
MonB5G: AI/ML-Capable Distributed Orchestration
and Management Framework for Network Slices

Sławomir Kukliński∗†, Robert Kołakowski∗†, Lechosław Tomaszewski∗, Luis Sanabria-Russo‡,
Christos Verikoukis‡, Cao-Thanh Phan§, Lanfranco Zanzi¶, Francesco Devoti¶,

Adlen Ksentini‖, Christos Tselios∗∗, George Tsolis∗∗, Hatim Chergui‡

∗Orange Polska, †Warsaw University of Technology, ‡CTTC, §B-COM,
¶NEC Laboratories Europe, ‖Eurecom, ∗∗Citrix Systems Inc.

Abstract—Enabled by the network slicing paradigm, a wide
set of vertical services are expected to populate the future
mobile ecosystem while efficiently coexisting over a shared
infrastructure. However, the intrinsic diversity of vertical ser-
vices, together with the heterogeneity of mobile infrastructure
resources, poses severe management challenges that demand
deep architectural innovations to seamlessly support enhanced
orchestration mechanisms based on automation, flexibility, and
programmability. In this paper, we present a novel management
and orchestration platform for network slices devised by the
H2020 MonB5G project. The presented concept addresses the
scalability of network slicing management and orchestration by
using a distributed and programmable management architec-
ture that is AI-driven. AI-enabled management operations are
adopted at different levels of the management hierarchy. The
proposed architecture is a significant step towards self-managed
network slices.

Index Terms—5G, 6G, network slicing, AI, ML, ZSM, mana-
gement, orchestration

I. INTRODUCTION

The increasing number of deployed 5G radio access nodes,
needed to satisfy ubiquitous coverage and capacity require-
ments, the overall 5G network complexity and growing end-
user demand for reliable low-latency and high bitrate, already
exacerbate the network management complexity with respect
to previous mobile network generations. The human-centric
management and the use of existing management solutions
have become unfeasible, especially in standalone 5G architec-
ture that uses network slicing. The network slicing paradigm
is essential in 5G, as it supports concurrent provisioning of
diverse vertical services over shared physical infrastructure [1].
In fact, each slice instance may be treated as an independent
network, which further aggravates the management scalability
and brings the complexity of management to an entirely new
level. 3GPP [2] adopts the ETSI NFV MANO framework
[3] for the management and orchestration of network slices.
The 3GPP approach uses a centralized Operations Support
System (OSS) and Business Support System (BSS) for all
functional, slice and service layers, raising some questions
about its scalability – currently, it has been not validated yet by
large scale deployments. Moreover, the orchestration of multi-
domain slices is not supported by 3GPP, and a new approach
has to be developed for such cases.

This paper describes a framework for distributed orchestra-
tion and management of network slices that has been deve-
loped by the MonB5G [4] project. The framework proposes

distributed implementation of management and orchestration
functions to mitigate the problems mentioned above. The use
of Artificial Intelligence (AI) and Machine Learning (ML) at
various levels of the MonB5G management hierarchy con-
tributes to the minimization of interactions between different
entities of the framework. The embedded intelligence enables
using KPIs for monitoring and intent-based reconfigurations
at different management levels. In order to improve the scala-
bility, each slice runtime management is implemented as a
part of the slice and orchestrators are focused on resources.
As a result, the concept is a step towards self-managed slices
composed of self-managed functions, further extended by the
creation of a multi-domain slice as a composition of self-
managed single domain slices.

The paper is structured as follows. Section II describes the
related work in the field. Section III details the MonB5G
concept and describes its main architectural building blocks.
Section IV discusses the implementation options of the con-
cept. Finally, Section V concludes the paper.

