
A Framework for the Continuous Curation
of a Knowledge Base System

Dissertation

submitted to

Sorbonne Université

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Author:

Naser AHMADI

Scheduled for defense on the 8th December, 2021, before a committee composed of:

Reviewers
Prof. Fabian SUCHANEK Telecom Paris, France
Prof. Serena VILLATA University of Nice Sophia Antipolis, France

Examiners
Prof. Ziawasch ABEDJAN Leibniz University Hannover, Germany
Prof. Raphael TRONCY EURECOM, France

Thesis Advisor
Prof. Paolo PAPOTTI EURECOM, France

Un cadre pour la curation continue d’un
système de base de connaissances

Thèse

soumise à

Sorbonne Université

pour l’obtention du Grade de Docteur

présentée par:

Naser AHMADI

Soutenance de thèse prévue le 08 Décembre 2021 devant le jury composé de:

Rapporteurs
Prof. Fabian SUCHANEK Telecom Paris, France
Prof. Serena VILLATA University of Nice Sophia Antipolis, France

Examinateurs
Prof. Ziawasch ABEDJAN Leibniz University Hannover, Germany
Prof. Raphael TRONCY EURECOM, France

Thesis Advisor
Prof. Paolo PAPOTTI EURECOM, France

To Niloufar

Abstract

Entity-centric knowledge graphs (KGs) are becoming increasingly popular for gathering infor-
mation about entities. The schemas of KGs are semantically rich, with many different types
and predicates to define the entities and their relationships. These KGs contain knowledge that
requires understanding of the KG’s structure and patterns to be exploited. Their rich data structure
can express entities with semantic types and relationships, oftentimes domain-specific, that must
be made explicit and understood to get the most out of the data. Although different applications
can benefit from such rich structure, this comes at a price. A significant challenge with KGs is
the quality of their data. Without high-quality data, the applications cannot use the KG. However,
as a result of the automatic creation and update of KGs, there are a lot of noisy and inconsistent
data in them and, because of the large number of triples in a KG, manual validation is impossible.

In fact, KG creation and maintenance is a never-ending process and semi-automatic curation
techniques are needed for adding new facts to a KG and for removing noises and inconsistencies.
Computational methods can be employed in the creation and curation of KGs. Deep learning
techniques are one of such computational methods that can be exploited for finding new relation-
ships by matching entities in a KG. Mining systems are another computational approach that can
help the users improving the quality of KGs. In this line of work, logical rules are used to express
dependencies between entities in KGs. They are useful in tasks such as query answering, data
curation, and automatic reasoning, but they are not included with the KGs. These rules must be
defined manually or discovered using rule mining techniques.

In this thesis, we present different tools that can be utilized in the process of continuous
creation and curation of KGs. We first present an approach designed to create a KG in the
accounting field by matching entities. The proposed approach starts by extracting entities from
auditing documents and then finds the links between related entities. This is especially challenging
because auditing entities can have different granularity, such as activities, taxonomies, and topics.
We then introduce methods for the continuous curation of KGs. We present an algorithm for
conditional rule mining and apply it on large graphs. Our results show that conditional rules
can help human curators in finding more accurate rules for specific types of entities. Next, we
describe RuleHub, an extensible corpus of rules for public KGs which provides functionalities
for the archival and the retrieval of rules. RuleHub defines different measures for capturing
the confidence and the quality of each rule. We also report methods for using logical rules in
two different applications: teaching soft rules to pre-trained language models (RuleBert) and
explainable fact checking (ExpClaim).

i

Abstract

ii

Abrégé

Les graphes de connaissances (KG) centrés sur les entités sont de plus en plus populaires pour
recueillir des informations sur les entités. Les schémas des KG sont complexes, avec de nombreux
types et prédicats différents pour définir les entités et leurs relations. Ces KG contiennent des
connaissances spécifiques à un domaine, mais pour tirer le maximum de ces données, il faut
comprendre la structure et les schémas du KG. Leurs données comprennent des entités et leurs
types sémantiques pour un domaine spécifique. En outre, les propriétés des entités et les relations
entre les entités sont stockées. En raison de l’émergence de nouveaux faits et entités et de
l’existence de déclarations invalides, la création et la maintenance des KG est un processus sans
fin. Les règles logiques sont l’un des outils qui peuvent être utilisés pour mettre à jour un KG avec
de nouveaux faits et en supprimer les données invalides. Les règles logiques sont employées pour
exprimer les dépendances entre les entités dans les KG. Elles sont utiles pour des tâches telles
que les Systèmes de questions-réponses, la curation des données et le raisonnement automatique,
mais elles ne sont pas inclues dans les KGs. Ces règles doivent être définies manuellement ou
découvertes à l’aide des techniques de fouille des règles.

Dans cette thèse, nous présentons d’abord une approche destinée à créer un KG dans le
domaine de l’audit en faisant correspondre des documents de différents niveaux. L’approche
proposée extrait d’abord les entités des documents d’audit et trouve ensuite les liens entre les
entités liées. Les entités d’audit peuvent être des mots, des termes, des paragraphes ou des
documents. Nous introduisons ensuite des méthodes pour la curation continue des KGs. Nous
présentons un algorithme pour la fouille des règles conditionnelles et l’appliquons sur de grands
KGs. Nos résultats montrent que laes règles conditionnelles peuvent nous aider à trouver des
règles plus précises pour un type spécifique d’entités. Ensuite, nous décrivons RuleHub, un corpus
extensible de règles pour les KGs publiques qui fournit des fonctionnalités pour l’archivage et
la récupération des règles. RuleHub définit différentes mesures pour capturer la confiance et la
qualité de chaque règle. Nous proposons également des méthodes pour l’exploitation des règles
logiques dans deux applications différentes : l’apprentissage de règles souples à des modèles de
langage pré-entraînés (RuleBert) et la vérification explicable des faits (ExpClaim).

iii

Abrégé

iv

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Paolo Papotti for
providing me with the opportunity to join his team and for his noble guidance and constant
support of my research. Without his tremendous understanding and encouragement in the past
few years, it would be impossible for me to complete my study. Besides my advisor, I would like
to thank all the members of my thesis jury committee for generously offering their time and for
their encouraging words and thoughtful comments and suggestions: Prof. Fabian Suchanek, Prof.
Serena Villata, Prof. Ziawasch Abedjan, and Prof. Raphael Troncy.

I would like to thank the members of my research group for their feedback and cooperation, in
particular Mohammed, for all the moments we were working together. An acknowledgement
goes to my teammates in KPMG which it was a pleasure to work with: Hansjorg, Hendrik, and
Florian.

During the years that I have spent at EURECOM, I had a chance to make amazing friends. I want
to thank all of them for the time that we spent together, with a very special thank to Ismail for his
support and all the fun moments we had.

Thank you to my Yaar, Niloufar, I am very lucky to have you in my life. Thank you for your
encouragement, unconditional support, and endless patience. Without you, this thesis would not
have been possible.

Last but not the least, I deeply thank my parents, for their great love, tremendous support, and
hope they had given to me. I am especially grateful to my siblings Fahime, Zahra, Yaser, and
Reza for always being there for me and for the strength they gave me.

Nice, December 2021 Naser

v

Acknowledgements

vi

Contents

Abstract . i
Abrégé [Français] . iii
Acknowledgements . v
Contents . vii
List of Figures . x
List of Tables . xiii
Acronyms . xv
Notations . 1

1 Introduction 1
1.1 A Knowledge Graph for Audit Information 2

1.1.1 Building and curating the Audit Knowledge Graph 4
1.2 Quality of Data . 5
1.3 Outline of the Thesis . 6

2 Knowledge Graphs 9
2.1 Knowledge Graphs . 9

2.1.1 Knowledge Graph Architecture . 10
2.1.2 Knowledge Graph Construction . 11

2.2 Knowledge Graph Curation . 13
2.3 Summary . 15

3 Nodes and Relations Identification 17
3.1 Node Identification . 17

3.1.1 Related Work . 17
3.1.2 Finding Representative Entities . 18
3.1.3 Creating Entity Families . 19
3.1.4 Evaluation . 22

3.2 Matching Text and Data . 23
3.2.1 Related Work . 26
3.2.2 A Graph for Heterogeneous Corpora 26
3.2.3 Graph Expansion and Compression 31

vii

Contents

3.2.4 Matching Text and Structured Data 35
3.2.5 Embeddings Generation . 35
3.2.6 Experiments . 35

3.3 Summary . 43

4 Mining Expressive Rules in Knowledge Graphs 45
4.1 Related Work . 46
4.2 Rule Mining . 47

4.2.1 Logical Rules . 47
4.2.2 Rule Coverage . 48

4.3 Rule Discovery for Noisy Knowledge Graphs 49
4.3.1 Weight Function . 50
4.3.2 Problem Definition . 51

4.4 Generation of Rules and Examples . 51
4.4.1 Rule Generation . 51
4.4.2 Negative Examples Generation . 53

4.5 Discovery Algorithm . 55
4.5.1 A Greedy Algorithm Based on Marginal Weight 55
4.5.2 Graph Traversal with A∗ Search . 55
4.5.3 Algorithm Analysis . 58

4.6 Conditional Rules . 58
4.6.1 Type condition . 59
4.6.2 Entity condition . 60

4.7 Experiments . 61
4.7.1 Quality of Generic Rules Discovered by RuDiK 61
4.7.2 Conditional Rules . 63

4.8 Summary . 64

5 A Public Corpus of Rules 67
5.1 Rulehub . 67

5.1.1 Rule Confidence . 68
5.1.2 A Corpus of Rules . 71
5.1.3 Experiments . 73

5.2 Extracting Logical Rules from Wikidata . 79
5.2.1 Searching Logical Rules . 80
5.2.2 Experiments . 81

5.3 Teaching soft rules to language models . 82
5.3.1 Dataset Generation . 84
5.3.2 Teaching PLMs to Reason . 86
5.3.3 Experiments . 86

viii

Contents

5.4 Summary . 88

6 Explainable Fact Checking using Logical Rules 91
6.1 Preliminaries . 92
6.2 Related Work . 94
6.3 Framework . 95

6.3.1 Rule Generation . 95
6.3.2 Evidence Generation . 96
6.3.3 Inference for Fact Checking . 97

6.4 Experiments . 98
6.5 Summary . 100

7 Conclusion and Future Work 103
7.1 Future Work . 104

Appendices 107

A Text to Data Matching: More experimental results 109
A.1 Ablation Study . 109

A.1.1 Impact of parameters . 109
A.1.2 Improving graph generation . 111

B Rulehub: More experimental results 113
B.1 Other Predicates Confidence Results . 113
B.2 A Sample of Rules Used for Evaluations . 113
B.3 Quality Evaluation Measure Experiment . 114
B.4 Important factors in Computing Rules Confidence 116
B.5 RuleHub Web Page . 117

B.5.1 Add new rules . 117
B.5.2 Evaluate rules . 119

C ExpClaim: More Experimental Results 121
C.1 REASONER . 121

C.1.1 Answer Set Programming ASP . 121
C.1.2 LPMLN . 121

C.2 Rule discovery . 123

D RuleBERT: More on Reasoning with Soft Rules 125
D.1 Rules Support . 126
D.2 More Experimental Details . 126
D.3 Ablation . 126

D.3.1 Role of Example Formats . 127

ix

Contents

D.4 Data Generation Example . 128

x

List of Figures

1.1 Examples of knowledge triples from encyclopedic and commonsense KGs [1]. 2
1.2 An example of KPMG’s documents (left) and an account taxonomy (right). . . 3
1.3 Generic KG with one node type and two kinds of relationships. 3
1.4 KPMG’s KG with six types of nodes. 4

2.1 The process of KG construction starts with data sources and contains three
modules. After KG creation, because the applications cannot use the KG without
high-quality data, continuous curation is required. 11

2.2 Examples of constraints violation in Wikidata [2]. 14

3.1 An example of taxonomy nodes for accounts and associated captions (leaves, in
Italic). 19

3.2 Edges for entity ‘audit’ in ConceptNet. 21
3.3 Text and data: paragraph p1 matches tuple t2. 23
3.4 Structured texts: 1st paragraph matches 4th node. 24
3.5 The proposed framework: (1) text and structured data documents are jointly

modeled in a graph, (ii) embeddings are produced for data and metadata nodes
(representing texts, taxonomy nodes, tuples), (iii) metadata nodes are matched in
an unsupervised approach. 24

3.6 Graph with a sample of the nodes for Example 2 29
3.7 Graph with a sample of the nodes for Example 3 30
3.8 Expanded graph for Example 1. 32

4.1 Four DBpedia facts in the graph representation. 52
4.2 Two positive examples. 55

5.1 Architecture of RuleHub. 68
5.2 Confidence results for DBpedia predicate spouse. 74
5.3 Confidence results for DBpedia predicate foundedBy. 74
5.4 Average computed and human confidence over rules for all predicates. 75
5.5 (a) Confidence for different values of κ . (b) Avg execution times for computing

confidence. 75
5.6 Computed confidence error rate w.r.t. human quality with and without manual

cleaning of the triples for different κ values. 78

xi

List of Figures

5.7 Impact of number of rules atoms on quality evaluation annotations. 79
5.8 Human and computed confidence comparison. 82
5.9 Examples of hypotheses that require reasoning using facts and possibly conflicting

soft rules (rule id and confidence shown in brackets). 83

6.1 Our Fact checking framework EXPCLAIM. 94

A.1 Match quality with increasing walk length. 109
A.2 Increasing number of random walks per node. 110
A.3 Average precision w.r.t. number of tokens in a term. 110
A.4 Graph size w.r.t. number of tokens in a term. 110
A.5 Impact of data node filtering. 111
A.6 Our method combined with SentenceBERT. 112

B.1 Confidence measures of the rules for DBpedia:spouse. 113
B.2 Confidence measures of the rules for DBpedia:foundedBy. 114
B.3 Confidence measures of the rules for DBpedia:relative and DBpedia:publisher

(union of the two rule sets). 114
B.4 Quality Evaluation (subjective value between 1 and 5) vs Human Confidence

(derived from triple annotation). 116
B.5 Impact of number of atoms on the error rate for the computed confidence w.r.t.

human confidence. 117
B.6 Screenshot of RuleHub web portal - Search for rules. 118
B.7 Screenshot of RuleHub web portal - Add rule. 118
B.8 Screenshot of RuleHub web portal - Rule Management. 119
B.9 Screenshot of RuleHub web portal - Rule Evaluation. 120

D.1 Support of the overlapping rules. 126
D.2 The set of rules used for fine tuning RULEBERT20 in the experiment of Sec-

tion 5.3.3 (unseen rules). 128
D.3 Impact of the training data size. 129
7.4 Le cadre proposé : (1) les documents de texte et de données structurées sont

modélisés conjointement dans un graphe, (ii) des embeddings sont produits
pour les nœuds de données et de métadonnées (représentant des textes, des
nœuds de taxonomie, des tuples), (iii) les nœuds de métadonnées sont mis en
correspondance dans une approche non supervisée. 135

7.5 Architecture du RuleHub. 137
7.6 Notre cadre de vérification des faits EXPCLAIM. 139

xii

List of Tables

3.1 Examples of word families. 20
3.2 Quality evaluation of generated entity families. 22
3.3 Quality of match results for IMDb scenario. 37
3.4 Quality of match results for CoronaCheck scenario. 38
3.5 Exact and Node scores for structured text matches. 40
3.6 Quality of match results for Politifact scenario. 41
3.7 Quality of match results for Snopes scenario. 41
3.8 Train and test execution times (sec). 42
3.9 Compression performance: number of graph nodes (#N) and edges (#E) compared

with matching quality MRR. 42

4.1 Dataset characteristics. 61
4.2 RuDiK Rule Precision. 62
4.3 Sample of Discovered Rules from DBPEDIA. 63
4.4 Comparison between conditional and generic rules. 64

5.1 Support, Counter_Support, Confidence Scores for r2, r3, r4 71
5.2 Negative rules information: rule #, human confidence obtained from triple an-

notation (Hum. Conf.), number of missing facts (MF) and incorrect facts (IF),
original (C_S 1) and updated counter support (C_S 2), computed confidence be-
fore (Conf. 1) and after refining counter support (Conf. 2), computed confidence
by only adding missing facts (Conf. MF) and by only removing incorrect facts
(Conf. IF). 77

5.3 Examples of rules mined on Wikidata. We report between square brackets the
label (e.g., spouse) for the Wikipedia item IDs (e.g., P26) to favor readability. . 80

5.4 Examples of DBpedia rules translated to Wikidata. 81
5.5 Examples of rules with the # of missing (top) and incorrect (bottom) statements

detected by every rule in Wikidata. 82
5.6 Evaluation results for single-rule models. 87
5.7 Accuracy results for unseen rules. The first group contains rules with predicates

seen by RULEBERT in the 20 rules used in fine-tuning, while the second group
has rules with unseen predicates. 88

6.1 Example of discovered rules with their support for predicate foundedBy in DBpedia. 91

xiii

List of Tables

6.2 Number of discovered rules for each predicate. 98
6.3 Average F-score results (SD) for four predicates with all methods over 3 datasets. 99
6.4 Example of MAP+W output for claim almaMater(Michael White, UT Austin). 100
6.5 Average execution times (secs) for 200 claims. 100
6.6 Average results (SD) for deathPlace predicate with all methods over 3 datasets. 101

B.1 Examples of negative rules. 115
B.2 Examples of positive rules. 116

C.1 Statistics of Rudik Executions . 123
C.2 Examples of positive rule exploited for spouse and f oundedBy 124
C.3 Examples of negative rule exploited for spouse and f oundedBy 124

D.1 Number of examples in each of the test datasets for the chaining experiment. . . 127
D.2 Hyper-parameters for fine-tuning our model. 127
D.3 Impact of the example format on accuracy. 128

xiv

Acronyms and Abbreviations

The acronyms and abbreviations used throughout the manuscript are specified in the following.
They are presented here in their singular form, and their plural forms are constructed by adding
and s, e.g. KG (Knowledge Graph) and KGs (Knowledge Graphs). The meaning of an acronym
is also indicated the first time that it is used.

CRF Conditional Random Fields
CWA Closed World Assumption
ER Entity Resolution
GATE General Architecture for Text Engineering
ILP Inductive Logic Programming
KB Knowledge Base
KBS Knowledge Base System
KG Knowledge Graph
LCWA Local-Closed World Assumption
LM Language Model
ML Machine Learning
NLP Natural Language Processing
OWA Open World Assumption
PLM Pre-trained Language Model
RDF Resource Description Framework
SHACL SHApes Constraint Language
ShEx Shape Expressions
TM Text Matching
UIMA Unstructured Information Management Architecture
VN Value Normalization

xv

Acronyms

xvi

Chapter 1

Introduction

A Knowledge Graph (KG) is a structured representation of information which stores real-world
entities as nodes, and relationships between them as edges. The entities and relations in a KG
have semantic descriptions in the form of types and properties associated with them. KGs
represent data with large collections of interconnected entities. Usually, a rich set of types
(classes) are available to describe the entities (e.g., entity Paris is a city, France is a country),
while predicates describe their relationships (a city isCapital of a country) and their properties
(France has a population:62M). RDF KGs organize information in the form of triples with a
predicate expressing a binary relation between a subject and an object. KGs store large amounts
of factual information, and KG triples, or facts, represent information about real-world entities,
their properties, and their relationships, such as “Larry Page is the founder of Google". Research
has been conducted on KG creation both in the research community (NELL [3], DBPedia [4],
Yago [5], Wikidata [6], FreeBase [7], DeepDive [8]) and KGs have also attracted interest from
the industry, as evident from the ongoing efforts in several companies such as Google [9] and
Wal-Mart [10]. For example, the English version of DBpedia stores 850 million facts1.

The syntactic and semantic structures of knowledge in KGs are useful in building applications,
such as Question Answering [11, 12] and Semantic Search [13].

KGs are usually built around facts and relationships. Consider for example the Knowledge
Graph at Google with millions of entities and relationships between them [14]. Google search
engine exploits the semantic information in the KG to improve the search service [15–17]. For
example, given a query term, they recognize it as an entity and show a summary of information
about it, find a category for the entity, and identify related entities. The KG structure and schema
enable to understand user intent and the meaning of the content. KGs also enable querying,
since the data has a schema; Google shows this feature by querying for example “when was
Tesla founded”. Intelligent assistants rely on KGs to answer simple user queries [16, 18, 19].
More complex queries can be defined directly on the schema of the graph, for example with
aggregates (e.g., average net profit for auditing companies in 2015). The KG can also be used for
autocomplete (type-ahead) by using the alias predicate to rewrite queries with synonyms, or by
using type/class hierarchies to translate specific entities with little support in the data into more
general concepts [20].

1https://www.dbpedia.org/resources/snapshot-release

1

Chapter 1. Introduction

However, in an enterprise domain, the KG looks very different. While the Google KG is
encyclopedic, covering objects and facts in the real world, some enterprises may have information
which is mostly composed of abstract topics and rules, making it close to a commonsense KG.
See examples that highlight the difference in Figure 1.1. The latter category is much harder to
build automatically, and most efforts rely on humans, usually in a crowdsourcing fashion, such as
ConceptNet [21] and ATOMIC [22]. The specific and technical domain of the enterprise content
is one of the biggest challenges in creating an industrial KG.

Figure 1.1 – Examples of knowledge triples from encyclopedic and commonsense KGs [1].

External commonsense resources, such as ConceptNet, are used in some of the methods that
are introduced next, but they are not a direct solution to the KG construction problem. Many
terms are domain-specific, so they are either missing from the existing resource or their modeling
in the commonsense KGs does not match the level of details that is needed in the enterprise
setting. For example, in an accounting dictionary AIM stands for Alternative Investment Market
and goodwill is “a type of tangible assets that occurs when a buyer acquires an existing business”,
while these words have very different meanings in a general dictionary.

In this work, we propose tools for automating different parts of a framework for continuous
creation and curation of KGs. Our tools help the users in two tasks: i) constructing a KG from
unstructured data and ii) KG maintenance and curation.

We start this chapter with an example of a KG we created with KPMG and then explain
the difficulties and challenges in finding entities and relationships in creating an auditing KG
(Section 1.1). Next, we discuss the general problem of quality of data in KGs and introduce
computational methods to address this challenge (Section 1.2).

1.1 A Knowledge Graph for Audit Information

We start by introducing a very high-level KG based on node entities and only two kinds of
relationships between entities. This KG is different from traditional entity-centric knowledge
graphs and is motivated by text data and taxonomies that are available in the KPMG corpus. This
information must be modeled according to their target applications.

Figure 1.2 shows a sample with a few sentences for two documents (left) and a fragment of
a taxonomy for accounts (right). In our corpus there are thousands of documents with variable
size, from very short (only one sentence) to quite large documents with dozens of paragraphs.
For the taxonomies, they can vary in size but are in the order of hundred nodes, each composed
of a short sentence. These can be considered the starting point of the KG construction and from
those several other nodes are derived as we discuss next.

2

Chapter 1. Introduction

Figure 1.2 – An example of KPMG’s documents (left) and an account taxonomy (right).

Figure 1.3 – Generic KG with one node type and two kinds of relationships.

In Figure 1.3, there is only one kind of node, representing entities. Those can be single
words, paragraphs or long documents. The relationships across them are represented by directed
edges and the nodes are connected in many to many relationships. We consider two kinds of
relationships. The first one is the containment, in the example E6 is contained in E4. This
could be a word contained in a document, for example, or a sub-element in a hierarchy (e.g. the
relation between IEC 27001 and Audit programme in accounts’ hierarchy in Figure 1.2). Also,
E2 could be a topic that describes document E8. We remark that all edges are assumed to have
the same weight, i.e., 1, but in the KG edges can be weighted with a value between 0 and 1. This
representation is very generic and simplified, we introduce it to give a feeling of the kind of graph
that we are interested in.

We are now ready to discuss the KG for audit information. In Figure 1.4, we report a simplified
small portion of the KPMG’s KG. The nodes are of six different types and are represented with
different colors:

• Documents (D) nodes are (possibly long) texts containing one to multiple paragraphs. For

3

Chapter 1. Introduction

Figure 1.4 – KPMG’s KG with six types of nodes.

example, in Figure 5.9 two activities are shown; those correspond to two D nodes.

• Taxonomy (T) nodes are auditing concepts following a hierarchical structure. For example,
every account can be represented as a path from the root node to the leave, e.g., Audit
programme→ ISO 19001→ Initial audit.

• Caption (Ca) nodes are short documents nodes that are described by taxonomy nodes.

• Topics (To) nodes are terms with one or multiple related entities; e.g., “risk treatment”
and “audit process” are topics for the Risk treatment in audit process account. Entities are
associated to a topic with a weight.

• Entities (E) nodes contain n-gram terms that are representative of relevant items, names
and concepts in the audit domain. Every entity is the representative for a family of words,
where a family includes (with isIn relationships) synonyms and abbreviations that can be
used to express such entity in documents. Entities are contained in documents, but we do
not represent such edges in the figure for clarity.

• Word (W) nodes are words in the topics or their synonyms or other variations. E.g.,
auditing, adt and prc are words for entity audit process. Word are contained in documents,
but we do no represent such edges in the figure for clarity.

1.1.1 Building and curating the Audit Knowledge Graph

Given the very challenging nature of the auditing content and regulation, it is not very ad-
vantageous to rely on automatic methods for encyclopedic KG construction [19, 23, 24]. We

4

Chapter 1. Introduction

experimented largely with such methods, but with results that were far away from the required
quality [25]. The most difficult problem is that auditing entities are not standard named entities,
such as France and IBM. These challenging entities are contained in auditing documents and can
be acronyms, abbreviations, topics, and terms, and hence existing tools do not obtain high-quality
results. Another issue is that there is no training data in this domain, and general corpora miss the
subtle differences in the audit domain [19, 26].

As the project moved forward, different components of the KG have been manually defined by
the domain experts at KPMG. This process had identified some of the opportunities to introduce
automatic methods to help in the KG construction.

In general, the first task is the automatic identification of nodes and a second task is the
identification of relationships across the different nodes. We first tackle the task of generating the
entity nodes. We generate families of words for each entity node. The goal is to find a group of
semantically equivalent words and to identify the representative entity given only the documents
(including the taxonomy nodes and the associated captions). We utilize mentions of entities to
find families. A mention is a span of text that refers to an entity. Words and representative entities
are related with weighted isIn relationships. We then propose a method to identify relationships
of type describes between nodes, and we conduct experimental campaigns on the discovery of
relations between documents (activities) and taxonomy nodes (accounts). In particular, we report
results matching accounts to activities which is a challenging task for existing methods because
of the quantity of text in our entities.

1.2 Quality of Data

A major challenge with KGs is the quality of their data, due to the processes involved in their
creation and update. This problem also applies for the process we introduced in Section 1.1.1
for the auditing KG. The structured data in the KGs is usually extracted from multiple sources,
possibly from the Web, without human validation. This raises two main issues. The first problem
is factual mistakes. Incorrect or outdated data can be transmitted from the sources to the KGs, or
noise can originate from the automatic extractors [9, 27]. The second issue is incompleteness.
As a graph is rarely complete in practice, closed world assumption (CWA) does not hold in
KGs [9, 28], i.e., it is not possible to conclude that a missing fact is false. We therefore follow the
open world assumption (OWA) and consider it as unknown. Also, in many cases the KG schema
is not fixed, i.e., the set of predicates changes over time and new facts can be inserted without
integrity checks.

Because of these issues, the quantity of incompleteness and errors in KGs can be large,
with up to 30% errors reported for data extracted from Web sources [29, 30]. KGs can have
lots of data, e.g., WIKIDATA has over a billion facts and millions of entities, therefore it is not
feasible to manually verify triples to find mistakes and add missing facts. Tools are needed to
assist humans in the KG curation. A natural approach in this direction is to mine declarative
rules. Once validated, these rules can be run at scale on the KG to increase the quality of its
data [10, 28, 31–33].

rpos = spouse(a,b)∧child(a,v0)→ child(b,v0)

rneg = parent(a,b)∧birthDate(b,v0)∧birthDate(a,v1)∧v0 > v1→⊥

5

Chapter 1. Introduction

For example rpos and rneg are two logical rules that can be used to deduce additional statements
about entities of a KG. Rule rpos states that if two persons are married, each one of them is the
parent of the child of the other one, and rule rneg expresses that a person cannot have a bithDate
smaller than her parents.

These rules must be manually crafted to be executed over KGs. This process can be difficult
because the domain experts, who know the semantics for the dataset at hand, may miss the
computer science background to formally express rules. Moreover, the task of writing a set of
rules is time-consuming, as there can be thousands of them that are needed to achieve good
quality results [34]. In this context, a system to mine rules is important to assist the users in data
curation, as well as in any task involving reasoning over the KG [35, 36].

Rule mining is the process of automatically extracting logical rules from KGs. These rules
can be exploited in KG curation by reducing inconsistencies or adding new facts to it. E.g. rpos

can help us to complete the KG by adding new edges between entities while rneg will help us in
removing nodes or edges that are disagreeing with it. Four main issues make the mining of rules
from KGs challenging:

Quality of the Data. Most rule mining algorithms assume that input data has very small amounts
of errors [37–40], but KGs are incomplete and can have high percentages of mistakes.

Open World Assumption. Some methods assume that positive and negative examples are
available [41,42]. However, KGs contain only positive statements, and it is not possible to assume
CWA, as there is no obvious solution to derive negative facts acting as counter examples.

Data Volume. Several existing algorithms for rule mining exploit the premise that the input
graph can fit entirely in the main central memory [28, 32, 33, 43]. As KGs can have a very large
size, existing methods limit the size of the search space by restricting the mining to a simple rule
language, which can miss some of the important patterns in the data.

Soft Rules. Most logical rules are not true in all the cases and for this reason a confidence score
should be assigned to them. Defining these confidences in a way that represent the accuracy of
rules is another challenge that should be solved in the automatic rule discovery task. For example,
the pattern that expressed in rpos certainly has exceptions, but it would still cover the majority of
the cases.

We start this thesis by proposing a method for creating a KG for the auditing domain. We
create this KG using auditing documents, taxonomies and the relationships between them. Next,
we extend a rule mining system to enhance its performance by extracting conditional rules and
rules over literal predicates. We then propose a confidence score for computing the accuracy of
positive and negative rules. Finally, we employ logical rules in tasks such as fact checking and
transferring common-sense knowledge to Pre-trained Language Models.

1.3 Outline of the Thesis

The main goal of this thesis is to study novel approaches for the creation and continuous curation
of KGs. For this matter, we introduce an algorithm for finding entities and their relationships,
and develop an efficient rule mining algorithm for finding positive and negative rules. We also
propose measures for computing the confidence of positive and negative rules and employ logical

6

Chapter 1. Introduction

rules in a fact checking application.
The remainder of the thesis is organized as follows:

Chapter 2. This chapter defines the main notions of Knowledge Graphs and discusses their
architecture. We then introduce the process of KG construction and describe each step and our
work will be positioned w.r.t. existing KG curation techniques.

Chapter 3. In this chapter, we explain our proposal for finding entities and relationships in
an audit KG. For identifying representative entities, we first extract important entities from
documents, and then apply an entity matching algorithm to find representatives. For each
representative we generate a family of words. In the second section of this chapter, we will
present an unsupervised method for matching text to data [44]. This method was initially designed
for identifying edges in KPMG’s KG but our experiments show that it performs well in other
tasks. It extends recent solutions designed for the ER (entity resolution) task [45–47]. Our first
contribution is introducing a module for graph generation as it creates a rich representation which
is then reflected in the domain-specific embeddings for metadata nodes. Our second contribution
is the expansion and compression approach that, together with the matching generation module,
exploits the benefits of embeddings metadata nodes in an unsupervised solution. We also provide
two new datasets for the text to data matching task. This section is based on the following paper:

Naser Ahmadi, Hansjorg Sand, and Paolo Papotti, Unsupervised Matching of Data
and Text, International Conference on Data Engineering (ICDE), 2022.

Chapter 4. This chapter reports our work in extending an existing system for rule discovery in
RDF KGs (RuDiK) [48]. The purpose of our work is to enable RuDiK to extract more accurate
rules. Many rules are only valid in a given geographic area, at a specific time, or for specific
categories of entities. We extend the core mining methods to capture conditional rules, which are
rules that apply just to a subset of the data. Conditional rules are characterized by a selection
with a constant over the values of an entity or a type. Our purpose is to find subsets of the data
for which mining leads to new rules that are not identified by the general mining. The following
paper forms the basis of this chapter:

Naser Ahmadi, Phi Huynh, Vamsi Meduri, Stefano Ortona and Paolo Papotti, Mining
Expressive Rules in Knowledge Graphs, ACM Journal of Data and Information
Quality, 2019.

Chapter 5. This chapter discusses methods for collecting and annotating logical rules and
proposes a technique for using them to transfer common-sense knowledge to Pre-trained Language
Models. Chapter 5 is presented in three sections:

The first section introduces RuleHub [49] which is the first open corpus of (automatically
generated) rules for public KGs. RuleHub annotates logical rules with different metrics and
introduces a new confidence computation method for negative rules, i.e., rules that identify
contradictions in the data. This section is based on our following paper:

Naser Ahmadi, Duyen Truong, Mai Dao, Stefano Ortona, and Paolo Papotti, Rule-
Hub: a Public Corpus of Rules for Knowledge Graphs, ACM Journal of Data
and Information Quality, 2020.

7

Chapter 1. Introduction

In the second part of Chapter 5, we propose two methods for extracting logical rules for
Wikidata KG [50]. This section is based on the following poster:

Naser Ahmadi, and Paolo Papotti, Wikidata logical rules and where to find them,
Wiki Workshop, 2021.

The third section of this chapter tackles the problem of transferring common-sense knowledge
to Pre-trained Language Models. For this matter, we develop a model [51] to transfer the
knowledge in logical rules extracted for KGs to a language model. In this section, we introduce
the problem of teaching soft rules expressed in a synthetic language to PLMs through fine-tuning
and release the first dataset for this task. We also introduce techniques to predict the correct
probability of the reasoning output for the given soft rules and facts. This section is based on the
paper below:

Mohammed Saeed, Naser Ahmadi, Paolo Papotti, and Preslav Nakov, Teaching
Soft Rules to Pre-trained Language Models, The 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2021.

Chapter 6. We introduce ExpClaim [52] in this chapter. ExpClaim is a fully automated and
interpretable fact checking system that effectively exploits uncertain evidence. Experimental
results on a real KG show that our method (i) obtains qualitative results that are comparable or
better than existing black-box ML methods and (ii) outputs human-consumable explanations.
The following paper is the basis for this chapter:

Naser Ahmadi, Joohyung Lee, Paolo Papotti and Mohammed Saeed, Explain-
able Fact Checking with Probabilistic Answer Set Programming, Conference
for Truth and Trust Online (TTO), 2019.

Chapter 7. This chapter concludes this thesis and states some further directions for future work.

8

Chapter 2

Knowledge Graphs

A knowledge graph (KG), which acts as the repository of data, is usually composed of triples in
the form of (subject, predicate, object), where subjects are entities (e.g., The Mona Lisa painting,
nodes in the graph), entities or lexical values (e.g. Leonardo da Vinci or 1503, nodes or properties
in the graph) play the role of objects and their relationship is an instance of a generic predicate
(createdBy, an edge in the graph). KG is usually coupled with a component which is the language
used to express knowledge representation and reasoning. This component is made of a logical
formalism for expressing facts and rules, and an optional and customizable reasoning engine that
uses this language. KGs are used in problem-solving procedures and to support human learning,
decision-making and actions. Due to the automatic creation and noisy data sources, there are
inconsistencies and incompleteness in KGs and methods are needed to tackle these problems.
In this chapter, we first discuss KGs and their architecture and explain three steps of the KG
construction process (Section 2.1). We then introduce different methods that can be used in
curating KGs (Section 2.2).

2.1 Knowledge Graphs

With the emergence of computers with “machine knowledge” that can power intelligent appli-
cations, methods for converting noisy Internet data into well-structured knowledge are needed.
Major advances in the automatic construction of large-scale-high-quality knowledge graphs have
made this vision a reality [53].

The creation of RDF knowledge graphs is an important activity in modern information
systems and over the last 15 years, lots of large public KGs became available [3–6]. These KGs
provide millions of entities (individuals, organizations, countries, books, etc.) and their properties
and relationships (who is the spouse of a person, who wrote a book, where a company is located,
etc.). Researchers also introduced a number of institutional KGs [7, 14, 54].

A Knowledge Graph (KG) is a structured representation of information storing real-world
entities and lexical values as nodes, and relationships between them as edges. Most KGs organize
information in the form of RDF triples. Each triple contains a predicate (edge in the graph)
expressing a binary relationship between a subject and an object (nodes in the graph). The
structured data not only enables “classic” analytics, such as querying with structured languages
(say SQL, SPARQL, or any graph oriented declarative language), but also advanced analysis,

9

Chapter 2. Knowledge Graphs

such as logical reasoning. As KGs are modelled as graphs, traditional mining algorithms can be
applied on the data: clustering [55], link prediction [56], topological sort [57], shortest path [58],
PageRank/HITS [59], or learning and using embeddings [60]. Knowledge Graphs can be used to
enable or improve a wide range of applications including such as semantic search [11], question
answering [13], data cleaning [61], and information retrieval [62].

2.1.1 Knowledge Graph Architecture

This section introduces the fundamental elements for representing information in a KG.

Entities

In a KG, subjects and objects are entities like individuals, countries, sport teams, companies,
etc. An entity is any abstract or concrete object of fiction or reality [63]. For example France,
Thierry Henry, Arsenal F.C. can be some entities of a KG. We define identifiers to denote entities
unambiguously. An entity’s identifier is a string of characters that uniquely identifies it [63].
Entities can have some properties. For an entity of type person, properties such as age, height,
birthDate, and birthPlace can be defined. For example, Thierry Henry have these properties in
DBpedia:

birthDate (Thierry Henry, 1977-08-17)

height (Thierry Henry, 188)

KGs model only entities that match their scope and domain. For example, KPMG’s KG
represents auditing activities (documents) and taxonomies (accounts) in Figure 1.2 as entities.
Finding these entities is not easy and usually manual annotations from domain experts is needed.

