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Abstract—This paper studies a novel distributed precoding
scheme for cell-free massive MIMO networks. Our scheme,
coined team minimum mean-square error (TMMSE) precoding,
generalizes classical centralized MMSE precoding to arbitrary
patterns of channel state information (CSIT) sharing among the
transmitters. Building on the so-called theory of teams, we show
that designing the optimal TMMSE precoders is equivalent to
solving an infinite dimensional linear system of equations. We
solve the problem explicitly for two important CSIT sharing
patterns, i.e., the classical case of purely local CSIT and the
case of unidirectional CSIT sharing along a serial fronthaul. The
latter scenario is relevant, e.g., for the recently proposed radio
stripes concept. In both cases, our optimal design outperforms the
heuristic methods that are known from the previous literature.
Duality arguments and numerical simulations validate the effec-
tiveness of the proposed schemes in terms of ergodic achievable
rates under a sum power constraint.

I. INTRODUCTION

One of the major barriers currently preventing the practical
deployment of wireless communication systems capitalizing
on transmit (TX) cooperation is the severe scalability issue
arising from network-wide information sharing [1]. By ad-
vocating simple distributed precoding strategies which do not
require the sharing of channel state information (CSIT) among
the TXs, the cell-free massive MIMO paradigm emerged as a
promising solution for making cooperative wireless networks
feasible in practice [2]. From this original idea, several ex-
tensions have been proposed considering more involved CSIT
sharing patterns and network clustering techniques to better
shape the cooperation regime [3]–[7]. However, most of the
available distributed precoding designs are essentially heuristic
adaptations of known centralized schemes such as maximum-
ratio transmission (MRT), zero-forcing (ZF), or minimum
mean-square error (MMSE) precoding [8].

In contrast to the previous literature, in this work, we cast
the distributed precoding design problem for cell-free massive
MIMO in a general form which explicitly considers limited
CSIT sharing. Specifically, we propose a novel scheme called
team MMSE (TMMSE) precoding, which rigorously general-
izes centralized MMSE precoding to arbitrary CSIT sharing
patterns. Its optimality in terms of ergodic achievable rates
estimated by the popular hardening bound [8] is motivated
by means of the uplink-downlink (UL-DL) duality principle,
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assuming a sum power constraint. The main contribution is
the derivation of a useful set of necessary and sufficient
conditions for optimal TMMSE precoding design in the form
of an infinite dimensional linear system of equations. The
key novelty lies in the exploitation of previously unexplored
elements from the theory of teams, a mathematical framework
for multi-agent coordinated decision making in presence of
asymmetry of information, popularized by the economic and
control theoretical literature [9], [10]. As a first non-trivial
application, we derive the optimal TMMSE precoders based
on local CSIT only, improving upon known local precoding
schemes studied, e.g., in [2], [6]. We then derive the op-
timal TMMSE precoders by assuming that CSIT is shared
unidirectionally along a serial fronthaul, an architecture also
known as a radio stripe [11], [12]. The proposed scheme
can be efficiently implemented in a sequential fashion, an
idea that has been explored already in [11], [12] for uplink
processing, and in [13] under a different cellular context. As a
byproduct, we also obtain a novel distributed implementation
of centralized MMSE precoding.

Notation: We reserve italic letters (e.g., a, A) for scalars
and functions, boldface letters (e.g., a, A) for vectors and
matrices, and calligraphic letters (e.g., A) for sets. The opera-
tors (·)T, (·)H denote respectively the transpose and Hermitian
transpose, and ‖ · ‖ is the Euclidean norm. We denote by In
the identity matrix of dimension n, and by 0n×m an n ×m
matrix of zeros, omitting the subscripts when no confusion
arises. We use diag(A1, . . . ,An) to denote a block-diagonal
matrix with the matrices A1, . . . ,An on its diagonal. We use∏l
i=l′ Ai := AlAl−1 . . .Al′ for integers l ≥ l′ ≥ 1 to denote

the left product chain of l − l′ + 1 matrices of compatible
dimension, with the convention

∏l
i=l′ Ai = I for l < l′.