II. RELATED WORK

Management and orchestration of network slices attracted
tremendous efforts from both research communities and stan-
dardization bodies. Several projects funded under the EU 5G
Private Public Program (5G-PPP) worked on network slices
management and – more recently – on leveraging AI/ML
algorithms to automate the management. 5G!Pagoda [5] was
among the first EU projects to address the challenges of
managing and orchestrating a high number of parallel net-
work slices, proposing a reference architecture featuring a
scalable management plane that distributes some management
functions inside the network slice (namely, In-Slice Mana-
gement, ISM), without application of AI/ML, however. 5G-
MoNArch [6] brought three enabling innovations: i) cross-
domain management allowing the coordination across slices
and domains; ii) experiment-driven optimization enabling the
design of highly performing algorithms; iii) cloud-enabled
protocols increasing the flexibility of orchestration of Virtual
Network Functions (VNFs). 5G-MoNArch also explored the
usage of AI/ML for network slices management, adopting
the ETSI ENI approach [7]. The solution, however, due to
high centralization, may not scale well with the vast num-
ber of network slices. 5G-CLARITY [8] developed an AI-
based network management system that provides an intent-



based interface for network configuration. SELFNET [9] and
its follower SLICENET [10] target self-organizing network
management mechanisms jointly leveraging the NFV/SDN
paradigms and AI/ML technologies. The three aforegoing
projects share the same weakness, which is still high cen-
tralization of management and poor scalability when dealing
with dense slice scenarios. 5G-ZORRO [11], and 5G-Ensure
[12] focus on zero-touch management in a multi-stakeholder
scenario, emphasizing security and trust. On the other hand,
standardization groups, such as the ETSI Zero touch network
& Service Management (ZSM) [13] and the Experiential
Networked Intelligence (ENI) [7], have been working on using
AI and ML to realize an agile, fully automated management
and orchestration of network resources. ETSI ZSM has already
issued a reference architecture, but it cannot be easily adapted
to the management of network slices. ETSI ENI presents
a centralized framework that aims to standardize different
methods and policies to use AI and ML to manage networks.
O-RAN specifications [14] aim to introduce AI and ML into
the management of RAN resources and to improve network
performances using a continuous collection of RAN-related
monitoring data. In this case, the slicing support is still
under discussion. Management and orchestration of network
slices are also of concern of the 3GPP Release 17. Network
slicing is supported at the levels of network function, slice
subnet, slice instance and communication service manage-
ment. The current 3GPP approach enables single domain
orchestration only (single OSS/BSS and MANO orchestrator).
The management architecture is complementary to the NFV
MANO stack [3]. Significant effort is also put by the open-
source communities, particularly ONAP [15] and OSM [16].
ONAP is one of the main solutions considered capable of
addressing the rising need for automation in the management
and resource orchestration processes. Still, its architecture
is highly centralized and complex. OSM, since the Release
FIVE, introduces the support of network slices. In the Release
EIGHT, OSM moves a step forward by allowing the real-
time gathering of metrics and alerts designed to manage NFV
Network Service assurance in large production deployments.
Moreover, both ONAP and OSM are already working on
AI/ML for autonomous management.

III. MONB5G ARCHITECTURE DESCRIPTION

The MonB5G architecture aims to provide a new framework
for scalable and automated management and orchestration of
network slices on a massive scale. It adopts the management
system decomposition proposed by ITU-T [17] and uses the
MAPE (Monitor-Analyze-Plan-Execute) paradigm [18] as the
basis for AI-driven operations. The proposed approach has the
following key features:

1) Strong separation of concerns: In MonB5G, OSS/BSS
of each orchestration domain is focused on the Life Cycle
Management (LCM) of slices and resource management but
is agnostic to slices. Each single- or cross-domain slice can
be seen as a “service” with its management platform (called
embedded management or ISM [19]), which is separated

from the domain(s) OSS/BSSes. ISM is a part of the slice
template, and it is responsible for runtime slice management
that includes fault, configuration, accounting, performance,
and security management (FCAPS) of a slice. That approach
provides benefits like isolation of management planes of slices
(not provided by ETSI NFV MANO or 3GPP). Moreover,
in the proposed approach, the deployment of a slice requires
marginal modification of OSS/BSS to support its management.
In the case of multi-domain slices, we have proposed to add a
unique, inter-domain ISM component to the end-to-end slice
template. It interacts with domain-level ISMs to achieve the
end-to-end management of the slice.

2) Distribution of AI-driven management operations: The
management operations are AI-driven and pursue different
goals. The hierarchical embedded management concerns node,
slice, orchestration domain and end-to-end slice levels. Dis-
tributed AI allows local management information processing,
thus reducing the management data exchange. The application
of AI also enables the use of intent-based interfaces.