Types

Each entity is a member of one or multiple semantic classes (types). A class, also known as a
type, is an identified group of entities that have similar characteristics [63]. A member of such
group is referred to as a class instance. For example:

type (Thierry Henry, Person),

type (Thierry Henry, Football Player),

type (France, Country),

type (Arsenal F.C., Football Club)

As it can be seen, an entity can belong to multiple types, and also types can relate to each
other, e.g. A ‘Company’ is founded by a ‘Person’. There can be hierarchical relationships
between classes, e.g. a ‘Football player’ is a ‘Person’. In creating a KG, we consider general
concepts as a type if we are interested in specific instances of those types. E.g., in KPMG’s
KG concepts like topic, activity, and taxonomy are among types and each one of them can have
multiple instances. In Figure 1.2, each account (e.g. Process flow for audit management) is
an entity of type taxonomy and is composed of multiple topic entities (e.g. process flow, audit
management).

10

Chapter 2. Knowledge Graphs

Relationships

Besides their properties, entities can have relationships with other entities. These relationships
express facts about entities and can be expressed with predicates.

For example in the following there are two triples which express facts about an entity (Thierry
Henry).

playsFor (Thierry Henry, Arsenal F.C.),

bornIn (Thierry Henry, France)

In Figure 1.2, each document entity can have relationships with one or multiple accounts and
account entities can have hierarchical relationships (e.g. ISO 19001 and Initiating audit).

2.1.2 Knowledge Graph Construction

Figure 2.1 – The process of KG construction starts with data sources and contains three mod-
ules. After KG creation, because the applications cannot use the KG without high-quality data,
continuous curation is required.

11

Chapter 2. Knowledge Graphs

Constructing a KG in a bottom-up approach is an iterative update process, including three
tasks: i) knowledge extraction, ii) knowledge fusion, iii) knowledge storage and retrieval [64].
This process starts with extracting knowledge from different types of data sources, then it applies
methods for constructing KG’s structure and matching entities. Finally, the created KG should be
stored and represented in an appropriate scheme considering its structure. After creation, KG
can be utilized in a wide range of applications such as semantic search and fact checking. Also,
because information changes over time, the KG needs to be curated continuously in order to be
updated and clean. Figure 2.1 shows the different modules in KG construction and curation tasks.

Knowledge extraction consists of extracting different KG’s components from data sources.
There are three kinds of data sources for extracting knowledge: structured data like relational data,
semi-structured data such as HTML and JSON files, and unstructured data like text documents.
There are four types of elements that should be defined for constructing a KG: (1) entities, (2)
relationships, (3) mentions of entities, and (4) relationship mentions [25]. We use mentions to
define unique identifiers for entities and relationships. Identifying synonyms and disambiguating
mentions is a key step for creating a high-quality KG [63]. In the process of constructing KPMG’s
KG that we discuss in Chapter 3, we use isIn predicate to show the relationships between entities
with semantically equivalents mentions.

Entity extraction is the task of discovering entities from a wide variety of knowledge resources
and classifying them into pre-defined categories such as person, location, and organization [64].
Entity extraction is usually incomplete when the goal is to fully cover a certain domain such as
auditing, and to associate all entities with their relevant classes [63].

Over the years, many tools for knowledge extraction have been released. Early knowledge
extraction mainly employed dictionary-based and pattern-based entity spotting approaches [65,66].
Machine learning models have been exploited by more recent tools. They include supervised
approaches that use learning algorithms to build models from manually annotated training datasets.
Supervised models based on CRF [67] and LSTM [68] have been applied in knowledge extraction
process. More recently, some semi-supervised algorithms have been suggested to avoid the
annotation effort [25].

The next step is to find attributes and relationships for each entity [69]. The purpose of this
process is to enrich the entities with information in the form of triples. Extracted information
cover two types of relations: 1) attributes with literal values such as the birthdate of a person, the
founding date of a company, or the weight of a laptop; and 2) relations with other entities such
as spouse of a person, author of a book, composer of a song, or publisher of a game. A wide
range of relationship extraction methods have been proposed. Early methods employed methods
such as pattern-based extraction techniques [70] while more recent methods use models based on
distant supervision [71] and transformer networks [72, 73].

Knowledge fusion is the second step in the KG construction and contains entity matching and
constructing KG’s structure. Discovering entities and type information in web pages and text
documents may generate noisy output such as two distinct entities in the KG that refer to the
same real-world entity. For this reason, we need to normalize mentions and make sure that there
is only one entry for all of the entities’ variants. Entity matching is the process to judge whether
different entities refer to the same objects of the real world [74]. Several link discovery [75] and
entity matching [76] methods have been proposed to tackle this problem. In the next chapter, we

12

Chapter 2. Knowledge Graphs

explain an entity matching algorithm that we utilized to find representatives of families.

Knowledge storage and retrieval is the last step in the KG construction. Using methods from
the previous steps, we can now assume that we have a KG that has a set of entities and each one
of them has a set of attributes and relationships. The final step is to store the KG in a way that it
is easy to use and update. There are two main storage types for KGs: RDF-based store [77], and
graph database store [78]. RDF is a representation of knowledge graphs, which uses triples and
unique identifiers of entities to describe the knowledge graph while graph database uses graph
structures with nodes, edges, and properties to represent and store KGs [64]. The advantage of
RDF-based stores is that the efficiency of query and merge-join of triple patterns is good while
the advantage of graph databases is that they support a variety of graph mining algorithms [64].

2.2 Knowledge Graph Curation

Even though the construction methods attempt to make sure that a KG has a high quality, there
will always be some errors and noise in the KGs. As a result, additional quality assurance and
curation tasks should be done to maintain and enhance the quality of data. After creating a
KG, it should be maintained, developed, and enhanced over a long period of time [63]. This
demands a long-term approach of KG curation in order to keep the KG material clean and valid,
as well as to ensure quality. The KG curation is a “never-ending” process that includes two
tasks [63,79,80]: i) Removing inconsistencies. The KG content should be continuously updated
in order to maintain consistency and avoid contradictory statements. For example, the playFor
relationship between a player and a football club can be valid only for a specific period of time,
while bornIn is always valid. ii) Adding new facts. At a rapid rate, new entities and facts arise
and are covered by new web sources. As a result, KGs should be improved and updated with
this new information. However, since a full coverage is usually impossible, KGs follow an open
world assumption policy.

In fact, given the large number of entities and relationships in KGs, it is impossible to
manually find all errors and add all missing facts. As a result, we need automatic curation tools
for validating triples in KGs. Tools such as Constraints, Rules, and KG Embeddings can assist
the curators in this process.

Constraints are invariants that the KG must satisfy in order to be logically consistent [63].
There is a wide range of invariants that a KG should consider. For example, a person can only
be in the spouse relationship with an object of type person, the sibling relationship should be
symmetric, or a person cannot have more than one birthdate.

Wikidata is one of the KGs that uses constraints to ensure the quality of data. Property
constraints have been defined to specify how properties should be used and the relationships
that should exist or not exist for the classes they apply to [2]. Figure 2.2 shows two examples
of constraints violation in Wikidata. We can use constraints languages such as SHACL [81] and
ShEx [82] to define such constraints.

Logical Rules are another method for curating a KG. Rules can infer statements to make a
KG consistent and to enhance its coverage [63]. For example, a rule can state that a person is
always a child of her parents or cannot have a birthdate smaller than her parents. The first rule
can add some new facts to a KG while the second rule will remove inconsistencies. Logical rules

13

Chapter 2. Knowledge Graphs

Figure 2.2 – Examples of constraints violation in Wikidata [2].

are usually restricted to Horn Rules. A Horn Rule is a disjunction of atoms with at most one
unnegated atom. In the implication form, they have the following format:

A1∧A2∧·· ·∧An⇒ B

where A1∧A2∧·· ·∧An is the body of the rule (a conjunction of atoms) and B is the head of the
rule (a single atom). Rule mining algorithms such as Ontological Pathfinding [33], AMIE [83,84],
and RuDiK [79] can be applied on KGs in order to extract logical rules. In Chapter 4 we will
cover logical rules in more details.

Knowledge Graph Embedding models are another tool that can help in the KG curation
task. A KG embedding aims to map a KG into a dense, low-feature space, which is capable of
preserving as much structure and property information of the graph as possible [85]. The basic
idea behind KG embedding models is to embed KG components such as entities and relationships
into continuous vector spaces. These embeddings can be used to help with tasks such as KG
completion, relation extraction, entity classification, and entity resolution [60]. In recent years, a
wide range of KG embedding models have been proposed. TransE [86] is a translation-based
model which is inspired by Word2vec [87]. TransE models relationships by interpreting them as
translations operating on the low-dimensional embeddings of the entities [86]. Translation-based
extensions of TransE such as TransH [88] and TransR [56] have been proposed. Other popular
KG embedding works can be divided into two groups: Semantic Matching Models such as

14

Chapter 2. Knowledge Graphs

RESCAL [74] and Neural Network-Based Models like SME [76]. KG embeddings have been
used in different KG completion tasks such as entity prediction [56, 89], link prediction [56, 90],
relation extraction [91], and triplet classification [90].

2.3 Summary

In this chapter, we first introduced knowledge graphs and explained different elements in their
architecture. Next, we presented a three steps process for constructing KGs. This process starts
from data sources, extracts entities and relationships from them and after matching entities, stores
constructed KG in a repository. Finally, we explained different techniques that can be used in the
KG curation task. In the next chapters, we first describe our experience in constructing a KG in
the auditing domain and then propose algorithms for KG curation.

15

Chapter 2. Knowledge Graphs

16

Chapter 3

Nodes and Relations Identification

Entity and relation extraction are two important tasks in the KG construction. In this chapter, we
propose tools for automatic knowledge extraction with the aim of building a KG in the auditing
domain. We first present our method for automatic identification of entities for creating KPMG’s
KG in Section 3.1, and then discuss our solution for the task of identifying relationships, edges
in the KG, across the different auditing entities in Section 3.2. As existing solutions could not
solve the problem of text to structured text matching, we decided to develop a framework for
identifying edges in KPMG’s KG (text to structured text matching). Our experiments show that
the proposed model performs well for other matching tasks as well.

3.1 Node Identification

The task of node identification covers the generation of two node types required for the KPMG
applications: entities and words. It contains two sub-tasks: i) finding in the documents corpus
the entities that can be the representative ones, and ii) finding the family members (a group of
entities with semantically equivalent mentions) for each representative entity. The input of this
task is a corpus of documents and the output will be a group of entity nodes (representatives) and
words related to each one (family members). The representatives and their family members will
be added as the nodes of the last layer of the KG depicted in Figure 1.4

3.1.1 Related Work

Knowledge extraction is the task of extracting the information from structured or unstructured
text by identifying references to entities and defining relationships between them. Entities are
often represented by nouns because they act as names of things [92]. In our work, we propose
a dictionary-based method to find entities in unstructured auditing documents. Employing a
rich name dictionary is a simple method for spotting entities and it has been used in multiple
frameworks. A Name dictionary is a dictionary composed of all the named entities in the KG and
it includes different forms of entities such as abbreviations, acronyms, and nicknames [63]. Tools
like ConceptNet [21] and WordNet [93] can be utilized to enrich a name dictionary. Other systems,
such as UIMA [94] and GATE [65], are among the NLP solutions that use name dictionaries.

17

Chapter 3. Nodes and Relations Identification

In our work, these frameworks could not be applicable due to the domain-specific words. For
example, acronyms like AIM or PDCA are not in the general dictionaries. Additionally, auditing
entities are different from standard named entities and cannot be detected with standard name
dictionaries. We employed an accounting dictionary to extract entities from KPMG corpus. This
dictionary is generated by the field experts in KPMG and contains different forms of entities
(acronyms, abbreviations, etc.).

Given our target application, there is a requirement of explicitly capturing all the variants
for a given entity. A group of entities contains different variants of a representative entity. For
example, audit, auditing, audits, audited, aud are a family of entities generated by experts in
KPMG. We assume that in every family there is a natural representative that an expert can always
identify. We use the representative of the group (audit) to make sure all the entities refer to the
same entity in the KG. The problem of finding all strings that refer to the same representative is
called value normalization (VN) [95]. Entity linking methods such as NERD [96] can be utilized
in the family creation task. These methods can help in extracting named entities from text and
linking them to their respective resources from a KG. Winston [95] is another approach which
addresses value normalization problem by proposing an algorithm based on human operations
and clustering.

Rule-based (pattern-based) systems are another category of knowledge extraction techniques
which use hand-crafted patterns to find entities and their relationships. ReVerb [97] identifies and
extracts binary relationships from English sentences using POS-based regular expressions. [98]
proposes a list of patterns that can be employed to extract entities and their relationships from
a text. For example, X which is a (example|class|kind) of Y or Y such as X1, X2 show the
relationships between entities X and Y. EXEMPLAR [99] is another pattern-based approach
which uses hand-crafted patterns based on dependency parsing trees in the task of extracting
n-ary relationships.

In our case, we found that pattern-based approaches give acceptable results in detecting
representatives and generating families. For example, it is easy to detect patterns for variations
such as audit→ auditing while some variants are more difficult (e.g. audit→ aud). However,
we could not apply existing patterns proposed by previous works on our documents as they
are extracted by analyzing general texts. We applied rules (patterns) in two tasks: finding
representatives of entity groups (Section 3.1.2) and generating different word forms for each
representative 3.1.3. Inspired by Hearst patterns [98], we defined a group of patterns for these
tasks.

3.1.2 Finding Representative Entities

For finding the candidate representatives, we assume that the relationships between taxonomy
nodes and their captions have been computed as discussed in Chapter 1. These matches are
available from a previous work done by auditors and have been manually validated as they are
exploited in this step to identify related words.

In Figure 3.1, we report an example of KPMG accounts and captions from the Balance Sheet
taxonomy. Here there are two accounts: Property plant and equipment net and Property plant
and equipment gross and they are linked to three and two captions, respectively. An account can
be denoted as a taxonomy path (Assets→ Property plant and equipment→ Property plant and

18

Chapter 3. Nodes and Relations Identification

Assets

Property plant and equipment

Property plant and equipment net

building net it equipment net properties net

Property plant and equipment gross

techn eqip amp plants and machinery

Figure 3.1 – An example of taxonomy nodes for accounts and associated captions (leaves, in
Italic).

equipment net).
Assuming the captions have already been matched to the correct taxonomy nodes, we employ

a two-step procedure in order to find representative entities. First, we group entities that are close
to each other according to a metric, by comparing accounts and captions, and then detect the
representative of each group.

In the first step, each account will be compared with all of its captions. The comparisons are
at the token level and two metrics are used for matching:

1. Distance. We use a string similarity algorithm [100] to find the distance between two
strings. This metric works better in finding tokens with the same root (e.g. equipment and
eqpm).

2. Closeness. For capturing the cases that are not captured with the string distance algorithm,
we use a pre-trained word embedding model [101]. This metric is equal to the cosine
similarity between embeddings generated for two tokens. This metric helps us in finding
more difficult cases like expense and payment

Algorithm 1 shows the process of grouping similar entities.
The output of this algorithm will be a list of groups. Each group contains one or more entities.

Next, we detect a representative entity for each family. We define the representative of a group as
“the shortest noun that is a valid word” and check the validity with an external (English1/German2)
dictionary of words.

Example 1: Consider the taxonomy in Figure 3.1 as a corpus of nine documents (each node as a
short document). By applying Algorithm 1 on this corpus, (property, properties), (equipment,
eqip), and (plant, plants) will be among the extracted entity groups. Using the definition of the
representative, property, equipment, and plant will be the representative entities of our groups.

3.1.3 Creating Entity Families

In Section 3.1.2, we generated a list of families for different variations of words, and then we
selected representatives. The generated families, will be employed to find entities in unseen

1nltk.corpus
2https://sourceforge.net/projects/germandict/files

19

https://sourceforge.net/projects/germandict/files

Chapter 3. Nodes and Relations Identification

Algorithm 1: Grouping entities
1 Input. An account ac and its captions;
2 groups = set()
3 foreach caption in the captions set do
4 foreach token1 in ac do
5 foreach token2 in caption do
6 dist = stringDistance(token1,token2)
7 closeness = embeddingSimmilarity(token1,token2)
8 if dist < β & closeness > γ then
9 . Merging with existing groups

10 flag = False
11 foreach group in groups do
12 if intersect((token1,token2),group) then
13 flag = True
14 groups.add(union((token1,token2),group)
15 groups.remove(group)
16 end
17 . Adding as a new group
18 else if ¬ flag then
19 groups.add((token1,token2))
20 end
21 end
22 end
23 end
24 Output. List of groups

documents (client documents) and, because these new documents may have new variants of the
words (e.g. new forms of abbreviations that are not in the family), we have to improve the families
with new entities. The output of this step is the list of families expanded with new words.

property ppty, prop, prope, proper, propert, properties, property, propt, propty
plant pl, pla, plan, plant, plants, pln, plnt

equipment eqipm, eqmt, eqp, eqpm, eqpmnt, eqpmt, equ m, equi, equip, equipm, equipme,
equipmen, equipment, equipments, equipmnt, equipmt, equp, equpm, equpmnt

Table 3.1 – Examples of word families.

The members of a word family are a representative’s different forms such as plural and
acronyms. The family also contains different forms of abbreviations for the word. The different
variations of a word are equivalent together, e.g., properties, plants and equipment is equivalent
to prop, plant, eq or propt, plnt, eqpm. For example, the word families generated for the
representatives in Example 1 are shown in Table 3.1.

Improving these entity families can help us in many tasks such as the process of mapping
clients captions to KPMG accounts. For expanding these families, we start with the representative
of each group and add its different variations to the group. We can employ the process explained

20

Chapter 3. Nodes and Relations Identification

in Section 3.1.2 for finding the representatives.

Figure 3.2 – Edges for entity ‘audit’ in ConceptNet.

For generating variations of a word, we employ four methods. There may be overlaps between
outputs of these methods.

1. Stemming. It includes three different techniques for: i) finding the stem of a word; ii)
finding the lemma of a word; and iii) finding singular and plural forms.

2. Affixes. We add affixes from a list of language-specific affixes (post-fix and pre-fix) to the
word and keep the result if it is valid by checking it in an English/German dictionary of
words.

3. Abbreviations. By looking at the example of captions from clients, we could infer some
techniques they use for generating abbreviation forms for a word, such as take top 2 or
top 3 consonants, take first character plus top 2 consonants, and so on. We applied this
techniques to produce the abbreviation forms for a word.

4. ConceptNet [21]. ConceptNet is a freely-available semantic network, designed to help
computers understand the several meanings of common words3. For each entity, a wide
range of different entities and their relationships to it can be extracted. Figure 3.2 shows
some of the edges and nodes connected to the word ‘audit’. In this technique, we extract
different ‘Word forms’ for a word in the ConceptNet knowledge graph.

3https://conceptnet.io/

21

https://conceptnet.io/

Chapter 3. Nodes and Relations Identification

Algorithm 2: Generate variations for entity
Input: word w

1 G = {w} ; // initialize

2 . Method 1
3 G.add(stemmize(w)) ; // stem of the word

4 G.add(lemmzatize(w)) ; // lemma of the word

// singular or plural

5 if w is plural then G.add(singular(w));
6 else G.add(plural(w));
7 . Method 2
// add all the affixes and keep the valid forms

8 foreach affix in affixes do
9 w′ = w.add(a f f ix)

10 if w’ in Dictionary then G.add(w′);

11 . Method 3
// Generate abbreviations

12 foreach w’ in genAbr(w) do
13 G.add(w′)

14 . Method 4
// word forms from conceptNet

15 foreach w’ in wordForms(w) do
16 G.add(w′)

Output: Generated family G

Algorithm 2 shows the process for generating different variations.

English German
Model #Families Precision Recall F-Score #Families Precision Recall F-Score
Proposal 1716 0.32 0.79 0.40 1590 0.30 0.75 0.38
Baseline 1716 0.06 0.53 0.11 911 0.11 0.37 0.17

Table 3.2 – Quality evaluation of generated entity families.

3.1.4 Evaluation

Table 3.2 shows the results for the proposed family generation methods. We conducted an
experiment to evaluate our method for English and German. The results are compared with
a ground truth extracted by KPMG experts. For each representative, we compared the family
generated by our algorithm with the family in the ground truth. Table 3.2 reports the performance
of our model in terms of Precision, Recall, and F-score averaged over all the families. For both
languages, we could generate more than 1500 families and the generated families have high
quality in terms of recall measure with respect to the ground truth. We also compared our results
with families generated by utilizing external sources. For the English dataset, we report the union

22

Chapter 3. Nodes and Relations Identification

of different forms of the representative words form WordNet and ConceptNet as the baseline and
for the German dataset, as WordNet does not support the language, we use ConceptNet. The
results show that our proposal outperforms the baseline in both of the languages.

Results show that our method covers a part of the variations in the ground truth, but some
variants are not covered as we lack the patterns to generate them. We could increase the precision
by removing some patterns or making the patterns more precise, but, since the new patterns are
not as common as the current patterns, it will decrease the recall. In our case, we decided to
choose the high recall scenario and this was motivated by KPMG’s preference of having a large
pool and select among them, instead of having few and then write variations. The generated
families will be evaluated by the experts and then added as nodes to the knowledge graph.

3.2 Matching Text and Data

In data integration, matching records referring to the same real world object is an important
task, usually referred to as entity resolution (ER) [45, 47, 102]. In other communities, such as
in Natural Language Processing (NLP), text matching (TM) is also a widespread task in many
applications, such as question answering [103] and information retrieval [104]. However, in many
scenarios the borders between the two tasks are not clearly defined. Several datasets have long
textual cell values, such as product descriptions. Text documents have structural properties and
content organized in hierarchies. Finally, and at the center of our attention, some applications
match textual content to structured data, such as relational tuples [105, 106]. In an unsupervised
setting, where no training data is available, it is not clear what is the right solution to tackle this
more generic matching problem. Consider the following examples.

Example 2: Text and relational data. A corpus of product reviews is gathered from the Web.
A company must link tuples in a relation to these reviews in planning a promotional campaign.
However, the product reviews have no identifier (Figure 3.3).

Figure 3.3 – Text and data: paragraph p1 matches tuple t2.

Example 3: Structured texts. An enterprise manual describing auditing processes is hard to
navigate for the final users. To support search, the paragraphs in the manual must be matched to a
large taxonomy of concepts (Figure 3.4).

This problem is difficult because matching is based on overlapping (or similar) content in the
input objects, but this signal can be missing or ambiguous in this new setting.

23

Chapter 3. Nodes and Relations Identification

Figure 3.4 – Structured texts: 1st paragraph matches 4th node.

Figure 3.5 – The proposed framework: (1) text and structured data documents are jointly mod-
eled in a graph, (ii) embeddings are produced for data and metadata nodes (representing texts,
taxonomy nodes, tuples), (iii) metadata nodes are matched in an unsupervised approach.

Missing matches. In Example 2, movie Pulp Fiction is reported as Drama in the table but
comedy is mentioned in the review. This problem can be partially tackled with the pre-trained
embedding of Tarantino, which models that he is reported as director for both comedies and
dramas [107]. But in Example 3, modeling the connection between PDCA and its full spelling
is crucial to match the paragraph to the right taxonomy node. While pre-trained embeddings
can be used to identify synonyms for common words and popular entities, they fail for domain-
specific terms as in this example. Challenge 1: as specific vocabularies are not well modeled by
pre-trained resources, we need to learn embeddings across the heterogeneous corpora at hand to
discover similarities in their content.

Ambiguous matches. In Example 2, an actor named Willis appears in different paragraphs
and tuples, but only one tuple in the relation is the correct match in this case. Similarly, the term
audit appears in most paragraphs and taxonomy nodes in the second example. This suggests the
need of a weighting mechanism for combining the matching tokens across two candidate objects.
Challenge 2: there is the need to learn how to combine matching signals, but the lack of training
data rules out solutions based on fine tuning of existing pre-trained models.

Previous methods lack the flexibility to cover such challenges. Existing approaches handle
well traditional ER and TM, but they simply fail in terms of accuracy in the new use cases above.

The best ER results are obtained by methods exploiting deep learning techniques [45, 47,
108, 109], but they rely on the presence of a schema (missing in text) and therefore support
only relational data to data matching. On the other hand, the advent of language models has
enabled important improvements in TM, with transformer-based as the current state of the art

24

Chapter 3. Nodes and Relations Identification

solutions [110, 111]. However, transformers are designed to capture the (hidden) relationships in
the language and cannot be applied directly to relational data.

What is missing is a unified representation that is at the same time modeling the relationships
in the structured content (for learning a good representation and identify similarities) and the
importance of every matching word when comparing heterogeneous objects. The last point
highlights the need of learning a comparable representation for sets and sequences of tokens,
such as tuples and text documents.

To overcome these issues, we propose a framework for learning representations of data and
text that (i) is tailored at the domain at hand with a joint modeling of heterogeneous corpora
and (ii) exploits structured information whether available to improve the quality of the generated
embeddings and of the matching process.

Figure 3.5 shows our framework, which solves the challenges above. First, it represents text
documents and tables as nodes and edges in an undirected graph. This graph contains two main
types of nodes. Data nodes represent tokens (words) in the corpora, either in text paragraphs or
in table cells. Metadata nodes represent IDs for tuples, attributes and paragraphs. Graph edges
represent the relationship between data and metadata, e.g., a tuple/attribute/paragraph contains
the token in a data node. As our goal is to match metadata node, we aim at creating more paths
between related nodes and at removing spurious connections. The first goal is achieved in an
expansion step that exploits external resources, such as ConceptNet [21]. The second goal is
obtained by pruning edges and nodes with a graph compression techniques designed for our
matching task.

Next, we generate an embedding for every graph node. We rely on existing solutions for this
step and the algorithm at hand can be replaced as the community makes progress in this task.
Finally, we use the embeddings for the metadata nodes in an unsupervised algorithm to identify
the matching ones, such as the paragraph and the tuple in the first example.

The framework enables users to improve the solution according to the requirements and
the resources at hand. If relevant external resources exist, such as word dictionaries, they can
be plugged in graph construction to merge data nodes. Knowledge graphs and ontologies can
be plugged in the expansion step to find more relationships across metadata nodes. If a new
embedding generation algorithm is available, it can be plugged in the second step to improve the
quality of the embeddings.

Our proposal outperforms state-of-the-art methods by increasing quality performance up to
45% in absolute terms while taking a fraction of their time in matching. Finally, while we focus
on unsupervised applications, any downstream classifier can be trained using the labeled data and
the embeddings from our solution.

In the following, we first describe the proposed framework and discuss how we generate and
refine the graph at the core of the proposal. Then we introduce algorithms to expand the original
graph with external resources and compress it to keep its size manageable. We also present the
methods for producing embeddings and matching metadata nodes. Finally we evaluate our work
with datasets from real applications.

25

Chapter 3. Nodes and Relations Identification

3.2.1 Related Work

Entity resolution for relational data [102] has been recently studied with deep learning solu-
tions [45, 47, 108]. As they rely on the presence of a schema, one way to use them in this setting
is to treat the text paragraphs as tuples within a single column, but this leads to poor results
(more details in the supplement). In this work, we extend previous proposals with a graph and
corresponding optimizations that model texts and tables in a unified representation for learning
embeddings, with clear benefit in the matching tasks even with very lightweight algorithms.
We model text matching both as a binary classification task and as a multi-label classification
task. This enables us to use SOTA baselines based on fine tuning language models [112, 113].
These methods outperform traditional IR approaches, such as BM25 but do not focus on the
problem of matching text and relational datasets. This latter problem has been studied in settings
that do not cover our use cases, either because they assume supervision or because they are no
domain-specific [105, 106, 114]. Other approaches for text and data matching assume a very
expensive training over large document corpora and millions of tables [115, 116]. We do not
compare against these methods as we target a setting where one (possibly small) corpus and
one dataset are given. We show that good results, outperforming supervised methods based on
language models, are obtained in seconds on a basic laptop. Our setting is also different from
the problem of entity linking, as we are matching text to tuples in relational db and not to a
knowledge graph [117].

Our default method to generate data and metadata representations is Word2Vec [87]. We
confirm previous studies showing that it is powerful in discovering relationships in the corpus
as well as similarity between tokens [118]. While we generate embeddings, other baselines in
our study use pre-trained ones [107]. We report also methods that are based on (pre-trained)
contextualized word embedding methods based on transformers, such as BERT [110]. Document
embedding methods extend this line of work to longer text sequences by using functions to
aggregate the vectors of words in the given sentence or paragraph [119, 120] or by learning the
document vector with special tokens [113, 121].

Given our graph, it is also possible to generate embeddings directly for its nodes [122–124].
It has been shown that most of these methods lead to comparable results w.r.t. the random
walks followed by word embedding generation for a data to data matching task [45]. Our study
confirms that they do not bring clear benefit in our setting, but are more resources intensive than
Word2Vec. Finally, our work can be seen as a new instance of the recent general approaches of
using deep learning for data integration [46, 125, 126] and of improving pre-trained embeddings
w.r.t. relational data [127].

3.2.2 A Graph for Heterogeneous Corpora

In this section, we describe the unsupervised algorithms for the generation of a graph across
heterogeneous corpora.

We discuss the most general use case with text documents and tables as corpora, but the same
algorithms apply for the case with documents (tables) only. We remark that external resources,
such as pre-trained embeddings, are not needed to run the pipeline, but they can be naturally
exploited as we discuss next.

The input of the graph creation are two corpora. A corpus, based on the task, is a table, some

26

Chapter 3. Nodes and Relations Identification

structured text, or simple text. The document to match is a tuple, for tables, while the granularity
of the text is user-defined and can span from a single sentence to a paragraph. These corpora are
matched in three possible combinations, or tasks: text to structured text matching, text to data
matching, or text to text matching. The purpose of each task is to find the top-k closest documents
in the second corpus for all the documents in the first corpus.

We jointly represent the document corpora and tables in a graph, from which we then generate
embeddings. We first perform some pre-processing steps for every corpus. This includes stop-
words removal and stemming on the tokens coming from the texts and the cell values of the tables.
We call terms these processed values and a term can be composed of one or multiple tokens. For
example, “The Sixth Sense" is a term composed of three tokens.

We define two types of nodes. Data nodes represent the terms after the pre-processing. If a
term is contained in multiple documents across the corpora, it still appears as a single node in the
graph. Metadata nodes represent a group of tokens, such as a sentence, a tuple, or an attribute.
Undirected and unweighted edges connect metadata with the respective data nodes, i.e., a tuple
node is connected to the tokens that it contains.

The graph creation is presented in Algorithm 3. The algorithm takes as input two corpora of
pre-processed documents. It creates a metadata node for each document in the first corpus (lines
3-4). For example, Figure 3.6 shows metadata nodes t1 and t2 for the tuples. If the document
is a table, it also creates a metadata node for every attribute (lines 5-10), such as nodes c2, c3,
c4, and c5. If the document is a structured text, its nodes are modeled as metadata nodes and
edges are added to represent relations (lines 12-15). For each term associated to the document
(metadata) node, the algorithm then creates term nodes (lines 18-20) and connects each data node
to its respective metadata node (lines 21-24). For example, edges are created to connect t1 to
Shyamalan, Willis, B._Willis, PG, and Thriller. Next, metadata nodes for the documents in the
second corpus are created (lines 27-28), thus adding p1 and p2 in Figure 3.6. Term nodes for
these documents are connected to their metadata nodes (lines 29-34). For example, metadata
node p1 is connected to data nodes Willis and Comedy.

Algorithm 3 creates different metadata nodes based on the input documents. In this example,
it outputs metadata nodes to represent tuple, columns, and text. For the other two tasks (text
to text and text to structured text), only text metadata nodes are produced. Figure 3.7 shows
the generated graph after applying Algorithm 3 on two paragraphs and two taxonomy concepts
(Process flow for audit management → Plan Do Check Act steps and Risk treatment in audit
process) of our example from auditing domain (Figure 3.4). Here, by starting the process from
the taxonomy set we were able to filter a big portion of the tokens in the paragraphs. The graph
shows that the first paragraph (p1) is equally close to both of the taxonomies while the second
paragraph (p2) is closer to the first taxonomy concept.

Connecting metadata nodes

The graph creation algorithm never connects metadata nodes from different corpora, as we assume
that these connections are hard to infer and are indeed the results of the downstream task in our
system. However, metadata text nodes from the same structured document can be connected. For
example, for the taxonomy in Figure 3.4, the corresponding graph connects metadata text nodes
for Audit programme and ISO 19001. This edge represents the hierarchical relation between the

27

Chapter 3. Nodes and Relations Identification

Algorithm 3: Graph Creation

1 Input. Two sets of documents;
2 G = An un-directed graph;
3 foreach document doc_i in the first set do
4 G.addNode(doc_i) ;
5 if get_type(f irst set)=table then
6 foreach column col_ j in the document do
7 if ¬ G.hasNode(col_ j) then
8 G.addNode(col_ j)
9 end

10 end
11 end
12 if get_type(f irst set)=structured then
13 parent← get parent of document i ;
14 if G.hasNode(parent) then
15 G.addEdge(doc_i,parent)
16 end
17 end
18 terms← get list of terms in document i ;
19 foreach term tm_k in terms do
20 G.addNode(tm_k)
21 G.addEdge(doc_i,tm_k)
22 if get_type(set)=table then
23 G.addEdge(col_ j,tm_k)
24 end
25 end
26 end
27 foreach document doc_i in the second set do
28 G.addNode(doc_i);
29 terms← get list of terms in the document;
30 foreach term tm_ j in terms do
31 if G.hasNode(tm_ j) then
32 G.addEdge(doc_i,tm_ j)
33 end
34 end
35 end
36 Output. Graph G

concepts.

28

Chapter 3. Nodes and Relations Identification

Figure 3.6 – Graph with a sample of the nodes for Example 2

Filtering nodes

The graph can become extremely large with real text corpora. This is a problem in terms of
performance both for the execution time and for the quality, as it leads to the modeling of a lot of
terms that do not contribute to the final matching tasks. To address this problem, we filter out
irrelevant terms in the graph creation. Algorithm 3 does not create data nodes for all the terms in
both corpora. It starts by creating term nodes for documents in the corpus with a smaller number
of distinct tokens and filters out terms from the second corpus that are not in the graph.

As our goal is to model the connections across the two corpora, we compromise the loss of
some words (and possibly relationships) in the second corpus to focus the learning in the next step
on the terms that create bridges between metadata nodes. To limit the loss of possibly relevant
words and to create a more compact graph, we present next some techniques to merge token
nodes across corpora.

Merging nodes

Intuitively, (correctly) merging data nodes increases the connectivity between related metadata
nodes across corpora and ultimately improves the matching tasks. For example, merging data
nodes Bruce Willis and B. Willis in Figure 3.3 decreases the distance in many paths connecting
metadata nodes P1 and t1. Merging data nodes is easier that solving the metadata matching task
and there are several resources available for this operation. For this matter, we use different
techniques to merge data nodes:

• Stemming merges different forms of a word. For example, in Figure 3.4, stemming merges
planning from the first paragraph with node Plan from Plan Do Check Act Steps.

29

Chapter 3. Nodes and Relations Identification

Figure 3.7 – Graph with a sample of the nodes for Example 3

• Bucketing (or binning) is a pre-processing technique to improve the performance in ML.
We merge data nodes with numeric values by using equal width binning and the Freed-
man–Diaconis rule [128] to compute buckets’ width.

• For merging synonyms, acronyms, and typos we use external resources such as pre-trained
word embedding models.

For the last case, we find the nodes that can be merged by computing the cosine similarity
between their embedding vectors. If the similarity between two nodes is higher than a threshold
γ . For calculating γ , we use a list of 17K synonym terms from WordNet [129] and define γ as the
average cosine similarity between their vectors in the pre-trained model that we use for merging.
Specifically, for Wikipedia2Vec [130] we identify and set γ = 0.57. This approach is widely used
in tasks such as entity linking [117] and retrieval [131].

Tokens and terms

One important aspect in graph creation is handling multi-tokens data nodes. There are a lot of
meaningful multi-tokens words in document (e.g., movie names) and information is lost if they
are split over different single-word data nodes in the graph, e.g., The Sixth Sense split over data
nodes Sixth and Sense with The filtered out as stop word. A possible solution for tables is to
represent the whole cell value as a single data node (The_Sixth_Sense). But this granularity has
also drawbacks as it may lead to graphs that miss important connections across corpora. For
example, if B. Willis in the review and node Willis are not merged, a strong connection between
the correct metadata nodes is lost.

We use a combination of the two approaches that solves both problems. For each text in
a corpus, we generate possible n-gram tokens for n = 1, . . . ,n. For example, for n = 3, the
graph represents The Sixth Sense using five data nodes: Six, Sense, The_Six, Six_Sense, and
The_Six_Sense. This increases the chance of connecting terms of the second corpus with nodes
generated from the first corpus. We identify the value of n for every scenario. To set n, we

30

Chapter 3. Nodes and Relations Identification

profile a dump file of titles of Wikipedia articles. About 99% of the titles have at most three
tokens. This value is supported by our experimental analysis and by the literature. Experiments
in Appendix A.1.1 show that increasing n up to three improves the quality performance but there
are diminishing with higher values. Other results also show that by increasing n in character
tokenization, the lexicon size grows rapidly and precision diminishes for most languages [132].

3.2.3 Graph Expansion and Compression

By generating the graph with Algorithm 3, we model the relationships between metadata nodes.
The edges and paths in the graph represent such relations which are present in the documents/re-
lations. The network of connection leads to embeddings that ultimately guide the metadata
matching process. However, the data relationships are not all the existing relations between
two real objects represented in the graph. Real entities and concepts are connected by other
relationships that are missing from the corpus at hand.

For example, an actor and a director may have worked together in a movie that is not contained
in the movie table or in any of the reviews. Being able to add such connection to the graph may
lead to embeddings that are closer to the reality.

Such external relationships can be very valuable if represented in our graph as they lead to
better embeddings and ultimately enable better matching. However, while expanding the graph is
a valid solution to include external information, we should be careful in trying to remove useless
or even misleading new nodes and edges in order to keep the graph as little as possible in terms
of size. We present solutions to address these two tasks in this section.