II. SYSTEM MODEL AND PRELIMINARIES

A. Channel model

Consider a network of L TXs indexed by L := {1, . . . , L},
each of them equipped with N antennas, and K single-antenna
receivers (RXs) indexed by K := {1, . . . ,K}. Let an arbitrary
channel use be governed by the MIMO channel law

y =
∑
l∈L

Hlxl + n (1)

where the k-th element of y ∈ CK is the received signal at
RX k, Hl ∈ CK×N is a sample of a stationary ergodic random
process modelling the fading between TX l and all RXs,



xl ∈ CN is the transmitted signal at TX l, and n ∼ CN (0, I)
is a sample of a white noise process. This channel model is
relevant, e.g, for narrowband or wideband OFDM systems [8].
For most parts of this work, we do not specify the distribution
of the channel matrix H :=

[
H1, . . . ,HL

]
. However, we

reasonably assume the channel submatrices corresponding to
different TX-RX pairs to be mutually independent, and that
each channel coefficient is governed by a physically consistent
fading distribution with bounded support. Furthermore, we
focus on N < K, that is, on the regime where cooperation is
necessary for effective spatial interference management [1].

B. Distributed precoding with limited CSIT sharing
In the scope of this study, the main feature of the cell-free

massive MIMO paradigm is the use of TDD operations to
efficiently acquire the local channel Hl at each TX l via over-
the-uplink training [2]–[6]. These local measurements may
be subsequently shared through the fronthaul according to
some predefined CSIT sharing mechanism, forming at each
TX l (or at the network equipment virtualizing its physical
layer operations) some individual knowledge Ĥl of the global
channel matrix H. Consistently, in this work, we let

Ĥl := HΩl, Ω := diag(Ωl,1, . . . ,Ωl,L), (2)
where Ωl,j = IN if TX j shares its local channel Hj to TX
l, and Ωl,j = 0N×N otherwise. Clearly, Ωl,l = IN always
holds. This model captures limited CSIT sharing, but does
not consider for simplicity local CSIT estimation errors, nor
imperfect fronthaul signalling. The extension of the results
presented in this work to more general CSIT models requires
significant mathematical sophistication, and is given in the
journal version of this work in preparation [14].

We then let each TX l form its transmit signal according to
the following distributed linear precoding scheme:

xl =
∑
k∈K

tl,ksk, tl,k = fl,k(Ĥl), (3)

where sk ∼ CN (0, Pk) is the independently encoded message
for RX k, shared by all TXs, and where tl,k ∈ CN is a
linear precoder applied at TX l to message sk based only
on Ĥl according to a function fl,k belonging to the space Fl
of square-integrable Ĥl-measurable functions, i.e., such that
E[‖fl,k(Ĥl)‖2] < ∞. This last assumption corresponds to a
reasonable constraint E[‖tl,k‖2] < ∞ on precoders’ power.
We then denote the full precoding vector for message sk by
tTk :=

[
tT1,k . . . tTL,k

]T
, and the corresponding tuple of

functions by fk := (f1,k, . . . , fL,k) ∈ F :=
∏L
l=1 Fl. Finally,

we assume the first order distribution of H to be known at
all TXs, which is reasonable if the fading process is indeed
approximately stationary for a sufficiently long time span.

C. Performance metric
We measure the network performance under the specified

transmission scheme by using achievable ergodic rates esti-
mated by the popular hardening bound [8]

Rhard
k := log

(
1 +

Pk|E[gH
k tk]|2

PkVar[gH
k tk] +

∑
j 6=k PjE[|gH

k tj |2] + 1

)
,

(4)
where

[
g1 . . . gK

]
:= HH. The rates in (4) are achievable

by treating interference as noise (TIN), without channel state

information at the RX (CSIR), and without exploiting any
memory across the realizations of H [15].

We then let Rhard be the union of all rate tuples
(R1, . . . , RK) ∈ RK such that Rk ≤ Rhard

k ∀k ∈ K for some
set of distributed precoders {fk}Kk=1 and power allocation
policy {Pk}Kk=1 satisfying a long-term sum power constraint∑L
l=1 E[‖xl‖2] ≤ Psum <∞. Due to its importance in system

design and resource allocation, we consider the notion of
(weak) Pareto optimality on Rhard and we mostly focus on
the (weak) Pareto boundary ∂Rhard of Rhard. The sum power
constraint is chosen because it allows for strong analytical
results and simplifies system design. This constraint may be
directly relevant for systems such as the radio stripes, where all
the TXs share the same power supply [11]. However, note that
many simple heuristic methods (such as power scaling factors)
can be applied to adapt systems designed under a sum power
constraint to a more restrictive per-TX power constraint.