3) Hierarchical end-to-end slice orchestration: One mas-
ter orchestrator and multiple domain-level ones are used.
It implies the use of domain-specific slice templates. The
use of multiple orchestrators contributes to the orchestration
scalability.

4) ISM capability of orchestration: ISM of each slice (i.e.
slice OSS/BSS) may act as a service orchestrator, i.e. it may
use the Os-Ma-nfvo-like interface [3] to request slice template
modifications (the action is no longer executed by the domain-
level OSS/BSS).

5) Scalable and programmable slice management: Since
ISM is part of a slice and implemented as a set of VNFs, the
resource scaling mechanism can contribute to its performance.
Moreover, all the FCAPS functionalities (VNFs responsible
for slice management) can be dynamically deployed/updated
within the slice during its lifetime using the orchestration
capabilities of ISM.

6) Enhanced security of slices: ISM provides isolation of
the management spaces of different slices, thus enhancing
slices’ security. It also limits information exchange between
OSS/BSS instances of each domain.

7) Support for Management as a Service (MaaS): MonB5G
allows the creation of a “management slice” that can be
used for runtime management of multiple slice instances of
the same template. In such a case, a new business player,
called Slice Management Provider, can be involved in slice
management.

8) Programmable infrastructure management: The infras-
tructure management system can use the MonB5G mecha-
nisms to deploy its services in a similar way in which slices
are deployed. The framework is aware of the energy cost of
infrastructure resources and may act for its optimization.

The mentioned features are inline with the key ETSI ZSM
requirements. The proposed approach uses AI mechanisms at
different levels of the management hierarchy. At each level,
there exists a Monitoring System (MS), one or more Analytic
Engines (AEs) and Decision Engines (DEs). MS interacts with



entities and processes their monitoring information (aggre-
gates, filters, etc.); AEs analyse the data coming from MS
to find anomalies; finally, DE implements an algorithm that
proposes reconfiguration. It is assumed that AEs and DEs are
AI-driven.

The MAPE/AI-based FCAPS management is implemented
hierarchically, featuring different control loops of different
scopes, goals, and timescales, at the following levels:

• Central OSS/BSS level: MAPE functions are responsible
for end-to-end slice management and orchestration in
multi-domain environment – global actions, e.g. cross-
slice and cross-domain optimizations.

• Orchestration Domain level: MAPE functions are re-
sponsible for domain-level (e.g. cloud infrastructure,
RAN, etc.) FCAPS and domain resources management
(slice admission control, allocation of resources to slices).

• Slice level: MAPE functions are responsible for each
slice management (FCAPS) and are embedded in slice
template (i.e. ISM) – it also concerns multi-domain slices.

• Node (VNF/PNF/CNF) level: MAPE functions are re-
sponsible for node-level management (can be seen as
modified, intelligent Element Manager, cf. MANO [3]).
They can be used for node plug-and-play functionality.
Their local loops contribute the most to the reduction of
the monitoring exchange.

The hierarchy of MAPE introduces fast local control loops
and increasingly slower ones for wider-scope administrative
domains (e.g. slice-level, tenant-level, etc.). Such time scale
separation and hierarchization contribute to the overall stability
of the system. All the mentioned MAPE-based subsystems
cooperate to achieve an overall goal.

All subsystems use the mentioned MS/AE/DE triplets for
specific, control loop-based optimization, in most cases driven
by AI algorithms. Intent-based interfaces are proposed for
inter-subsystem exchange. The intent-based interfaces ex-
change high-level information, typically translated into multi-
ple, low-level operations by an AI-driven engine. Due to the
use of such interfaces, the information exchange between the
management system components is minimized. The system
stability is monitored, and some decisions to improve it are
taken, if necessary.

The MonB5G architecture is composed of static and dy-
namic components (cf. the forthcoming sections), which pro-
vide support for operations related to fault management (self-
healing), self-configuration, performance optimization (includ-
ing energy-saving) and security of slices. In the presented con-
cept, the term “slice” is used not only as referring to “network
slices” per se, but also to any other set of interconnected virtual
functions serving a specific goal, e.g. providing a management
functionality using MaaS.