Expanding the graph with external information

A natural approach to expand the generated graph is to employ external resources, such as existing
ontologies and knowledge bases. By exploiting external resources, we can find new information
about the nodes in the graph. This information can be added as new nodes and new edges in order
to enrich the generated graph.

For example, in Figure 3.6, p1 is the review related to tuple t2. Even though there are seven
paths between these two metadata, only one of them has three or less nodes: p1→Willis→ t2.
By expanding this graph with new nodes and edges, we can add new meaningful paths between
these nodes, improve their embeddings, and increase their chance of being matched. Consider as
a resource of external information the knowledge graph DBpedia [4]. Among the relations for
entity Tarantino in DBpedia, there is the following triple: style(Tarantino, Comedy). Adding this
new edge to the graph creates nine new path between p1 and t2 including one with less than three
nodes: p1→ Comedy→ Tarantino→ t2.

Different external resources can be exploited in order to expand a graph. In graphs which
contain named entities, we are interested in finding new information about those named entities,
such as data about their spouse, country, university, workplace, etc. This information can be
extracted from existing entity-centric knowledge bases such as DBpedia and Wikidata. For
example, the graph presented in Figure 3.6 contains information about movies and their casts,
those are entities for which we can use a knowledge base for expansion. By expanding this
graph with DBpedia, we enrich it with new edges such as starringOf(Willis, Pulp Fiction),
spouse(Shyamalan, Bhavna Vaswani). Some of this information are shown in Figure 3.8.

31

Chapter 3. Nodes and Relations Identification

Figure 3.8 – Expanded graph for Example 1.

Textual corpora do not contain only named entities, but also concepts, generic nouns and
verbs. For example, by expanding the word management in Figure 3.4, we connect it with the
relevant words in the correct text paragraph, such as planning. For expanding the graph in these
cases, other external resources can be exploited. A wide range of external resources such as
ConceptNet [21] and Wordnet can be employed for text nodes expansion.

Algorithm 4 shows how we exploit any external resource to fetch all connections for every
data node in the graph. We also remove any sink node, i.e., nodes that are not connected to more
than one other node. E.g., in Figure 3.8 node Bhavna Vaswani is only connected to Shyamalan
and can be removed.

Using this expansion technique, we introduce a lot of new paths in the graph and these paths
affect the matching process between metadata nodes. For example, in the graph in Figure 3.6,
there is only one path with less than five nodes between metadata nodes p1 and t2, but the shortest
path between such nodes is only of size two after expansion.

Pruning nodes and edges for compression

Expansion introduces correct connections between related nodes, but it also increases its size
by adding new nodes and edges that are not helpful needed for our tasks. For example, there
are more than 800 relations for entity Quentin Tarantino in DBpedia but only a few of them
increase the chance of matching p1 and t2 (e.g., directorOf(Quentin Tarantino, Pulp Fiction),
redirectsOf(Quentin Tarantino, Samuel Jackson)).

32

Chapter 3. Nodes and Relations Identification

Algorithm 4: Graph Expansion Algorithm
Input: Un-directed graph G

1 External resource E
// Expanding by fetching connections from E

2 foreach node in G do
3 if node is not a metadata node then
4 relations← all connections of node in E;
5 foreach (node,m) in relations do
6 if ¬ G.hasNode(m) then
7 G.addNode(m)
8 end
9 G.addEdge(node,m)

10 end
11 end
12 end
// Cleaning the graph

13 foreach node in G do
14 if degree(node) == 1 then
15 G.removeNode(node)
16 end
17 end
18 Output. Expanded graph G

Moreover, as adding new nodes and relationships increases the execution time for random
walks and embedding generation, we should avoid keeping nodes and edges that do not contribute
to the connections among metadata nodes.

For these matters, we introduce a graph compression techniques to reduce the size of our
graph after the expansion phase. Compression for static graphs has been studied for long time
due to its benefits in terms of reduction of data volume and storage, which in turn enable speedup
of algorithms and queries [133]. Noise elimination has also been reported as an important effect
of the compression, with the removal of erroneous nodes and labels [134]. Compression methods
can be based on node sampling [133, 135, 136], edge sampling [137, 138], or exploration based
sampling [139–141]. Most methods are configurable w.r.t. the desired compression ratio, i.e., the
desired size of the output graph compared to the input graph. .

As these methods are very general, they are not application specific and cannot make use of
the node types in our graph. Our experiments in Section 3.2.6 show that these techniques can
help in reducing the size of the graph by filtering nodes, but do not guarantee pruning and good
performance in the matching task at the same time.

Our key observation is that the goal of our graph and our embeddings it to match metadata
nodes. A crucial component in determining the distance between the embeddings for two metadata
nodes in their distance in the graph. We therefore start the design of our compression algorithm
from the idea that it should preserve the shortest path across all the metadata nodes in the two

33

Chapter 3. Nodes and Relations Identification

corpora. This is a quadratic number of paths w.r.t. the number of metadata nodes, but this is
unavoidable as we do not know at compression time what are the metadata to match.

Inspired by an existing graph compression technique that exploits shortest paths, namely
SSP [140], we introduce an algorithm tailored at our graph and matching application. The original
SSP is an exploration based sampling method which takes a sampling size as input. It randomly
picks a pair of nodes in each iteration, computes their shortest path, and adds nodes and edges of
the shortest path to the output graph. In our setting, the idea is to use metadata nodes in distinct
corpora for the selection of node pairs. This guarantees that metadata nodes are connected and
keeps in the graph the data nodes that are modeling their relationship concisely.

Algorithm 5: Graph Compression MSP
Input: Un-directed graph G

1 Compression ratio β CG = empty un-directed graph
2 i = 0
3 L = β * size(G.nodes())
4 while i < L do

// Select two random metadata nodes

5 first← a random node from the first corpus
6 second← a random node from the second corpus
7 shortest_paths← find all shortest paths between first and second in G

// Add nodes and edges of the paths to CG

8 foreach path in shortest_paths do
9 CG.add(path)

10 end
11 i += 1
12 end
13 Output. Compressed graph CG

Algorithm 5 shows our graph compression based on the idea of using Metadata Shortest Path
(MSP). It takes an un-directed graph and a compression ratio β as input and returns a compressed
graph. We define the number of iterations of the Algorithm by multiplying β and the number of
nodes in the graph. We also make sure that all metadata nodes, even if not sampled at lines 6-7,
are connected to graph with at least one shortest path.

There is however an orthogonal challenge in such an aggressive compression. Keeping only
shortest paths among metadata nodes may lead to a graph with similar embeddings for all nodes.
Assume that all shortest paths are of length three and all pivot on a single, very popular data node.
This extreme situation leads to all metadata nodes ending up with the same embedding, therefore
making the matching process impossible. This observation highlights that compression is not
suitable in all cases. We discuss in the experiments how we can recognize setting that are less
likely to benefit from the compression.

34

Chapter 3. Nodes and Relations Identification

3.2.4 Matching Text and Structured Data

In this section, we first describe present how to generate the embeddings for the unsupervised
matching of the objects across the corpora.

3.2.5 Embeddings Generation

We generate embeddings for the graph nodes. Multiple methods can be employed to generate
embeddings directly from the graph [123, 142]. A less resource intensive solution is to use word
embedding models on walks over the graph Node2Vec [124]. In our default setting, we use the
second approach as we found the results with different methods comparable in quality, but the
latter is faster and less demanding in terms of computing resources.

In our default method, a random walk starts from every graph node and at each step it
randomly chooses the next node among the current node’s neighbors. A sentence is derived with
the concatenation of nodes traversed by the walk. The union of the sentences is then processed
with Word2Vec or similar method. Multiple parameters of the random walks affect the quality
of the embeddings, including whether random walk should be limited to some nodes or not, the
length of a random walk, and how many random walks should be generated for every graph
node. In Appendix A.1.1, we report the impact of these parameters on the quality of the proposed
model.

We stress the importance of the unified graph and of the walks in our context. While any data
structure can be serialized as a sequence of sentences (e.g., row by row), this is not effective in
practice for learning embeddings for two reasons. First, the resulting sentences do not follow
meaningful patterns as in real languages; the relationships that are nicely captured in real text
are missing. This is especially true for existing transformed based solutions based on attention.
Second, a simple serialization misses the structural dependencies in a relation; existing features
in the data are not exploited. Given text documents and a relation, our graph and walks enable the
joint representation for the given corpora.

Matching Metadata Nodes

In the final step, the input of the matching module is a metadata node for a document in the first
corpus and the metadata nodes representing all documents in the second corpus. The embedding
vectors are used to match such nodes and ultimately the documents they represent (text paragraphs,
text sentences, or tuples). The distance between two nodes’ vectors is used for matching them.
Given the embeddings, we use cosine similarity to identify the top-k neighbours in the second
corpus for the metadata node from the first corpus.

Differently from the graph creation, in the metadata matching we found more effective to start
the process from the larger corpus and this is our default configuration. However, this decision
can be changed according to the specific task. For example, in text matching we do it claim by
claim (from the smaller corpus) as this is the natural setting for the final application.

3.2.6 Experiments

We first introduce our execution setting and the baseline methods. We then report the results
in three matching tasks: i) text to data, ii) text to structured text, iii) text to text. We do not

35

Chapter 3. Nodes and Relations Identification

report performance for the data to data task since it has already been studied in [45]. Finally, we
report execution times and discuss the impact of the different parameters and optimizations in our
solution4.

Execution setting. Experiments have been conducted on a laptop with CPU Intel i5-7300U,
4x2.6GHz cores and 8GB RAM. For fine tuning the baselines, we used a Google Colaboratory
instance with CPU Intel 2x2.20GHz, 13GB RAM, and NVIDIA Tesla T4 GPU (16GB memory).
Algorithms are written in Python with the Numba compiler.

Baselines. We compare our approach to 8 baselines. While our method handles well the three
tasks, we report only the best performing baselines for every task. Three baselines rely on training
over the given documents and data (as our approach), while the rest use pre-trained resources.
We further distinguish unsupervised solution and supervised ones. All unsupervised methods
match objects with the algorithm in Section 3.2.5.

For unsupervised methods based on training, we test Word2Vec (W2VEC) for word embedding,
plus Doc2Vec (D2VEC) for document embedding. We obtain embeddings from the documents
at hand and then use such embeddings to identify matches for every document. As common in
the literature [120], we generate embeddings for longer texts with the mean of the vectors of
their tokens. We use vectors of size 300, Skip-Gram for Word2Vec and DBOW for Doc2Vec. For
unsupervised approaches using pre-trained embeddings, we report on SentenceBERT (S-BE), as
it does better than other popular embeddings, such as GloVe [107].

We denote supervised methods using pre-trained models with ∗ for clarity and always report
results for 5-fold cross validation. The first approach is based on fine-tuning for a multi-label
classification task on BERT large. However, for text to data the number of possible labels is too
large to successfully train a classifier, so we also fine tune a binary classifier (S-BE∗). We use
S-BE to encode sentences, compute the cosine similarity score between them, and use such scores
to train a binary classifier to predict whether a match is true or false. We also report the results
for two supervised state-of-the-art entity matching methods for the text to data task: Ditto [47]
and DeepMatcher [109]. These methods take two tables as input and compute the matching
probability for tuples from different tables. We represent text documents as tuples of a table with
one attribute. We use 60% of the annotated data to train these models. Finally, we report for
Reranking (RANK∗), a supervised algorithm that learns to rank using a pairwise loss [112].

For our unsupervised approach, we used Word2vec (W-RW) on the random walks (RW)
generated on the graph. In the default configuration, we generate 100 random walks of length
30 for every node. For the text to data task, we use Skip-gram with a window of size three as in
the data to data match [45], while for text oriented tasks we use CBOW with a window of size
15. We report for our method with ((W-RW-EX)) and without ((W-RW)) applying the expansion
technique in Section 3.2.3. We use ConceptNet as our default external resource for expanding
graphs, except for IMDB where we employed DBpedia as this relation contains mostly entities.

4Code and all datasets, except the KPMG one, are available online at https://github.com/
naserahmadi/TDmatch.

36

https://github.com/naserahmadi/TDmatch
https://github.com/naserahmadi/TDmatch

Chapter 3. Nodes and Relations Identification

Table 3.3 – Quality of match results for IMDb scenario.

Method MRR MAP@k HasPositive@k
1 5 20 1 5 20

W
T

S-BE .254 .088 .142 .159 .171 .339 .510
W-RW .853 .400 .678 .682 .802 .919 .942

W-RW-EX .868 .410 .691 .706 .820 .926 .955
S-BE∗ .287 .103 .164 .183 .205 .363 .555

RANK∗ .535 .218 .351 .376 .438 .645 .797
DITTO∗ .759 .349 .549 .553 .699 .839 .877

N
T

S-BE .218 .067 .118 .139 .136 .301 .454
W-RW .780 .362 .574 .589 .727 .841 .906

W-RW-EX .792 .371 .587 .598 .749 .854 .911
S-BE∗ .233 .073 .125 .142 .146 .318 .489

RANK∗ .404 .156 .236 .260 .312 .494 .688
DITTO∗ .560 .265 .386 .410 .428 .689 .814

Text to Data

For the text to data matching we use two datasets. We created a first scenario from the Internet
Movie Database (IMDb) website with a corpus of movies reviews and a database of movies. We
also report results for the CoronaCheck scenario, which matches COVID-19 claims to the official
datasets [106]. For both scenarios, the task is to find tuples related to each sentence. For example,
a sentence “Number of cases in US is higher than China” required to match two rows of a table
to verify the claim.

Datasets. As the task is novel, we release two new scenarios:

1. IMDb. We created the dataset by manually matching two reviews for every movie in “top 1K
of all times" to a sample of 50k tuples from the official IMDb dataset. The 2k reviews contain
one to 207 sentences, sixteen on average. We created two versions of the target relation: an easier
one with 13 attributes, including the title information (WT) and a more challenging one without
title (NT).

2. CoronaCheck. This scenario contains a corpus of sentences about COVID-19 spread and
effects, such as daily total death cases and new confirmed monthly cases, annotated w.r.t. the
corresponding tuples in a dataset with 1.2k tuples about daily cases for all countries. We report
for a dataset with 7k sentences created from the data (Gen) and a more challenging dataset with
50 sentences submitted by users on the website https://coronacheck.eurecom.fr
(Usr) [106].

Evaluation Measures. Mean Reciprocal Rank (MRR) is the average of reciprocal ranks of
queries, i.e., the multiplicative inverse of the rank of the first correct answer. Mean Average
Precision (MAP) is the mean of the precision scores after each relevant document is retrieved and
we report MAP truncated at rank k (MAP@k). We also report HasPositive@k for determining
whether there is a true positive among the top-k results.

37

https://coronacheck.eurecom.fr

Chapter 3. Nodes and Relations Identification

Table 3.4 – Quality of match results for CoronaCheck scenario.

Method MRR MAP@k HasPositive@k
1 5 20 1 5 20

G
en

S-BE .486 .294 .463 .483 .295 .752 .916
W-RW .728 .575 .718 .725 .578 .945 .995

W-RW-EX .755 .601 .746 .752 .611 .959 .996
S-BE∗ .550 .372 .531 .545 .363 .811 .947

RANK∗ .460 .287 .438 .455 .289 .703 .845
DEEP-M∗ .376 .347 .368 .374 .349 .395 .439
DITTO∗ .160 .030 .161 .203 .066 .283 .518

U
sr

S-BE .354 .177 .284 .320 .200 .620 .860
W-RW .518 .296 .427 .472 .306 .755 .979

W-RW-EX .538 .329 .451 .496 .371 .771 1
S-BE∗ .397 .263 .342 .366 .260 .640 .820

RANK∗ .332 .137 .256 .303 .160 .600 .880
DEEP-M∗ .321 .200 .200 .248 .280 .280 .600
DITTO∗ .153 .020 .100 .123 .040 .s281 .407

Matching results. As the training-based methods (W2VEC, D2VEC) do not take tables as input,
we serialize every tuple to a sentence using two special tokens ([COL] and [VAL) [47]. For
example, the first row in Figure 3.3 starts with “[COL] title [VAL] The Sixth Sense [COL] director
[VAL] Shyamalan". We then generate an embedding vector for every resulting sentence and
match vectors for tuple and text metadata nodes. As results are poor for these baselines, we do not
report them. On the other hand, these lightweight word embeddings methods on our walks lead
to good results with our walks. For the pre-trained models, we report for S-BE, S-BE∗, RANK∗,
DITTO∗, and DEEP-M∗.

Table 3.3 and Table 3.4 show the results on the IMDb and CoronaCheck scenarios, respec-
tively. Our method outperforms unsupervised S-BE in all scenarios and applying techniques
presented in Section 3.2.3 has a positive effect in both datasets. In IMDB, we used DBpedia as
external resource as it is better in extracting new relations for named entities; for CoronaCheck
we used ConceptNet. For IMDb, we observe an absolute increase of 0.45 for MRR with W-RW

in both datasets and at least 410x relative improvement for Positive@1. In CoronaCheck, the in-
crease for Gen sentences is an absolute 0.24 for MRR and up to 0.30 for MAP@k and Positive@k.
For the Usr sentences, increases are up to 0.2 for MRR and MAP and up to 0.18 for Positive@k.
Our model clearly outperforms also supervised methods. Results show that pre-trained models
fail short in this task and that the joint modeling enabled by our graph is needed to achieve good
matches. We do not report DeepMatcher on IMDB because it failed due to the limited amount of
memory in our machine.

Text to Structured Text

In this task, we match taxonomy elements to a text document in a real enterprise scenario from
an auditing company.

38

Chapter 3. Nodes and Relations Identification

Dataset. This scenario contains 1622 audit text documents (containing one to 17 sentences, three
on average) and a taxonomy containing 747 auditing concepts. Each path spans multiple nodes,
e.g., r1 : a→ b→ c→ d, where each variable is a concept. Right arrows show the hierarchical
relations between terms, e.g., in r1 c is a child of b and b is a child of a. The length of taxonomy
paths are between two and five nodes (four on average). The final graph has 5.9k nodes and 164k
edges. Text documents are manually matched to concept nodes by domain experts. About 40%
of documents are annotated with one concept, 10% are matched to two concepts, and the rest are
matched with three to 27 concepts (four on average).

Evaluation Measures. For this task, we change quality measures as we show results at different
granularity. We report Precision, Recall and F-score for concepts (in the taxonomy) assigned
to every document w.r.t. the ground truth. As different taxonomy nodes can contain the same
text, we compare the root to node path in the measures. With Exact matches, we consider a
match in the top-k valid only if it is equal to the path in the ground truth. As two paths can be
partially overlapping, we consider also partial matches with the Node score, which measures
the intersection between the matched path(s) and the closest path(s) in the ground truth. For an
accurate calculation, we exclude two most general levels of the taxonomy (root and first level
under it) in the intersection and denote the new path with p′. We then use formula (3.1) below to
calculate the Node score for two paths p1 and p2.

Node(p1, p2) =
intersection((nodes(p′1),nodes(p′2))
maximum((nodes(p′1),nodes(p′2))

(3.1)

Consider r1 and r2 : a→ b→ c. After excluding the general nodes, we obtain r1 : c and
r2 : c→ d, thus Node(r1,r2) = 0.5.

Matching results. Table 3.5 reports for both measures the precision, recall and F-score for
matching top-k paths to every document for different k values. Results show that the task is very
difficult. Indeed, different auditors have different opinions about the right matches for a given
taxonomy node and the ground truth is constructed after a discussion to reach consensus. In this
hard task, our methods outperform unsupervised methods with a large margin. This scenario
contains some domain-specific terms that are not covered by pre-trained models as we can observe
by D2VEC (trained on the audit data) outperforming unsupervised S-BE. Only for the top-1 case
the supervised BERT_large shows small margins for both measures. Supervised classifiers are
effective for documents matched against one concept but do not have enough training data for
the other cases. In Appendix A.1.2, we show how our model combined with S-BE outperform
supervised BERT_large solution also for k=1.

Text to Text

We evaluate our framework in matching documents between two text corpora. While our
solution is tailored towards structured data and text, we report its results as they are better than
unsupervised state of the art baselines for this task and close to supervised ones. We use datasets
for the task of detecting previously fact-checked claims [112]. In this context, the goal is, given a
check-worthy input claim and a set of verified claims, to rank the verified claims that help check
the input claim, or a sub-claim in it, above other claims.

Datasets. The Snopes dataset contains a set of 1k claims (tweets) and 11k verified claims (facts),

39

Chapter 3. Nodes and Relations Identification

Table 3.5 – Exact and Node scores for structured text matches.

Exact Scores Node Scores
Method P R F P R F

K
=1

D2VEC .254 .217 .234 .554 .503 .527
S-BE .094 .071 .081 .379 .358 .368

W-RW .346 .265 .300 .593 .530 .560
W-RW-EX .367 .282 .319 .601 .545 .572

K
=1 RANK∗ .162 .125 .138 .425 .392 .408

L-BE∗ .381 .304 .338 .626 .567 .595

K
=3

D2VEC .176 .386 .242 .485 .564 .521
S-BE .065 .014 .088 .362 .431 .393

W-RW 201 .434 .275 .521 .652 .579
W-RW-EX .214 .475 .295 .528 .670 .594

K
=3 RANK∗ .162 .125 .138 .425 .392 .408

L-BE∗ .183 .417 .254 .487 .678 .566

K
=5

D2VEC .132 .470 .206 .457 .679 .546
S-BE .052 .179 .080 .356 .473 .406

W-RW .145 .508 .222 .478 .699 .568
W-RW-EX .151 .533 .236 .485 .719 .580

K
=5 RANK∗ .072 .242 .110 .365 .522 .429

L-BE∗ .135 .508 .213 .446 .740 .556

K
=1

0

D2VEC .087 .587 .152 .42 .758 .541
S-BE .038 .253 .066 .347 .541 .423

W-RW .092 .613 .160 .437 .768 .557
W-RW-EX .094 .629 .164 .438 .783 .562

K
=1

0 RANK∗ .051 .324 .088 .350 .592 .440
L-BE∗ .081 .584 .141 .393 .797 .526

while the Politifact dataset contains 768 claims (made by politicians) and 16.6k verified claims
(facts). Text documents contain from one to nine sentences in Snopes and from one to 11 in
Politifact. On average they have less than two sentences. We match top−k verified claims (facts)
for every claim.

Evaluation Measures. We use Mean Reciprocal Rank (MRR), Mean Average Precision at k
(MAP@k), and HasPositive@k.

Baselines. We use the methods with the best results reported by previous work on these
datasets [112], including unsupervised S-BE and supervised RANK.

Matching results. Results in Table 3.6 and Table 3.7
show that our method is the best unsupervised solution, outperforming the best baseline

(S-BE) in all measures and scenarios. In this task, our approach sits between the best unsupervised

40

Chapter 3. Nodes and Relations Identification

Table 3.6 – Quality of match results for Politifact scenario.

Method MRR MAP@k HasPositive@k
1 5 20 1 5 20

S-BE .395 .354 .372 .382 .362 .417 .496
W-RW .489 .346 .396 .401 .409 .579 .702

W-RW-EX .507 .358 .406 .418 .429 .600 .726
RANK∗ .608 .531 .588 .599 .535 .688 .787

Table 3.7 – Quality of match results for Snopes scenario.

Method MRR MAP@k HasPositive@k
1 5 20 1 5 20

S-BE .543 .457 .527 .535 .457 .648 .724
W-RW .695 .586 .688 .693 .587 .820 .886

W-RW-EX .708 .613 .698 .706 .614 .843 .898
RANK∗ .788 .691 .782 .784 .693 .894 .925

baseline and the best supervised method. One explanation is that these datasets contain generic
textual claims with common terms, which is the best scenario for pre-trained models trained
on very large corpora. Also, long natural language English sentences are nicely modelled by
the attention mechanism in transformers. As we discuss in Appendix A.1.2, by combining our
embeddings with pre-trained language models, we can improve our performance and get closer
to supervised results for Politifact and we can even do better for Snopes.

Compression Results

We report the performance of the compressing technique introduced in Section 3.2.3. As a baseline
technique, we report also for SSuM, a state of the art method that employs node merging and
edge sparsifying to generate a super-graph as output [143]. Table 3.9 compares the performance
of compression methods in terms of size (number of nodes and edges) of the compressed graph
and of quality in the matching task (MRR).

For MSP, we report results for iterations equal to half (MSP (0.5)) and a quarter (MSP (0.25))
of the expanded graph’s nodes. SSuM (0.1) is set with a compression ratio of 0.9 as this is the
value generating the best quality results (MRR) in our experiments.

In terms of size reduction, MSP (0.25) is the compression method with the best results in
four cases and it is second to SSuM only for IMDB. However, it shows an higher decrease in
match quality results w.r.t. MSP (0.5), which is the compression method with the best results in
all cases. For Corona it even does better than the expanded graph. This dataset contains many
numerical values (about 25% of its data nodes in the expanded graph), which are misleading in
some cases, as they are more likely to raise spurious connections in the graph. In general, MSP
performs better than SSuM. For higher compression, MSP (0.25) produces smaller graphs with
better match accuracy in most cases. For MSP (0.5), we observe better quality in the matches
in all cases except Audit, and comparable size in the compressed graphs. The results show the

41

Chapter 3. Nodes and Relations Identification

Table 3.8 – Train and test execution times (sec).

Method Text to data Structured text Text to text
Train Test Train Test Train Test

W2VEC 13.9 239 3.5 11.82 5.0 107
D2VEC 47.7 17.2 8.5 1.30 14.9 21.95

S-BE - 2.6 - 1.16 - 7.5
W-RW 152 0.07 207 0.05 189 0.41

RANK∗ 3206 0.09 3916 0.05 6918 1.2
S-BE∗ 2863 3.55 3734 2.3 6855 7.4
L-BE∗ 3616 0.25 3280 0.69 251 2.6

DEEP-M∗ 3492 0.68 - - - -
DITTO∗ 34528 2.28 - - - -

Dataset Original Graph Expanded Graph MSP (0.5) MSP (0.25) SSuM (0.1)
#N #E MRR #N #E MRR #N #E MRR #N #E MRR #N #E MRR

IMDB 107k 1m .780 237k 1.5m .792 82k 887k .779 75k 840k .755 27k 540k .601
Corona 10k 43k .728 15k 56k .755 10k 40k .769 8.5k 32.5k .757 10k 33k .610
Snopes 35k 129k .695 142k 622k .708 84k 479k .647 49k 292k .586 83k 470k .590
Politi 24k 168k .489 62k 317k .507 37k 242k .500 33k 225k .484 52k 257k .397
Audit 6k 164k .421 17k 202k .452 7k 161k .389 5.5k 144k .362 14k 150k .392

Table 3.9 – Compression performance: number of graph nodes (#N) and edges (#E) compared
with matching quality MRR.

benefit of considering shortest paths among metadata nodes. For MSP, the graph size and the
match accuracy follow the expected behavior w.r.t. the compression ratio.

MSP, in both executions, shows its best results for scenarios with at least one relational table.
In these cases, the compressed graph is smaller than the original one (and much smaller than
the expanded one), with better or very close matching quality. For text-only scenarios, the size
reduction is remarkable, and better than SSuM, but a significant drop in matching quality can be
observed. The conclusion is that the use graph compression depends on the kind of data and the
requirements for the target application at hand.

Execution Times.

Table 3.8 reports execution times for all methods averaged over the experiments for every task. For
training time, embeddings methods (W2VEC, D2VEC) and transformer-based methods (RANK∗,
S-BE∗, L-BE∗) are trained (fine tuned) on a smaller corpus than our method (W-RW). This is
because we create 100 walks for each node in the graph, which leads to bigger corpora in general.
Due to this difference, Word2Vec and Doc2Vec are faster than other methods in training, while
our method has execution times smaller than those taken to fine tune transformers. S-BE has no
training.

We report the average execution time for a single match (test). Our solution is the fastest.
Document based methods, like Doc2Vec, are faster than word based embedding solutions. This is
because for the latter methods we generate vectors for all tokens in the document and aggregate

42

Chapter 3. Nodes and Relations Identification

them. Classifiers are faster than document embeddings based matching, but slower than our
method. In the training step of our method, expansion and compression take less than 3k seconds
in all cases, with the exception of IMDB (by far the largest) with 79k seconds for expansion (with
DBpedia) and 51k seconds for compression with MSP (0.5).

3.3 Summary

In this chapter, we first proposed a method for automatic identification of entities and their
families. The proposed method first finds representative entities in KPMG taxonomies and then
applies four techniques to generate families for each one of them. Our experiments show that
proposed method can generate families close to the ground truth in both English and German
documents.

We then presented a new generic matching task that allows both structured text documents
and relational data. Results show that even lightweight embeddings effectively model the
similarity between heterogeneous corpora. Our proposal outperforms in quality and test time all
unsupervised baselines and it is competitive to supervised solutions. Our graph expansion always
leads to the best matching quality, while compression is effective in reducing the graph size, but
it comes with a trade off in the performance of the matching for text-only corpora.

43

Chapter 3. Nodes and Relations Identification

44

Chapter 4

Mining Expressive Rules in Knowledge
Graphs

In this chapter, we study the mining and the applications for two kinds of rules: (i) positive rules,
which can be executed to add new facts to the KG with the aim of increasing its coverage of
the reality; (ii) negative rules, which can be used to identify logical inconsistencies in the KG,
ultimately detecting incorrect triples. This chapter extends the original RuDiK system [79] with
the discovery of type conditional rules holding only for a subset of the elements in the KG, such
as politicians or artists; and a more extensive experimental evaluation of the solution.

RuDiK is a system that exploits disk based solutions to enable the mining of a larger search
space over KGs. The ability to mine with a more expressive language leads to the discovery of
rules with comparisons across elements beyond equality and the mining for graph predicates
involving literal values (e.g., birthDate). More patterns enable the identification of a bigger
number of both errors and new facts with high accuracy. Such improvements are obtained by
building system around three main contributions.

(i) Approximate Rule Mining. RuDiK specifies the problem of robust rule mining over
incomplete and erroneous KGs. The input of the mining is a KG predicate and positive and
negative examples for it. In terms of output, in contrast to the long lists of rules ranked on
a measure of support [28, 41, 144], Section 4.3 gives a definition that identifies a subset of
approximate rules, i.e., patterns that may not hold over all examples because of missing and
incorrect triples in KGs. The solution is then the smallest set of rules covering most of the positive
examples and few negative examples.

(ii) Generation of the Examples. The input examples for a predicate strongly affect the
quality of the output rules. While positive example are available from the graph, manually
creating negative examples is an expensive task. Section 4.4 introduces example generation
techniques that are aware of the issues due to inconsistencies and missing data in the KG.

(iii) A Greedy Algorithm for Rule Mining. RuDiK employs a log(k)-approximation
algorithm for the rule mining problem, where k is the maximum number of positive examples
covered by a rule. The disk-based algorithm, described in Section 4.5, incrementally materializes
the KG in the mining process by traversing only paths that can generate promising rules. The
resulting low memory footprint allows the mining with a more expressive rule language.

45

Chapter 4. Mining Expressive Rules in Knowledge Graphs

In this Chapter, we propose a method to enable RuDiK to extract more accurate rules. In
many cases, rules are correct when defined for a specific geographical area, in a certain time,
or for specific types of entities. To capture these more subtle patterns, in Section 4.6 we extend
the core mining algorithms to discover conditional rules, i.e., rules that apply only for a subset
of the data, identified by a selection with a constant over the values of an entity or of a type.
By exploiting clustering of the entities, we are able to identify subsets of the data for which the
mining leads to new rules that are not identified with the general algorithm.

We first describe RuDiK example generation (Section 4.4) and rule mining (Section 4.5)
modules and then introduce our proposed improvement in Section 4.6. We also conducted
experiments to show the quality of generated conditional rules in Section 4.7.2.

In Section 4.8 we conclude with open directions for research in this topic. We open sourced
the code of the system online, together with the experimental results and discovered rules at
https://github.com/ppapotti/Rudik.

4.1 Related Work

For relational data, dependencies are discovered over the attributes of a given schema and encoded
into formalisms, such as Functional Dependencies [37, 39, 40] and Denial Constraints [38, 145].

However, these techniques cannot be applied to KGs for three main reasons: (i) the schema-
less nature of RDF data and the open world assumption; (ii) traditional approaches rely on the
assumption that data is either clean or has a small amount of errors, which is not the case with
KGs; (iii) even when the algorithms are designed to support more errors [30, 146], there are
scalability issues on large RDF datasets: a direct application of relational database techniques on
the graph requires the materialization of all possible predicate combinations into relational tables.

Fan et. al. [147] laid the theoretical foundations of Functional Dependencies on Graphs
(GFDs) and have introduced an algorithm for their discovery [148]. However, their language
does not include general literal comparisons, which is useful when detecting errors in KGs.

RuDiK is the first approach that is generic enough to mine both positive and negative rules
in RDF KGs. Rule mining approaches designed for positive rule discovery in KGs, such as
AMIE [28] and OP algorithm [33], load the entire graph into memory prior to the traversal step.
This is a constraint for their applicability over large KGs, and neither of these two approaches
can afford value comparison. In contrast to them, by generating the graph on-demand, RuDiK
discovers rules on a small fraction of the graph. This makes it scalable and the low memory
footprint enables a bigger search space with rules that can have literal comparisons. Finally, [32]
recommends new facts by using association rule mining techniques. Their rules are made only of
constants and are therefore less general than the rules generated by RuDiK.

ILP systems such as WARMR [41] work under the CWA and require the definition of
error-free positive and negative examples. These assumptions do not hold in KGs and AMIE
outperforms these two systems [28]. Sherlock [144] is an ILP system that extracts first-order
Horn Rules from Web text. While extending RuDiK to free text is an interesting future work, the
statistical significance estimate needs a threshold to discover meaningful rules.

Error detection in KGs has also been studied by using ILP methods to discover axioms
concerning properties’ domain and range restrictions that identify contradictions [149]. Another
approach identifies outliers after grouping subjects by type [150]. For example, for “population”

46

https://github.com/ppapotti/Rudik

Chapter 4. Mining Expressive Rules in Knowledge Graphs

it groups by “city” and “state” and then detects anomalies. Both methods are orthogonal and
complementary to our negative rules. Finally, the generation of new facts in a graph is related to
the task of link prediction [86].

4.2 Rule Mining

Logical rules can assist us in two tasks related to the KG curation: i) they can be employed to
find inconsistencies in KG and ii) they can be exploited to add new facts to KG. Although logical
rules can increase the quality of KGs, it is not feasible to manually generate a lot of them and
as a results, we need methods for automatic extraction of rules. Rule mining is the process of
automatically extracting logical rules from KGs. In this section, we first introduce positive and
negative logical rules and then introduce the converge of a rule which is a metric that can be used
in order to improve the quality of logical rules.

4.2.1 Logical Rules

A Horn Rule is a disjunction of atoms with at most one unnegated atom. In this work we focus
on Horn rules of the form:

~B→ r(x,y) (4.1)

where r(x,y) is a single atom (head of the rule) and ~B (body of the rule) is a conjunction of atoms
B1(z1,z2)∧B2(z3,z4)∧·· ·∧Bn(zn−1,zn). An atom is a predicate connecting two variables, two
entities, an entity and a variable, or a variable and a lexical value. We distinguish two kinds of
rules:

• positive rules, which can be executed to add new facts to the KG with the aim of increasing
its coverage of the reality. e.g., “if two persons have a child in common, they are in the
spouse relation”.

r1 : parent(v0,a)∧parent(v0,b)⇒ spouse(a,b)

• negative rules, which can be used to identify logical inconsistencies in the KG, ultimately
detecting incorrect triples. This rules have a negated atom in the head identify false facts
from the ones in the KG, e.g., ” parents birth date cannot be biger than their children birth
date” or “A person cannot be the founder of a company which has been founded before her
birth date”.

r2 : parent(a,b)∧birthDate(b,v0)∧birthDate(a,v1)∧ v0 > v1⇒⊥

r3 :foundingYear(a,v0)∧birthYear(b,v1)∧>(v1,v0)∧foundedBy(a,b)⇒⊥

Positive rules define relationships between KG elements that identify missing triples, e.g., “if
two persons have a child in common, they are in the spouse relation”. Negative rules have a
negated atom in the head identify false facts from the ones in the KG, e.g., “parents cannot marry

47

Chapter 4. Mining Expressive Rules in Knowledge Graphs

their children”. As an example of using negative rules for error detection, this negative rule
child(x,y)→¬spouse(x,y) can be rewritten as child(x,y)∧ spouse(x,y)→⊥ and the body is
run as a query on the KG.

Given a KG, a set of positive example facts, and a set of negative example facts, a rule mining
algorithm aims at identifying a set of rules that, when executed on the KG, have all the positive
examples facts in their output and none of the negative facts. In other words, the algorithms are
after rules that are general, as they cover all true facts, and do not make mistakes, as they do not
produce false facts. As these requirements are quite strict in the presence of noisy and incomplete
KGs, they are relaxed in some mining algorithms with a notion of weight (or score) defined on
the number of positive and negative examples in the output of the set of mined rules.

We study how to mine declarative rules from RDF KGs. An RDF KG is a database repre-
senting information with triples (or facts) 〈s, p,o〉, where a predicate p connects a subject s and
an object o. For example, the fact that Hillary Clinton has a child named Chelsea Clinton is
expressed with a triple 〈Hillary_Clinton,hasChild,Chelsea_Clinton〉. In a triple, the subject is
an entity, i.e., a real world concept; the object is either an entity or a literal, i.e., primitive type
such as number, date, and string; and the triple predicate specifies a relationship between subject
and object.

4.2.2 Rule Coverage

Given a pair of elements (x,y) from a KG kg and a Horn Rule r, we say that rbody covers (x,y) if
(x,y) |= rbody. More specifically, given a rule r : rbody⇒ r(a,b), rbody covers a pair of elements
(x,y) ∈ kg iff we can substitute a with x, b with y, and the rest of the body can be instantiated
over kg. Given a set of pair of elements E = {(x1,y1),(x2,y2), · · · ,(xn,yn)} and a rule r, we
denote by Cr(E) the coverage of rbody over E as the set of elements in E covered by rbody:
Cr(E) = {(x,y) ∈ E|(x,y) |= rbody}.