III. TEAM MMSE PRECODING

In this work, we study the following novel team MMSE
precoding design criterion: given a vector of nonnegative
weights w := [w1, . . . , wK ] belonging to W := {w ∈
RK+ |

∑K
k=1 wk = K}, we consider the problem

minimize
fk∈F

MSEk(fk) := E
[∥∥∥W 1

2 Htk − ek

∥∥∥2 +
‖tk‖2

P

]
,

(5)
where W := diag(w1, . . . , wK), ek is the k-th column of IK ,
and P := Psum/K. A solution to the above problem can be
recognized as a distributed version of the classical centralized
MMSE precoding design [8]. By means of team theoretical ar-
guments [9], [10], this section provides fundamental properties
of the optimal solution to Problem (5). Before providing the
main results of this section, we also motivate the effectiveness
of the MSE criterion in (5) in terms of network performance,
which is well-known for centralized precoding.

A. Achievable rates via uplink-downlink duality
In the following, we discuss the formal connection between

the objective of Problem (5) and network performance by re-
visiting classical UL-DL duality arguments behind centralized
MMSE precoding [8], [16] under arbitrary CSIT sharing.

Theorem 1. Consider an arbitrary set of distributed pre-
coders {fk}Kk=1 and weights w ∈ W . Then, any rate tuple
(R1, . . . , RK) ∈ RK such that

Rk ≤ log(MSEk(fk))−1 (6)
belongs to Rhard. Furthermore, if fk solves Problem (5) ∀k ∈
K, then (R1, . . . , RK) with Rk = log(MSEk(fk))−1 is Pareto
optimal, and ∂Rhard is fully parametrized by W .

Proof. The proof is based on observing that the solution to
Problem (5) gives the rate-optimal distributed linear combiners
in a dual UL channel, where w is a dual UL power allocation
vector, and where achievable rates are measured by using the
so-called use-and-then-forget (UatF) bound [8, Th. 4.4]. The
proof follows by the duality principle between the hardening
bound (4) and the UatF bound [8, Th. 4.8], which also provides
the method for computing the optimal {Pk}Kk=1. We omit the
details due to space limitations. The detailed proof is available
in the journal version of this work [14].



Theorem 1 states that, similarly to known results for deter-
ministic channels (reviewed, e.g., in [16]), the Pareto boundary
of Rhard is achieved by TMMSE precoding and can be
parametrized by K−1 nonnegative real parameters, i.e., by the
weights w ∈ W . In practice, w is often fixed heuristically as in
classical MMSE design, while the network utility is optimized
a posteriori by varying the power allocation policy {Pk}Kk=1.

Remark 1. Hereafter, we derive our main results by consid-
ering w.l.o.g. the operating point W = I. The general case
will readily follow by replacing Hl with W

1
2 Hl everywhere.

B. Quadratic teams for distributed precoding design

Problem (5) belongs to the known category of team decision
problems [9], [10], which are generally difficult to handle
for nontrivial information constraints fk ∈ F . However, we
recognize that Problem (5) is an instance of a quadratic team, a
particular type of team decision problem pioneered by Radner
in [9] for which solid solution approches are available (see,
e.g., [10]). In particular, we obtain the following result:

Theorem 2. Problem (5) admits a unique optimal solution,
which is given by the unique f?k = (f?1,k, . . . , f

?
L,k) ∈ F

satisfying (∀l ∈ L)

f?l,k(Ĥl) = Fl

ek −
∑
j 6=l

E
[
Hjf

?
j,k(Ĥj)

∣∣∣Ĥl

] a.s., (7)

where Fl :=
(
HH
l Hl + P−1I

)−1
HH
l .

Proof. Problem (5) is a quadratic team as defined in [9,
Sect. 4]. Furthermore, the bounded fading assumption and
the square-integrability of fl,k satisfy the assumptions of [10,
Th. 2.6.6], which provides a set of optimality conditions for
quadratic teams here specialized to (7).

Remark 2. Theorem 2 does not cover the physically inconsis-
tent yet useful Gaussian fading model, nor CSIT acquisition
errors. The extension to these cases is not trivial and is
provided in the journal version of this work [14].