A. Static components of the architecture

The business actors and static components of the archi-
tecture are presented in Fig. 1 where slices are omitted for
clarity. The components and their main functionalities are the
following:

DMO DMO

IDMO

Slice Orchestration 
Domain 1 (SOD-1)

IDM
Infrastructure 
Domain 1 (ID-1)

Infrastructure Layer

Slice 1 Tenant

MonB5G Portal

Slice 2 Tenant

MonB5G System 
Operator

Slice Management 
Provider

Business Layer

Management and 
Orchestration Layer

Infrastructure Provider 1 Infrastructure Provider 2

Iop

Itp

Imt

Imp

Iid

Ipi

Iid

Idr

Iii Iii

Idr

ItpItp

Slice Orchestration
Domain 2 (SOD-2)

IDM
Infrastructure 

Domain 2 (ID-2)

Itp

Fig. 1. Static components of and business actors of MonB5G architecture
(none slice deployed)

1) MonB5G Portal: The portal is used by Slice Tenants,
Slice Management Providers and Infrastructure Providers to
request operations related to slice LCM, i.e. slice deployment,
slice modification and slice termination. Slice Management
Providers may use MaaS to manage multiple instances of
slices based on the same template (as the slice runtime
management is slice-specific). The Infrastructure Providers are
allowed to ask for orchestration of infrastructure-oriented ma-
nagement functions similarly as Slice Tenants request slices.
For both cases, the Itp interface is used (typically a web-
based interface). The MonB5G operator also interacts with the
system via the MonB5G portal using Iop management inter-
face. The MonB5G Portal exposes the MonB5G framework
capabilities (available slice templates, etc.) and partakes in
negotiations related to the business dimension of the contract.
In order to make the negotiations, it interacts with IDMO and
this interaction, via the Ipi interface, is afterwards used for
LCM of negotiated slices.

2) Inter-Domain Manager and Orchestrator (IDMO): This
entity plays a crucial role in slice preparation and deployment
phases by negotiating deployment policy with slice requester
(Slice Tenants, Slice Management Providers or Infrastructure
Providers). IDMO interacts with DMOs (see further) via Iid
to deploy the end-to-end-slices, based on the information
obtained from DMOs. It is responsible for the modification of
the end-to-end slice template before its deployment according
to the negotiated contract. The modified slice template includes
slice stitching mechanisms for obtaining the end-to-end slice
and its proper modification management plane (correlation of
events and KPIs from different domains that are used for slice
deployments). It can be seen as an end-to-end orchestrator
(umbrella orchestrator [20]). If there are multiple infrastructure
owners, IDMO may decide how to split the end-to-end slice
template into single-domain templates before end-to-end slice
deployment. The split may be shaped by various factors, e.g.
price, performance or energy efficiency. For that purpose,
IDMO is aware of all infrastructure domains involved in the
system and the status of their resources. IDMO also keeps a
permanent Accounting Database, as ISM is not a permanent
one. IDMO interacts with the Infrastructure Provider via



Ipi

F
un

ct
io

na
l L

ay
e

r

Iid

Iid
Domain B 

Orchestrator Handler
Domain B 

Orchestrator Handler
EEM

Domain B 
Orchestrator Handler

EEM

Domain A
Orchestrator Handler

Domain A
Orchestrator Handler

EEM

Domain A
Orchestrator Handler

EEM

Active Slice 
Instances Database

Active Slice 
Instances Database

EEM

Active Slice 
Instances Database

EEM

Domain Template 
Configurator

Domain Template 
Configurator

EEM

Domain Template 
Configurator

EEM

Template 
Partitioner

Template 
Partitioner

EEM

Template 
Partitioner

EEM

Template 
Database
Template 
Database

EEM

Template 
Database

EEM

Accounting 
Database

Accounting 
Database

EEM

Accounting 
Database

EEM

 ID
M

O
 M

a
n

a
g

e
r

M
o

n
B

5
G

 L
ay

er

MSMS-Sublayer MSMS-Sublayer

AE-P (Performance)AE-Sublayer AE-S (Stability)AE-P (Performance)AE-Sublayer AE-S (Stability)

DE Selector/Arbiter
DE-Sublayer

DE-P (Performance)

DE Selector/Arbiter
DE-Sublayer

DE-P (Performance)

Fig. 2. Main blocks of IDMO (an example)

DMO. The IDMO structure is decomposed into Functional
and MonB5G Layers (cf. Fig. 2 for IDMO internal structure
details). The MonB5G Layer (management of IDMO) is AI-
driven, uses MS/AE/DE triplets and other components of the
management architecture. The approach is described in details
later.