Given the body rbody of a rule r, we denote by r∗body the unbounded body of r. The un-
bounded body of a rule is obtained by keeping only atoms that contain a target variable and
substituting such atoms with new atoms where the target variable is paired with a new unique
variable. As an example, given rbody = rel1(a,v0)∧rel2(v0,b) where a and b are the target
variables, r∗body = rel1(a,vi)∧rel2(vii,b). While in rbody the target variables are bounded
to be connected by variable v0, in r∗body they are unbounded. Given a set of pair of elements
E = {(x1,y1),(x2,y2), · · · ,(xn,yn)} and a rule r, we denote by Ur(E) the unbounded coverage
of r∗body over E as the set of elements in E covered by r∗body: Ur(E) = {(x,y) ∈ E|(x,y) |= r∗body}.
Given a set E, Cr(E)⊆Ur(E).

Example 4: Let E be the set of all possible element pairs in kg. The coverage of r2 over E
(Cr(E)) is the set of all pairs of entities (x,y) ∈ kg s.t. both x and y are the subject for a birth year
triple and the year for x is higher. The unbounded coverage of r2 over E (Ur(E)) is the set of all
pairs of entities (x,y) s.t. both x and y are the subject for a birth year triple without any condition
on the relationships between such year values.

Unbounded coverage plays a crucial role in distinguishing inconsistent and missing data.
Given entities (x,y) in a pair, if the birth year is missing for at least one of them, it is not possible
to state who was born first. Only if both entities have their birth years and x is born before y, we
conclude that r2 does not cover (x,y). Given that KGs are largely incomplete [151], the ability to

48

Chapter 4. Mining Expressive Rules in Knowledge Graphs

discriminate missing and conflicting information is of paramount importance. We extend next
the definitions for coverage and unbounded coverage to a set of rules R = {r1,r2, · · · ,rn} as the
union of individual coverages:

CR(E) =
⋃
r∈R

Cr(E) UR(E) =
⋃
r∈R

Ur(E)

4.3 Rule Discovery for Noisy Knowledge Graphs

For the sake of simplicity, we define the discovery problem for a given target predicate. To
obtain all rules for a KG, we compute rules for every predicate in it. We characterize a predicate
with two sets of pairs of elements, where an element is either an entity or a literal value. The
generation set G contains examples for the predicate, while the validation set V contains counter
examples for the same. Consider the discovery of positive rules for the hasChild predicate
between entities; G contains true pairs of parents and children and V contains pairs of people who
are not in such relation. If we want to identify errors (negative rules), the sets of examples are the
same, but they switch role. To discover negative rules for hasChild, G contains pairs of people
not in a child relation and V contains pairs of entities in a child relation. As another example,
consider predicate birthDate, which has a literal value as object. For mining positive rules, G
contains true pairs with subject entities and their birth dates and V contains pairs with subjects
and literal values that are not their birth dates. Again, for identifying negative rules, we switch
the role of the sets.

We formalize next the exact discovery problem. In the following definitions, we assume for
the sake of simplicity that all possible valid rules and the sets of examples have been already
generated, we detail in the rest of the article how they are efficiently obtained from the KG.

Definition 1: Given a KG kg, two sets of pairs of elements G and V from kg with G∩V = /0, and
all the valid Horn Rules R for kg, a solution for the exact discovery problem is a subset R′ of R
s.t.:

argmin
R′

(size(R′)|(CR′(G) = G)∧ (CR′(V) = /0))

The minimal set of rules covering all pairs in G and none of the pairs in V forms the exact
solution. It minimizes the number of rules in the output (size(R′)) to favour generic rules that
can affect large portions of the graph. In fact, given a pair of elements (x,y), there is always an
overfitting rule whose body covers only pair (x,y) by assigning target variables to literal values x
and y.

Example 5: Assume we are mining positive rules for the predicate couple by using examples
from the people forming the Obama family. We are given only two couple examples. The positive
one is the pair (Barack,Michelle) and the negative one contains their daughters (Natasha,Malia).
Consider now the three rules below.

r3 : livesIn(a,v0)∧livesIn(b,v0)⇒ couple(a,b)

r4 : hasChild(a,vi)∧hasChild(b,vi)⇒ couple(a,b)

r5 : hasChild(Michelle,Natasha)∧hasChild(Barack,Natasha)⇒ couple(Barack,Michelle)

49

Chapter 4. Mining Expressive Rules in Knowledge Graphs

Positive rule r3 states that two individuals are likely to be a couple if they live in the same
location, while rule r4 states that this is the case when they have at least one child in common.
Assuming triples for predicates livesIn and hasChild are in the KG, both r3 and r4 cover
the positive example. While r4 is an exact solution (not covering the negative example), r3 is
not, as the daughters also reside in the same location. Rule r5 explicitly mentions entity values
(constants) in its head and body. It is also an exact solution, but, in contrast to r3, it only applies
for the given positive example.

If any hasChild triple is missing in G, the exact discovery finds only r5 as a solution. This
example demonstrates why the exact discovery is not robust to data quality issues in KGs. Even
in cases in which a valid rule exists, missing or incorrect triples associated to the examples in G
and V lead to misleading coverage. In the worst case, the exact solution may collapse to a set of
rules where every one of them covers only one example in G, effectively discovering rules with
no coverage outside of the examples when executed on the graph.

4.3.1 Weight Function

Being aware of errors and missing data in the graph, we remove the requirement of (not) covering
(V) G exactly with the rules. We instead identify rules that hold for most of the data (soft-
constraints) to be robust w.r.t. incompleteness and noise. Coverage still guides our assessment of
the rule quality: good rules should cover as many example pairs in G as possible, while covering
very few to zero pairs in V . We implement these ideas with a weight computed for every rule.

Definition 2: Given a KG kg, two sets of element pairs G and V from kg with G∩V = /0, and a
Horn Rule r, the weight of r is defined as follow:

w(r) = α · (1− |Cr(G) |
| G |

)+β · (|Cr(V) |
|Ur(V) |

) (4.2)

with α,β ∈ [0,1] and α +β = 1, thus w(r) ∈ [0,1].
The weight models rule quality w.r.t. G and V – a rule covering all generation elements of

G and none of the V validation elements has a weight of 0. Therefore, the better the rule, the
smaller its weight. The weight has two parts normalized by parameters α and β . The first part
quantifies the coverage over generation set G – the ratio between the coverage of r over G and the
size of G. If r covers all elements in G, this component becomes 0. The second part measures the
coverage of r over the unbounded coverage of the rule over V , instead of the total elements in V .
Since some elements in V might not satisfy the predicates in rbody, we restrict V with unbounded
coverage to validate on “qualifying" example pairs that have the information tested by the rule’s
body.

Parameters α and β set the relevance of each part. A high value for β guides the mining
towards rules with high precision by penalizing the ones that cover V pairs, while a high value
for α favours the recall by championing rules that cover more G pairs.

Example 6: We use rule r2 from Section 4.2. Assume two sets of element pairs G and V from a
KG kg. The first part of w(r2) corresponds to 1 minus the number of examples (x,y) ∈G where x
is born after y divided by the size of G. The second part is the number of examples (x,y) ∈ V
with x born after y divided by the number of examples (x,y) ∈V having birth date values for both
x and y in kg, i.e., Ur2(V) does not contain pairs without birth date values.

50

Chapter 4. Mining Expressive Rules in Knowledge Graphs

Definition 3: Given a KG kg, two sets of element pairs G and V from kg with G∩V = /0, and a
set of rules R, the weight for R is:

w(R) = α · (1− |CR(G) |
| G |

)+β · (|CR(V) |
|UR(V) |

)

Weights model the presence of errors in KGs. Consider the case of negative rule discovery,
where V contains positive examples from the graph. We report in the experimental evaluation
several negative rules with significant coverage over V , which corresponds to errors in the KG.

4.3.2 Problem Definition

We can now state the approximate version of the problem.

Definition 4: Given a KG kg, two sets of element pairs G and V from kg with G∩V = /0, all
the valid Horn Rules R for kg, and a weight function w for R, a solution for the robust discovery
problem is a subset R′ of R such that:

argmin
R′

(w(R′)|CR′(G) = G)

The robust version of the discovery problem aims at identifying rules covering all elements in
G and as few elements as possible in V . As we want to avoid overfitting rules in R, we do not
allow in the solution rules with constants in the target variables.

Our problem definition can be mapped to the NP–complete weighted set cover problem [152].
The reduction follows from the following mapping: the set of elements (universe) corresponds to
the generation pairs in G, the input sets are identified by the rules in R (where each rule covers a
subset of G), the non-negative weight function w : r→ IR is w(r) (Definition 2), and the cost of R
is defined to be its total weight (Definition 3).

4.4 Generation of Rules and Examples

We start by discussing the generation of the universe of all possible rules. We first assume that
examples in G and V are available, and then discuss methods to obtain them automatically. Our
solution does not depend on how examples are obtained. We explicitly generate them in our
approach, but the same rule mining algorithms apply if humans provide pairs for G and V .

We describe the mining of positive rules with correct facts in G and incorrect ones in V . When
mining negative rules, our rule generation and mining algorithms are the same: it is enough to
swap the role of generation set G (therefore containing false facts) and validation set V (in this
case containing true facts). The example generation algorithm also applies in both scenarios.

4.4.1 Rule Generation

We represent a KG kg as a directed graph: elements (entities and literals) form the nodes with a
directed edge from node a to node b for each fact 〈a,rel,b〉 ∈ kg. The relation rel that connects
subject to object is used as label for the corresponding edge. We report four facts in Figure 4.1.

51

Chapter 4. Mining Expressive Rules in Knowledge Graphs

child
parent

birthDate birthDate

Clint
Eastwood

Scott
Eastwood

May 31,
1930

March 21,
1986

Figure 4.1 – Four DBpedia facts in the graph representation.

If we allow navigation of edges independently of the edge direction, we can navigate kg
as an undirected graph. The body of a rule can be seen as a path in the undirected graph. In
Figure 4.1, the body child(a,b)∧parent(b,a) corresponds to the path Clint Eastwood −
Scott Eastwood − Clint Eastwood. A valid body contains target variables a and b at least once,
every other variable at least twice, and atoms are transitively connected. Given a pair of elements
(x,y), a valid body is a valid path p on the undirected graph s.t.: (i) p starts at the node x; (ii) p
covers y at least once; (iii) p ends in x, in y, or in a different node that has been already visited.

Given the body of a rule rbody, rbody covers a pair of elements (x,y) iff there exists a valid
path on the graph that corresponds to rbody. This implies that for a pair of elements (x,y), we
can generate bodies of all possible valid rules by computing all valid paths that start from x
with a breadth-first search. The ability to navigate each edge in any direction by turning the
original directed graph into an undirected one is key for the generation task, but we must preserve
information about the original direction of the edges. This is used when translating paths to rule
bodies. In fact, an edge directed from a to b produces the atom rel(a,b), while b to a produces
rel(b,a), according to the direction in the original directed graph.

Since every node can be traversed multiple times, for two elements x and y there might exist
a large number of valid paths starting from x. This number is constrained with a maxPathLen
parameter that limits the search space by determining the maximum number of edges in the path,
i.e., the maximum number of atoms in the body of the corresponding rule.

We are now ready to describe the generation of all possible rules. Every rule in R (universe of
all possible rules) must cover at least one example in the generation set G. The universe of all
possible rules is therefore created by analyzing G elements.
(i) Path Generation. Given an example with elements (x,y), we retrieve all nodes from x or y
at distance maxPathLen−1 or less. We collect also the edges in this navigation. The retrieval
is a recursive exploration with a queue of elements. The queue is initialized with x and y. For
each node e in the queue we run a SPARQL query against the graph to get nodes (and edges) at
distance 1 from e (single hop queries). At the n-th step, we add the new nodes to the queue iff
they are at a distance less than (maxPathLen−n) from x or y.

Given the graph for every (x,y), we compute all valid paths that start from every x with a
simple DFS exploration.
(ii) Path Evaluation. Computing paths for every example in G is related to the computation of
the rule coverage. The coverage of a rule r corresponds to the number of G pairs for which there
exists a path corresponding to rbody.

Given that the universe of rules and their coverage over G have been computed, the unbounded
coverage is computed over V with a simple execution for each rule of two SPARQL queries over
the KG.

52

Chapter 4. Mining Expressive Rules in Knowledge Graphs

Example 7: Consider a scenario where we mine the sibling predicate for positive rules. Start-
ing from a positive example with a pair (Natasha, Malia), one path can traverse three nodes such as:
Natasha− Barack−Malia. If several pairs in G have this path (siblings have one common parent),
the corresponding rule would be hasParent(b,a)∧hasParent(c,a)⇒ sibling(b,c).

In the example, the shared variable a between two hasParent atoms corresponds to a join,
therefore a comparison based on value equality. Since one of our goals is to mine rich rules, we
make use of more atom types during the path generation, as discussed next.

Literal comparison.
To discover rich rules with comparisons beyond equalities, the graph should have edges

connecting literals with a symbol from {<,≤, 6=,>,≥}, e.g., Figure 4.1 would contain an edge
‘<’ from node “March 31, 1930” to node “March 21, 1986". Unfortunately, the original KG does
not have this information explicitly, and materializing such edges among all literals is infeasible.

However, in our algorithm we discover paths for a pair of elements from G in isolation. The
graph for a pair of elements has a size that is orders of magnitude smaller than the KG. The very
small number of nodes for a single example graph enables us to represent all the literal pairwise
comparisons across them.

Besides equality comparisons expressed in joins, we add explicit relationships with compar-
isons ‘>’,‘≥’,‘<’,‘≤’ between numbers and dates, and 6= between all literals. These comparisons
are added to the graph as normal edges (atoms in the formula): x≥ y leads to rel(x,y), where
rel is ≥. Once we add comparison edges for every input example graph, the discovery of literal
comparisons is equivalent to the discovery with predicate atoms.

Not equal entities. We introduce “not equal” comparison for literal values, but this comparison
is useful also for entities. For example, a negative rule may state that if a person a was born in
a location different from b, then such person cannot be the president of b (bornIn(a,x)∧ x 6=
b∧president(a,b)⇒⊥). One way to introduce inequalities among entities in the graph is
to add edges among all entity pairs. It is clear that this strategy is inefficient and may actually
introduce obvious edges, e.g., person are different from locations. To limit the search space while
aiming at meaningful rules, we therefore exploit the rdf:type triples associated to elements,
which is usually available in KGs. We add a new inequality edge in the input example graph only
between pairs of elements of the same type. In the example, x and b are compared as they are
both locations.

4.4.2 Negative Examples Generation

Given a KG kg and a predicate rel ∈ kg, generation set G and validation set V are generated in our
approach. For positive rule mining, we follow the traditional silver standard creation and set G
equals to the facts for predicate rel [15], i.e., all pairs of elements (x,y) such that 〈x,rel,y〉 ∈ kg.
These are going to be mostly correct, depending on the quality of kg. Set V contains counter
examples for rel. These must be generated because of the open world assumption in KGs.
Differently from mining in relational databases, it is not possible to make the assumption that
anything not in a KG is false (closed world assumption), thus in our graphs missing information is
unknown. However, it is unlikely that two randomly selected elements are a true positive example
for any predicate. This intuition leads to a simple way of creating counter examples for any
predicate by randomly selecting pairs from the cross-product of the elements [42].

53

Chapter 4. Mining Expressive Rules in Knowledge Graphs

While the simple generation “at random” can generate negative examples with high accuracy,
a very small percentage of these element pairs will be semantically related. In other terms, the
elements will be unrelated in time, space, and topic. This data aspect is of crucial importance
when mining negative rules. In fact, two unrelated elements have a smaller number of paths
between them than semantically related ones; this is reflected by a lower number of rules that can
be mined when counter examples are in G. As we show experimentally, unrelated elements are
less likely to lead to meaningful patterns in the KG, and therefore the rules are of lower quality.

It is important to notice that there is no such issue when G contains correct examples, i.e.,
mining positive rules. In fact, at least one semantic connection is present for any example by
generation, since pairs in G are obtained from the triples of the predicate of interest. To generate
negative examples that are likely to be correct (truly false facts) and that are semantically related,
we generate queries over the graph that identify elements that satisfy these requirements.

First, we exploit the notion of Local-Closed World Assumption (LCWA) [9, 28] to identify
the elements that are likely to be completely described in the KG. The assumption states that
if for a given subject and predicate the KG contains at least one object value, then it contains
all possible object values; e.g., if a graph has one spouse for Barack Obama, then we assume
that all his spouses are in the graph. While this is always the case for functional predicates (e.g.,
capital), it might not hold for non-functional ones (e.g., hasChild).

Under this assumption, we identify elements that are likely to be complete and create negative
examples by taking the union of elements satisfying the LCWA. For a predicate rel, a negative
example is a pair (x,y) where either x is the subject of at least one triple 〈x,rel,y′〉 with y 6= y′, or
y is the object of one or more triples 〈x′,rel,y〉 with x 6= x′. For example, if rel = hasChild, a
query would identify as negative example any pair (x,y) s.t. x has some children in the graph
who are not y, or y is the child of someone who is not x.

Second, for a candidate negative example over elements (x,y), x must be connected to y via a
predicate that is different from the target predicate. In other words, given a KG kg and a target
predicate rel, (x,y) is a negative example if 〈x,rel′,y〉 ∈ kg, with rel′ 6= rel. These restrictions
make the size of V of the same order of magnitude as G and guarantee that, for every (x,y) ∈V ,
x and y are semantically related by at least one predicate.

Example 8: A negative example (x,y) for the target predicate hasChild has the following
characteristics: (i) x and y are not connected by the hasChild predicate; (ii) either x has one or
more children (different from y) or y has one or more parents (different from x); (iii) x and y are
connected by a predicate that is different from hasChild (e.g., colleague).

Similarly, for a negative example (x,y) for predicate birthDate: (i) x and y are not in a
birthDate relationship; (ii) x has a birth date (different from y) or y appears in a birth date
relation with a subject (different from x); (iii) x and y are connected by a predicate different from
birthDate.

To enhance the quality of the input examples and avoid cases of mixed types, we require that
for every example pair (x,y), either in G or V , all the x (y) occurrences have the same type.

54

Chapter 4. Mining Expressive Rules in Knowledge Graphs

child

livesIn
x1 y1livesIn

child chil
d

worksAtx2 y2
partner

child
worksAtg1: g2:

Figure 4.2 – Two positive examples.

4.5 Discovery Algorithm

This sections introduces a greedy approach to solve the approximate discovery problem (Sec-
tion 4.3.2). Since the number of possible rules can be very large, RuDiK introduces an algorithm
that generates only promising rules from the KG, while preserving the quality guaranteed by the
exhaustive generation.

4.5.1 A Greedy Algorithm Based on Marginal Weight

Our goal is to discover a set of rules to produce a weighted set cover for the given examples. We
therefore follow the intuition behind the greedy algorithm for weighted set cover by defining a
marginal weight for rules that are not yet included in the solution [152].

Definition 5: Given a set of rules R and a rule r such that r /∈ R, the marginal weight of r w.r.t. R
is defined as:

wm(r) = w(R∪{r})−w(R)

The marginal weight quantifies the weight increase by adding r to R. It measures the
contribution of r to R in terms of new elements covered in G and V . Since we aim at minimizing
the total weight, a rule is not added to the solution if its marginal weight is greater than or equal
to 0.

When all rules have been generated, the algorithm for greedy rule selection is simple: given
G, V , and the universe of rules R, select the rule r with minimum marginal weight, add it to
solution R′, and iterate over R \ r. Algorithm stops when at least one of the three termination
conditions is met: 1) all R rules are in the solution; 2) R′ covers all elements of G; 3) among the
remaining rules in R, none of them has a negative marginal weight.

The greedy algorithm has quadratic complexity over the number of rules and guarantees a
log(k) approximation to the optimal solution [152], where k is the largest number of elements
covered in G by a rule in R. If the optimal solution is made of rules that cover disjoint sets over
G, then the greedy solution coincides with the optimal one.

4.5.2 Graph Traversal with A∗ Search

The greedy algorithm for weighted set cover is based on the fact that the universe of rules R is
available. We could generate R by traversing all valid paths from a node x to a node y, for each
pair (x,y) ∈ G. However, generating all these paths is not actually needed for every example.

Example 9: Suppose we discover positive rules for predicate spouse. The generation set
G includes entities g1 and g2 shown as graphs in Figure 4.2. Assume that all rules in R have
the same coverage and unbounded coverage over the validation set V . One possible rule is

55

Chapter 4. Mining Expressive Rules in Knowledge Graphs

r : child(x,v0)∧child(y,v0)⇒ spouse(x,y), stating that entities x and y with a child in
common are also married. In the graph, r covers both g1 and g2. Since all rules have the same
coverage and unbounded coverage over V , any other rule will not bring any benefit to the current
solution. In fact, any other candidate will not cover new elements in G, therefore their marginal
weights will be negative. Therefore, the exploration of edges livesIn in g1, worksAt in g2,
and partner in g2 is superfluous.

Based on the above observation, we avoid generating the entire universe R, but rather follow
at each iteration the most promising path on the graph.

For each example (x,y) ∈ G, we start the exploration from x. Inspired by the A∗ graph
traversal algorithm [153], we use a queue of invalid paths (which would lead to invalid rules), and
at each iteration we pick the path with the minimum marginal weight so far, which corresponds to
several paths in the graphs. We expand the path by following the edges and add new paths to the
back of the queue. Unlike A∗, we do not stop when a path reaches the target node y, i.e., becomes
valid. The algorithm adds the valid path (which would turn into a valid rule) to the solution and
keeps looking for other valid paths until one of the termination conditions of the greedy set cover
algorithm is met.

To guarantee the optimality of the solution in A∗, the estimation function must be admissi-
ble [153], i.e., the estimated cost must be less than or equal to the actual cost. We define an
admissible estimation of the marginal weight for an invalid path that can still be expanded.

Definition 6: Given a rule r : A1∧A2 · · ·An⇒ B, we say that a rule r′ is an expansion of r iff r′

has the form A1∧A2 · · ·An∧An+1⇒ B.
In the graph exploration, expanding r means traversing one further edge on the path con-

structed by rbody. To guarantee optimality, the estimated marginal weight for a rule r that is
invalid must be less than or equal to the actual weight of any valid rule that is generated by means
of expanding r. Given a rule and some expansions of it, we can derive the following.

Lemma 1: Given a rule r and a set of pair of elements E, then for each r′ expansion of r,
Cr′(E)⊆Cr(E) and Ur′(E)⊆Ur(E).

The above Lemma states that the coverage and unbounded coverage of an expansion r′ of r
are contained in the coverage and unbounded coverage of r, respectively, and directly derives
from the augmentation inference rule for functional dependencies [37], i.e., expanding a rule with
a new atom to its body makes the rule more selective.

The only positive contribution to marginal weights is given by |CR∪{r}(V)|, which is equivalent
to |CR(V)|+ |Cr(V)\CR(V)|. If we set |Cr(V)\CR(V)| = 0 for any invalid r, we guarantee an
admissible estimation of the marginal weight. We estimate the coverage over the validation set to
be 0 for any rule that can be further expanded, since expanding it may bring the coverage to 0.

Definition 7: Given an invalid rule r and a set of rules R, we define the estimated marginal
weight of r as:

w∗m(r) =−α · |Cr(G)\CR(G)|
|G|

+β · (|CR(V)|
|UR∪{r}(V)|

− |CR(V)|
|UR(V)|

)

The estimated marginal weight for a valid rule is equal to the actual marginal weight from
Definition 5. Given Lemma 1, we can easily see that w∗m(r)≤ w∗m(r

′), for any r′ expansion of r.
Thus our marginal weight estimation is admissible.

56

Chapter 4. Mining Expressive Rules in Knowledge Graphs

Algorithm 6: RuDiK Rule Discovery.
input :G (generation set), V (validation set), maxPathLen (maximum rule body length)
output :Ropt – union of rules in the solution

1 Ropt ← /0;
2 N f ←{x|(x,y) ∈ G};
3 Qr← expandFrontiers(N f);
4 r← argmin

r∈Qr

(w∗m(r));

5 repeat
6 Qr← Qr \{r};
7 if isValid(r) then
8 Ropt ← Ropt ∪{r};
9 else

// rules expansion
10 if length(rbody)< maxPathLen then
11 N f ← frontiers(r);
12 Qr← Qr ∪expandFrontiers(N f);

13 r← argmin
r∈Qr

(w∗m(r));

14 until Qr = /0∨CRopt (G) = G∨w∗m(r)≥ 0;
15 if CRopt (G) 6= G then
16 Ropt ← Ropt ∪singleInstanceRule(G\CRopt (G));

17 return Ropt

We now introduce Algorithm 6, a modified set cover procedure including the A∗-like rule
expansion. For simplicity, we blur the difference between paths and rules in the description,
however the search is on the undirected graph. For a rule r, we call frontier nodes, N f (r), the
last visited nodes in the paths that correspond to rbody from every example graph covered by r.
Expanding r means navigating a single edge from any of the frontier nodes. The set of frontier
nodes is initialized with starting nodes x, for every (x,y) ∈ G (Line 2). The algorithm keeps
a queue of rules Qr, from which it picks at each iteration the rule with minimum estimated
weight. The function expandFrontiers selects all nodes (along with edges) at distance 1
from frontier nodes and returns the set of all rules constructed with this expansion. Qr is thus
initialized with all rules of length 1 starting at x (Line 3). In the main loop, the algorithm checks
if the current best rule r is valid or not. If r is valid, it is added to the output and it is not further
expanded (Line 8). If r is invalid, it is expanded iff the length of its body is less than maxPathLen
(Line 10). The termination conditions and the last part of the algorithm are the same of the greedy
set-cover algorithm.

The combined generation and selection of the rules has two main advantages. First, the
algorithm does not materialize the entire graph for every G pair.

The algorithm gradually materializes parts of the graph whenever they are needed for naviga-
tion (Lines 3 and 12). Second, the weight estimation enables the pruning of unpromising rules
that do not cover neither new G or new V pairs.

57

Chapter 4. Mining Expressive Rules in Knowledge Graphs

4.5.3 Algorithm Analysis

Complexity. Each iteration of the algorithm picks the next best rule r according to the marginal
weight, and then expands r by (possibly) generating new rules. The procedure of expanding a
rule is the following: for each example e in G covered by r, it takes the frontier node of e and
navigates the outgoing and incoming edges of the node in the graph. Each navigated edge might
lead to a new rule to be added to the queue Qr, and for each new discovered rule we compute its
marginal weight by issuing a single query against the KG in order to compute its coverage over
the validation set. If we consider the cost of the query as constant, the asymptotic complexity
of the expansion step is O (2 · p · |G|), where p is the total number of different predicates in the
KG, and the multiplier 2 is given by the fact that each predicate can generate two new rules,
one for each navigation direction. The expansion step is repeated at most k times, where k is
the number of all possible rules we can generate from G. Because each atom in the body of the
rule can be either a predicate from the KG or one of the six literal comparisons (Section 4.4.1),
the total number of rules is at most (2p+6)1 (rule with one atom) +(2p+6)2 (rule with two
atoms) +...+(2p+6)maxPathLen. Therefore the asymptotic runtime complexity of Algorithm 6 is
O
(

pmaxPathLen · |G|
)
. As we will outline in the experimental section, the maxPathLen parameter

plays a crucial role in the runtime of the algorithm.
Optimality. A∗ algorithm is guaranteed to return the cheapest path from start to goal if the
heuristic function is admissible, meaning the heuristic function will never overestimates the actual
cost [153]. In our settings, our heuristic is admissible iff the estimated marginal weight for a
rule r is always less or equal to the actual marginal weight of r. Because in the estimated weight
we set the coverage of r over the validation set to 0 (Definition 7), and since the coverage over
the validation set is the only positive contribution to the actual marginal weight, then for every
possible rule the estimated marginal weight will always be less or equal to the actual marginal
weight. This guarantees that the output of Algorithm 6 will always be equal to the output of the
greedy set cover algorithm applied on the universe of all possible rules (Section 4.5.1).

4.6 Conditional Rules

In the previous section, we described original RuDiK algorithm that discovers rules with only
universal variables in the head of the rule. Let us denote them as generic rules. These rules are
the most applicable, as they can be satisfied by a large number of facts in the KGs. However, an
important problem with generic rules is that several of them do not hold semantically in all cases.

This problem is reflected by low accuracy for some of the tasks involving the generic rules,
regardless of the mining algorithm. Stating that two persons in a child relationship cannot be in
a spouse relationship is correct in most of the cases (child(x,y)∧spouse(x,y)⇒⊥), but
there are triples in KGs for which this generic rule does not hold, such as facts whose entities
are fictional characters. Indeed, the rule becomes more accurate if we restrict its scope by con-
straining the type of the entities, such as child(x,y)∧spouse(x,y)∧type(x,Royalty)∧
type(y,Royalty)⇒ ⊥. This observation leads to the idea of improving the quality of the
discovered rules by extending them with type selection.

A similar reasoning applies for rules that apply only for a certain entity. For example,
the rule we discussed above for presidents and place of birth does not apply for all countries.

58

Chapter 4. Mining Expressive Rules in Knowledge Graphs

The correct rule should be discovered for specific countries, such as the one stating that only
someone born in U.S.A. can become an American president (bornIn(a,b)∧b 6= U.S.A.⇒
¬president(a,U.S.A.)).

There is an important trade off with conditional rules. On the one hand, a more specific
context decreases the rule applicability, but, on the other hand, the rule becomes immediately
more accurate.

We therefore extend the rule mining algorithm to discover conditional rules.

4.6.1 Type condition

We start by using constraints on the element types, such as Date for literals and Organization for
entities. The idea is to group the subject and the object instances by their type and run the mining
on each combination of groups. As every element can have one or more types associated, the
same entity or literal can belong to different groups.

We rely on the Algorithm 7 to identify the subject and object types for the triples involved in
a predicate and then group them according to the different subject-object type combinations:

1. Extract the types for subject and object elements in the triples for a predicate;

2. Create subject and object type groups;

3. Create all combinations between type groups, each combination has a type assigned for
subject and a (possibly equal) type for object;

4. For each combination, generate positive and negative examples (G and V sets), drop the
combination if the number of generated examples is smaller than a threshold;

5. Run generic rule mining for the examples in every remaining combination.

The grouping process leads to discovery of rules that do not apply in general, such as:

party(x,v0)∧party(y,v1)∧ v0 6= v1∧type(x,Politician)∧type(y,OfficeHolder)∧spouse(x,y)⇒⊥

It is much rarer to have politicians from different parties who are married, while it is more
common for people (typed only with a generic Person) who are just registered with different
parties.

While the method above is intuitive and already leads to accurate rules with type selection,
there are pre-processing steps that better characterize the group types for the triples in the KG.
One approach is to use entity embeddings [154]. Embeddings encode entities in the KG into a
low-dimensional vector space while preserving structural information about the graph [86]. A
relationship in the graph can then be interpreted as a translation from subject entity to object
entity in such space.

Embeddings characterize entities with hundreds of (learned) features and lead to clusters that
are of high quality. Specifically for our application, the clusters can be used to obtain groups that
are characterized beyond type information. In clusters from embeddings, entities with popular
types, such as Person and Agent can be spread across multiple clusters, but types with finer

59

Chapter 4. Mining Expressive Rules in Knowledge Graphs

Algorithm 7: Conditional Rule Mining for Top-K types.
Input: Predicate p

1 Number of types K
2 Examples threshold E
3 conRules = []
4 STypes← Top-K most common types for subject entities
5 OTypes← Top-K most common types for object entities
6 foreach st in STypes do
7 foreach ot in OTypes do
8 G← positive examples for (st,p,ot)
9 V← negative examples for (st,p,ot)

10 if G < E or V < E then
11 continue
12 end
13 rules← RuDiK (G,V)
14 foreach rule in rules do
15 conRules.add(rule)
16 end
17 end
18 end
19 Output. Conditional Rules conRules

granularity, such as Politician and OfficeHolder are grouped together. At the same time, clusters
from embeddings are more uniform in other properties that are not captured by type information,
such as the structural properties of the entities when expressed as nodes in the graph.

Embeddings can therefore be used to improve the group creation steps (i) and (ii) above: we
start by clustering triples with the embeddings and then find subject and object types for each
cluster.

4.6.2 Entity condition

We allow the discovery of rules with constant selections over the entities. Suppose that for a rule
r that states that a person cannot be president of a given country if she was not born in it, all
examples of r are people born in “U.S.A.”, and there is at least one country for which this rule is
not valid. According to our problem statement, the right rule is therefore:

bornIn(a,b)∧b 6= U.S.A.∧president(a,U.S.A.)⇒⊥

To discover such atoms, we introduce a refinement of the rule generation. For a given rule r,
we promote a variable v in a given rule r to an element e iff for every (x,y) ∈ G covered by r, v
can always be instantiated with the same value e. We allow the substitution of every variable
indiscriminately, including variables in the head of the rule. This could potentially lead to rules
having only constants, but we do not accept them in our solutions.

60

Chapter 4. Mining Expressive Rules in Knowledge Graphs

Table 4.1 – Dataset characteristics.
KG Version Size #Triples #Predicates

DBPEDIA 3.7 10.06GB 68,364,605 1,424
YAGO 3 3.0.2 7.82GB 88,360,244 74

WIKIDATA 20160229 12.32GB 272,129,814 4,108

4.7 Experiments

The discussed techniques have been implemented in RuDiK [79], our rule mining system (https:
//github.com/ppapotti/Rudik). We group the results for our system evaluation into
five parts: (i) showing the accuracy of our discovered rules; (ii) comparing RuDiK with related
systems; (iii) discussing examples and quality of conditional rules;

In our research, we used general KGs (DBpedia, Wikidata) instead of the KPMG KG. This
decision was made for two reasons: (i) their KG is not mature enough for applying these
techniques, it does not have many predicates and in most of the cases there are not alternative
paths between nodes of the KG (ii) because of confidentiality agreement, we cannot expose their
KG.

Setup. We run our evaluation on a desktop with a quad-core i5 CPU at 2.80GHz and 16GB
RAM. We deployed on the same machine a SPARQL endpoint through OpenLink Virtuoso,
optimized for 8GB RAM of available memory. Whenever not reported explicitly, we use weight
parameters α = 0.3 (β = 0.7) for positive rules, α = 0.4 (β = 0.6) for negative rules, and allow
at most 3 atoms in the body of a rule (maxPathLen = 3).

Metrics. We evaluated the quality of the discovered rules as the main metric to judge the
effectiveness of the mining. For each KG, we started by sorting predicates w.r.t. their popularity,
i.e., the number of facts for the predicate. We then chose the top 3 predicates for which we knew
there existed at least one significant rule, and other 2 top predicates for which we were not aware
of the existence of significant rules.

We carried out the evaluation of the discovered rules according to the best practice for rule
evaluation [28]. If for a rule it was possible to declare it semantically correct in all cases, we
marked all the triples coming from the application of the rule over the KG as true. Similarly
for rules that were clearly incorrect, all its output triples would be marked as false. If a rule
correctness was not clear just by reading its formula, we randomly sampled 30 triples from
the application of the rule, which would be either new facts (positive rules) or detected errors
(negative rules), and manually checked each of the facts. The precision of a rule is then computed
as the ratio of correct triples to all of its output triples.

4.7.1 Quality of Generic Rules Discovered by RuDiK

The first set of experiments computed the accuracy of output rules over three widely used KGs:
DBPEDIA, YAGO, and WIKIDATA. Table 4.1 shows the characteristics of these KGs.

The size of a KG matters, as loading all the triples in memory requires to either use powerful
machines [33, 43], or to drastically shrink it by eliminating literal values [28]. Given the small
memory footprint of our algorithm, we are able to discover rules with commodity HW resources
without dropping the literals, which are crucial for obtaining meaningful rules. While RuDiK
works with a target predicate at a time, we can use it to discover rules on the entire KG by using

61

https://github.com/ppapotti/Rudik
https://github.com/ppapotti/Rudik

Chapter 4. Mining Expressive Rules in Knowledge Graphs

each predicate as input. Next results are discussed for subsets of predicates since the manual
annotation of the computed new facts and errors is an expensive process. However, when RuDiK
is executed on all the predicates of a KG, results are consistent in terms of size of the output and
execution times. For example, for roughly 600 predicates in DBPEDIA, we mined about 3000
positive rules, with at most 26 rules per predicate, and 4000 negative rules, with at most 32 rules
per predicate.

Table 4.2 – RuDiK Rule Precision.
Positive Rules Negative Rules

KG Avg Exec. Avg Precision Predicates # Avg Exec. # Detected Avg Precision #
Time with Rules (All) Labels Time Errors All Predicates Labels

DBPEDIA 35min 97.14% (63.99%) 139 19min 499 92.38% 84
YAGO 3 59min 84.44% (62.86%) 150 10min 2,237 90.61% 90

WIKIDATA 141min 98.95% (73.33%) 180 65min 1,776 73.99% 105

Positive Rules. We evaluate the precision for the discovered positive rules on the top 5
predicates for each KG. The number of new triples varies significantly across rules. To avoid the
overall precision to be dominated by rules with big output, we first compute the precision for
each rule, and then average values over all discovered rules. Table 4.2 shows precision values,
along with average running time (per predicate), and the number of manually annotated facts.
We distinguish predicates for which there existed at least one meaningful rule (in bold), and all
predicates.

For predicates such as academicAdvisor, child, and spouse, the output rules show a
precision above 95% in all KGs. However, when we consider other predicates, average values are
brought down by few cases, such as founder, where valid positive rules probably do not exist
at all. When a valid rule existed, the system was able to find it, but it did not recognize all cases
where no positive rules existed. In our experience, it was sufficient to read the rules to identify
semantically incorrect rules. Also, results show that the more accurate is the KG, the better is the
quality of the positive rules. WIKIDATA contains few errors, since it is manually curated, while
DBPEDIA and YAGO are automatically generated by information extractors, hence their quality
is lower.