Theorem 2 establishes a set of necessary and sufficient
optimality conditions in the form of an infinite dimensional
linear system of equalities. Interestingly, Fl can be recognized
as a local MMSE precoding matrix [6], while the remaining
part can be interpreted as a ‘corrective’ stage which takes
into account the other precoders based on Ĥl and statistical
information. It is generally difficult to solve (7) in closed form.
However, the optimal TMMSE precoders may be approached
via one of the many approximation methods available in the
literature (see, e.g., [10]). Further discussions on approximate
solution methods are left for future work, and hereafter we
focus on special cases where (7) can be solved explicitly.

IV. APPLICATIONS TO RADIO STRIPES

In this section, we consider the cell-free massive MIMO
network in Figure 1, where CSIT, messages, and power are
distributed along a serial fronthaul from and/or towards a CPU
located at one edge, an architecture also known as a radio
stripe [11], [12]. The main result of this section is the solution
to the optimality conditions in (7) for the cases of no CSIT

sharing and unidirectional CSIT sharing depicted in Figure 1.

TX 1 TX 2 TXL CPU

(a) H1 H2 HL

(b) H1 −→ H1,H2 −→ H1,H2, . . . ,HL

Fig. 1. Pictorial representation of a radio stripe with (a) no CSIT sharing,
and (b) unidirectional CSIT sharing along the serial fronthaul.

A. No CSIT sharing

We assume that no local CSIT is shared along the fronthaul.
Specifically, this can be modelled by the limited CSIT sharing
pattern Ωl,j = 0N×N , ∀j 6= l, ∀l ∈ L. Note that this scenario
is relevant for any fronthaul architecture.

Theorem 3. The TMMSE precoders under no CSIT sharing
are given by

f?l,k(Ĥl) = FlClek, ∀l ∈ L, (8)
for some matrices of coefficients Cl ∈ CK×K . Furthermore,
the optimal Cl are given by the unique solution of the linear
system Cl+

∑
j 6=l ΠjCj = I, ∀l ∈ L, where Πl := E [HlFl].

Proof. By Theorem 2, (8) is the unique TMMSE solution if
and only if it satisfies the optimality conditions (7), which are
readily rewritten as (∀l ∈ L)

HH
l

Cl +
∑
j 6=l

E
[
HjFjCj

∣∣∣Ĥl

]
− I

 ek = 0 a.s.

Since Hl and Hj are independent, we can drop the condition-
ing on Ĥl and obtain HH

l

(
Cl +

∑
j 6=l ΠjCj − I

)
ek = 0

a.s., ∀l ∈ L. It can be finally shown that the linear system
Cl +

∑
j 6=l ΠjCj = I, ∀l ∈ L always has a unique solution.

The details are here omitted due to space limitations, and are
provided in [14].

By assuming a zero-mean symmetric distribution for all
channel coefficients, corresponding to a non-line-of-sight
(NLoS) channel model, it can be shown that the matrices Πl

are diagonal and (8) takes the same form of a local MMSE
precoding scheme (studied, e.g., in [6])

f?l,k(Ĥl) = cl,kFlek, (9)
up to an optimized scaling factor cl,k. However, if the channels
have non-zero mean, such as in line-of-sight (LoS) scenarios,
(8) may provide significantly higher rates than (9). To see
this, suppose that all channels are dominated by their LoS
component, i.e., let Hl ≈ H̄l for some deterministic matrix
H̄l, ∀l ∈ L. Then, since H̄l is statistical information known
to all TXs, the optimal TMMSE precoders should take a form
similar to centralized MMSE precoding.

B. Unidirectional CSIT sharing

We now let the local CSIT be shared unidirectionally along
the serial fronthaul. Specifically, this can be modeled by the
limited CSIT sharing pattern Ωl,j = IN if j ≤ l, and Ωl,j =
0N×N otherwise, ∀l ∈ L. This particular information structure
can be interpreted as the CSIT which is accumulated at every
TX during the first phase of a centralized MMSE precoding



scheme for radio stripes, where the CPU collects the K×LN
channel matrix H through the serial fronthaul.

Theorem 4. The TMMSE precoders under unidirectional
CSIT sharing are given by

f?l,k(Ĥl) = FlSl

[
l−1∏
i=1

S̄i

]
ek, ∀l ∈ L, (10)

where we use the following short-hands:

• Sl := (I−ΠlPl)
−1

(I−Πl);
• S̄l := I−PlSl;
• Pl := HlFl;
• Πl := E[Pl+1Sl+1] + Πl+1E[S̄l+1], ΠL := 0.