3) Domain Manager and Orchestrator (DMO): DMO of
a Slice Orchestration Domain (SOD) is responsible for the
orchestration of slices in its domain and the management of
resources of this domain. In the NFV MANO-orchestrated
domain, DMO can be seen as a combination of resource-
oriented OSS/BSS and MANO orchestrator. In other tech-
nological domains, other orchestrators can be used. It has
to be noted that IDMO does not interact directly with the
orchestrator but with the OSS/BSS of each SOD. Therefore,
the IDM-IDMO interface can be defined in a similar way
for different orchestration technologies. DMO is focused on
SOD operations concerning resources (resource allocation to
slices, slice LCM, resources FCAPS) and is agnostic to slices,
i.e. it is not involved in slice runtime management, including
initial slice configuration. Therefore, DMO deals only with the
software dimension of slices (LCM, resource scaling), whereas
the runtime management is handled by the management com-
ponents embedded in slices. Similarly to IDMO, all DMO
operations are AI-driven. Therefore, the internal structure of
DMO is also composed of Functional and MonB5G layers.
Operations are mostly related to slice admission, LCM and
resource sharing. The operations, as well as the exchange of
infrastructure-related data (e.g. about energy consumption), are
performed via Idr interface.

4) Infrastructure Domain Manager (IDM): The framework
enables programmable infrastructure management for which a
separate entity – IDM – is responsible. It has an interface to
the Infrastructure Provider, who can use the MonB5G portal,
asking for the deployment of additional infrastructure mana-
gement functions, called IOMFs (see further). The functions
are orchestrated similarly to slices, and LCM requests are sent
by the Infrastructure Provider via the MonB5G Portal.

B. Dynamic components of the architecture

The dynamic components of the architecture are slices that
are also involved in the overall management of the MonB5G

system. For that purpose, the slice runtime management, in
most cases, is a part of the slice (i.e. included in a slice
template). Such an approach leads to self-managed slices and
reduces information exchange between slices and external
management components of the architecture. However, for
backward compatibility and enabling MaaS, it can deploy the
management part of the slice independently. Moreover, MaaS
can handle multiple slice instances based on the same tem-
plate. The different options of deployed slices are presented in
Fig. 3. Option A concerns the deployment of the self-managed
multi-domain slice, Option B shows the deployment of slices
that use shared functions and MaaS, and Option C shows the
infrastructure management-oriented slice deployment.

In all the mentioned cases, the MonB5G slice templates
have been decomposed into Slice MonB5G Layer (SML)
and Slice Functional Layer (SFL). SFL, composed of virtual
functions, provides slice “core” functionality. SML provides
its management as an implementation of the ISM concept.
A generic structure of a self-managed, single domain slice
(SML/SFL) is shown in Fig. 4, which shows more SML
details.

The SFL part may use shared functions, called Domain
Shared Functions (DSFs), which are available in SOD (so-
called shared VNFs). These functions can be implemented as
PNF/VNF or CNF and may be used by all or some slices. The
use of DSFs reduces the deployed slices’ footprint, improving
that way also slices deployment time. DSFs are grouped (i.e.
form a slice) for their easy management by DMO and can be
seen as an implementation of PaaS. SFL part of slice template
consists of AI-driven Element Managers, called Embedded
Element Managers (EEMs, composed of parts for monitoring
(MS-F), anomaly detection (AE-F), decision making (DE-F)
and actuation (Actuator Function, ACT-F). Legacy Element
Managers (EMs) can also be used [3]. Moreover, both EM
and EEM contain Management Function (MAN-F) for the
external management of the component. Each EEM is involved
in some local closed-loop management decisions, reducing the
outside exchange of monitoring data. The ACT component is
responsible for converting high-level DE output (e.g. the action
space of a deep reinforcement learning algorithm) into a set
of low-level primitives stemming from API. EEMs and EMs
are the links between the SFL and SML parts of a slice.