The size of the KG and the target predicate at hand have impact on the run time. The more
the connections of a node (KG element), the more paths we traverse in the graph. Some elements
have a large number of incoming edges, e.g., entity “China” in WIKIDATA has more than 600K.
When the generation set includes such popular elements, the traversal of the graph becomes
slower. Parameter maxPathLen also has a big impact on the run time

Negative Rules. Negative rules are evaluated as the percentage of actual incorrect triples over
all discovered triples. Table 4.2 reports, for every KG, the total number of potential erroneous
facts discovered with the output rules, whereas the precision is given as the percentage of actual
errors among all the triples identified as possibly incorrect.

Generic negative rules have better accuracy than positive ones when averaging all predicates,
as there are more in reality. While the quality of the rules is good, especially on the noisy KGs, we
also discover rules that are supported by the vast majority of the data but do not hold semantically.

As an example, RuDiK identifies the rule that two people cannot be married if they have the
same gender both in YAGO and WIKIDATA. Such rule has a precision of 94% in YAGO and of

62

Chapter 4. Mining Expressive Rules in Knowledge Graphs

57% in WIKIDATA.
Literals’ role is bigger in negative rules, compared to the positive case. In fact, several valid

negative rules rely on temporal aspects where something cannot take place before/after something
else. Temporal data is usually encoded through dates and years literal values.

Mining negative rules is usually faster than mining positive ones because of the different
nature of the examples covered by validation queries. Whenever we identify a potentially valid
rule, we translate its body to a SPARQL query against the KG in order to obtain its coverage over
V . Such queries are faster for the negative case because V has only entities connected by one
predicate, whereas this is not the case in the mining of positive rules.

Table 4.3 – Sample of Discovered Rules from DBPEDIA.

Generic Rules
e1 : foundedBy(v0,y)∧foundedBy(v0,v1)∧foundedBy(x,v1)⇒ foundedBy(x,y)
e2 : birthDate(y,v0)∧ v0 > v1∧foundingYear(x,v1)∧ foundedBy(x,y)⇒⊥
e3 : parent(v0,x)∧parent(v0,y)⇒ spouse(x,y)
e4 : spouse(y,v0)∧parent(x,v0)∧ spouse(x,y)⇒⊥

Conditional Rules from Type Grouping
e5 : foundedBy(x,v0)∧associatedBand(v0,v1)∧associatedBand(y,v1)∧type(x,Company)∧

type(y,Artist)⇒ foundedBy(x,y)
e6 : parentCompany(y,v0)∧owningCompany(v0,v1)∧owningCompany(x,v1)∧type(x,Company)∧

type(y,Organisation)∧ foundedBy(x,y)⇒⊥
e7 : parent(v0,x)∧parent(v0,y)∧type(x,BritishRoyalty)∧type(y,Royalty)⇒ spouse(x,y)
e8 : party(y,v0)∧party(x,v1)∧ v0 6= v1∧type(x,Politician)∧type(y,OfficeHolder)∧

spouse(x,y)⇒⊥

Conditional Rules from Entity Clustering and Type Grouping
e9 : occupation(y,v0)∧occupation(v1,v0)∧foundedBy(x,v1)∧type(x,Organisation)∧

type(y,Artist)⇒ foundedBy(x,y)
e10 : foundingYear(x,v0)∧ v0 < v1∧foundingYear(y,v1)∧type(y,Organisation)∧

type(x,Organisation)∧ foundedBy(x,y)⇒⊥
e11 : parent(v0,x)∧parent(v0,y)∧type(x,Royalty)∧type(y,Royalty)⇒ spouse(x,y)
e12 : activeYearStartYear(x,v0)∧ v0 > v1∧deathDate(y,v1)∧type(x,Artist)∧

type(y,Person)∧ spouse(x,y)⇒⊥

4.7.2 Conditional Rules

We now compare the results for the discovery of generic rules with the RuDiK, the conditional
rules coming from the type group analysis, and the conditional rules coming from clustering with
embeddings followed by type grouping. The experiment has been executed on the full DBPEDIA

for the 6 largest clusters obtained with TransE [86], we then kept the type groups with at least 20
subject (object) elements.

From the rules reported in Table 4.3, it is easy to see that mining with grouping leads to
meaningful rules for a subset of the entities. For example, a positive one stating that two artists in
the same band are likely to be its co-founders (e5), or the negative rule stating that two politicians

63

Chapter 4. Mining Expressive Rules in Knowledge Graphs

in different parties are unlikely to be married (e8). Similarly for the rules coming from clustering
and grouping, where rules for artists are identified both for spouse and foundedBy (e9, e12).
It is interesting to see that different pre-processing algorithms lead to different sets of rules. As
there is no clear winner, we argue that all methods should be executed to get the richest possible
set of rules. It also can be seen that as in conditional rules we use selected predicates to choose
the candidate types for subjects and objects, the generated rules are dependent on the selected
predicates. E.g. for foundedBy predicate, Organisation and Company are among the chosen types
while for spouse, entities have types such as Artist and Royalty.

Evaluating the Quality of Conditional Rules

We evaluate the quality of conditional rules versus generic rules by comparing the outcome of the
rules for two DBPEDIA predicates: spouse and foundedBy. For each predicate, we consider
both positive and negative rules. Evaluation of the quality of rules is based on three different
metrics: number of rules extracted, average of manually estimated precision for the rules, and
average number of triples in the output of the rules. For computing the estimated precision of
a given rule r, we randomly choose 20 triples from DBPEDIA that satisfy r and then check to
see how many of those triples are true (or errors in the case r is a negative rule). The estimated
precision is the number of correct instances divided by 20.

Table 4.4 – Comparison between conditional and generic rules.

Conditional Rules Generic Rules
Predicate #Rules Avg Precision Avg #Triples #Rules Avg Precision Avg #Triples
spouse 25 81.79% 2,785 4 77.52% 57,314

negSpouse 78 99.70% 4,977 13 98.51% 13,602
foundedBy 22 57.00% 902 5 38.01% 15,071

negFoundedBy 31 95.83% 786 6 95.77% 13,146

From the results reported in Table 4.4, it is clear that we identify a larger number of rules with
our proposed extension for a given predicate. For grouping and clustering rules, the precision
is higher than generic ones, but their scope is obviously lower. For all predicates, except
negFoundedBy, the precision of conditional rules is higher. As expected, an absolute average
precision improvement of 6.1% comes at the cost of a lower number of triples in the output, e.g.,
70K vs 229K for spouse.

4.8 Summary

In this chapter, we first described RuDiK, a rule mining system that discovers generic rules
from noisy and incomplete KGs, and then extended it with a conditional declarative rule mining
component. The system discovers both positive rules, which suggest new potential facts for
the KG, and negative rules, which identify inconsistent triples. Negative rules not only identify
potential errors in KGs, but also generate representative training data for ML algorithms. We
also presented a method for extracting conditional rules in KGs and our experiments showed
that this technique is able to generate more rules in compare to the generic technique. It is also

64

Chapter 4. Mining Expressive Rules in Knowledge Graphs

showed that conditional rules are more precise than generic rules and they cover a smaller subset
of triples.

65

Chapter 4. Mining Expressive Rules in Knowledge Graphs

66

Chapter 5

A Public Corpus of Rules

In this chapter, we introduce Rulehub, an open corpus for collecting and annotating rules extracted
from different knowledge graphs. Our focus is to manage a large number of rules, by computing
an estimate of their quality and enabling their review, storing, and querying. In building the
corpus, we collected rules from many mining algorithms, but most of the rules come from
AMIE [28] and RuDiK [79]. In Section 5.2, we utilize two methods for extracting logical rules
from Wikidata. First, we collect a group of logical rules using the method presented in Chapter 4,
and then propose translation, as an alternative to direct mining, in order to map rules mined from
DBpedia into Wikidata. In Section 5.3, we use soft logical rules to teach PLMs to reason over
natural language. Finally, we conclude the chapter in Section 5.4.

5.1 Rulehub

Entities across several KGs have been aligned to create the public web of linked open data,
contributing to the creation of a larger graph [155]. Public and institutional KGs fuel several
applications, including semantic search, personal assistants, and question answering in general [54,
156].

One of the great benefits of a structured dataset is that it is possible to define dependencies
over it. KG dependencies (or logical rules) are used for identifying errors [79], adding new
facts [28], executing queries faster [157], and reasoning for many tasks, such as explaining
decisions in fact-checking [52]. Unfortunately, KGs do not come with a set of logical rules. In
fact, manually crafting such rules is an expensive, human-intensive task. To support the definition
of rules, several methods have been proposed. The literature for rule mining goes back to classic
work on inductive logic programming and several methods have been recently proposed to mine
large KGs [28, 79, 144, 148, 158]. This stream of works enables the mining of rules for any KG,
thus limiting the user effort to the selection and the refinement of such rules. Users select valid
rules from the many (possible thousands) discovered by a system and manually refine the ones
that need changes in their conditions to be more general or more precise. Once a good set of
semantically valid rules has been identified, they are usually annotated with a measure of their
quality, such as a confidence of the rule applicability. This is necessary, as there are very few
rules that are true for each and every case. As an example, consider a rule stating that “a country
has always one capital”. This is true for most countries, but there are 15 countries that have two

67

Chapter 5. A Public Corpus of Rules

Figure 5.1 – Architecture of RuleHub.

or more capitals. Therefore the rule would have a very high confidence, but we cannot state that
it is certain.

Collecting a set of high quality and well described rules is therefore an essential exercise
conducted by users of KGs to improve the performance of their applications. While mining tools
help in this task, there is still a lot of manual work in selecting good rules, refining them, and
annotating them with their metadata. Given that several KGs are public and are used by thousands
of researchers and practitioners around the world, a lot of human work on rule discovery is
redundant and is not taking any benefit from this critical mass of users. We argue that rule
discovery and managing should be a collective task, where we can capitalize our understanding
of the data and avoid redundant work in collecting, refining, and annotating rules.

To support a collective rule discovery effort, we introduce RuleHub, a system that exposes
in a website an extensible corpus of rules for public KGs (http://rudik.eurecom.fr).
RuleHub is designed with rule mining tools as the principal source of rules in mind, as depicted in
Figure 5.1. Users can query or browse the repository of rules, based on the KG and the predicate
of interest. Moreover, they can manually specify and add new rules or update existing ones by
providing more metadata, such as the confidence of a rule. We believe confidence is crucial for
rules, as very few rules are completely correct or wrong in general. For this reason, we also
provide a module that computes the confidence for a given rule over a KG. Rules for any KG and
of any kind can be handled by the system. In this chapter, we report our experience in building
RuleHub and populating it with rules discovered by existing rule mining systems. We believe
RuleHub can be an enabler for a much needed collaborative work in defining metadata for public
KGs.

5.1.1 Rule Confidence

We now discuss the computation of the confidence for positive and negative rules. We start with
the notion of confidence of a positive rule from the literature [28] and extend it to negative rules.

The support of a rule is defined as the number of distinct pair of subjects and objects in the
head of all instantiations of the rule that appear in the KG:

supp(~B→ r(x,y)) := #(x,y) : ∃z1, ...,zn : ~B∧ r(x,y) (5.1)

where z1, ...,zn are the non target variables.
We remark that the support makes use of the non target variables, but count only the number of

distinct pairs for the head values. Consider the rule “if two persons have a child in common, they
are in the spouse relation” (hasChild(x,v0)∧ hasChild(y,v0)→ spouse(x,y)) and the Obama
family. Assume Barack Obama, Michelle Obama, and their two children are in the KG with
the correct Spouse and Child triples to represent their relationships. The support would count

68

http://rudik.eurecom.fr

Chapter 5. A Public Corpus of Rules

this family as one occurrence. While it uses the non target variables (referring to the child), the
measure does not count this family twice, despite the rule can be instantiated twice (once for
child). This design choice takes care of possible skew in the data, making sure that a rule does
not get assigned a very high support when it applies for only one (distinct) pair of head entities.

The counter-support of a rule quantifies the number of false predictions over the existing KG.
A challenge to compute this number is that KGs do not provide negative evidence, but we want
to claim a mistake only if we have some evidence to support the case. To address this issue, we
rely on Local Closed World Assumption. This assumption states that if we know one y (resp.
x) for a given x (resp. y) and r, then we know all y (resp. x) for that x (resp. y) and r. This is
widely used in practice and has proven to be an effective heuristic to overcome incompleteness of
KGs [14, 28, 79]. Assume a rule concludes that P(x1,y1) should exist. If this is the only triple
involving P, x1, and y1, then we do not count it neither as supporting or not supporting. But if
there is already a triple such as P(x1,y2) in the KG, then we count this a counter support. This
allows us to exploit counter-evidences less restrictively than the assumption ‘all facts that are not
in KG are false’.

counter_supp(~B→ r(x,y)) := #(x,y) : ∃z1, ...,zn,r(x,y′)∨ r(x′,y) : ~B∧¬r(x,y) (5.2)

For example, a rule predicts that “Luke” and ”Mary” are married, this triple is not in the KG, but
“Luke" is already reported as married to someone else in the KG. To take into account both true
and false predictions for a rule, we introduce confidence scores for positive and negative rules.

Positive Rules. Considering a positive rule ~B→ r(x,y) for relation r(x,y). We define its confi-
dence score as following:

con f (~B→ r(x,y)) :=
supp(~B→ r(x,y))

supp(~B→ r(x,y))+ counter_supp(~B→ r(x,y))
(5.3)

This formula normalizes the support by number of pairs (x,y) satisfying the
condition that there exists r(x′,y) or r(x,y′). As an example, consider the rule
hasDependant(a,b)→ hasChild(a,b) with the following triples hasDependant(Laure,Mark),
hasDependant(Laure,Mary), hasDependant(Laure,Anne), hasChild(Laure,Mary),
hasChild(Laure,Anne), in other words, one person has three dependants and two of
them are her children. Assume we also have two more triples for another person:
hasDependant(Gary,Rose),hasChild(Gary,Mark). The confidence for this rule would
be 0.5. In fact, support would be 2, coming from (Laure,Mary) and (Laure,Anne), and counter
support would also be 2, coming from (Laure,Mark) and (Gary,Rose). The confidence value
reflects the reality: being a dependant of someone does not imply that there is a child relationship,
but it can happen. How often it happens in the given KG determines the support for the rule in
that context, e.g., it may be different in Europe and USA because of legal or cultural reasons.

Negative Rules. Consider a negative rule ~B′ → ¬r(x,y) for relation r(x,y). We define its
confidence score as following:

con f (~B′→¬r(x,y)) :=
counter_supp(~B′→ r(x,y))

counter_supp(~B′→ r(x,y))+ supp(~B′→ r(x,y))
(5.4)

69

Chapter 5. A Public Corpus of Rules

Intuitively, by definition, the support (resp. counter-support) of negative rule ~B′→¬r(x,y)
is indeed the counter-support (resp. support) of corresponding positive rule ~B′→ r(x,y). As
an example, consider the rule spouse(a,b)→¬hasChild(a,b) and triples spouse(Laure,Mark),
hasChild(Laure,Anne), spouse(Gary,Rose), and hasChild(Gary,Micheal). The confidence for
this rule would be 1. In fact, counter support would be 2, coming from (Laure,Mark) and
(Gary,Rose), and support would be 0. If we add one case such as spouse(Paul,Ron) without chil-
dren, the confidence does not change. If we add spouse(Mary,George),hasChild(Mary,George),
then the support would become 1 and the confidence would drop to 0.67.

Issues in Confidence Measures. In negative rules, support evidences are dominating, but
counter-evidences are more important. For example, consider the negative rule:

r1 : birthPlace(x,v0)∧ country(v1,v0)∧ child(y,v1)→¬spouse(x,y)

Due to the presence of the intermediate atom country(v1,v0) and the common atom
birthPlace(x,v0), we can generate a large number of support examples for spouse. Mean-
while, the counter-support of this rule is always lower than the total number of facts spouse in
KG. If formula (5.4) is used to evaluate the rule, we obtain a very high confidence score (≈ 1.0),
which is misleading because the number of supporting examples is way higher then negative
ones.

With the same computation, a rule child(x,y)→¬spouse(x,y) gets a confidence score of
0.96. From these scores, the two rules seem to be of comparable quality, but intuitively rule
child(x,y)→¬spouse(x,y) can cover a much larger number of facts and its confidence score
should be higher. Here, considering the body of the rule, spouse(x,y) is false. Therefore, its
score should be much higher than rule r1.

The explanation is that the support #(x,y) for rule r1 is very large, but because of the Cartesian
product, #x can dominate #y or vice versa. This undesired property overestimates the support
and thereby underestimates the counter-support of a rule. To avoid this issues we define a new
support for negative rules by using the minimum number of facts satisfying the head predicate,
denoted as min_supp:

min_supp(~B→¬r(x,y)) := min(#x,#y) : ∃z1, ...,zn,r(x,y′)∨ r(x′,y) : ~B∧¬r(x,y) (5.5)

Which returns the smaller across the numbers of occurrences for variables x and y in the KG that
already satisfy the predicate. Now, (5.4) becomes:

con f (~B′→¬r(x,y)) :=
min_supp(~B′→¬r(x,y))

min_supp(~B′→¬r(x,y))+ counter_supp(~B′→¬r(x,y))
(5.6)

Here we re-write the support of the corresponding positive rule (second term of the denomi-
nator) as counter_supp for better clarification, but essentially counter_supp(~B′→¬r(x,y)) =
supp(~B′→ r(x,y)).

As an example, consider three more rules: r2 : parent(x,y) → ¬spouse(x,y);r3 :
relative(x,y)→¬spouse(x,y);r4 : occupation(x,v0)∧occupation(y,v0)→¬spouse(x,y).

Consider in Table. 5.1 the computed values for min_supp, counter_support and confidence
score computed from Equation (5.6) for r2,r3,r4. Although there are significant differences in

70

Chapter 5. A Public Corpus of Rules

Rule min_supp counter_supp Conf. Score Equation (5.6) Conf. Score Equation (5.7)
r2 8174 43 0.995 0.881
r3 1859 123 0.938 0.375
r4 11792 1757 0.870 0.211

Table 5.1 – Support, Counter_Support, Confidence Scores for r2, r3, r4

term of min_support and counter support among the rules, they still get very high confidence
score. In common sense, r2 is better than r3, and r4 is not a useful rule. But their min_support
values are still large enough to hide the differences in the counter support and lead to an
overestimate of the confidence. In other words, the ratio of counter_supp : min_supp of the three
rules are 0.005, 0.066, 0.150, respectively, but is not reflected in the values for (5.6). We argue
that counter-evidence is more important in measuring the quality of negative rules, so it is critical
to make it contribute more to the confidence computation. A reasonable way to achieve this is to
make the counter-evidence comparable in values to the support evidences. We achieve this by
multiplying the counter_supp by a factor κ , as follows:

con f (~B′→¬r(x,y)) :=
min_supp(~B′→¬r(x,y))

min_supp(~B′→¬r(x,y))+κ ∗ counter_supp(~B′→¬r(x,y))
(5.7)

How to set κ depends on how rare are errors. This is modeled by the actual percentage of
errors in the KG at hand. We assume that we are given (or can estimate) the ε error rate of the
KG, i.e., the ratio of erroneous triples over all triples. We set κ to 1

ε
. KGs with very low error

rate will get higher values for κ to preserve the counter_supp : min_supp ratio in the original
confidence computation formula. Yago reports an estimated accuracy of 95% [5] and other papers
report higher estimated values [79]; we experimentally found that an estimate accuracy of 96%
works better for our confidence computation. Given accuracy of 96%, an ε equals to 0.04 implies
κ = 25.

Using Equation (5.7), new confidence scores of r2,r3,r4 are re-calculated in the last column
of Tab. 5.1. The new confidence values match our intuitions about the rules.

5.1.2 A Corpus of Rules

There are different algorithms to discover rules over KGs, as a consequence there are many rules
that can be generated from different experiments over time. With the aim to store and share
discovered rules as well as to expose them with metadata, such as the confidence discussed in
Section 5.1.1, we have built a website with an initial corpus of more than 8000 mined rules
(http://rudik.eurecom.fr). Besides basic information about the rule itself, we expose
different kinds of confidence score: computed confidence, which is calculated automatically,
while human evaluation and human confidence are evaluated manually. Our web portal allows
users to easily search for rules, add new rules, and export them in different formats. Our long term
vision is to have users contributing by opening the database to users for editing as in Wikidata.
For now the system has an admin validation panel, where rules submitted by users get reviewed
before being added to the corpus. In this section, we describe the information in the corpus and
how to use it.

71

http://rudik.eurecom.fr

Chapter 5. A Public Corpus of Rules

Human measures

We start presenting our two measures of quality for the rules based on human judgment.
Quality evaluation. The first one is the quality evaluation, a subjective assessment about the
rule semantic correctness, i.e., a score of their logical meaning expressed by a human. In this
measure, a user expresses a subjective assessment of the quality of a rule by reading the rule in its
logical form. For example, the rule spouse(a,b)→ spouse(b,a) can be judged as clearly correct.
We define five levels of accurateness as following:

Level 1: Good rules, the precision is more than 80 percent.

Level 2: Acceptable rules, the precision is around 60 - 80 percent.

Level 3: Neutral rules, the precision is around 40 - 60 percent.

Level 4: Rules make sense only in certain contexts, the precision is around 20 - 40 percent.

Level 5: Illogical rules, not recommended for use.

Because each individual has her own evaluation for this score, we allow different users to
express their assessment in our system.

Human confidence. The second score is the human confidence. This score is calculated manually
based on the examination of the triples resulting from the application of a given rule. For each
rule, we apply it on the KG and randomly pick 20 instances from such output. Every instance in
this sample is manually validated according to external resources, such as the Web, and human
assessment.

Evaluation process:

1. Given a rule, we apply it over the KG and randomly select from the results 20 instances
as a sample for human confidence computation. Even though increasing the number
of instances could enhance the accuracy of the evaluation, our experiments in Section
5.1.3 show that, even with 20 instances, there is a high correlation between the manually
computed confidence and the confidence computed by the proposed measures.

2. Three different annotators manually check instances and conflicts are resolved with a
majority voting strategy. Instances are generated randomly and will be different for each
annotator. For each positive rule, an instance is labeled as 1 if it is true, 0 otherwise. For
each negative rule, an instance is labeled as 1 if it is erroneous, 0 otherwise.

3. From the result of the labeling process, the human confidence of a rule is then computed as
the ratio of the number of labels 1 out of all items in the sample.

Even if computed on a sample, the second score is more objective than the human assessment
and we use it as our reference to evaluate the quality of the confidence computed with the
measures discussed in Section 5.1.1.

Rule information. Each rule is stored as a JSON (JavaScript Object Notation [159]) file in a
MongoDB instance with metadata about its provenance, support, and manual evaluation results.

72

Chapter 5. A Public Corpus of Rules

• id: the rule internal identifier.

• knowledge_graph: the knowledge graph in which the rule is valid.

• rule_type: true or false corresponds to positive or negative rule.

• predicate: the target predicate.

• premise: the rule body.

• hashcode: it is computed from the predicate and rule premise, it is used to check uniqueness
of rules in the system.

• human_confidence: indicates the human confidence.

• computed_confidence: indicates the support score.

• source: indicates the rule’s origin. Rule can be added by users or obtained from a discovery
system.

• configuration: configuration of the mining system that found the rule.

• quality_evaluation: subjective human evaluation.

The last three fields can have multiple occurrences for the same rule.

Rule forms. Besides exploring rules in our web portal directly, we also provide rules in different
formats which can be easily consumed by other systems.

• JSON is a popular light-weight format designed for easy parsing.

• SPARQL is an RDF query language. SPARQL queries return rule output from the KG [160].

5.1.3 Experiments

In this section, we evaluate our confidence measures and report on the lessons learned in annotat-
ing rules. We group our evaluations into four parts: (i) showing the accuracy of our confidence
measures by comparing them with the human computed confidences (see Section 5.1.2). (ii) dis-
cussing the effect of the κ parameter on the results. (iii) evaluating the performance of the
proposed measure by reporting its execution time. (iv) measuring the impact of missing values
and errors in the computation of confidence.

For this experiment, we focus on rules for two popular KGs: DBpedia [4] and Yago [5].
DBpedia is a KG derived from Wikipedia, we used version “2016-04". Yago is an open source
KG with information from Wikipedia, Wordnet, and GeoNames1; we used Yago3.

We mined rules with rule learning systems and then chose a subset of predicates for the
evaluation. Predicates were chosen based on two considerations: (1) it had at least five positive
and negative rules in the corpus; (2) the computed confidences for its rules cover a wide range of
values. Considering these constraints, we selected seven DBpedia predicates (spouse, foundedBy,

1https://www.geonames.org

73

https://www.geonames.org

Chapter 5. A Public Corpus of Rules

Figure 5.2 – Confidence results for DBpedia predicate spouse.

Figure 5.3 – Confidence results for DBpedia predicate foundedBy.

relative, founder, publisher, employer and influencedBy) and two Yago predicates (isMarriedTo
and hasChild) for manual annotation. For both KGs, we use their online endpoint to have the
latest version available. The annotators of the triples are authors of [49], therefore familiar
with the process and considered experts. They checked triples independently and, given that we
conducted the evaluation over general purpose KGs, they have been able to use internet resources
(e.g., Wikipedia) to verify the validity of the randomly selected claims.

Accuracy of Confidence Measures

Figure 5.2 reports the confidence values for 20 rules for the spouse predicate in DBpedia. We
divided positive and negative rules in two plots and report for every rule both the confidence
computed by our method and the human confidence. Each point on the x-axis represents an
individual rule with its id, and the two bar charts associated with a rule show the confidence
measure computed either manually and automatically. The mean error is 8.4% for positive rules
and 10.4% for negative. Similarly, we report results for 24 rules for the predicate foundedBy in
Figure 5.3, with 5.4% mean error for positive and 11.2% for negative rules. Both figures show
a highly correlation between the manually computed confidence and the confidence computed
by the proposed measures. What is most important for us is that the quality of the computed
confidence for negative rules is close to the traditional computed confidence for positive ones,
despite computing the quality of negative rules from data is harder.

74

Chapter 5. A Public Corpus of Rules

Figure 5.4 – Average computed and human confidence over rules for all predicates.

Figure 5.4 reports the computed and human confidences for all the rules over the nine
predicates (DBpedia spouse, foundedBy, relative, founder, publisher, employer, influencedBy;
Yago isMarriedTo and hasChild). We grouped rules by their human confidence and for each
group we report a point. The horizontal (x) axis is the human confidence and the vertical (y) axis
represents the average of the computed confidence for that group of rules. The trend-lines show
the similar trends for computed and human confidences, with only 7.8% mean errors for positive
rules and 9.0% for negatives. The aggregates results confirm the effectiveness of our measure for
computing confidence. More experimental results are reported in Appendix B.

(a) (b)

Figure 5.5 – (a) Confidence for different values of κ . (b) Avg execution times for computing
confidence.

Effect of the κ Parameter

In previous experiments, we used κ = 25. To show the effect of this parameter, we report results
for executions with different κ values (10,25,50,100) for 25 negative rules over 7 predicates (We
report the rules in Table B.1 in the Appendix). Figure 5.5a reports the results with the rules in
increasing order of human confidence. The plot shows that the computed confidence for κ = 25
is the closest to the human confidence. By looking in more detail at rules 4, 15, and 17, we can

75

Chapter 5. A Public Corpus of Rules

explain the significant difference between human confidence and computed confidence. Rule 4
is a clearly incorrect rule (almaMater(ob ject,v0)∧ country(v0,v1)∧birthPlace(sub ject,v1)∧
relative(sub ject,ob ject)→⊥) and this is correctly reflected by its computed confidence (0.02).
However, due to the sampling process on 20 triples, two spurious correct triples lead to an
estimated human confidence of 0.1. Although rules 15 and 17 seem to be true, they have 30
and 11 counter_support triples in DBpedia, respectively. Some of these counter_supports are
exceptions for the rule and the rest are errors. For example, rule 15 states that a person cannot
be in a spouse relation with his parent’s spouse. There are 30 counter_supports for this rule in
DBpedia and by checking them we saw that 22 of them are errors and other 8 counter_support
triples are exceptions for the rule, such as ancient monarchs and fictional characters. Considering
the importance of counter_support in formula 5.7, these numbers reduce the confidence for these
rules.

Computed Confidence Execution Time

We report the execution times of our method in computing the confidence measure. We computed
confidence values for 199 positive and 307 negative rules for 4 DBpedia predicates and 36
positive and 40 negative rules for 6 Yago predicates. As reported in Figure 5.5b, average
execution times are within seconds in both KGs despite we are using web APIs and more than
90% of the time goes in collecting responses. Execution times between the two KGs are not
comparable as their endpoints are on different servers, they have different sizes in terms of
predicates and triples, and different numbers of rules.

Impact of Quality Issues on Computing Confidence

Two main issues affect the quality of data in KGs: i) factual mistakes, such as incorrect or
outdated data, and ii) incompleteness. In this experiment, we study the impact of data issues on
the performance of the proposed confidence measure for negative rules. For this task, for rules we
used in Section 5.1.3 (rules are reported in Table B.1), we manually identified factual mistakes
and missing facts in their counter support. We then computed the confidence and observed the
changes in the error rate w.r.t. the human confidence.

Factual mistakes are triples that are wrongly considered as counter support, as they are incorrect
or outdated. These triples should be removed to have a correct counter support set. For example,
some of the triples in the counter support of a rule (# 15) are entities in a child relation with
themselves. As another example, another rule (#19) states that a person cannot be in a spouse
relation with someone who died before she was born. This rule is logically correct but there are
13 real errors in the counter support for it in DBpedia.

Missing facts are triples that, based on KG relations, should be considered as counter sup-
port but because of incompleteness are not present in the KG. For example, for rule (#
10: spouse(v0,ob ject)∧ parent(sub ject,v0)∧ spouse(sub ject,ob ject)→ ⊥), we observe in
DBpedia: spouse(Kaumualii, Deborah_Kapule), with Kaumualii and Deborah_Kapule as-
signed to variables v0 and object, respectively; parent(Kealiiahonui, Kaumualii) (subject,v0);
and spouse(Deborah_Kapule, Kealiiahonui) (object,subject). The triple spouse(Kealiiahonui,
Deborah_Kapule) would be counter support to this rule, but it is not in the KG, despite the pres-

76

Chapter 5. A Public Corpus of Rules

ence of parent(Kealiiahonui, Kaumualii) and the fact that the rule spouse(a,b)→ spouse(b,a)
is always true. We therefore count spouse(Kealiiahonui, Deborah_Kapule) as a missing fact for
this rule.

Rule Hum. Conf. C_S 1 MF IF C_S 2 Conf. 1 Conf. 2 Conf. MF Conf. IF
1 0 56 15 0 71 0.05 0.04 0.4 0.05
2 0.05 477 89 0 566 0.04 0.03 0.03 0.04
3 0.07 15 4 0 19 0.16 0.13 0.13 0.16
4 0.1 107 59 0 166 0.02 0.01 0.01 0.02
5 0.1 44 0 0 44 0.13 0.13 0.13 0.13
6 0.1 51 90 0 141 0.23 0.10 0.10 0.23
7 0.2 1 1 0 2 0.26 0.15 0.15 0.26
8 0.25 20 9 0 29 0.20 0.15 0.15 0.20
9 0.3 306 220 0 526 0.39 0.27 0.27 0.39

10 0.85 32 9 0 41 0.86 0.83 0.83 0.86
11 0.85 1 0 0 1 0.87 0.87 0.87 0.87
12 0.9 25 0 0 25 0.88 0.88 0.88 0.88
13 0.9 1 0 0 1 0.94 0.94 0.94 0.94
14 0.9 15 6 0 21 0.95 0.93 0.93 0.95
15 0.95 30 0 22 8 0.88 0.96 0.88 0.96
16 0.95 4 5 0 9 0.97 0.94 0.94 0.97
17 1 11 0 0 11 0.80 0.80 0.80 0.80
18 1 7 1 0 8 0.97 0.96 0.96 0.97
19 1 13 1 13 0 0.98 1 0.98 1
20 1 0 0 0 0 1 1 1 1
21 1 0 0 0 0 1 1 1 1
22 1 0 0 0 0 1 1 1 1
23 1 0 0 0 0 1 1 1 1
24 1 0 0 0 0 1 1 1 1
25 1 1 0 1 0 1 1 1 1

Table 5.2 – Negative rules information: rule #, human confidence obtained from triple annotation
(Hum. Conf.), number of missing facts (MF) and incorrect facts (IF), original (C_S 1) and updated
counter support (C_S 2), computed confidence before (Conf. 1) and after refining counter support
(Conf. 2), computed confidence by only adding missing facts (Conf. MF) and by only removing
incorrect facts (Conf. IF).

Adding missing facts and removing incorrect facts affect the counter supports of rules and
therefore changes the confidence measure value. For measuring this impact, for every negative
rule in this experiment (listed in Table B.1), we report in Table 5.2 its confidence before and after
refining their counter supports. We manually checked every rule to compute the new counter
support (newC_S) after adding missing facts (MF) and removing incorrect facts (IF). The original
confidence measure (Conf. 1) and the one obtained with the new counter support (Conf. 2) are
also reported. Identifying incorrect and missed counter supports for negative rules decreases the
average error rate of the computed confidence measure w.r.t. human confidence (Hum. Conf.,
obtained by annotating triples) from 4.3% to 3.3%.

We also report the updated confidence of every rule by only adding missing facts (Conf. MF)
and by only removing incorrect facts (Conf. IF). We added 509 missing facts, which affected 13
rules (every rule has 20.4 missed facts by average), and removed 36 mistakes, which affected 3

77

Chapter 5. A Public Corpus of Rules

rules (1.4 for each rule by average). By adding missing facts only to counter supports (Conf. MF),
we decrease the average error rate of the computed confidence measure w.r.t. human confidence
from 4.3% to 3.6%, while the average error rate Conf. IF is 4.0% by only removing mistakes.
We observe that adding missing facts has a bigger positive impact on the confidence computation.

Figure 5.6 – Computed confidence error rate w.r.t. human quality with and without manual
cleaning of the triples for different κ values.

The Effect of KG Cleaning on κ . As discussed in Section 5.1.1, the correct value of κ depends
on the accuracy of a KG. We report the effect on the confidence computation quality when
removing missing and incorrect facts with different κ values.

Results in Figure 5.6 show that cleaning counter supports has a positive impact on lower
κ values while it can increase error rate for high values. Even a small amount of cleaning
effectively decreases errors and incompleteness in KGs. As κ depends on KG accuracy, the
results consistently show that by increasing the accuracy, a lower value for κ (20) has the
minimum average error rate. Improvement can be observed for all values smaller than 25, while
larger values report worse results, thus confirming that the estimate of the error rate is too big and
a smaller κ value should be used.

Lessons Learned in Annotating Rules

One of the observations from our work is that evaluating rules is a non trivial task. In fact,
we advocate that, when possible, rules should be evaluated by looking and annotating the output
triples as true or false. Even with a small number of randomly sampled triples, the estimated
confidence is usually more reasonable than a human quality evaluation.

On the other hand, it is much faster to come up with a subjective measure of the quality of a
rule by looking at its logical form. This can be effective for some rules, but more difficult for
others. We conducted experiments on quality evaluation to find more evidence of the gap between
the two measures and to better understand what are the more complicated cases for annotators.

We recruited three graduate students, not involved in this work and not familiar with KGs.
We gave them the task to assign a quality evaluation score to 20 (positive and negative) rules.

78

Chapter 5. A Public Corpus of Rules

Figure 5.7 – Impact of number of rules atoms on quality evaluation annotations.

Each annotator assigned individually a score from 1 to 5 to every rule, where 5 is a completely
incorrect rule and 1 is a correct one (see Section 5.1.2).

Experimental results show a good correlation between the average of the quality evaluation
score from the non-expert annotators and the human confidence values based on triples annota-
tions. After a more detailed analysis of the results, the triple annotation based method is clearly
closer to the correct evaluation. In fact, quality evaluation scores are not always in agreement and
the Kendall’s tau-b correlation [161] score over the 20 rules is 0.49 as annotators had different
understanding of some of the non-trivial rules.

There are multiple factors that affect the understanding of a rule. An important feature of
rules is their type. In our experiments, quality evaluation annotators had a lower error rate in
evaluating positive rules (0.50) in comparison to negative ones (0.72). Another factor is the
number of atoms in the rule. Figure 5.7 shows that rules with a higher number of atoms seem to
be more difficult to evaluate. The low error rate in Figure 5.7 is explained by the fact that only
two rules have 7 atoms and both of them are positive.

5.2 Extracting Logical Rules from Wikidata

Wikidata is a knowledge base (KB) representing data with a large collections of interconnected
entities. Wikidata supports all kinds of applications and it is the structured data storage for its
Wikimedia sister projects.

A benefit of a KB is the ability to define constraints over it. Unfortunately, despite the positive
impact of users contributing to the coverage and the quality of Wikidata information, rich logical
rules are not part of this effort. Property constraints2 have been defined for over 8K items3, but
these are mostly syntactic checks defined over the value of a property, such as the fact that an
IMDb ID should follow a particular regular expression.

We are interested in soft (approximate) constraints expressed as dependencies (or logical
rules), such as the constraint that “a person cannot be born after one of her children”. Such rules
have proven to be useful for error detection [79], adding missing facts [84], executing queries
faster, and reasoning [52].

2https://www.wikidata.org/wiki/Wikidata:WikiProject_property_constraints
3https://w.wiki/YLS

79

https://www.wikidata.org/wiki/Wikidata:WikiProject_property_constraints
https://w.wiki/YLS

Chapter 5. A Public Corpus of Rules

Table 5.3 – Examples of rules mined on Wikidata. We report between square brackets the label
(e.g., spouse) for the Wikipedia item IDs (e.g., P26) to favor readability.