Proof. We assume that all the matrix inverses involved exist.
Substituting (10) into (7), we need to show that (∀l ∈ L)

HH
l

Sl

l−1∏
i=1

S̄i +
∑
j 6=l

E

[
PjSj

j−1∏
i=1

S̄i

∣∣∣∣∣Ĥl

]
− I

 ek = 0 a.s.

To verify the above statement, we rewrite the first two terms
inside the outer brackets as:Sl +

∑
j>l

E

[
PjSj

j−1∏
i=l+1

S̄i

]
S̄l

 l−1∏
i=1

S̄i +
∑
j<l

PjSj

j−1∏
i=1

S̄i,

(11)
where we use the fact that Pj , Sj , and S̄j are deterministic
functions of Hj only, hence they are independent from Ĥl for
j > l, while they are deterministic functions of Ĥl otherwise.
Furthermore, since Pj , Sj , and S̄j are independent from Pi,
Si, and S̄i ∀i 6= j, we have∑
j>l

E

[
PjSj

j−1∏
i=l+1

S̄i

]
=
∑
j>l

E [PjSj ]

j−1∏
i=l+1

E
[
S̄i
]

= E [Pl+1Sl+1] +
∑
j>l+1

E [PjSj ]

j−1∏
i=l+1

E
[
S̄i
]

= E [Pl+1Sl+1] +

 ∑
j>l+1

E [PjSj ]

j−1∏
i=l+2

E
[
S̄i
]E

[
S̄l+1

]
.

The second and last term of the above chain of equal-
ities define a recursion terminating with E [PLSL] +
0E
[
S̄L
]

= ΠL−1. This recursion gives precisely Πl =∑
j>l E

[
PjSj

∏j−1
i=1 S̄i

]
. Together with the property Sl +

ΠlS̄l = I, (11) simplifies to
l−1∏
i=1

S̄i +
∑
j<l

PjSj

j−1∏
i=1

S̄i =
(
S̄l−1 + Pl−1Sl−1

) l−2∏
i=1

S̄i

+
∑
j<l−1

PjSj

j−1∏
i=1

S̄i =

l−2∏
i=1

S̄i +
∑
j<l−1

PjSj

j−1∏
i=1

S̄i,

where the last equation follows from the definition of S̄l
and where we identify another recursive structure among the
remaining terms. By continuing until termination, we finally
obtain

∏l−1
i=1 S̄i +

∑
j<l PjSj

∏j−1
i=1 S̄i = I, which proves

the main statement under the assumption that all the matrix
inverses involved exist. This assumption is always satisfied.
Due to space limitations, the details are given in [14].

Corollary 1. An alternative expression for centralized MMSE
precoding is given by (10) with Πl replaced by

P̄l := Pl+1Sl+1 + P̄l+1S̄l+1, P̄L := 0. (12)

Proof. Centralized MMSE precoding is equivalent to TMMSE
precoding for Ĥl = H ∀l ∈ L. Since all random quantities
become deterministic after conditioning on Ĥl, the proof of
Theorem 4 can be repeated by removing E[·] everywhere.

By locally computing precoders based on Ĥl only, and at
the expense of some performance loss, (10) eliminates the
additional overhead required by centralized MMSE precoding
to share back the LN ×K precoding matrix from the CPU.

Remark 3. The scheme in (10) can be alternatively im-
plemented via a recursive algorithm involving a K × K
aggregate information matrix which is sequentially processed
and forwarded in the direction from TX 1 to TX L, thus further
reducing the overhead. This idea was already explored in
[13]. Furthermore, Corollary 1 provides a novel distributed
implementation of centralized MMSE precoding. The main
difference is that the computation of P̄l entails an additional
sequential procedure in the reverse direction, thus doubling
the overhead. In contrast, Πl can be computed offline.