The SML part is internally split into MS, AE and DE
sublayers. It is assumed that MS provides generic, reusable
monitoring with certain granularities, whereas AEs and DEs
cooperate to achieve a specified data-driven proactive decision.
Specifically, AE analyses MS data received for a specific pur-
pose (e.g. fault detection, performance prediction or security
attack identification). The analysed data are then fed to the
related DEs (as a state-space) to take appropriate decisions
that are afterwards converted by ACT to elementary actions.
As in the management systems, there are multiple goals to
be optimized; therefore, multiple AEs and DEs can be a part
of SML. To resolve unavoidable conflicts between DEs, the
DE Selector/Arbiter component is a part of the DE sublayer.
Moreover, stability is observed to avoid a chaotic behaviour



DMO

NS1a (SFL/SML)

DMO

IDMO

IDSM1

SOD-1  SOD-2

Infrastructure Layer

Slice 1 Tenant

NS2,3 (MLaaS)

NS2(SFL) NS3(SFL)

NS1b (SFL/SML)

MonB5G Portal

Slice 3 Tenant

Slice 2 Tenant

MonB5G System OperatorSlice Management
Provider

Business Layer

Management and Orchestration Layer

unsp.

Iop

Itp

Itp

Itp

Imt

Imt
Imp

Its

unsp.

unsp. unsp.

Ipi

Iid

Idr

Iii Iii

Idr

unsp.

DSF

Infrastructure Provider 1Itp Infrastructure Provider 2 Itp

ID-1 ID-2IDM

unsp. unsp.

IOMF

IDM

unsp.

C

Iid

A

B

Fig. 3. MonB5G system with different options of slice deployment: A – multi-domain slice; B – slices that use MaaS and shared functions, C – orchestrated
management functions of the Infrastructure Provider

of the system or the ping-pong effect. SML DEs may decide
about SML and SFL functionality updates. They may change
SFL configuration parameters or send new function (VNF)
orchestration requests (Network Service Update according to
ETSI NFV framework) using a direct connection between
each SML and DMO. SML may also ask for a resource
allocation update. Such resource scaling can be proactive,
based on monitored slice users’ QoE. This is in contrast to
the NFV MANO orchestrator’s reactive resource scaling only.
SML provides direct, intent-based management to the Slice
Tenant that provides a perfect way of slices management
isolation. The MonB5G Slice Manager component of SML is
responsible for the interaction with DMO. It allows for SML
configuration that enables completely manual management of
a slice if necessary (overriding AI-based management).

Slice Functional Layer (SFL)

 T
o 

ID
S

M

Domain Function

Embedded Element 
Manager (EEM)

Domain Shared Function

M
S

-F

A
C

T-
F

M
A

N
-F

Element Manager (EM)

To
 D

M
O

Slice MonB5G Layer (SML)

DE-to-Action Converter Action Deployer

ACT-Sublayer

DE-IS-1
(Security)

DE Selector/Arbiter

DE-Sublayer
DE-IS-3

(Stability)
DE-IS-2 

(Performance)

AE-IS-1
(Security)

AE-IS-2
(Performance)

AE-Sublayer

AE-IS-3
(Stability)

MS-IS

MS-Sublayer

M
o

n
B

5
G

 S
li

c
e
 M

a
n

a
g

e
r

D
E

-F

A
C

T-
F

M
S

-F

A
E

-F

D
E

-F

A
C

T-
F

M
S

-F

A
E

-F

M
A

N
-F

Fig. 4. Generic structure of the ML/FL slice

When a slice spans multiple SODs, the Inter-Domain Slice

Manager (IDSM) entity is responsible for the end-to-end slice
management. It interacts with SMLs of all domain slices
composing the end-to-end slice. IDSM is a part of the end-
to-end slice template. In some cases, it can be generated
automatically by IDMO (if IDMO is responsible for slice
template split between multiple SODs). When IDSM is in use,
it provides the management interface to the Slice Tenant and is
responsible for calculating slice KPIs. Fig. 3 option A shows
a multi-domain slice in which IDSM is deployed in one of
SODs.