Rule C H Q

Po
si

tiv
e

P185[doctoralStudent](o,s)
→ P184[doctoralAdvisor](s,o)

1 1 1

P1196[mannerO f Death](s,Q171558[accident])
→ P509[causeO f Death](s,Q171558)

1 1 1

P22[f ather](o,s)→ P40[child](s,o) .99 1 1
P25[mother](o,s)→ P40(s,o) .99 1 1
P26[spouse](o,s)→ P26(s,o) .99 1 1

P40[child](s,v)∧P40(o,v)→ P26(s,o) .88 .9 1
P800[notableWork](o,s)→ P170[creator](s,o) .72 .7 1

N
eg

at
iv

e

P40(o,v)∧P25[mother](v,s)∧P40(s,o)→⊥ .94 1 1
P1038[relative](s,o)∧P40(s,o)→⊥ .93 1 1

P25(o,v0)∧P26(v1,v0)
∧P112[f oundedBy](s,v1)∧P112(s,o)→⊥

.89 1 3

P180[depicts](s,o)∧P170[creator](s,o)→⊥ .32 .2 3

Not only these rules are not stated in Wikidata, but, to the best of our understanding, a way to
express them as constraints is still to be defined in the repository. Moreover, even if primitives
get exposed to the users for this task, manually crafting such rules is difficult as it requires both
domain and technical expertise. Finally, once a set of semantically valid rules has been identified,
these are usually annotated with a measure of their quality, such as a confidence of the rule
applicability. This is necessary, as there are very few rules that are exact, i.e., true for each and
every case. As an example, consider a rule stating that “a country has always one capital”. This is
true for most countries, but there are 15 countries that have two or more capitals. Therefore, the
rule has a very high confidence, but it is not exact. Confidence not only is key to rank rules for
user validation and refinement, but it is also used in applications that rely on reasoning with soft
constraints.

Collecting a set of high quality rules is an essential but challenging task to curate Wikidata
and to improve the performance of the applications built on it. The goal of this Section is to
create a large collection of rules for Wikidata with their confidence measure. In this abstract, we
report on two directions we have been exploring to obtain such rules, our results, and how we
believe the Wikimedia community could benefit from this effort.

5.2.1 Searching Logical Rules

We first introduce logical rules and then describe two methods that we are evaluating for collecting
Wikidata rules. The first one is a data mining approach, while the second one is based on the idea
of translating rules from an existing corpus of DBpedia rules.

Logical Rules

We consider two kinds of rules. The first kind are positive rules, such as the first rule in Table 5.3,
which identify relationships between entities, e.g., “if someone is the doctoral student of a second

80

Chapter 5. A Public Corpus of Rules

Table 5.4 – Examples of DBpedia rules translated to Wikidata.

Rule C H Q
Po

si
tiv

e
P40[child](o,v)∧P25[mother](v,s)→ P40(s,o) .94 1 1

P1038[relative](o,s)→ P1038(s,o) .6 1 1
P144[basedOn](v0,o)∧P144(v0,v1)
∧P50[author](s,v1)→ P144(s,o)

.7 .75 2

P287[designedBy](s,v0)∧P287(v1,v0)
∧P408[so f twareEngine](v1,o)→ P408(s,o)

.4 .5 2

P166[awardReceived](s,v0)
∧P118[league](v1,v0)∧P166(v1,o)→ P166(s,o)

.25 .3 4

N
eg

at
iv

e

P569[dateBirth](s,v0)∧P570[dateDeath](o,v1)
∧> (v0,v1)∧P26(s,o)→⊥

1 1 1

P26[spouse](o,v)∧P26(s,v)∧P26(s,o)→⊥ .99 1 1
P185[doctoralStudent](s,o)∧P185(o,s)→⊥ .95 1 1

P144(s,o)∧P86[composer](s,o)→⊥ .95 1 2

person, then the second person is her advisor“, or “if two persons have a child in common, they
are in the spouse relation”. The second kind are negative rules, with ⊥ in the conclusion, which
identify data contradictions, e.g., “if two persons are in the relative relation, one cannot be the
spouse of the other”. A fact, or a contradiction, is derived from a rule if all the variables in the
premise of the rule can be replaced with constants from the KB.

Rule Mining

Several mining methods have been proposed to identify rules in large KBs [79, 84]. These
approaches are effective, but computationally expensive and leave to the user the selection and
the refinement of the mined rules. For this approach, we use a state of the art method for mining
declarative rules over RDF KBs [79].

We use a RDF dump of Wikidata, which has been stripped of metadata such as qualifiers and
references to other KBs.

We mined 80 positive and negative rules and report a sample in Table 5.3.

Translating DBpedia Rules

In this method, we convert the rules that have been mined over the DBpedia KB and are stored
in Rulehub. For every DBpedia rule, we translate its predicates into the equivalent Wikidata
properties. For example, property P184 in Wikidata corresponds to predicate DoctoralAdvisor in
DBpedia. We use the owl:equivalentProperty information to generate a mapping between the
two KBs for 59 properties. With this method, we obtained 241 Wikidata rules. A sample of these
rules is shown in Table 5.4.

5.2.2 Experiments

Our experiments show how we (i) verify that we obtain rules of good quality and (ii) estimate
effectively the confidence of the rules. For measuring rule confidence and quality, we use three

81

Chapter 5. A Public Corpus of Rules

Table 5.5 – Examples of rules with the # of missing (top) and incorrect (bottom) statements
detected by every rule in Wikidata.

Rule # stms

Po
si

t. P1038[relative](s,o)→ P1038(o,s) 13,690
P40[child](o,v0)∧P25[mother](v0,s)→ P40(s,o) 226

P185[doctoralStud.](o,s)→ P184[doctoralAdv.](s,o) 25
N

eg
at

. P569(s,v0)∧P570(o,v1)∧> (v0,v1)∧P26(s,o)→⊥ 689
P22[f ather](o,s)∧P40(s,o)→⊥ 41

P185(o,s)∧P185(s,o)→⊥ 17
P25(o,s)∧P40(s,o)→⊥ 6

0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Human Confidence

C
om

pu
te

d
C

on
f.

Mining Rewriting

Figure 5.8 – Human and computed confidence comparison.

metrics presented in 5.1.2: Computed Confidence, Human Confidence and Quality Evaluation
(Q).

Results

As reported in the examples in Tables 5.3 and 5.4, both methods identify rules with high confi-
dence. We report also examples of rules with lower confidence values to show that the computed
confidence correlates nicely with measures based on human annotation. We also report in Fig-
ure 5.8 the computed and human confidences for 40 rules over 18 properties. We grouped rules
by their human confidence (H) and for each group we report a point. The horizontal (x) axis is
the human confidence and the vertical (y) axis represents the average of the computed confidence
(C) for that group of rules. The plot shows similar correlations between computed and human
confidences for rules obtained with both methods.

Finally, we report in Table 5.5 the number of missing and incorrect statements (stms) identified
by a sample of exact positive and negative rules, respectively. For example, the first positive
rule identifies almost 14k statements when the rule is instantiated but the conclusion is not in the
KB. Similarly, the first negative identifies 689 statements in which the subject is in the spouse
relationship with an object who died before the subject was born.

5.3 Teaching soft rules to language models

Pre-trained language models (PLMs) based on transformers [110, 162] are established tools for
capturing both linguistic and factual knowledge [163, 164]. However, even the largest models
fail on basic reasoning tasks. If we consider common relations between entities, we see that

82

Chapter 5. A Public Corpus of Rules

Input facts:
Mike is the parent of Anne. Anne lives with Mark. Anne is the child of Laure. Anne lives with
Mike.
Input rules:
(r1, .1) Two persons living together are married.
(r2, .7) Persons with a common child are married.
(r3, .9) Someone cannot be married to his/her child.
(r4, 1) Every person is the parent of his/her child.

Test 1: Laure and Mike are married.
Answer: True with probability 0.7 [r4,r2]

Test 2: Anne and Mark are married.
Answer: False with probability 0.9 [r1]

Test 3: Anne and Mike are married.
Answer: False with probability 0.9 [r1,r3,r4]

Figure 5.9 – Examples of hypotheses that require reasoning using facts and possibly conflicting
soft rules (rule id and confidence shown in brackets).

such models are not aware of negation, inversion (e.g., parent-child), symmetry (e.g., spouse),
implication, and composition. While such relation properties are obvious to a human, they are
challenging to learn from text corpora as they go beyond linguistic and factual knowledge [165,
166].

We claim that such reasoning primitives can be transferred to the language models by
leveraging logical rules, such as those shown in Figure 5.9. In this section, we show how to reason
over soft logical rules with PLMs. We provide facts and rules expressed in natural language,
and we ask the PLM to come up with a logical conclusion for a hypothesis, together with the
probability for it being true. Our model can even reason over settings with conflicting evidence,
as shown in Test 3 in Figure 5.9. In the example, as Anne and Mike live together, they have a 0.1
probability of being married because of soft rule r1. However, we can derive from exact rule r4
that Anne is the child of Mike and therefore they cannot be married, according to soft rule r3.

To model uncertainty, we pick one flavor of probabilistic logic programming languages,
LPMLN, for reasoning with soft rules [167]. It assigns weights to stable models, similarly to
how Markov Logic assigns weights to models. However, our method is independent of the
logic programming approach at hand, and different models can be fine-tuned with different
programming solutions. Our proposal makes use of synthetic examples that “teach” the desired
formal behavior through fine-tuning. In particular, we express the uncertainty in the loss function
used for fine-tuning by explicitly mimicking the results for the same problem modeled with
LPMLN.

The data and the code for our experiments, as well as the resulting fine-tuned models are
available online at http://github.com/MhmdSaiid/RuleBert

83

http://github.com/MhmdSaiid/RuleBert

Chapter 5. A Public Corpus of Rules

5.3.1 Dataset Generation

Each example is a triple (context, hypothesis, confidence). Context is a combination of rule(s)
and generated facts, such as “If the first person is living together with the second person, then the
first person is the spouse of the second person.” and ‘‘Anne lives with Mike.” Hypothesis is the
statement to be assessed based on the context, e.g., “Laure is the spouse of Mike.” Confidence is
the probability that the hypothesis is valid given by the reasoner, e.g., 0.7. As we generate the
examples, we know the confidence for each hypothesis.

Given a rule, we generate examples of different hypotheses to expose the model to a variety
of contexts. Each example contains the context c and a hypothesis h with its probability of being
true as obtained for the (c,h) pair from the LPMLNreasoner. The intuition is that the examples
show the expected behavior of a formal reasoner for every combination of possible facts for a
given rule. This process is not about teaching the model specific facts to recall later, but teaching
it reasoning patterns.

Unlike previous work [168], our rules allow for multiple variables. This introduces additional
complexity as the examples must show how to deal with the symmetry of the predicate. For
example, the facts child(Alice,Bob) and child(Bob,Alice) are not equivalent, since child is a non-
symmetric predicate, while spouse(Alice,Bob) and spouse(Bob,Alice) are equivalent, as spouse
is symmetric. We assume that metadata about the symmetry and the types is available from the
KB for predicates in the rules. Given as input (i) a rule r, (ii) a desired number n of examples,
(iii) an integer m to indicate the maximum number of facts given as a context, and (iv) a pool of
values for each type involved in r’s predicate pools, Algorithm 8 outputs a dataset D of generated
examples.

We start at line 3 by generating facts, such as child(Eve,Bob), using the function GenFacts
(lines 15–18), which takes as input r, m, and the pools. A random integer less than m sets the
number of facts in the context. The generated facts F have predicates from the body of r, their
polarity (true or negated atom) is assigned randomly, and variables are instantiated with values
sampled from the pool (line 16). Facts are created randomly, as we are not interested in teaching
the model specific facts to recall later, but we are rather teaching it how to reason with different
combinations of rules and facts. We then ensure that the rule is triggered in every context,
eventually adding more facts to F with the function GetRuleFacts in line 17. After obtaining
F , we feed rule r along with facts F to the LPMLNreasoner, and we obtain a set O containing all
satisfied facts and rule conclusions (line 4).

We generate different hypotheses, where each one leads to an example in dataset D. For each
context, we add an example with different facts according to three dimensions. A fact can be
(i) for a predicate in the premise or in the conclusion of a rule, could be (ii) satisfied or unsatisfied
given the rule, and could have (iii) positive or negative polarity. This results in the generation of
eight different hypotheses.

The first hypothesis h1 is obtained by sampling a fact from the set F (line 5). We then produce
the counter hypothesis h2 by altering the fact (line 6) with the function Alter (lines 19-22). Given
a hypothesis p(s,o) (line 19), we return its negated form if p is symmetric (line 20). Otherwise, if
p is not symmetric, we produce a counter hypothesis either by negation (line 21), or by switching
the subject and the object in the triple as the predicate is not symmetric (line 22). We rely on a
dictionary to check whether a predicate is symmetric or not.

84

Chapter 5. A Public Corpus of Rules

Algorithm 8: Generate Synthetic Data
Input: rule r ; // child(a,b)→parent(b,a)

n ; // # of examples
m ; // max # of facts
pools ; // pools of names

Output: Generated Dataset D
1 D = {}, i = 1 ; // initialize

2 while i≤ ceiling(n/8) do
3 F = GenFacts(r,m, pools) ; // child(Eve,Bob),parent(Amy,Sam)

4 O = LPMLN(r,F) ; // reasoner output

5 h1 = f ∈ F ; // child(Eve,Bob)

6 h2 = Alter(f) ; // negchild(Eve,Bob)

7 h3 = r(F) ; // parent(Bob,Eve)

8 h4 = Alter(r(F)) ; // parent(Eve,Bob)

9 h5 = pos. fl /∈ F ; // child(Joe,Garry)

10 h6 = ¬h5 ; // negchild(Joe,Garry)

11 h7 = fr /∈ O ; // parent(Alice,Joe)

12 h8 = ¬h7 ; // negparent(Alice,Joe)
13 D.add(h1−8);
14 i← i+1;

15 Function GenFacts(r,m,pools):
16 F = GetRandomFacts(r, pools,m);
17 F.add(GetRuleFacts(r, pools));
18 return F

19 Function Alter(p(s,o)):
20 if p is symmetric then return ¬p(s,o) ;
21 if random()>0.5 then return ¬p(s,o) ;
22 else return p(o,s) ;

We then produce hypothesis h3 (line 7), which is the outcome of triggering rule r with the
facts added in line 17. The counter hypothesis h4 is generated by altering h3 (line 8). Moreover,
we generate hypothesis h5 by considering any unsatisfied positive fact outside F . Following
a closed-world assumption (CWA), we assume that positive triples are false if they cannot be
proven, meaning that their negation is true. We sample a fact fl from the set of all possible
positive facts that do not have the same predicate of the rule head (line 9). Thus, h5 will never be
in the output O of the reasoner, as it cannot be derived. We then produce h6 by negating h5 in line
10. We further derive h7 by sampling a fact fr that has the same predicate as that of the rule head,
but does not belong to the output of the reasoner O (line 11). For a positive (negative) rule, such
a fact is labelled as False (True). h7 is then negated to get the counter hypothesis h8 (line 12). All
are added to D (line 13), and the process is repeated until we reach n examples.

Finally, we automatically convert the examples to natural language using predefined templates
for the facts and the rules. A basic template for atom predicate p (type t1, type t2) is: “If the 1st t1
is p of the 2nd t2." (“If the first person is spouse of . . .").

For the single-rule scenario, we release a dataset generated for 161 rules with a total of 3.2M
examples, together with a partition of 80%:10%:10% split for training, validation, and testing.

85

Chapter 5. A Public Corpus of Rules

5.3.2 Teaching PLMs to Reason

Uncertainty stems from the rule confidence. One approach to teach how to estimate the probability
of a prediction is to treat each confidence value (or bucket of confidence values) as a class and to
model the problem as a k-way classification instance (or regression), but this is intractable when
multiple rules are considered. Instead, we keep the problem as a two-class one by altering how
the information is propagated in the model to incorporate uncertainty from the rule confidence.

Let D = {(xi,yi)}m
i=1 be our generated dataset, where xi is one example of the form (con-

text,hypothesis,confidence) and yi is a label indicating whether the hypothesis is validated or not
by the context (facts and rules in English), and m is the size of the training set. A classifier f is a
function that maps the input to one of the labels in the label space. Let h(x,y) be any classification
loss function. The empirical risk of the classifier f is defined as

Rh(f) = ED(h(x,y)) =−
1
m

m

∑
i=1

h(xi,yi)

We want to introduce uncertainty in our loss function, using the weights computed by the
LPMLNsolver as a proxy to represent the probability of predicting the hypothesis as being true.
To do so, we apply a revised empirical risk:

R′h(f) = ED(h(x,y)) =−
1
m

m

∑
i=1

(w(xi)∗h(xi,1)+(1−w(xi))∗h(xi,0))

where w(xi) is the probability of an example xi being True. We now state that each example is
considered as a combination both of a weighted positive example with a weight w(xi) provided
by the LPMLNsolver and a weighted negative example with a weight 1−w(xi).

When trained to minimize this risk, the model learns to assign the weights to each output class,
thus predicting the confidence for the true class when given the satisfied rule head as hypothesis.

5.3.3 Experiments

We first introduce the experimental setup (Section 5.3.3). We then evaluate the model on single
rules (Section 5.3.3). We also show that a PLM fine-tuned on soft rules, namely RULEBERT,
makes accurate prediction for unseen rules (Section 5.3.3).

Experimental Setup

Rules. We use a corpus of 161 soft rules mined from DBpedia. We chose a pool of distinct rules
with varying number of variables, number of predicates, rule conclusions, and confidences.
Reasoner. We use the official implementation4 of the LPMLNreasoner. We set the reasoner to
compute the exact probabilities for the triples.
PLM. We use the HuggingFace pre-trained RoBERTaLARGE [162] model as our base model,
as it is trained on more data compared to BERT [110], and is better at learning positional
embeddings [169]. We fine-tune the PLM5 with the weighted binary cross-entropy (wBCE) loss
from Section 5.3.2. More details can be found in Appendix D.2.

4http://github.com/azreasoners/lpmln
5Prompt has form: <s>context</s></s>hypothesis</s>.

86

http://github.com/azreasoners/lpmln

Chapter 5. A Public Corpus of Rules

RoBERTa-wBCE RoBERTa
Rule Conf. Acc. CA@k Acc. CA@k

.10 .01 .10 .01

birthYear(a,c) ∧ deathYear(b,d) ∧ >(c,d)→negspouse(a,b) .990 .995 .993 .993 .970 .490 .486
birthYear(b,d) ∧ foundYear(a,c) ∧ <(c,d)→negfounder(a,b) .990 .928 .927 .927 .908 .486 .456
spouse(c,a) ∧ parent(b,c)→ negspouse(a,b) .923 .974 .963 .747 .875 .491 .279
relative(a,c) ∧ spouse(b,c) ∧ child(b,a)→ relative(a,b) .860 .922 .844 .801 .866 .342 .146
parent(c,a) ∧ child(b,c)→ spouse(a,b) .825 .944 .828 .444 .842 .342 .146
publisher(c,b) ∧ subsequentWork(c,a)→ publisher(a,b) .721 .909 .834 .765 .905 .358 .219
successor(b,a)→ negspouse(a,b) .718 .972 .896 .693 .949 .369 .313
child(c,b) ∧ relative(c,a)→ negchild(a,b) .644 .935 .880 .693 .905 .310 .303
child(c,b) ∧ spouse(a,c)→ negrelative(a,b) .562 .920 .907 .608 .915 .255 .250
relation(a,b)→ negchild(a,b) .549 .904 .886 .737 .902 .371 .366
child(c,b) ∧ spouse(c,a)→ child(a,b) .492 .901 .827 .422 .658 .223 .107
knownFor(b,a)→ founder(a,b) .387 .882 .601 .477 .839 .372 .215
founder(c,b) ∧ publisher(c,a)→ negfounder(a,b) .246 .886 .795 .665 .802 .311 .297
publisher(a,c) ∧ parentCompany(b,c)→ negpublisher(a,b) .235 .812 .748 .643 .811 .313 .271
successor(c,a) ∧ spouse(c,d) ∧ successor(d,b)→spouse(a,b) .221 .927 .738 .628 .761 .248 .215
relative(a,c) ∧ parent(c,b)→ child(a,b) .135 .841 .704 .552 .727 .227 .182

Table 5.6 – Evaluation results for single-rule models.

Evaluations Measures. For the examples in the test set, we use accuracy (Acc) and F1-score (F1)
for balanced and unbalanced settings, respectively. As these measures do not take into account the
uncertainty of the prediction probability, we further introduce Confidence Accuracy@k (CA@k),
which measures the proportion of examples whose absolute error between the predicted and the
actual probabilities is less than a threshold k:

CA@k =
#{xi, |wi− ŵi|< k}

#{xi}

where xi is the ith example of dataset, wi is the actual confidence of the associated hypothesis
given by the LPMLNreasoner, ŵi is the predicted confidence by the model, and k is a chosen
threshold.

The measure can be seen as the ordinary accuracy measure, but true positives and negatives
are counted only if the condition is satisfied, where lower values for k indicate stricter evaluation.

Single Soft Rule

We fine-tuned 16 models for 16 different positive and negative rules (one model per rule) using
16k training samples per rule. We compare the accuracy of each model (i) without teaching
uncertainty using binary cross-entropy (RoBERTa), and (ii) with teaching soft rules using wBCE.
Results. Every row in Table 5.6 contains a rule with its confidence, followed by accuracy and
CA@k for both loss functions. The results show that models fine-tuned using RoBERTa-wBCE
perform better in term of CA@k. In terms of accuracy, both models perform well, with RoBERTa-
wBCE performing better for all rules. Interestingly, the best performing rules are two rules that
involve comparison of numerical values (birth years against death and founding years), which
suggests the our method also handles comparison predicates.

87

Chapter 5. A Public Corpus of Rules

Rule FT-PLM RULEBERT20 FT-RULEBERT20

Known preds

child(a,b)→ parent(b,a) .719 .869 .989
relative(a,b)→ negspouse(b,a) .885 .885 .963
child(a,b) ∧ child(b,c)→ negchild(a,c) .835 .888 .918
parent(a,b) ∧ parent(a,c)→ spouse(b,c) .754 .757 .814
parent(a,b)→ negchild(a,b) .923 .933 .963

Unknown preds

knownFor(b,a)→ founder(a,b) .817 .795 .971
worksFor(b,a)→ negfounder(a,b) .951 .915 .952
occupation(a, b)→ negalmaMater(a, b) .939 .917 .972
author(c,b) ∧ series(a,c)→ author(a,b) .965 .937 .989
city(a,b)→ negstate(a,b) .923 .912 .971

Table 5.7 – Accuracy results for unseen rules. The first group contains rules with predicates seen
by RULEBERT in the 20 rules used in fine-tuning, while the second group has rules with unseen
predicates.

Testing RULEBERT on Unseen Rules

We have seen that a PLM can be successfully fine-tuned with rules. We now study the performance
on the PLM after it has been fine-tuned on 161 (single) rules. We call this fine-tuned model,
RULEBERT.

We start by showing the performance of RULEBERT on rules that have not been seen in
the fine-tuning. We fine-tune our model with only twenty randomly selected rules and call it
RULEBERT20. We then select ten new rules divided into two groups: (i) five rules that contain
predicates that are in the rules used in fine-tuning RULEBERT20, and (ii) five rules completely
unseen by the model (they do not share predicates with the rules of the model). For each rule
in the test sets, we run a model fine-tuned (with 4k examples) only for that rule (FT-PLM), the
model fine-tuned on the twenty original rules (RULEBERT20), and the same model fine-tuned
again for the rule at hand (FT-RULEBERT20).
Results. Table 5.7 shows that RULEBERT20 outperforms the fine-tuned model (FT-PLM) on the
first group. The model fine-tuned on 20 rules has enough information about (i) symmetrical/tran-
sitive predicates and (ii) rule confidence to predict correctly, even better than rule-specific models.
For the second rule group, the accuracy of RULEBERT20 is high, but FT-PLM performs better.
Applying the same fine-tuning on RULEBERT20 yields the best results in all scenarios.

5.4 Summary

In Section 5.1, we introduced RuleHub, a system managing an open corpus of more than 8,000
rules collected from different systems for three KGs. Our system exposes a web portal to the
users to let them retrieve rules for their tasks, add new rules, and refine and annotate rules in the
corpus. We believe that metadata play a key role to make rules really effective. Towards this
goal, we introduce a new confidence measurement to evaluate the quality of negative rules. An
experimental comparison against human computed confidences show that our measure gives valid
quality estimations. With the continuous development of KGs as well as the evolution of rule

88

Chapter 5. A Public Corpus of Rules

mining techniques, we believe that RuleHub will play an important role in collective storing and
managing of KG rules. In Section 5.2, we described two methods for collecting logical rules for
Wikidata, and our experiments showed that both of them can generate high quality rules. While
our effort shows that good rules can be gathered for Wikidata, we still need to make progress to
be able to fully transfer this knowledge into the KG.

In Section 5.3, we have shown that PLMs can be taught to reason with soft rules over natural
language, and conducted multiple experiments to evaluate the ability of proposed model in tasks
such as negation and unseen rules.

89

Chapter 5. A Public Corpus of Rules

90

Chapter 6

Explainable Fact Checking using
Logical Rules

Due to the increase of sources spreading false information, computational fact checking has been
proposed to support journalists and social media platforms with automatic verification of textual
content [170]. We focus on claims that contain factual statements, such as “William Durant
was the founder of Chevrolet," and their verification against reference data, i.e., Knowledge
Graphs (KGs). Assuming entities and relations involved in “worth-checking” claims have been
identified [171, 172], KGs are exploited to compute the veracity of claims expressed as structured
data.

A KG is a structured representation of information which stores real-world entities as nodes,
and relationships between them as edges. Entities and relations have semantic descriptions
in the form of types and properties associated with them. KGs store large amounts of factual
information and several of them are publicly available [5]. For example, the English version of
DBpedia stores 6M entities and 9B relation triples.

Given a KG K and a claim f , several approaches have been developed to estimate if f is a
valid claim in K. In some of these methods, facts in the KG are leveraged to create features, such
as paths [173, 174] or embeddings [86, 175], which are then used by classifiers to label as true or
false a given test claim. Other methods rely on searching for occurrences of the given claim on
Web pages [14, 176]. However, such models are based on Machine Learning (ML) classifiers that
in the best case can report the source of evidence for a decision but lack the ability to provide
comprehensible descriptions of how a decision has been taken for a given claim.

To address this problem and effectively support transparent content moderation, we use
existing KGs as sources of evidence, together with logical reasoning to make fact checking

0 . 7 5 : foundedBy (a , b) ← keyPe r son (a , b) , foundedBy (c , b) , p r o d u c t (c , d) , p r o d u c t (a , d) .
0 . 7 6 : foundedBy (a , b) ← d i s t r i b u t o r (c , b) , d i s t r i b u t o r (c , d) , foundedBy (a , d) .
0 . 9 7 : negfoundedBy (a , b) ← f o u n d i n g Y e a r (a , c) , b i r t h Y e a r (b , d) , >(d , c) .
0 . 5 6 : negfoundedBy (a , b) ← foundedBy (a , c) , r e l a t i v e (d , c) , o c c u p a t i o n (d , b) .
0 . 6 7 : negfoundedBy (a , b) ← parentCompany (b , c) , s u b s i d i a r y (c , d) , parentCompany (d , a) .

Table 6.1 – Example of discovered rules with their support for predicate foundedBy in DBpedia.

91

Chapter 6. Explainable Fact Checking using Logical Rules

decisions. The key idea is to assess as true or false a given claim and to provide human-
interpretable explanations for such decision in the form of supporting and contradicting evidence.
Declarative Horn rules defined over the KG, such as those in Table 6.1, guide the decision process
and provide semantic arguments for the conclusion. For example, “William Durant was the
founder of Chevrolet" is marked as true and justified by the facts that Durant is a key person for
Chevrolet and he founded another car company. This explanation comes from the first rule in the
table1. On the other hand, “Elon Musk was the founder of Chevrolet" is marked as false with the
explanation that Musk was born after the company foundation year (third rule in the table).

Unfortunately, two issues make the generation of such explanations hard. First, in general,
KGs do not come with the rich rules we need in our task. To address this issue, we exploit
rule mining approaches [28, 79], which automatically learn logical rules for a given KG (e.g.,
Table 6.1). Second, KGs have data quality issues due to the automatic methods that are used to
build them at scale. Information stored in KGs is inevitably incomplete (Open World Assumption
- OWA) and noisy, because of errors coming from the sources and the automatic extractors [14].
For these reasons, in many cases, rules cannot be triggered. We identify these cases and resort
to mining Web pages to get evidence for missing facts that are crucial to reach a decision for a
claim [176].

Discovering rules and mining facts enable a fully automatic system, but a new challenge
arises from these approaches. Both rules and mined facts are uncertain, i.e., they come with a
(possibly low) measure of the probability of being correct. To address this third challenge, we
use probabilistic answer set programming [167]. The reasoner is the enabler of the inference that
combines the evidence in producing a fact checking decision with its explanation.

6.1 Preliminaries

We employ knowledge graphs (see Chapter 2) and logical rules extracted from them (see Chap-
ters 4 and 5) as the main elements of our framework. In this section, we describe other building
blocks of our framework and define our problem.

Assessment of Claims on the Web. As KGs are usually incomplete, we also exploit textual
documents for our analysis. Text mining systems get as input a claim c expressed in natural
language and analyze c’s credibility w.r.t. relevant Web documents. The systems exploit the
joint interaction among language style of documents, their stance towards a claim, and source
trustworthiness.

For example, consider the claim foundedBy(Chevrolet, W. Durant), which is not in the KG,
and positive rule from Table 6.1: foundedBy(a,b)← keyPerson(a,b), foundedBy(c,b), product(c,d),
product(a,d). Assume the KG contains the facts keyPerson(Chevrolet, W. Durant), foundedBy(GM,
W. Durant), and product(GM, Automobile), but it misses the product information for Chevrolet. It
can be a false fact or a true one missing from the KG (OWA). We therefore test product(Chevrolet,
Automobile) with the text mining system and obtain that, according to Web documents, the fact
is true with confidence 0.57.

In our framework, we adopt CREDEYE, a state of the art system for the automatic credibility
assessment of textual claims [177]. To extract Web articles relevant to the input claim, it uses

1Product models the pairs (company c, product p of c).

92

Chapter 6. Explainable Fact Checking using Logical Rules

a commercial search engine (i.e., Bing). Each document is divided into a set of overlapping
snippets, and snippets that are strongly related to the claim in terms of unigram and bigram are
extracted. Snippets are then used to compute support and refute scores with logistic regression
classifiers trained on claims and evidence documents from the Snopes fact checking repository.
The scores are fed as features into a classifier with L1-regularization, distantly trained on Snopes.

(Probabilistic) Answer Set Programming. Given a claim, we collect the rules, the evidence
(from the KG and the Web sites), and cast fact checking as a reasoning problem. For this task,
we adopt LPMLN [167], a probabilistic extension of answer set programs with the concept of
weighted rules from Markov Logic. In ASP, search problems are reduced to computing stable
models (a.k.a. answer sets), a set of beliefs that are described by the program. In the case of a
Horn program, the stable models coincide with the minimal models, but they differ as soon as the
program allows more expressive language constructs, such as negation, defaults, and aggregates.
We refer to [178–180] for the definitions of stable models.

LPMLNextends the (deterministic) stable model semantics by embracing the concept of
weighted rules. In LPMLN, a weight is assigned to each rule so that the more rules a stable
model satisfies, the larger weight it gets, and the probability of the stable model is computed by
normalizing its weight among all stable models. In our setting, given a set of rules and evidence
facts, we want to see if the given claim belongs to the stable model.

More precisely, let σ be a signature as in first-order logic. An LPMLNprogram Π is a finite
set of weighted rules of the form:

w : A← B (6.1)

where A is a disjunction of atoms of σ , B is a conjunction of literals (atoms and negated atoms)
of σ , and w is a real number or the symbol α . When A is ⊥ (the empty disjunction), the rule
asserts that B should be false in the stable model. An LPMLNrule (6.1) is called soft if w is a
real number or hard if w is α . An LPMLNprogram is ground if its rules contain no variables.
An LPMLNprogram Π that contains variables is identified with a ground LPMLNprogram grσ [Π]
which is obtained from Π by replacing every variable with every ground term of σ . The weight
of a ground rule in grσ [Π] is the same as the weight of the corresponding rule in Π. By Π we
denote the unweighted logic program obtained from Π, i.e., Π = {R | w : R ∈Π}.

For a ground LPMLNprogram Π, ΠI denotes the set of rules w : R in Π such that I satisfies
R (denoted I |= R) and SM[Π] denotes the set {I | I is a (deterministic) stable model of ΠI}. The
(unnormalized) weight of I under Π is defined as:

WΠ(I) =

 exp(∑
w:R∈ΠI

w) if I ∈ SM[Π];

0 otherwise.

The probability of I under Π is the normalized weight defined as: PΠ(I) = limα→∞

WΠ(I)
∑J∈SM[Π]WΠ(J) .

LPMLN2ASP [181] is an implementation of LPMLNusing ASP solver CLINGO. The system
returns the most probable stable models. In our problem formulation, given a claim p(x,y), we
identify the rules that have predicate p or negp in the conclusion and the evidence facts for the
bodies of such rules. We then run LPMLN2ASP and check if p or negp are in the stable model.

Problem Statement. Given an input claim to be verified and a KG, our goal is to compute an

93

Chapter 6. Explainable Fact Checking using Logical Rules

Figure 6.1 – Our Fact checking framework EXPCLAIM.

assessment of the veracity of the claim and the explanations for such decision, expressed as the
union of substitutions for the body of the rules that have triggered the inference in the reasoner.

The uncertainty in the discovered rules and in the facts extracted from the Web make the
problem challenging and the role of the reasoner important.

Limits of Existing Solutions. Both the text mining and the rule generation system can be used
individually as fact checking tools according to our problem definition. However, they both have
strong limitations. The uncertain rules alone cannot make a clear assessment decision in many
cases because of (i) conflicting rules both supporting and refusing a fact at the same time, and
(ii) lack of evidence in the KG. The Web mining cannot provide semantic explanations and also
suffers from the cases where there is no enough evidence to obtain an answer. These limitations
also apply for other ML fact checking systems [86, 173–175] and motivate our choice to use a
unified framework to combine both sources of signals with a probabilistic reasoner.

6.2 Related Work

There are two main tasks in computational fact checking: (1) monitor and spot claims [171,
172], (2) check claims and explain outcomes. We focus on the second task and on factual
facts, specifically. Related approaches try to align the fact to trusted data resources, such as
KGs [182, 183], Web documents [184], and databases [185, 186]. These approaches create
features for binary classifiers from the data in the KG. Features exploit the structure of the
training examples, in the form of paths [173, 174] or geometric properties in a multi-dimensional
space with embeddings [86, 175]. We distinguish from these works by providing semantically
rich rules and evidence facts as explanations for a fact checking outcome.

Markov Logic combines first-order logic and Markov networks [187]. In principle, learning
in Markov Logic could learn the uncertain rules and inference can be applied to the learned rules.
We tested alchemy to learn rules for spouse relation with 10 positive examples and it was not able
to produce results after 2 hours of execution. This illustrates that rule learning in Markov Logic
has scalability issues with large KGs. ILP systems for rule discovery, such as ALEPH [188],
make assumptions on the input data that do not hold in KGs and RUDIK outperforms this kind of
systems [79].

Other proposals have studied the problem of explainable fact checking with rules, but they

94

Chapter 6. Explainable Fact Checking using Logical Rules

focus on manually crafted constraints [35, 189], while our system relies on discovered rules only.
Experimental results on the same DBpedia predicates reported in previous work [35] show that
our solution performs better despite being fully automatic. Our proposal also does better than
similar attempts that rely on KG only [190].

6.3 Framework

Figure 6.1 shows our framework, EXPCLAIM. The Rule discovery module takes as input the KG
K to generate the rules. We then convert the discovered rules Σ into the input language of the
reasoner, where the weight of a rule is its support. For the given claim c : p(x,y), p ∈ K and rules
Σ, the Evidence Generation module collects relevant evidence facts (triples satisfying the body
of the rules) from the KG and from Web with the Text mining module. We then feed rules and
evidence to the Reasoner module, where different modes of computation can be used to infer
if p(x,y) or negp(x,y) is in the answer set. The reasoner output includes a human-interpretable
explanation for the decision. The details of the main steps are given next.

6.3.1 Rule Generation

Consider a claim c : p(x,y) with p ∈ K, our first step is to obtain the set of rules Σ.

Rule Discovery: The rule discovery module starts by generating M positive and M negative
examples for p. Positive examples are (x,y) entity pairs s.t. p(x,y) ∈ K, and negative examples
are (x,y) pairs that satisfy the following conditions [79]:

• p(x,y) /∈ K;
• there is either some y′ 6= y s.t. p(x,y′) ∈ K or some x′ 6= x s.t. p(x′,y) ∈ K;
• there is some p′ 6= p s.t. p′(x,y) ∈ K.

RUDIK uses the examples and the KG to mine positive and negative rules (Σ) for p.
Consider the mining of positive rules for predicate spouse. Positive examples are pairs of

married people, and negative examples are pairs of people who are not married to each other,
according to the three conditions above. Given the examples, the algorithm outputs approximate
rules that (i) maximize the coverage of the positive examples and (ii) minimize the coverage
of the negative ones. The example sets switch role for the discovery of negative rules, i.e., not
married people play the role of the positive examples.

As in association rule mining, the support s of each rule is computed as the support value of
the rule divided by the number of examples used in the rule discovery step [28].

Convert Rules into LPMLN: Rules in Σ are rewritten into the input language of LPMLN2ASP

with their weights. For instance, for the spouse predicate, a positive rule
is rewritten into LPMLNas

w : spouse(a,b)← child(a,c), parent(c,b). (6.2)

An original support s equal to 0 corresponds to a weight w of −∞ and a support of 1 to
a weight of +∞. We convert the rule support into a weight for a program with the equation:
w = ln s

1−s .

95

Chapter 6. Explainable Fact Checking using Logical Rules

Generic Rules: We add two rules to the set associated to each predicate. These rules are generic
and model natural constraints that play an important role in our fact checking system.

The first rule ensures that p(x,y) and negp(x,y) cannot be true at the same time, i.e., a claim
should not be assessed as false and true. This is a hard rule, which is always valid.

α : ⊥← p(x,y),negp(x,y) (6.3)

The second rule enforces the functionality of a predicate. If a predicate is functional, such as
the predicate expressing the capital of a country, then there is only one value that can be in the
solution. However, this is not true for all predicates, e.g., a person can be the author of several
books. The support of the rule models the functionality of the predicate.

