths,
OFDM and OCDM exhibit the worst performance. Moreover,
AFDM and OTFS have the same performance in terms of
BER. However, OTFS needs a pilot overhead twice that of
AFDM due to the 2D structure of its underlying transform.
Indeed, while the embedded pilot scheme presented in subsec-
tion III-A occupies 2 (2αmax + 1) (lmax + 1)−1 entries out of
the N entries of the AFDM symbol, its OTFS counterpart [8]
requires (4αmax + 1) (2lmax + 1). This difference translates
in an advantage of AFDM over OTFS in terms of spectral
efficiency as shown in Fig. 5. The spectral efficiency values
were derived from the BER values plotted in Fig. 4.

We now compare the BER performance of AFDM and
OFDM, both using one-tap equalization receivers, in a high-
frequency scenario characterized with a low transmit power,
large pathloss, severe phase noise and no CFO. Fig. 6 was
obtained assuming a line-of-sight (LoS) channel with P = 1,
a zero Doppler shift f1 = 0, a delay l1 that is derived from



Fig. 5. Spectral efficiency performance of AFDM with N = 256 and OTFS
with NOTFS = 16 and MOTFS = 16 using QPSK and LMMSE detection
assuming a 21-path LTV channel with lmax = 2 and αmax = 3
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Fig. 6. BER performance of OFDM and AFDM with using QPSK with
Nu = 64, N = spreading factor×Nu assuming a LoS THz channel with
d = 1 m, fc = 0.35 THz, BW = 0.5 GHz, BPN

3−dB = 60 kHz, Ptx = −3
dBm and GTx = GRx = 27 dBi

the distance d separating the transmitter from the receiver.
The variance of the complex gain h1 was computed using the
THz pathloss model from [14] assuming a carrier frequency
fc = 0.35 THz and 27-dBi antenna gains. The receiver side
phase noise was generated using a AR(1) random process
having a power spectral density with a 3-dB bandwidth BPN

3−dB

of approximately 60 kHz. This value was obtained starting
from a typical value of BPN

3−dB for an oscillator operating at
2.4 GHz [17] and then scaled to account for the higher carrier
frequency using the scaling laws from [17], [18]. The number
of data symbols per OFDM and AFDM frame is Nu = 64
and the transmit power is equal to Ptx = −3 dBm for both
schemes. When N = Nu, the SNR and the SINR associated
with one-tap equalization are both low for both OFDM and
AFDM resulting in a relatively large BER. Increasing N while
keeping Nu and Ptx fixed increases the received SNR for both
schemes. For AFDM, this translates into an increase in SINR
and a decrease in BER thanks to its robust spreading/coverage
gain property. As for OFDM, increasing N inversely reduces
the subcarrier spacing resulting in degraded BER performance.

VI. CONCLUSIONS

In this paper, we presented AFDM, a new waveform based
on multiple discrete-time orthogonal chirp signals, and showed
its relevance for communication in both high mobility and
high frequency scenarios. AFDM is shown to achieve the
full diversity of linear time-varying channels. Additionally, it
provides a spreading gain that is robust to carrier frequency
offsets and phase noise. These advantages and its throughput
and reliability performance keeping the complexity low ren-
der AFDM eminently promising for next-generation wireless
systems.
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