The addition of SML to SFL undoubtedly increases slice
footprint, also implying longer deployment time. To address
this issue, MonB5G proposes using MaaS/PaaS paradigm
already defined by ETSI [21]. In this case, SML is an
independent slice capable of managing multiple SFL instances
of the same template (since SML is slice-specific, it cannot
be used for generic slice management). Such a split requires
implementing additional functions in SML related to the
creation of secure partitions (SMLs) for the managed SFLs
and dynamic adaptation in case of deployment of a new SFL
or termination of the existing one. The MaaS platform (called
MonB5G Layer as a Service, MLaaS) can be operated by a
business entity named Slice Management Provider. LCM of
MLaaS is done via Imp interface. This case for a single SOD
is marked as Option B in Fig. 3 where SFLs of the MLaaS-
managed slices also use DSF services for the reduction of the
SFL footprint.

IDM functionalities supporting the management of infras-
tructure can be dynamically enhanced by the use of additional
management services, which are orchestrated by the frame-
work. Such additional management functionalities, called In-
frastructure Orchestrated Management Functions (IOMFs),
can be orchestrated by DMO on the request of the Infras-
tructure Provider (via the MonB5G Portal). The functions
cooperate with IDM to achieve its goal (predictions of resource
consumption, etc.). This option is marked in Fig. 3 as C.



IV. IMPLEMENTATION REMARKS

The vision of the MonB5G framework is a high-level one,
thus enabling different implementation approaches. The imple-
mentation should reuse existing, standardized and open source
components and interfaces. The implementation remarks are
following:

1) MonB5G Portal: It exposes MonB5G management ser-
vices to tenants, providers, and operators via Web endpoints,
translates requests to orchestration procedures (of e.g. code,
resources, etc.) and uses standardized interfaces and open-
source tools, such as Ansible [22].

2) IDMO: Its operations leverage a distributed messaging
platform, e.g. Apache Kafka [23], to enable interactions among
entities of multiple domains. It may also use Kubernetes fede-
ration [24] for provisioning or updating SMLs configuration
across domains.

3) DMO: It can incorporate existing interfaces and tools
for resource orchestration in its corresponding SDO (e.g.
ETSI OSM [16]) and extend them, e.g. to enable energy
efficiency, PaaS provisioning, etc. The OSS/BSS part of DMO
is an AI-driven management platform focused on resources. It
interacts with IDMO, slices and infrastructure via a distributed
messaging platform.

4) IDM: It is the OSS/BSS (preferably AI-driven) of the
infrastructure. It supports the orchestration of IDM manage-
ment functions (i.e. IOMFs) at the request of Infrastructure
Providers.

5) SML and SFL: SML’s MS/AE/DE triplets can be reused
for different slice types. SML exposes an intent-based interface
for KPIs enforcement and visualization (Grafana, Prometheus,
etc.). SFL is composed of the tenant’s VNF and corresponding
EEM. SML VNFs support PaaS itself (e.g. Kubernetes cluster),
which effectively acts as a runtime environment for MonB5G
management components.

6) MLaaS and DSF: Both are shared among groups of
SFLs. MLaaS relies on PaaS [21] services (i.e. Kubernetes) to
ensure secure isolation of management functions to each SFLs
as well as LCM and operation (e.g. scaling, updates). MLaaS
and DSF resources are orchestrated alongside with SFLs.

V. SUMMARY AND CONCLUSIONS

In this paper, we have presented the MonB5G framework for
distributed orchestration and management of network slices.
To improve network slices’ management and orchestration
scalability, the proposed architecture allows for local pro-
cessing of management data at different hierarchical levels,
providing a flexible decision-making framework to deal with
runtime and life cycle management of a massive number
of slices. The distributed approach enables fast reaction to
events, minimizing the management information exchange
between components in comparison to centralized approaches,
consequently increasing the overall network scalability. The
paper provides only a high-level, introductory description of
the concepts for which the implementation effort is following
the ongoing remarks of Section IV. It has to be noted that
the architecture is agnostic to AI algorithms and management

procedures. Therefore, their definition is out of the scope of
this paper.

ACKNOWLEDGMENT

This work has been supported by the EU H2020 project
MonB5G (Grant Agreement No. 871780). The views and
opinions are those of the authors and do not reflect the official
position of their companies.