We express this constraint stating that a claim cannot have two different object values.

w : ⊥← p(x,y), p(x,z),y 6= z (6.4)

These generic rules steer the reasoner in the computation of the truthfulness/falseness proba-
bility for the input claim.

6.3.2 Evidence Generation

For a given claim, we execute the following steps to gather the evidence for a fact checking
decision.

Generate Evidence Triples from KG: For each rule in Σ, we substitute the head variables with
the values of the claim and collect all the triples in the KG that have a valid substitution to its
body. More precisely, the head variables in the body of a rule are constrained to the value of
the subject and object of the claim. Then, the evidence triples are identified by querying the
KG with the rewritten body of the rule. For example, given the spouse rule above and claim
spouse(Mike,Laure), the body is rewritten as a query: child(Mike,c), parent(c,Laure),
where c is a universal variable.

Generate Evidence Triples from Web: Our reasoner models also the uncertainty for the evi-
dence facts. The KG is considered trustworthy, so the weights for the evidence from the KG
are set at infinite. However, because of the OWA, we cannot find every true fact in the KG. For
claims for which no rule can be executed, we resort to a Web text mining system [177]. For each
rule, we substitute the subject and the object according to the input claim. If a single atom is
non-replaceable with KG facts in the body of a rule, then we use the Web module to validate
the missing fact. Notice that only grounded facts can be verified with the Web module, such as
child(Mike,Marie). If the rewritten body contains a fact with a variable, such as child(Mike,c)
above, we discard the claim. If the Web module returns a probability p of a fact being correct
greater than 0.5, than we add it to our evidence.

As an example, consider the positive rule: locatedIn(x,y)← hasCapital(z,x), locatedIn(x,y),
the claim locatedIn(Sacramento, USA), and a KG with fact hasCapital(CA, Sacramento). As-
suming that the fact for CA located in USA is missing from the KG, we query the Web module
for locatedIn(CA, USA).

Similarly to the conversion of the rule support into the weight of an LPMLN program (Sec-
tion 6.3.1), we convert the probability p of a fact of being true into a weight w for the fact when
we use it as evidence for the reasoner.

96

Chapter 6. Explainable Fact Checking using Logical Rules

6.3.3 Inference for Fact Checking

We discuss two inference methods that enable us to expose the rules and the evidence triples
involved in a decision for a claim p(x,y).

• Pure ASP checks if p(x,y) or negp(x,y) is in the stable model of the rules without including
the rule weights. This method only states if the positive or negative triple for the claim
can be derived. Since we rely on Horn rules, there is only one stable model for them. If
the stable model contains both p(x,y) and negp(x,y), it violates constraint (6.3), so we
conclude neither p(x,y) nor negp(x,y). A similar case happens when the stable model
violates the functionality of a predicate.

• LPMLNMAP inference with weighted rules checks if p(x,y) or negp(x,y) is in the most
probable stable model of the weighted rules using LPMLN2ASP. This method utilizes the
weighted rules and the evidence facts to find a more likely answer at the cost of violating
constraints (6.3) and (6.4).

Example. We want to check if Glen Cook is the author of the book Cold Copper Tears. The
following weighted rules are mined from the KG2:

1 0.04: author(A,B) ← runtime(A,C), activeYearsStartYear(B,D), C<D.
2 0.04: author(A,B) ← birthYear(B,C), runtime(A,D), C>D.
3 0.13: author(A,B) ← author(C,B), subsequentWork(A,C).
4 0.02: author(A,B) ← previousWork(A,C), literaryGenre(C,D),genre(B,D).
5 0.02: negauthor(A,B) ← writer(C,B), format(C,D), format(A,D).
6 0.38: negauthor(A,B) ← runtime(A,C), activeYearsStartYear(B,D), C<D.
7 0.31: negauthor(A,B) ← birthYear(B,C), runtime(A,D), C>D.
8 0.02: negauthor(A,B) ← writer(C,B), previousWork(C,A).
9 0.02: negauthor(A,B) ← writer(C,B), previousWork(C,D), subsequentWork(A,D).

10 0.08: negauthor(A,B) ← writer(C,B), genre(C,D), genre(A,D).
11 0.02: negauthor(A,B) ← writer(C,B), subsequentWork(C,A).
12 0.02: negauthor(A,B) ← previousWork(A,C), subsequentWork(D,C), writer(D,B).
13 α : ⊥← negauthor(A,B), author(A,B).
14 0.04: ⊥← author(A,B), author(A,C), B 6=C.

Notice that not all rules are semantically correct: rule 1 is not valid (and has low support),
while rule 3 is correct in most cases (in fact it has a higher support). Notice also rule 13, which
is the hard constraint stating that a fact cannot be true and false at the same time and rule 14
reflecting the low functionality for the author predicate. The evidence generator module collects
the following triples from the KG (facts with confidence 1) and the Web mining module (all other
facts):

0.55: literaryGenre(’Cold_Copper_Tears’,’Fantasy’).
0.52: literaryGenre(’Cold_Copper_Tears’,’Mystery_fiction’).
1: previousWork(’Cold Copper Tears’,’Bitter Gold Hearts’).
0.69: subsequentWork(’Cold Copper Tears’,’Old Tin Sorrows’).
0.56: activeYearsStartYear(’Glen_Cook’,’1970’).
0.59: author(’Bitter_Gold_Hearts’,’Glen_Cook’).
1: author(’Old Tin Sorrows’,’Glen Cook’).
1: genre(’Glen Cook’,’Fantasy’).
1: genre(’Glen_Cook’,’Science_fiction’).
1: literaryGenre(’Bitter_Gold_Hearts’,’Mystery_fiction’).

2For readability, we report normalized support (confidence) for rules (evidence triples), instead of weights.

97

Chapter 6. Explainable Fact Checking using Logical Rules

1: literaryGenre(’Bitter Gold Hearts’,’Fantasy’).
1: literaryGenre(’Old_Tin_Sorrows’,’Mystery_fiction’).
1: literaryGenre(’Old_Tin_Sorrows’,’Fantasy’).
1: previousWork(’Bitter_Gold_Hearts’,’Sweet_Silver_Blues’).
1: previousWork(’Old_Tin_Sorrows’,’Cold_Copper_Tears’).
1: subsequentWork(’Bitter_Gold_Heart’,’Cold_Copper_Tears’).
1: subsequentWork(’Old_Tin_Sorrows’,’Dread_Brass_Shadows’).
1: author(’The_Black_Company’,’Glen_Cook’).
1: genre(’The_Black_Company’,’Dark_fantasy’).
1: genre(’The_Black_Company’,’Epic_fantasy’).
1: genre(’The_Black_Company’,’Fantasy_novel’).

The LPMLNinference outputs that the input fact is true because of rules 3 and 4 together with
the facts in bold in the evidence set. Here, Old Tin Sorrows is the subsequentWork of Cold
Copper Tears whose author is Glen Cook. These two facts satisfy the body of rule 3 to derive
the author relation between Cold Copper Tears and Glen Cook. Similarly, for rule 4, Fantasy
is the genre of Glen Cook, which is also the literaryGenre of book Bitter Gold Hearts. Further,
Bitter Gold Hearts is the previousWork of Cold Copper Tears. This sequence of three facts in the
evidence set satisfies the body of rule 4 to derive the author relation between the test entities. By
using the MAP inference, we can find in the answer set:

author(Cold_Copper_Tears,Glen_Cook)

6.4 Experiments

We test our proposal against baseline methods over claims from a real KG. Code and datasets are
available online3.

spouse deathPl. vicePres. almaMater
Positive 22 25 65 27
Negative 72 33 27 21

Table 6.2 – Number of discovered rules for each predicate.

Datasets. From the latest (online) DBpedia, we selected four predicates P = spouse, deathPlace,
vicePresident, almaMater. In the following, all rules have been mined from 2K positive and 2K
negative examples. Statistics for the discovered rules are reported in Table 6.2.

We create 3 datasets with each containing 100 true and 100 false facts for every predicate,
for a total of 2400 claims. True facts are randomly taken from the KG, false ones are created
according to the procedure described in the previous section. True facts are then removed from
the graph.

Metrics. For each claim in the 4 predicates, we count correctly labelled claims (T) and incorrectly
labelled ones (F). We also count Undecided (U) claims, when a method cannot make a decision,
e.g., neither p(x,y) or negp(x,y) are in the stable model. We use precision, defined as (T)/(T+F),
recall, defined as (T)/(T+F+U), and their combination in the F-score (harmonic mean).

3https://github.com/ppapotti/expclaim

98

https://github.com/ppapotti/expclaim

Chapter 6. Explainable Fact Checking using Logical Rules

Methods. We run three baseline methods. The first is the Web text miner CREDE [177].
Although CREDE was not designed to check arbitrary claims, we show that it also handles
KG facts reasonably well. The second is the state of the art link prediction method for KGs
KGM [173], which uses the graph facts as training data and an ML classifier. The third baseline
is the application of the discovered rules, without considering their weights (ASP). The first two
approaches (CREDE and KGM) cannot provide explanations, while the third (ASP) does not
exploit the reasoning. We identified 0.5 as the threshold value for both CREDE and KGM to
maximize their F-score.

We consider two variants of our solution. The first is the LPMLNMAP inference with weighted
rules over the KG data only (MAP). The second is MAP with evidence collected from the KG
and Web documents (MAP+W). For these methods, we check if the claim is in the stable model.

almaMat. deathPl. spouse vicePres.
CREDE .41(.03) .59(.06) .44(.07) .36(.15)

KGM .73(.08) .68(.01) .86(.01) .81(.03)
ASP .70(.06) .01(.01) .31(.08) .18(.16)
MAP .88(.14) .75(.15) .87(.11) .66(.22)

MAP+W .88(.09) .83(.11) .86(.10) .68(.18)

Table 6.3 – Average F-score results (SD) for four predicates with all methods over 3 datasets.

Results. Table 6.3 reports F-score results and standard deviation (SD) for true and false claims
averaged over the 3 datasets. For two predicates, MAP+W is the best method in terms of F-score,
with an average over all predicates of 0.81, followed by MAP with .79 and KGM with .77. For all
predicates, method ASP has very poor performance because of a large number of claims with no
rule to be grounded with the KG evidence. Several of these claims are solved with the reasoner in
MAP with high precision (1 in most cases) but not perfect recall. Web evidence in MAP+W
enables the triggering of more rules, but at the cost of a lower precision because the text miner is
not always reliable, as shown in the results for CREDE.

The issue of undecided claims affects the results heavily for predicate vicePresident in all
methods based on rules. In general, there is no clear correlation between the number of rules and
the quality of the results for the rule-based methods. This suggests that the quality of the rules
(and of the evidence facts) is more important than their number. Also, more functional predicates,
such as spouse, are easier to fact check for most methods.

Table 6.6 reports a detailed analysis for predicate deathPlace. The first evidence is that KGM

has the best performance for true claims but falls behind MAP methods for false ones. Neither
CREDE performs well with false claims. We emphasize that in fact checking false claims are
more important.

Results for the rule-based methods show that reasoning is key for our approach. For true
claims, ASP correctly labels only 1% of the test facts, while the MAP labels 58% of them
without mistakes on average. ASP cannot handle facts for which there is a contradiction among
the positive and the negative rules, while MAP inference makes the right decision by exploiting
the weights of the rules. However, for 42 true claims on average, none of the rules are triggered
in MAP. The coverage is increased by adding more evidence with the Web mining module

99

Chapter 6. Explainable Fact Checking using Logical Rules

FALSE : almaMater(Michael White, UT Austin)
← employer(Michael White, UT Austin)
← occupation(Michael White, UT Austin)
← almaMater(Michael White, Abilene Christian Univ.), almaMater(Michael White,

Yale Divinity School)

Table 6.4 – Example of MAP+W output for claim almaMater(Michael White, UT Austin).

(MAP+W), at the cost of a lower precision but better overall F-score. The benefit of rules and
Web evidence is more apparent with false claims. While in this setting CREDE and KGM show
poor results, MAP+W reports high precision (94% on average) and an average recall of 83%,
with a very significant increase in all metrics compared to MAP. From a manual verification,
we explain the better results for false claims with the better quality of the negative rules w.r.t.
positive ones for deathPlace, i.e., it is easier to find a negative rule than a positive rule for this
predicate. This is consistent with previous rule quality assessments [79].

In all the cases for which an answer is produced, rule-based methods explain their decision by
showing involved rules and corresponding evidence sets. This makes it relatively easy to identify
what is the cause for a conclusion, as for the example reported in Table 6.4. The given claim is
labeled as false because of the three rules that apply with evidence coming both from the KG and
the Web.

spouse deathPl. vicePres. almaMat.
CREDE 6435 7377 7210 7355
KGM 16 15 12 13
ASP 7 8 9 8
MAP 475 822 1880 408

MAP+W 485 1897 3448 409

Table 6.5 – Average execution times (secs) for 200 claims.

Finally, we report on the execution times in Table 6.5. Methods KGM and ASP are the fastest,
with a single claim checked in less than 0.1 seconds. Although we are not counting the time to
gather Web pages, CREDE is the slowest method, with up to 37 seconds on average to check a
claim. MAP and MAP+W are in the middle, taking from 2 to 17 seconds to check a claim on
average. The time differences depend on the predicate at hand, as checking predicates with less
evidence in KG requires more calls to the text mining module.

6.5 Summary

We presented a fully automated fact checking framework based on KGs and Web documents as
reference information. Given a fact expressed as a triple over entities in the KG, our method
validates its veracity with high accuracy and provides an explanation of the decision by exposing
facts that support or contradict the given claim according to a set of rules. The system does not
rely on a human configuration, as rules are automatically discovered and additional information

100

Chapter 6. Explainable Fact Checking using Logical Rules

True claims False claims
CREDE KGM ASP MAP MAP+W CREDE KGM ASP MAP MAP+W

Correct(/100) 50(8) 96(1) 1(1) 58(27) 62(31) 23(8) 7(2) 0 62(14) 78(8)
Incorrect(/100) 19(3) 4(1) 0 0 21(18) 55(1) 93(2) 0 11(4) 5(4)

Undecided(/100) 31(9) 0 99(1) 42(27) 17(13) 22(7) 0 100(1) 28(18) 17(9)
Precision .72 .96 1 1 .75 .29 .07 1 .85 .94

Recall .69 1 .01 .58 .83 .78 1 0 .72 .83
F-score .70 .98 .01 .74 .79 .43 .13 .01 .78 .88

Table 6.6 – Average results (SD) for deathPlace predicate with all methods over 3 datasets.

to complement the KG is mined from the Web. As demonstrated by the experiments, the solution
is comparable in terms of precision and recall with state of the art fact checking methods.

101

Chapter 6. Explainable Fact Checking using Logical Rules

102

Chapter 7

Conclusion and Future Work

In this thesis, we first introduced our approach in creating a knowledge graph in the auditing
domain and then presented novel approaches and systems designed to improve the performance
of the rule mining on large Knowledge Graphs. We also presented models that are developed in
order to exploit rules in different scenarios.

In Chapter 2, we presented some basic information in the areas of knowledge graph construc-
tion and introduced different tools for curating a KG.

In Chapter 3, we first developed a model for identifying nodes of the KPMG’s KG. We first
identified representative nodes, and for each one of them generated a family of words. In the
second section of this chapter, we proposed a model for Text to Data Matching which can be
exploited for creating edges between nodes in the KG (Text to Structured-Text Matching). We
also tested our model in different scenarios (Text to Data and Text to Text), and showed that our
unsupervised approach can even compete with supervised models.

Chapter 4 reported techniques and improvements that we used to enhance the performance of
RuDiK, a previously developed rule extraction system. We extended RuDiK in order to extract
conditional rules. Conditional rules can be applied on subjects and objects with a specific type.

RuleHub is an open corpus for collecting and annotating logical rules extracted from different
Knowledge graphs, as introduced in Chapter 5. In Rulehub we aimed to manage a large number
of rules, by computing an estimate of their quality in terms of computed confidence and human
annotated quality score. In this chapter, we also proposed two methods which can be utilized
in order to extract logical rules from Wikidata. We also introduced RuleBERT in this chapter.
In RuleBERT, we used logical rules to transfer common-sense knowledge such as inversion,
symmetry, and negation to Pre-trained Language Models. For this matter, we developed a method
which converts soft rules (taken from RuleHub) into a format readable to PLMs and used them
to generate our model. RuleBert achieved a very high performance in our experiments, even on
external datasets.

In Chapter 6, we used logical rules to design ExpClaim, a framework for explainable fact
checking. In ExpClaim, we considered logical rules as reference information in the KGs and
used them to assess factual claims and provide explanations for the final true/false decisions.

103

Chapter 7. Conclusion and Future Work

7.1 Future Work

We describe here an outlook of broad research directions in continuation of the work done in this
thesis.

Audit KG

For dealing with the problems specific to handling information in auditing firms, we envision a
few promising research directions:

• Discovering more relationships in text: we focused on two kinds of relationships, but
there are many more that can be expressed across entities, documents and words. For exam-
ple, a certain document may be “defining” or “regulating” another document. However, the
problem with these relationships is that they are not binary, i.e., they involve multiple nodes
at the same time. Some relations between a subject and object are valid only for a specific
domain and under a specific source and they cannot be represented as a triple. For example,
in the KPMG corpus of UK and based on ALEXCMS, Changes in accounting policies
and errors is a subtype of Changes in equity. This relationship cannot be expressed as a
triple and two more conditions (Domain: UK and Source: ALEXCMS) must be included.
Discovering n-ary relationships is an open problem in literature and improvements in this
direction can potentially be very useful for the KPMG’s KG.

• Rule mining: a very rich form of relationship is expressed by patterns and the most
powerful patterns are those that express rules. Given the small number of relationships
types in the current KG, existing methods that assume a large number of different predicate
types, such as those for rule mining [79], cannot be used in this setting, yet. Moreover, it is
not clear if existing methods for binary relationships could be useful in this setting, where
rules are very complex and specific, likely involving the n-ary relationships in the previous
point. This may motivate research for mining rules in the presence of n-ary relationships.

• Language independence: Most of our methods are designed to be independent of a spe-
cific target language. However, more experiments are needed to measure the performance
of the proposed methods in documents beyond English. The experiments with German
for family generation shows that the effort to configure the methods to handle a language
different from English is reasonable and we have highlighted in the description the steps
that rely on language-specific resources.

• Human in the loop matching: We plan to extend our framework presented in Section 3.2
to have the users involved in actively solving matches to quickly improve the underlying
representation. To enable interactive response, blocking techniques should be designed
for this setting. Also, the graph has clear opportunities to be extended with more external
information, such as typed or weighted edges. Random walk generator is another module
of the framework that can be improved by including more information in the process of the
edge selection.

104

Chapter 7. Conclusion and Future Work

Rule Discovery and Management

Given the recent efforts in the interactive discovery of the rules for relational data [191, 192],
open questions are related to similar tasks in KGs. The size of G has a direct impact on the search
space and hence on the running time. Since we generate all valid rules for each example in G, the
search space grows roughly linearly with its size. If we could identify a subset of examples that
lead to the generation of all valid rules, then we could use only those few examples. However, it
is not clear how to sample examples while not compromising on the quality of the mined rules.

A second promising research direction is the expressiveness of the language. We aim at mining
even richer rules that better exploit spatial and temporal information through a smart analysis of
literal values’ distributions and correlations [30], e.g., “if two person have age difference greater
than 100 years, then they cannot be married".

For RuleHub, we plan to keep enriching the corpus by supporting more kinds of rules, such
as graph functional dependencies [148]. Indeed, these dependencies have a syntax that is not
modelled by the Horn rules supported in our current system. Another possible future work is to
apply RuleHub architecture for collecting and annotating rules in other domains (e.g. business
process compliance [193]). We will improve the interface to make it more convenient for users
and better allow them to contribute to the hub. We also believe that, in terms of metadata, there is
a great opportunity in going beyond confidence and extend our system to compute more statistical
measures, such as unexpectedness [194]. We also plan to design a novel rule mining algorithm
that makes use of the proposed method to estimate the confidence for negative rules.

Finally we aim to develop a method for adding the building blocks to define logical rules to
the Wikidata infrastructure. The implementation is not obvious because of the uncertain nature
of most rules. One way to go from the logical form of a rule with high confidence to a fully
implemented constraint is to identify and define the exceptions to the rule. Going back to the
example about capitals and countries in Section 5.2, it should be implemented as an exact rules
with 15 exceptions. We are studying how to automatically go from non-exact rules to exact rules
with either more conditions (that narrow their scope) or with exceptions.

Logical Rules Applications

An interesting direction for extending the ExpClaim framework is to include a module for claim
detection and explore the opportunities of an end-to-end system [195]. We also will increase the
number of the rules and predicates covered by our system.

A second direction is to exploit the information from the reasoner to steer the quality man-
agement of the KG [14], e.g., inspect undecided claims to identify parts of the KG that need
data curation. Also, we aim at integrating natural language generation techniques to produce
explanations that are easier to read for the target users [196].

Finally, one direction is the development of explainable models for fact-checking by extending
RuleBert for this application. Promising approaches to make RuleBert more transparent include an
occlusion-based method that removes parts of the input and checks the impact on the output [168]
and building proofs iteratively through 1-hop inference [197].

105

Chapter 7. Conclusion and Future Work

106

Appendices

107

Appendix A

Text to Data Matching: More
experimental results

A.1 Ablation Study

We first report on the impact of different parameters on the performance of our method W-RW.
We then evaluate the impact of the improvements proposed in Chapter 3.2.2.

A.1.1 Impact of parameters

We examine the impact of length and number of random walks, followed by number of tokens
in data nodes. For CoronaCheck, we report results for the union of the Generated and User
sentences.

Length of random walks. Figure A.1 shows the mean average precision results for all scenarios
when increasing the length of the random walks. Increasing the walk length increases the
performance for all scenarios up to size 20. The increase is higher at lower values and then
stabilizes or gradually decreases for most scenarios. We explain the different behavior for IMDb
and Audit with the fact that they have the biggest and most dense graphs. IMDb graph is the
biggest both in terms of nodes (107k nodes vs 35k node for Snopes) and edges (1m vs 168k edges
for Politifact). Because of their size, larger graphs benefit of walks longer than 20.

5 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Length of walks

M
ea

n
A

vg
Pr

ec
is

io
n

IMDb Coro. Audit Poli. Snop.

Figure A.1 – Match quality with increasing walk length.

109

Appendix A. Text to Data Matching: More experimental results

5 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of walks

M
ea

n
A

vg
Pr

ec
is

io
n

IMDb Coro. Audit Poli. Snop.

Figure A.2 – Increasing number of random walks per node.

1 2 3 5 7
0

0.2

0.4

0.6

0.8

1

Number of tokens

M
ea

n
A

vg
Pr

ec
is

io
n

IMDb Coro. Audit Poli. Snop.

Figure A.3 – Average precision w.r.t. number of tokens in a term.

Number of walks. Figure A.2 shows the mean average precision when increasing the number of
walks. The performance for all datasets improve with more walks, but with diminishing results.
Results also confirm that graphs with more edges per node need more walks to obtain the best
results. After 20 walks per node, results for IMDb keep improving, while for CoronaCheck,
which is the most sparse graph with an average of four edges per node, there is no improvement.

1 2 3 5 7 10
0

1

2

·105

Number of tokens

G
ra

ph
N

od
es

IMDb Coro. Audit Poli. Snop.

Figure A.4 – Graph size w.r.t. number of tokens in a term.

Number of tokens in terms. Results in Figure A.3 show that allowing more tokens in data nodes
(terms) increases the mean average precision in all scenarios. There is a significant increase in
quality going from one to two tokens and the impact is smaller with higher values. The highest
increase is for Snopes and Audit datasets with an increase up to 0.24 and 0.07, respectively. For
text to data scenarios, IMDb has an increase up to 0.05 and CoronaCheck up to 0.03. The amount
of increase for a scenario is related to the number of new nodes added to the graph. For Snopes,

110

Appendix A. Text to Data Matching: More experimental results

Audit Politifact SnopesIMDb Corona

0.2

0.4

0.6

0.8

M
ea

n
A

vg
Pr

ec
is

io
n

Normal TFIDF Intersect

Figure A.5 – Impact of data node filtering.

an increase in the number of tokens in a term adds an average of 24k new nodes to the graph,
which is close to the initial number of nodes (35K). For Audit, the increase is 1.7k, which is 62%
of the initial graph’s token nodes. In IMDb, 23K new nodes are generated (22% of initial graph)
at every increase.

Figure A.4 shows the impact of an increasing number of tokens allowed in terms of total
number of nodes in the generated graph. For all scenarios, except Snopes, the number of nodes
does not increase drastically after allowing three tokens in a term. The behaviour of a dataset
is determined by the length of documents in its first corpus as tokens in the documents of the
second corpus get filtered. Snopes has the biggest documents in its first corpus in comparison to
the other datasets: it has claims of 43 tokens on average while PolitiFact has 18.

A.1.2 Improving graph generation

We discuss here the impact of the techniques introduced in Section 3.2.2 to improve embeddings
and matching quality.

Connecting metadata nodes. For measuring the impact of edges between related metadata
nodes in a structured text, we run the same experiments in Section 3.2.6 for W-RW without edges
among metadata nodes. The quality of the matches is negatively affected, with the Node F-scores
for increasing values of K (1, 3, 5, 10) dropping by .08, 0.04, 0.02, and 0.01 in absolute values.

Filtering data nodes. Merging tokens create shorter paths between related metadata nodes. In
graph creation, we filter tokens of the second corpus based on the nodes from the first one. In
this experiment, we compare the performance of our technique (Intersect) against a solution
based on TF-IDF [47], which retains non-stopword tokens with high TF-IDF scores. It has been
shown that in a data to data matching task this technique increases the quality performance on a
text-heavy dataset from 41% to 93% [47]. For implementing this method, for each document we
keep k tokens with highest TF-IDF scores for different k values. For each scenario, we run k =3,
5, 10 and 20 and report the best result.

Figure A.5 shows the performance of these two techniques in terms of mean average precision
for all scenarios. The results show that, except for IMDb dataset and TF-IDF, both summarizing
techniques improve the mean average precision of matching. It also shows that our technique
works better than TF-IDF in all scenarios.

Combining matching scores. Figure A.6 depicts the results of averaging the cosine similarity
scores from our solution with those from the pre-trained S-BE. Our solution already outperforms

111

Appendix A. Text to Data Matching: More experimental results

IMDb Corona Audit PolitifactSnopes

0.4

0.6

0.8

M
ea

n
A

vg
Pr

ec
is

io
n

W-RW W-RW &S-BE

Figure A.6 – Our method combined with SentenceBERT.

S-BE in the original experiments, but averaging the two methods improves the matching quality
in all scenarios even above the results from our methods alone. The biggest improvements are for
Snopes and CoronaCheck with 0.9 and 0.8 increase, respectively. This simple combination show
the benefit of exploiting domain specific embeddings and pre-trained ones from large, generic
corpora.

Merging nodes. For all scenarios, we employ different techniques and resources to improve their
quality results (Section 36). In CoronaCheck, 17% of the nodes are numeric values and merging
with equal-width buckets decreases the number of graph nodes. We had the best results with
equal-width buckets of size 7, which increased the mean average precision from 0.72 to 0.76. In
Audit, Politifact, and Snopes datasets, there are few numeric values and bucketing had no effects.
In IMDB, we observe a small loss because numeric values are release dates, for which is better to
avoid merging.

We also use Wikipedia2Vec to merge similar nodes. IMDb scenario contains variations for
the same entity (e.g., director names) and merging them with a threshold γ = 0.57 increases
the performance by 2.5%. For Snopes and Politifact, using the same value, the increase is by
1.7% and 1.5%, respectively. As the CoronaCheck scenario contains typos in user sentences
(e.g., country names), merging such typos leads to a 3.4% increase. With Auditing, we do
not observe improvements by merging nodes with pre-trained resources. The problem is the
difference between the general meaning of a term and its meaning in such a specific domain.
Since pre-trained models are trained on general corpora, they do not help much in a domain
specific scenario. For example, based on Wikipedia2Vec, the similarity is extremely high between
Financial statement and Financial reporting, same for Auditor and Risk control. However, these
terms have different meanings in auditing documents.

112

Appendix B

Rulehub: More experimental results

B.1 Other Predicates Confidence Results

In this section, we report more results about our experiments. Figure B.1 shows a comparison
between human confidence and computed confidence for the rules involving DBpedia:spouse.
Figure B.2 shows the results for the rules involving the DBpedia:foundedBy predicate. Figure
B.3 reports the results for the union of the rules for two DBpedia predicates: relative and
publisher. The mean error for these predicates is 8.36% for positive rules and 8.71% for negative
rules. The correlation between human confidence and computed confidence for both positive and
negative rules for these predicates is evident from the plots.

Figure B.1 – Confidence measures of the rules for DBpedia:spouse.

B.2 A Sample of Rules Used for Evaluations

We report in Table B.1 the negative rules that we used for evaluating our confidence measures.
Figure 5.5a shows the computed confidence of these rules for different κ values.

In Table B.2 we report the positive rules that we used for evaluating our confidence measures.

113

Appendix B. Rulehub: More experimental results

Figure B.2 – Confidence measures of the rules for DBpedia:foundedBy.

Figure B.3 – Confidence measures of the rules for DBpedia:relative and DBpedia:publisher
(union of the two rule sets).

B.3 Quality Evaluation Measure Experiment

In this experiment, we assess the quality evaluation measure (Section 5.1.2) by comparing it with
the human computed confidence. We randomly chose 20 annotated positive and negative rules
from the RuleHub database and asked three non-experts to assign quality evaluation score to each
one of them. We provided three annotators with some general guidelines about logical rules and
KGs, as well as with a brief description in English for every rule to help them understand the
semantic meaning of the rule. Each annotator assigned individually a score from 1 to 5 to every
rule, where 5 is a completely incorrect rule and 1 is a correct one.

In Figure B.4, we report on the horizontal axis the average of annotators quality evalua-
tion score for the rules (between 1 and 5) and in the vertical axis their human confidences
(based on triple annotation). The results show a clear correlation between the two measures,
with the exception of the two rules marked with red points. The first exception rule (red
point on the right) is predecessor(ob ject,v0)∧ spouse(v0,v1)∧ predecessor(sub ject,v1)→
spouse(sub ject,ob ject), which has 0.35 human confidence and the average of annotators score
is 4.7. This rule is a positive rule which states that if the job predecessors of two given persons
are married then these two persons are married. Even though it was difficult for annotators to find
supports for this rule, there are 547 support triples for this rule in DBpedia.

In fact, this is true in most of the cases when kings or presidents are re-
placed. For example, given that predecessor(Donald_Trump, Barak_Obama)

114

Appendix B. Rulehub: More experimental results

Rule
1 owningCompany(ob ject,v0)∧manu f acturer(v1,v0)∧ computingPlat f orm(sub ject,v1)

∧publisher(sub ject,ob ject)→⊥
2 relative(v0,ob ject)∧ child(v0,sub ject)∧ parent(sub ject,v0)∧ relative(sub ject,ob ject)→⊥
3 country(sub ject,v0)∧ location(v1,v0)∧ successor(v1,ob ject)∧ publisher(sub ject,ob ject)→⊥
4 almaMater(ob ject,v0)∧ country(v0,v1)∧birthPlace(sub ject,v1)∧ relative(sub ject,ob ject)→⊥
5 employer(v0,ob ject)∧birthYear(v0,v1)∧deathYear(sub ject,v1)∧ employer(sub ject,ob ject)→⊥
6 publisher(sub ject,v0)∧ product(ob ject,v0)∧ publisher(sub ject,ob ject)→⊥
7 owningCompany(sub ject,ob ject)∧owner(v0,ob ject)∧author(v0,ob ject)∧

type(ob ject,Organisation)∧ type(sub ject,Organisation)∧ f oundedBy(sub ject,ob ject)→⊥
8 publisher(sub ject,v0)∧ parentCompany(v1,v0)∧ successor(ob ject,v1)∧ publisher(sub ject,ob ject)→⊥
9 birthYear(ob ject,v0)∧birthYear(sub ject,v1)∧> (v0,v1)∧ in f luencedBy(sub ject,ob ject)→⊥
10 spouse(v0,ob ject)∧ parent(sub ject,v0)∧ spouse(sub ject,ob ject)→⊥
11 writer(v0,ob ject)∧artist(v0,sub ject)∧ f oundedBy(sub ject,ob ject)→⊥
12 predecessor(v0,ob ject)∧ predecessor(sub ject,v0)∧ spouse(sub ject,ob ject)→⊥
13 associatedMusicalArtist(ob ject,sub ject)∧associatedBand(ob ject,v0)∧

associatedMusicalArtist(v0,sub ject)∧ f oundedBy(sub ject,ob ject)→⊥
14 deathYear(sub ject,v0)∧activeYearsStartYear(ob ject,v1)∧< (v0,v1)∧ spouse(sub ject,ob ject)→⊥
15 spouse(v0,ob ject)∧ child(v0,sub ject)∧ spouse(sub ject,ob ject)→⊥
16 deathPlace(ob ject,v0)∧ region(v0,v1)∧birthPlace(sub ject,v1)∧

type(sub ject,Royalty)∧ type(ob ject,Royalty)∧ spouse(sub ject,ob ject)→⊥
17 birthPlace(ob ject,v0)∧deathPlace(ob ject,v0)∧ predecessor(ob ject,sub ject)

∧spouse(sub ject,ob ject)→⊥
18 spouse(sub ject,v0)∧ parent(ob ject,v0)∧ parent(ob ject,sub ject)∧ spouse(sub ject,ob ject)→⊥
19 deathDate(ob ject,v1)∧birthYear(sub ject,v0)∧> (v0,v1)∧ spouse(sub ject,ob ject)→⊥
20 spouse(v0,ob ject)∧ parent(sub ject,v0)∧ predecessor(sub ject,ob ject)∧ spouse(sub ject,ob ject)→⊥
21 successor(ob ject,sub ject)∧ parent(sub ject,v0)∧ spouse(ob ject,v0)∧ spouse(sub ject,ob ject)→⊥
22 parent(ob ject,v0)∧ spouse(sub ject,v0)∧ successor(sub ject,ob ject)∧ spouse(sub ject,ob ject)→⊥
23 artist(v0,sub ject)∧ recordedIn(v0,v1)∧birthPlace(ob ject,v1)∧ f oundedBy(sub ject,ob ject)→⊥
24 f oundedBy(sub ject,v0)∧deathPlace(v0,v1)∧ locationCountry(ob ject,v1)

∧type(ob ject,Company)∧ type(sub ject,Company)∧ f oundedBy(sub ject,ob ject)→⊥
25 f oundingYear(sub ject,v0)∧activeYearsStartYear(ob ject,v1)∧< (v0,v1)∧ f ounder(sub ject,ob ject)→⊥

Table B.1 – Examples of negative rules.

and predecessor(Melanie_Trump, Michelle_Obama), since spouse(Barak_Obama,
Michelle_Obama) then spouse(Donald_Trump, Melanie_Trump). The second rule
deathDate(subject,v0) ∧ <(v0,v1) ∧ activeYearsStartYear(object,v1) ∧ spouse(subject,object)
→⊥ has 0.9 human confidence but a lower evaluation score of 2.7. This rule states that a person
(object) cannot be in spouse relationship with a person (subject) who died before object has
started his career. In both cases, the triple annotation based method seem to be closer to the
correct evaluation. We observe that in these two cases there was always one non-expert making
the evaluation very different from the one based on triple annotation, thus skewing the results. In
fact, the Kendall’s tau-b correlation [161] score for annotating the 20 rules is 0.49, which is a
fair agreement but also shows that the annotators had different understandings of some of the
non-trivial rules. These results confirm that the triple based annotation is more time-consuming
but also more reliable than the qualitative analysis of the rules.

115

Appendix B. Rulehub: More experimental results

Rule
1 recordLabel(v0,sub ject)∧ f oundedBy(ob ject,v0)→ f oundedBy(sub ject,ob ject)
2 parentCompany(sub ject,v0)∧ successor(v1,v0)∧ f oundedBy(v1,ob ject)→ f oundedBy(sub ject,ob ject)
3 producer(v0,ob ject)∧ producer(v0,sub ject)→ relative(sub ject,ob ject)
4 predecessor(v0,ob ject)∧ spouse(v1,v0)∧ successor(sub ject,v1)→ spouse(sub ject,ob ject)
5 author(sub ject,v0)∧author(v1,v0)∧ publisher(v1,ob ject)→ publisher(sub ject,ob ject)
6 relative(v0,ob ject)∧ spouse(v0,sub ject)→ relative(sub ject,ob ject)
7 child(ob ject,v0)∧ spouse(v0,sub ject)→ relative(sub ject,ob ject)
8 successor(sub ject,v0)∧ parent(v0,ob ject)→ spouse(sub ject,ob ject)
9 relative(sub ject,v0)∧ relative(v0,ob ject)∧ child(ob ject,v0)→ relative(sub ject,ob ject)
10 spouse(sub ject,v0)∧ spouse(v1,v0)∧ spouse(v1,ob ject)→ spouse(sub ject,ob ject)
11 developer(sub ject,ob ject)∧developer(v0,ob ject)∧ composer(v0,v0)→ publisher(sub ject,ob ject)
12 child(sub ject,v0)∧ child(ob ject,v0)→ spouse(sub ject,ob ject)
13 relative(ob ject,sub ject)∧birthPlace(ob ject,v0)∧birthPlace(sub ject,v0)→ relative(sub ject,ob ject)
14 spouse(ob ject,sub ject)→ spouse(sub ject,ob ject)
15 parent(v0,ob ject)∧ parent(v0,sub ject)→ spouse(sub ject,ob ject)

Table B.2 – Examples of positive rules.

Figure B.4 – Quality Evaluation (subjective value between 1 and 5) vs Human Confidence
(derived from triple annotation).