V. PERFORMANCE EVALUATION

A. Comparison among CSIT sharing patterns

We simulate a network with a radio stripe of L = 30 equally
spaced TXs with N = 2 antennas each wrapped around a cir-
cular area of radius r1 = 60 m, and K = 7 RXs independently
and uniformly drawn within a concentric circular area of radius
r2 = 50 m. We let the channel coefficient hl,k,n between the
n-th antenna of TX l and RX k be independently distributed
as hl,k,n ∼ CN (0, ρ2l,k) approximated using a finite precision
random numbers generator, hence inducing a bounded fading
distribution, where ρ2l,k denotes the channel gain between TX
l and RX k. We follow the 3GPP NLoS Urban Microcell path-
loss model [17, Table B.1.2.1-1]

PLl,k = 36.7 log10

(
dl,k
1 m

)
+22.7+26 log10

(
fc

1 GHz

)
[dB],

(13)
where fc = 2 GHz is the carrier frequency, and dl,k is the
distance between TX l and RX k including a difference in
height of 10 m. We let the noise power at all RXs be given by
Pnoise = −174 + 10 log10(B) +F dBm, where B = 20 MHz
is the system bandwidth, and F = 7 dB is the noise figure.
Finally, we let ρ2l,k := 10−

PLl,k+Pnoise
10 mW−1, and assume a

relatively low total radiated power Psum = KP = K×1 mW.
Figure 2a reports the empirical cumulative distribution

function (CDF) of the Pareto optimal achievable rates Rk =
− log(MSEk(f?k )), where f?k denotes the optimal solution
of Problem (5) for: (i) no CSIT sharing (local TMMSE),
(ii) unidirectional CSIT sharing (unidirectional TMMSE), and
(iii) full CSIT sharing (centralized MMSE). As expected,
adding stricter information constraints leads to performance
degradation. However, the degradation is less pronounced
from centralized to unidirectional MMSE precoding. Hence,
the unidirectional MMSE scheme appears as a promising
intermediate solution for supporting network-wide interference
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Fig. 2. Simulation results: (a) CDF of the optimal achievable rates for different CSIT sharing patterns; (b) CDF of the achievable rates for different local
precoding schemes in a relatively weak LoS setup (κ = 1); (c) Rate vs the SNR of RX 1 for different precoding schemes using unidirectional CSIT sharing.
In contrast to previously known heuristics, the team theoretical approach optimally exploits the available information, and hence exhibits superior performance.

management in a wider range of network setups, for instance,
in those cases where significant RXs mobility could make the
cost of timely CSIT sharing too high for centralized precoding.

B. Comparison among local precoding schemes
We compare the local TMMSE solution against classical

MRT and local MMSE precoding [2], [6]. Since the bound in
(6) may be overly pessimistic with suboptimal schemes, for
a fair comparison we compute the DL rates Rk = Rhard

k by
means of their dual UL rates RUatF

k as defined in [8] using
the same dual UL power allocation wk = 1 ∀k ∈ K. One
of the major weaknesses of the above schemes is that they
do not exploit channel mean information. To study this effect,
we modify our setup by letting N = 1 and by considering a
Ricean fading model hl,k,1 ∼ CN

(√
κ
κ+1ρ

2
l,k,

1
κ+1ρ

2
l,k

)
with

κ = 1. Figure 2b confirms the above observation: while local
MMSE precoding is shown in Sect. IV-A to be close to optimal
for a NLoS setup (κ = 0), it incurs significant performance
loss even in case of relatively weak LoS components (κ = 1).

C. Comparison with the SGD scheme [13]
We finally compare the unidirectional TMMSE solution

against the suboptimal SGD scheme given by [13] using the
suggested parameter choice µ = 1, and against its robust
version with µ optimized using line search. Despite being
restricted to N = 1, this scheme exploits unidirectional CSIT
sharing and possesses a similar sequential implementation as
unidirectional TMMSE precoding. Figure 2c plots the rate
R1 = Rhard

1 of the first RX (measured via its dual UL rate
as in the previous section) versus the SNR := P

∑
l ρ

2
l,1 for a

single realization of the simulation setup. Although optimizing
µ improves robustness against low SNR as observed in [13],
this procedure seems not sufficient to recover the loss w.r.t.
optimal TMMSE precoding in the considered scenario (in
contrast, we report that this seems sufficient for the rather
unrealistic equal path-loss case ρ2l,1 = 1 ∀l studied in [13]).

VI. CONCLUSION

Our findings demonstrate the gains and feasibility of optimal
precoding design in cell-free networks with limited CSIT
sharing. Extensions may cover limited message sharing, per-
TX power constraints, and additional examples of application.
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