REFERENCES

[1] NGMN Alliance, “NGMN 5G White Paper”, Jan. 2015.
[2] 3GPP, “Management of network slicing in mobile networks; Concepts,

use cases and requirements”, 3GPP TS 28.530, ver. 17.1.0, Apr. 2021.
[3] ETSI, “Network Functions Virtualisation (NFV); Management and Or-

chestration”, ETSI GS NFV-MAN 001 V1.1.1, Dec. 2014.
[4] MonB5G project, “Distributed management of Network Slices in beyond

5G”. [Online]. Available: https://www.monb5g.eu [Accessed: Jul. 22,
2021].

[5] H2020 EU/JP, “5G!Pagoda: Federating Japanese and European 5G
Testbeds to Explore Relevant Standards and Align Views on 5G Mobile
Network Infrastructure Supporting Dynamic Creation and Management
of Network Slices for Different Mobile Services”. [Online]. Available:
https://5g-pagoda.aalto.fi/ [Accessed: Jul. 22, 2021].

[6] 5G-PPP, “5G-MoNArch: 5G Mobile Network Architecture for diverse
services, use cases, and applications in 5G and beyond”. [Online].
Available: https://5g-monarch.eu/ [Accessed: Jul. 22, 2021].

[7] ETSI, “Experiential Networked Intelligence (ENI)”. [Online]. Available:
https://www.etsi.org/committee-activity/eni [Accessed: Jul. 22, 2021].

[8] 5G-PPP, “Beyond 5G Multi-Tenant Private Networks Integrating Cellular,
Wi-Fi, and LiFi, Powered by Artificial Intelligence and Intent Based
Policy”. [Online]. Available: https://www.5gclarity.com [Accessed: Jul.
22, 2021].

[9] 5G-PPP, “SELFNET: A framework for self-organized network manage-
ment in virtualized and software defined networks”. [Online]. Available:
https://selfnet-5g.eu/ [Accessed: Jul. 22, 2021].

[10] 5G-PPP, “SLICENET: End-to-End Cognitive Network Slicing and Slice
Management Framework in Virtualised Multi-Domain, Multi-Tenant 5G
Networks”. [Online]. Available: https://slicenet.eu/ [Accessed: Jul. 22,
2021].

[11] 5G-PPP, “Zero-touch service, network and security management
in multi-stakeholder environments”. [Online]. Available:
https://www.5gzorro.eu [Accessed: Jul. 22, 2021].

[12] 5G-PPP, “5G Enablers for network and System security and resilience”.
[Online]. Available: https://www.5gensure.eu/ [Accessed: Jul. 22, 2021].

[13] ETSI Zero touch network & Service Management (ZSM). [Online].
Available: https://www.etsi.org/committee/zsm [Accessed: Jul. 22, 2021].

[14] O-RAN Working Group 2: AI/ML workflow description and require-
ments, Tech. Rep. O-RAN.WG2.AIML-v01.01.

[15] The Linux Foundation, “Open Network Automation Platform”. [Online].
Available: https://www.onap.org/ [Accessed: Jul. 22, 2021].

[16] ETSI, “Open Source MANO”. [Online]. Available: https://osm.etsi.org/
[Accessed: Jul. 22, 2021].

[17] ITU-T, “Overview of TMN Recommendations”, ITU-T M.3000 (02/00),
Feb. 2000.

[18] IBM, “Autonomic Computing White Paper: An architectural blueprint
for autonomic computing”, 3rd edition, 2006.

[19] Kukliński S., Tomaszewski L., “DASMO: A scalable approach
to network slices management and orchestration”, IEEE/IFIP Net-
work Operations and Management Symposium, pp. 1-6, 2018.
https://doi.org/10.1109/NOMS.2018.8406279

[20] ETSI, “Network Functions Virtualisation (NFV); Management and Or-
chestration; Report on Architectural Options”, ETSI GS NFV-IFA 009,
V1.1.1, Jul. 2016.

[21] ETSI, “Report on the Enhancements of the NFV architecture towards
Cloud-native and PaaS”, ETSI GR NFV-IFA 029, V3.3.1, Nov. 2019.

[22] Red Hat Ansible. [Online]. Available: https://www.ansible.com [Ac-
cessed: Jul. 22, 2021].

[23] Apache Kafka. [Online]. Available: https://kafka.apache.org [Accessed:
Jul. 22, 2021].

[24] Kubefed. [Online]. Available: https://github.com/kubernetes-
sigs/kubefed [Accessed: Jul. 22, 2021].