B.4 Important factors in Computing Rules Confidence

We report some observations from comparing computed rule confidence with human confidence.
There are 105 manually annotated rules in the RuleHub corpus: 56 positive and 49 negative
ones. Comparing computed confidence values with human confidence values shows that there is
a lower error rate for positive rules (12.9%) in comparison to negative rules (16.5%). The number
of atoms in a rule also affects the computed confidence. Figure B.5 shows that the computed
confidence has a better accuracy for rules with a higher number of atoms. Intuitively, the more a
rule is specific, the less likely it is that it is satisfied with incorrect triples. In fact, assuming most
of the errors are independent from each other (i.e., they are no systematic), it is very unlikely that
multiple atoms show a pattern by chance.

Conditional rules are rules that apply only for a subset of data and therefore come with at
least two extra atoms compared to the same rules without type constraints [48]. For example,
party(object,v0) ∧ party(subject,v1) ∧ type(subject,Politician) ∧ type(object,OfficeHolder) ∧
spouse(subject,object)→⊥ is a conditional rule that applies where subject has type Politician

116

Appendix B. Rulehub: More experimental results

Figure B.5 – Impact of number of atoms on the error rate for the computed confidence w.r.t.
human confidence.

and object has type OfficeHolder. In accordance with our observation above, conditional rules
show on average a lower error rate in the computation of their confidence (11.6%) in comparison
to the average for rules that are not conditional (15.1%).

B.5 RuleHub Web Page

In this section, we report more details about the web interface of RuleHub. A step-by-step user
manual is available at http://rudik.eurecom.fr/user-manual.

B.5.1 Add new rules

To enrich the corpus, RuleHub allows users to easily add more rules into the system through a
simple form with the following mandatory fields:

• Knowledge Base

• Predicate

• Rule Type

• Premise

• Human Confidence

• Quality Evaluation

When a rule is submitted, the system computes the hash code to check if the rule already exists
in the corpus. If it is a new rule, it will automatically calculate the support score based on the
number of matching cases and not-matching cases over the corresponding KG (see Section 5.1.1),
then store it into the database as a rule to be validated. These rules will not be published until
they are approved by administrators of the site. Figure B.6 reports a screenshot of the main page
of the RuleHub portal. Figure B.7 reports a screenshot of the page to add rules. Figure B.8
reports a screenshot of the rule management page.

117

http://rudik.eurecom.fr/user-manual

Appendix B. Rulehub: More experimental results

Figure B.6 – Screenshot of RuleHub web portal - Search for rules.

Figure B.7 – Screenshot of RuleHub web portal - Add rule.

118

Appendix B. Rulehub: More experimental results

Figure B.8 – Screenshot of RuleHub web portal - Rule Management.

B.5.2 Evaluate rules

Administrators can get samples of the output of a rule execution and label them through RuleHub.
Figure B.9 reports a screenshot of the evaluation page.

119

Appendix B. Rulehub: More experimental results

Figure B.9 – Screenshot of RuleHub web portal - Rule Evaluation.

120

Appendix C

ExpClaim: More Experimental Results

C.1 REASONER

In this section, we will discuss how to compute the confidence of a claim given the learned rules
and the evidence from the knowledge base and Wiki Corpus. In the first part of the section,
we will discuss about Answer Set Programming (ASP), which is a declarative programming
paradigm oriented towards difficult search problem. After that, we will tackle LPMLN which is a
probabilistic extension of ASP. Then, we will show the results of some experiments done.

C.1.1 Answer Set Programming ASP

ASP [198] is a declarative programming paradigm based on stable model semantics Gelfond and
Lifschitz [178]. The goal is to represent a problem by a set of rules and evidence facts and find
a solution among a large but finite number of possibilities. It is suitable for solving knowledge
intensive combinatorial search problems.

A rule is of the form
A← B∧N (C.1)

where, A is the disjunction of atoms, B is the conjunction of atoms, N is a negative forumla
constructed from atoms with a conjunction, disjunction, and negation.

A logic program is a finite set of rules and it is called ground if all the variables in program
are replaced by constants. The answer set is the set of atoms that can be generated by applying the
rules in the program in any order. An Herbrand interpretation I is a model of a ground program
Π if I satisfies all implications in Π. The reduct of Π relative to an interpretation I, denoted by
ΠI consists of A← B for all rules in Π such that I |= N. An Herbrand interpretation I is called a
stable model of a ground program Π if I is the minimal Herbrand model of ΠI .

There are several ASP solvers. We will be using clingo. The following table shows the
symbols used by clingo and their equivalent in the logic sense.

C.1.2 LPMLN

LPMLN [181] is a probabilistic extension of answer set programs with the concept of weighted
rules which is derived from Markov Logic. In LPMLN , a weight is assigned to each rule so that

121

Appendix C. ExpClaim: More Experimental Results

the more rules a stable model satisfy, the more weights it gets.
A program Π is a finite set of weighted rules of the form:

w : A← B∧N (C.2)

where A is a disjunction of atoms, B is a conjunction of atoms, N is a negative formula constructed
from atoms with a conjunction, disjunction, and negation, and w is a real number or the symbol
α which represents the "infinite weight".

A rule w : R is a soft rule if w is a real number, a hard rule if w is α denoting the infinite
weight α . An LPMLN program is ground if its rules contain no variables. Any LPMLN program Π

of signature σ with a ground LPMLN program grσ [Π] is obtained from the rules of Π by replacing
every variable with every ground term of σ . The weight of a ground rule in grσ [Π] is the same
as the weight of the rule in Π from which the ground rule is obtained. By Π we denote the
unweighted logic program obtained from Π, i.e.,

Π = {R|w : R ∈Π} (C.3)

For an LPMLN program Π, ΠI denotes the set of rules w : R in Π such that I |= R and SM[Π]
denotes the set {I | I is a stable model of ΠI}. Now, the unnormalized weight of I under Π is
defined as:

WΠ(I) =

{
exp∑w:R∈Π w i f I ∈ SM[Π]

0 Otherwise
(C.4)

The normalized weight of an interpretation I under Π is defined as:

PΠ(I) = lim
α→∞

WΠ(I)
∑J∈SM[Π]WΠ(J)

(C.5)

For any proposition A, PΠ(A) is defined as:

PΠ(A) = ∑
I,I|=A

PΠ(I) (C.6)

where I is a stable model of Π.
And the conditional probability under Π for the propositions A and B is given as:

PΠ(A|B) =
PΠ(A∧B)

PΠ(B)
(C.7)

LPMLN2ASP [181] is an implementation of LPMLN using ASP solver clingo. Its input language
is similar to that of clingo except that weights can be prepended to rules, in which case the rules
become uncertain. The system is able to return most probable stable models as well as conditional
and marginal probabilities of predicates. Probabilities of the evidence given by the model are
translated into weights using the following formula:

w = f (p) = ln
p

1− p
(C.8)

122

Appendix C. ExpClaim: More Experimental Results

C.2 Rule discovery

We performed experiments in discovering both positive and negative rules for two predicate
spouse and f oundedBy and evaluating their quality in term of confidence score. For each
predicate, we use random walk generation to generate multiple scenarios of 600 samples each
with different homogeneity.

We report in Table. C.1 some statistics of our rule discovery on for spouse and f oundedBy.
Overall, many positive and negative rules are induced from both two predicates, but only small
portion of them are meaningful (confidence higher than 0.5), except for spouse’s negative rules
where we can exploit up to 58 out of 83 possible rules. This may be due to the fact that spouse’s
negative rules appear more often than positive rules. Moreover, for f oundedBy, among 74 induced
positive rules, only 7 rules seems to be valid. Meanwhile, this gap looks much smaller in spouse
(27 vs. 7). This may stress the importance of scenario size against our rule discovery: we need a
f oundedBy size more than 600 samples to increase the selectivity of rule set and spouse can be
mined with small size in input. Source code and test results, including data for two predicates
and all exploited rules are available at https://github.com/ppapotti/expclaim
(RUDIK part).

Predicate #Execution #Positive Rules #Negative Rules
spouse 7 27/7/31 83/58/6

f oundedBy 5 74/7/2 35/8/0

Table C.1 – Statistics of Rudik Executions

Table. C.2 and Table. C.3 includes some representative positive and negative rules for spouse
and f oundedBy. Overall, we are able to find some meaningful rules for both predicates. Although
it seems to be relatively difficult in case of negative f oundedBy, we stills have 2, 3 rules that
are useful, e.g f oundedBy(x,v0)∧ child(v0,y) => ¬ f oundedBy(x,y) (y cannot create x if his
parent already created it) or f oundationPlace(x,v0)∧ locationCity(v1,v0)∧ parentCompany
(v1,y) => ¬ f oundedBy(x,y) (it’s unlikely that a parent company establishes a branch at its
location.). Moreover, type constraints (e.g (Royalty, Royalty), (Fictional Character, Fic-
tional Character) for spouse or (Oragnisation, Person) for f oundedBy help to discover
more expressive rules with higher confidence. Interestingly, considering a positive rule:
owner(x,y) => f oundedBy(x,y) which only gives 0.57 confidence, if y is indeed a person
who owns x, then this rule becomes very reliable (0.96).

123

https://github.com/ppapotti/expclaim

Appendix C. ExpClaim: More Experimental Results

Predicate Rule Confidence Score

Sp
ou

se

parent(v0,x)∧ parent(v0,y) 0.84
parent(v0,x)∧ parent(v0,y)∧ type(x,Royalty)∧ type(y,Royalty) 0.87

child(x,v0)∧ child(y,v0) 0.78
child(x,v0)∧ parent(v0,y) 0.87

successor(x,v0)∧ spouse(v1,v0)∧ predecessor(v1,y) 0.25

fo
un

de
dB

y

f oundedBy(x,v0)∧ f oundedBy(v1,v0)∧ f oundedBy(v1,y) 0.87
occupation(y,x)∧occupation(y,v0)∧ f oundedBy(v0,y) 0.89

keyPerson(x,v0)∧ f oundedBy(x,v0)∧owner(x,y) 0.57
keyPerson(x,v0)∧ f oundedBy(x,v0)∧owner(x,y)∧ type(x,Organization)∧ type(y,Person) 0.96

f oundedBy(x,v0)∧developer(v1,v0)∧developer(v1,ob ject) 0.45
f oundedBy(x,v0)∧developer(v1,v0)∧developer(v1,ob ject)∧ type(x,Organization)∧ type(y,Person) 0.65

Table C.2 – Examples of positive rule exploited for spouse and f oundedBy

Predicate Rule Confidence Score

Sp
ou

se

child(x,y) 0.64
child(x,y)∧ type(x,¬FictionalCharacter)∧ type(y,¬FictionalCharacter) 0.75

child(x,y)∧birthPlace(x,v0)∧birthPlace(y,v0) 0.83
parent(x,y) 0.96

predecessor(x,v0)∧ predecessor(v0,y) 0.89
parent(v0,x)∧! = (v0,v1)∧ parent(v1,y) 0.59

fo
un

de
dB

y f oundedBy(x,v0)∧ child(v0,y) 0.71
f oundationPlace(x,v0)∧ locationCity(v1,v0)∧ parentCompany(v1,y) 0.66

a f f iliation(y,v0)∧ country(v0,v1)∧ location(x,v1) 0.67
owner(x,v0)∧occupation(v0,y) 0.49

Table C.3 – Examples of negative rule exploited for spouse and f oundedBy

124

Appendix D

RuleBERT: More on Reasoning with
Soft Rules

Let σ be a signature as in first-order logic. An LPMLNprogram Π is a finite set of weighted rules
of the form:

w : A← B (D.1)

where A is a disjunction of atoms of σ , B is a conjunction of literals (atoms and negated atoms)
of σ , and w is a real number or the symbol α .

When A is ⊥ (the empty disjunction), the rule asserts that B should be false in the stable
model. An LPMLN rule (D.1) is called soft if w is a real number or hard if w is α . An LPMLN

program is ground if its rules contain no variables. An LPMLN program Π that contains variables
is identified with a ground LPMLN program grσ [Π], which is obtained from Π by replacing every
variable with every ground term of σ . The weight of a ground rule in grσ [Π] is the same as the
weight of the corresponding rule in Π. By Π we denote the unweighted logic program obtained
from Π, i.e., Π = {R | w : R ∈Π}.

For a ground LPMLN program Π, ΠI denotes the set of rules w : R in Π such that I satisfies
R (denoted I |= R) and SM[Π] denotes the set {I | I is a (deterministic) stable model of ΠI}. The
(unnormalized) weight of I under Π is defined as follows:

WΠ(I) =

 exp(∑
w:R∈ΠI

w) if I ∈ SM[Π];

0 otherwise.

The probability of I under Π is the normalized weight defined as follows:

PΠ(I) = lim
α→∞

W Π(I)
∑J∈SM[Π]W Π(J)

.

In Answer Set programming (ASP), search problems are reduced to computing stable models
(a.k.a. answer sets), a set of beliefs described by the program. In the case of a Horn program, the
stable models coincide with the minimal models.

125

Appendix D. RuleBERT: More on Reasoning with Soft Rules

1 2 3 4 5

0

1

2

3

·104

Number of rules

A
ve

ra
ge

Su
pp

or
t

spouse child relative

Figure D.1 – Support of the overlapping rules.

D.1 Rules Support

We designed an experiment to show the impact of increasing the number of overlapping rules
on the same target predicate. The goal is to measure how often multiple rules are triggered for
the same target triple. We measure this with the support of a rule, i.e., the number of triples in
the knowledge base that satisfy all the atoms in the rule. To compute the support for more than
one rule, we combine the premises of the rules. In this experiment, we picked three predicates
(spouse, child and relative), and for each one we selected ten rules randomly. Next, we used
DBpedia online endpoint1 to compute the support for each combination of n (n=1,2,...,5) rules
for each predicate. The results in Figure D.1 show that by increasing the number of rules, the
support decreases for all predicates. For combinations with more than three rules, the support is
very small.

D.2 More Experimental Details

For fine-tuning our models, we rely on Google Colaboratory which assigns random GPU clusters
of various types. The number of parameters of our models is in the range of 355M parameters.
Hyper-parameters for our models, shown in Table D.2, have been set manually to maximize
accuracy. Execution times vary largely depending on the GPU at hand and the scenario, with fine
tuning on a Tesla V100 taking from one hour for a single rule to a few hours for all the chaining
experiments.

D.3 Ablation

Impact of the Data Size

Setting. We report the impact of the size of the fine-tuning data on the model performance. As
shown in Table 5.6, the accuracy of the fine-tuned model is higher for rules with higher confidence.
We therefore divide the rules in three categories: High contains rules with confidence greater than

1http://dbpedia.org/sparql

126

Appendix D. RuleBERT: More on Reasoning with Soft Rules

Dataset Size

Mod0 Test(own) 2667
Mod1 Test(own) 4000
Mod2 Test(own) 5334
Mod3 Test(own) 6667
Mod4 Test(own) 8000
Mod5 Test(own) 9334

Test(D≤5) 9334
Depth=0 16057
Depth=1 6608
Depth=2 5389
Depth=3 3993
Depth=4 2619
Depth=5 1336

Table D.1 – Number of examples in each of the test datasets for the chaining experiment.

Hyper-Parameter Value

Learning Rate 1e-6
Weight Decay 0.1
Number of Epochs 3
Batch Size 16
Learning Rate Decay Linear
Warmup Ratio 0.06

Table D.2 – Hyper-parameters for fine-tuning our model.

0.8, Medium has rules with confidence between 0.4 and 0.8, and Low is for the rest. There are six
rules in the Medium category and the other two categories have five rules each. For each rule, we
fine-tune seven models with 1k, 2k, 5k, 10k, 15k, 20k, to 30k examples.
Results. Figure D.3 shows that having more training data improves the accuracy in all scenarios.
For all categories, there is a significant increase going from 10k to 15k examples and the impact
is smaller with higher values. The highest increase is for rules with high confidence, and rules
with medium confidence demonstrate larger increase compared to rules in the Low category.

D.3.1 Role of Example Formats

Setting. When we teach rules to PLMs, we rely on examples with real names from a fixed pool.
However, our goal is to teach PLMs the semantics of the soft rule, not the facts in our examples.
Thus, we further design an experiment to assess the impact of the format used in the example facts
on the behavior of the model. We distinguish two formats for the generated facts: (i) real names
such as Alice and IBM, and (ii) letters such as A and B. We first use each format in fine-tuning
and we then test both formats. We end up with two test/train scenarios: one with the same format
and one with different formats. For this study, we use just one rule: (child(a,c) ∧ parent(c,b)→

127

Appendix D. RuleBERT: More on Reasoning with Soft Rules

child(a,b)→ negparent(a,b)
child(a,b)→ nespouse(a,b)
child(a,b)→ negchild(b,a)
child(a,b)→ negrelation(b,a)
parent(a,b)→ negparent(b,a)
parent(a,b)→ nespouse(a,b)
spouse(a,b)→ relative(b,a)
successor(a,b)→ predecessor(b,a)
predecessor(a,b)→ negsuccessor(a,b)
successor(a,b)→ negspouse(a,b)
predecessor(a,b)→ negspouse(a,b)
child(a,c) ∧ parent(c,b)→ spouse(a,b)
child(b,a) ∧ child(c,a)→ spouse(b,c)
parent(a,b) ∧ parent(b,c)→ negparent(a,c)
parent(a,b) ∧ child(c,a)→ spouse(b,c)
spouse(a,b) ∧ parent(c,a)→ negspouse(b,c)
spouse(a,b) ∧ child(a,c)→ negspouse(b,c)
successor(a,c) ∧ successor(b,c)→ negspouse(a,b)
publisher(c,b) ∧ subsequentwork(c,a)→ publisher(a,b)
publisher(c,b) ∧ previouswork(c,a)→ publisher(a,b)

Figure D.2 – The set of rules used for fine tuning RULEBERT20 in the experiment of Section 5.3.3
(unseen rules).

Train Letter Train Name

Test Letter .981 .932
Test Name .977 .985

Table D.3 – Impact of the example format on accuracy.

spouse(a,b)), with 30K examples for fine-tuning, and 2k for testing.

Results. The results in Table D.3 show that the model outcome does not depend heavily on using
the same fact format for training and testing. With examples using letters in training, the results
are slightly better in the case with two formats. We ultimately use names for test and train in our
default configuration as it yields the best results.

D.4 Data Generation Example

We show an example of data generation for Algorithm 8. For simplicity, we show an example for
a hard rule (rule confidence is implicitly equal to one) and show an example of a soft rule. We
begin by setting the input parameters:

128

Appendix D. RuleBERT: More on Reasoning with Soft Rules

12 5 10 15 20 30

0.6

0.8

1

Training Data (Thousands)

A
cc

ur
ac

y
High Medium Low

Figure D.3 – Impact of the training data size.

Algorithm 1 Input:

• r = child(A,C) ∧ parent(C,B) → spouse(A,B)

• n = 8
• m = 5
• pools ={Alice,Bob,Carl,David,Eve}

We set n = 8 to generate all the eight hypotheses. We start by generating a set of facts F (line
3), having predicates from the body of the rule with random polarity. We ensure that there are
facts which trigger the rule. The number of facts should not exceed m. Example of generated
facts F :

Generated Facts F:

• f1: negparent(Eve,Carl)

• f2: child(Eve,David)

• f3: parent(Carl,Bob)

• f4: child(Alice,Carl)

Four facts are generated in total. Facts f3 and f4 trigger rule r. We then feed the rule r and
facts F into the LPMLNreasoner (line 4). The output O is then:

LPMLNReasoner Output O:

• o1: child(Eve,David)

• o2: child(Alice,Carl)

• o3: parent(Carl,Bob)

• o4: spouse(Alice,Bob)

• o5: negchild(Eve,Carl)

We start generating the hypotheses:

129

Appendix D. RuleBERT: More on Reasoning with Soft Rules

Generated Hypotheses H:

• h1: child(Eve,David)

• h2: child(David,Eve)

• h3: spouse(Alice,Bob)

• h4: negspouse(Alice,Bob)

• h5: child(David,Carl)

• h6: negchild(David,Carl)

• h7: spouse(Bob,Eve)

• h8: negspouse(Bob,Eve)

The hypothesis h1 is obtained by sampling from F (line 5), making it a valid hypothesis.
Then, the hypothesis h2 is generated by altering h1 with the function Alter(line 19-22). In this
example, since child is not symmetric, h2 is produced a switch of the subject and the object of h1
to produce a false hypothesis (line 6).

The hypothesis h3 is the outcome of rule r being triggered by facts f3 and f4 (line 7). In a
similar fashion to h2, we produce h4 (line 8).

Hypothesis h5 is sampled from the universe of all unsatisfied positive facts having a different
predicate than that of the rule body (line 9), making it an invalid hypothesis, as it is not found in
the O. Hypothesis h6 is the negation of h5, and, following CWA, it is a valid hypothesis (line 10).

Finally, hypothesis h7 is sampled from the universe of unsatisfied rule-head atoms (line 11),
and it is negated to produce hypothesis h8.

We thus obtain eight different examples represented in symbolic knowledge, where each
example contains the set of generated facts F , the rule r, and a single hypothesis hi. The following
is one example in symbolic knowledge:

Example #1 (Symbolic):

• Rule r = child(A,C) ∧ parent(C,B) → spouse(A,B)

• Facts F :

– f1: negparent(Eve,Carl)

– f2: child(Eve,David)

– f3: parent(Carl,Bob)

– f4: child(Alice,Carl)

• Hypothesis h3 : spouse(Alice,Bob)

We then convert each example to synthetic English using pre-defined templates for the facts
and rules. Here is Example #1 in synthetic English.

130

Appendix D. RuleBERT: More on Reasoning with Soft Rules

Example #1 (Synthetic English):

• Rule r = If the child of the first person is the third person, and the parent of the third
person is the second person, then the first person is the spouse of the second person.

• Facts F :

– f1: The parent of Eve is not Carl.

– f2: The child of Eve is David.

– f3: The parent of Carl is Bob.

– f4: The child of Alice is Carl.

• Hypothesis h3 : The spouse of Alice is Bob.

The Context is defined as the combined set of facts and rule(s). Both Context and Hypothesis
are fed as an input to the model.

Example #1 (Model Input):

• Context : The parent of Eve is not Carl. The child of Eve is David. If the child of the
first person is the third person, and the parent of the third person is the second person,
then the first person is the spouse of the second person. The parent of Carl is Bob. The
child of Alice is Carl.

• Hypothesis : The spouse of Alice is Bob.

131

Appendix D. RuleBERT: More on Reasoning with Soft Rules

132

Résumé en français

Un Knowledge Graph est une représentation structurée d’information qui contient des entités du
monde réel sous forme de nœuds, et les relations entre elles sous forme d’arêtes. Les entités et
les relations dans un KG ont des descriptions sémantiques sous forme de types et de propriétés
qui leur sont associés. Les KG représentent les données avec de grandes collections d’entités
interconnectées. Généralement, un riche ensemble de types (classes) est disponible pour décrire
les entités (par exemple, l’entité Paris est une ville, France est un pays), tandis que les prédicats
décrivent leurs relations (une ville estCapitale d’un pays) et leurs propriétés (la France a une
population :62M).

Les KG organisent les informations sous forme triplets avec predicate exprimant une relation
binaire entre un sujet et un objet. Les KG stockent une grande quantité d’informations factuelles,
et les triplets KG, ou les faits (facts), représentent des informations sur les entités du monde réel,
leurs propriétés et leurs relations, telles que "Larry Page est le fondateur de Google".

La création d’un KG en RDF est une activité importante dans les systèmes d’information
modernes et, au cours des 15 dernières années, beaucoup de grands KG académiques [3–6] et
institutionnels [7, 14, 54]. ont été conçus. Par exemple, la version anglaise de DBpedia stocke
6M d’entités et 9B de triplets de relations. 2. Les structures syntaxiques et sémantiques de la
connaissance dans les KG sont utiles pour construire des applications telles que les Systèmes de
Questions-Réponses et la Recherche Sémantique.

L’un des principaux défis que posent les KG est la qualité de leurs données. Cela est dû aux
processus impliqués dans leur création et leur mise à jour. Les données structurées des KG sont
généralement extraites de sources multiples, éventuellement du Web, sans validation humaine.
Cela soulève deux problèmes principaux. Le premier problème est celui des erreurs factuelles.
Des données incorrectes ou périmées peuvent être transmises des sources aux KG, ou bien le bruit
peut provenir des extracteurs automatiques [9, 27]. Le deuxième problème est l’incomplétude.
Comme un graphe est rarement complet dans la pratique, Closed World Assumption (CWA) n’est
pas valable en pratique. (CWA) ne tient pas pas pour les KGs [9, 28], c’est-à-dire qu’il n’est pas
possible de conclure qu’un fait manquant est faux. Nous suivons donc la Open World Assumption
(OWA) et le considérons comme inconnu. De plus, dans de nombreux cas, le schéma du KG n’est
pas fixe, c’est-à-dire que l’ensemble des prédicats change au fil du temps, et que de nouveaux
faits peuvent être insérés sans contrôle d’intégrité.

En raison de ces problèmes, la quantité d’incomplétude et d’erreurs dans les KG peut être
importante, avec jusqu’à 30% d’erreurs rapportées pour les données extraites du Web [29, 30].
Les KG peuvent contenir de nombreuses data, par exemple, WIKIDATA compte plus d’un milliard

2http ://wiki.dbpedia.org/dbpedia-version-2016-04

133

de faits et des millions d’entités, il n’est donc pas possible de vérifier manuellement les triplets
pour trouver les erreurs et ajouter les faits manquants. Des outils sont nécessaires pour aider les
humains dans la curation des KG. Une approche naturelle dans cette direction est d’extraire des
règles déclaratives. Une fois validées, ces règles peuvent être exécutées à grande échelle sur le
KG pour augmenter la qualité de ses data [10, 28, 31–33].

rpos = spouse(a,b)∧child(a,v0)→ child(b,v0)

rneg = parent(a,b)∧birthDate(b,v0)∧birthDate(a,v1)∧ v0 > v1

Par exemple, la règle rpos stipule que si deux personnes sont dans la relation de conjoint,
chacune d’elles est le parent de l’enfant de l’autre, et la règle rneg exprime qu’une personne ne
peut avoir une date de naissance inférieure à celle de ses parents.

Ces règles doivent être élaborées manuellement pour être exécutées sur les KG. Ce processus
peut s’avérer difficile, car les experts du domaine, qui connaissent la sémantique de l’ensemble
de données en question, peuvent ne pas avoir les connaissances en informatique nécessaires pour
exprimer ces règles formellement. De plus, l’écriture d’un ensemble de règles est chronophage,
car il peut y en avoir des milliers qui sont nécessaires pour obtenir des résultats de bonne qualité.
Dans ce contexte, un système d’extraction de règles est important pour aider les utilisateurs
dans la conservation des données, ainsi que dans toute tâche impliquant un raisonnement sur le
KG [35, 36].

L’extraction de règles (Rule mining) est le processus d’extraction automatique de règles
logiques à partir du KG. Ces règles peuvent être exploitées dans la curation des KG en réduisant
les incohérences ou en y ajoutant de nouveaux faits. Par exemple, rpos peut nous aider à compléter
le KG en ajoutant de nouvelles arêtes entre les entités tandis que rneg nous aidera à supprimer les
nœuds ou les arêtes qui ne la satisfont pas.

Trois problèmes principaux rendent l’extraction de règles à partir de KG difficile :
Qualité des données. La plupart des algorithmes de fouille de règles supposent que les données
d’entrée comportent de très petites quantités d’erreurs [37–40], mais les KG sont incomplets et
peuvent comporter des pourcentages élevés d’erreurs.
Open World Assumption. Certaines méthodes supposent que des exemples positifs et négatifs
sont disponibles [41, 42]. Cependant, les KG ne contiennent que des déclarations positives, et il
n’est pas possible de supposer le CWA, car il n’y a pas de solution évidente pour dériver des faits
négatifs servant de contre-exemples.
Data Volume. Plusieurs algorithmes existants de fouille de règles exploitent le principe selon
lequel le graphe d’entrée peut tenir entièrement dans la mémoire centrale principale [28,32,33,43].
Comme les KG peuvent avoir une très grande taille, les méthodes existantes limitent la taille de
l’espace de recherche en restreignant l’exploration à un langage de règles simples, ce qui fait que
certains motifs importants dans les données peuvent être ratés.

De plus, comme on peut le voir dans rpos, la plupart des règles logiques ne sont pas vraies
dans tous les cas et pour cette raison, un score de confiance doit leur être attribué. Définir ces
indices de confiance d’une manière qui représente la précision des règles est un autre défi qui doit
être résolu dans la tâche de découverte automatique de règles.

Nous commençons cette thèse en proposant une méthode pour créer un Knowledge Graph
pour le domaine de l’audit. Nous créons ce KG en utilisant des documents d’audit et des

134

taxonomies et les relations entre eux. Ensuite, nous étendons un système de fouille de règles
pour améliorer ses performances en extrayant des règles conditionnelles et des règles sur des
prédicats littéraux. Nous proposons également un score de confiance pour calculer la précision
des règles positives et négatives. Nous avons également utilisé ces règles dans des tâches telles
que la vérification des faits et le transfert de connaissances de sens commun à des modèles
linguistiques pré-entraînés (Pre-trained Language Models). L’objectif principal de cette thèse
est d’étudier de nouvelles approches pour la création et la curation continue de KGs. Pour cela,
nous introduisons un algorithme pour trouver des entités et leurs relations et nous développons
également un algorithme efficace de fouille de règles pour trouver des règles positives et négatives.
Nous proposons également des mesures pour calculer la confiance des règles positives et négatives
et les employons dans une application de vérification des faits.

Dans notre recherche, nous avons utilisé des KG généraux (DBPedia, Wikidata) au lieu du
KG de KPMG. Cette décision a été prise pour deux raisons(i) leur KG n’est pas assez mature
pour appliquer ces techniques, (ii) en raison de l’accord de confidentialité, nous ne pouvons
pas exposer leur KG. Dans ce qui suit, nous résumerons nos contributions dans les différents
domaines qui ont été abordés par cette thèse.

Création d’un KG d’audit (Chapitre 3)

Dans ce chapitre, nous présentons d’abord notre méthode d’identification automatique des nœuds
pour la création du KG de KPMG, puis nous discutons de notre solution pour l’identification des
relations entre les différents nœuds d’activité et de taxonomie de KPMG. Ces relations seront
représentées comme des arêtes dans le KG. Nous n’avons pas pu trouver de cadre de conversion
de texte en structure qui puisse fonctionner dans notre contexte et nous avons donc décidé de
développer un cadre pour identifier les arêtes dans le KG de KPMG (conversion de texte en texte
structuré). Nos expériences ont montré que le modèle proposé fonctionne bien pour d’autres
tâches de correspondance.

La tâche d’identification des nœuds couvre la génération de deux types de nœud dans le KG
de KPMG : les entités et les mots. Elle contient deux sous-tâches : i) trouver dans le corpus de
documents les entités qui peuvent être représentatives, et ii) trouver les membres de la famille
(mots) pour chaque entité représentative.

FIGURE 7.4 – Le cadre proposé : (1) les documents de texte et de données structurées sont
modélisés conjointement dans un graphe, (ii) des embeddings sont produits pour les nœuds de
données et de métadonnées (représentant des textes, des nœuds de taxonomie, des tuples), (iii)
les nœuds de métadonnées sont mis en correspondance dans une approche non supervisée.

135

Pour trouver les relations entre différentes entités dans le KG de KPMG, nous proposons
un cadre pour l’apprentissage de représentations de données et de textes qui (i) est adapté au
domaine en question avec une modélisation conjointe de corpus hétérogènes et (ii) exploite les
informations structurées disponibles pour améliorer la qualité des embeddings générés et du
processus d’appariement. Cette méthode a été initialement conçue pour l’identification d’arêtes
dans le KG de KPMG mais nos expériences montrent qu’elle est performante dans d’autres
tâches.

La figure 7.4 montre les différents composants de notre cadre. Tout d’abord, il représente
les documents textuels et les tableaux comme des nœuds et des arêtes dans un graphe non
orienté. Ce graphe contient deux types de nœud principaux. Les nœuds Data représentent des
tokens (mots) dans les corpus, soit dans des paragraphes de texte, soit dans des cellules de
tableau. Les nœuds Metadata représentent les ID des tuples, des attributs et des paragraphes. Les
arêtes du graphe représentent la relation entre les données et les métadonnées, par exemple, un
tuple/attribut/paragraphe contient le token dans un nœud de données. Comme notre objectif est de
faire correspondre les nœuds de métadonnées, nous cherchons à créer davantage de chemins entre
les nœuds liés et à supprimer les connexions parasites. Le premier objectif est atteint dans une
étape d’expansion qui exploite des ressources externes, telles que ConceptNet [21]. Le second
objectif est obtenu en élaguant les arêtes et les nœuds à l’aide d’une technique de compression de
graphes conçue pour notre tâche d’appariement.

Ensuite, nous générons un embedding pour chaque nœud du graphe. Nous nous appuyons
sur des solutions existantes pour cette étape et l’algorithme actuel peut être remplacé au fur et
à mesure que la communauté progresse dans cette tâche. Enfin, nous utilisons les embeddings
pour les nœuds de métadonnées dans un algorithme non supervisé pour identifier les nœuds
correspondants, comme le paragraphe et le tuple dans le premier exemple.

Le cadre permet aux utilisateurs d’améliorer la solution en fonction des exigences et des
ressources dont ils disposent. S’il existe des ressources externes pertinentes, comme des dic-
tionnaires de mots, elles peuvent être intégrées dans la construction du graphe pour fusionner
les nœuds de données. Les graphes de connaissances et les ontologies peuvent être insérés dans
l’étape d’expansion pour trouver davantage de relations entre les nœuds de métadonnées. Si
un nouvel algorithme de génération d’embeddings est disponible, il peut être intégré dans la
deuxième étape pour améliorer la qualité des embeddings.

Les résultats publiés dans ce chapitre sont basés sur le publication suivant :

Naser Ahmadi, Hansjorg Sand, and Paolo Papotti, Unsupervised Matching of Data
and Text, (Submitted for publication).

Découverte de règles conditionnelles (Chapitre 4)

Ce chapitre contient notre travail d’extension d’un système précédent de découverte de règles
(RuDiK). Le but de notre travail est de permettre à RuDiK d’extraire des règles conditionnelles.
De nombreuses règles ne sont valables que dans une zone géographique donnée, à un moment
précis, ou pour des catégories d’entités spécifiques. Nous étendons les méthodes d’extraction
de base pour capturer les règles conditionnelles, qui sont des règles qui ne s’appliquent qu’à un
sous-ensemble des données et qui sont reconnues par une sélection avec une constante sur les

136

FIGURE 7.5 – Architecture du RuleHub.

valeurs d’une entité ou d’un type. Nous trouvons ces sous-ensembles de données, pour lesquels
l’exploration conduit à de nouvelles règles qui ne sont pas identifiées par l’exploration générale,
en utilisant le regroupement d’entités.

Nous présentons une méthode pour extraire les règles conditionnelles dans les KGs et nos
expériences ont montré que cette technique est capable de générer plus de règles en comparai-
son avec la technique générique. Il est également démontré expérimentalement que les règles
conditionnelles sont plus précises que les règles génériques et qu’elles couvrent un plus petit
sous-ensemble de triplets.

Les résultats de ce chapitre sont basés sur l’article suivant :

Naser Ahmadi, Phi Huynh, Vamsi Meduri, Stefano Ortona and Paolo Papotti, Mining
Expressive Rules in Knowledge Graphs, ACM Journal of Data and Information
Quality, 2019.

Un corpus de règles et comment les enseigner aux PLMs (Chapitre 5)

La première section de ce chapitre présente RuleHub, un système qui expose sur un site Web un
corpus extensible de règles pour les KG publiques (http://rudik.eurecom.fr). RuleHub
est conçu avec des outils de fouille de règles comme principale source de règles à l’esprit, comme
le montre la figure 7.5. Les utilisateurs peuvent interroger ou parcourir le référentiel de règles,
en fonction du KG et du prédicat qui les intéresse. De plus, ils peuvent spécifier et ajouter
manuellement de nouvelles règles ou mettre à jour les règles existantes en fournissant plus de
métadonnées, comme la confiance d’une règle. Nous pensons que la confiance est cruciale pour
les règles, car très peu de règles sont complètement correctes ou fausses en général. Pour cette
raison, nous fournissons également un module qui calcule la confiance pour une règle donnée sur
un KG. Les règles pour n’importe quel KG et de n’importe quel type peuvent être traitées par le
système. Dans ce chapitre, nous rapportons notre expérience de la construction de RuleHub et
de son alimentation avec des règles découvertes par des systèmes de fouille de règles existants.
Nous pensons que RuleHub peut être un catalyseur pour un travail collaboratif indispensable à la
définition de métadonnées pour les KG publiques.

RuleHub présente les contributions suivantes :

• Nous introduisons une nouvelle méthode de calcul de la confiance pour les règles négatives,
c’est-à-dire les règles qui identifient des contradictions dans les données.

• Nous présentons le premier corpus ouvert de règles (générées automatiquement) pour les
KG publiques et détaillons son modèle de données et ses composants.

137

http://rudik.eurecom.fr

• Nous rapportons les leçons apprises lors de la création d’un tel corpus et les résultats
expérimentaux montrant comment notre modèle de calcul de la confiance des règles
présente une corrélation remarquable avec les valeurs de confiance annotées manuellement.

Dans la deuxième partie du chapitre 5, nous proposons deux méthodes d’extraction de règles
logiques pour les KG de Wikidata et la troisième section de ce chapitre aborde le problème du
transfert des connaissances de sens commun vers des modèles de langage pré-entraînés. Pour
cette question, nous développons un modèle (RuleBert) pour transférer la connaissance dans les
règles logiques extraites pour les KG à un modèle de langage. RuleBert présente les contributions
suivantes :

• Nous introduisons le problème de l’enseignement de règles souples exprimées dans un
langage synthétique à des PLM par le biais d’un réglage fin (modélisé comme une classifi-
cation binaire).

• Nous créons et publions le premier jeu de données pour cette tâche. Ce jeu de données
contient 3,2 millions d’exemples dérivés de 161 règles décrivant des modèles réels de sens
commun avec la probabilité cible pour la tâche obtenue à partir d’un raisonneur formel.

• Nous présentons des techniques permettant de prédire la probabilité correcte du résultat
du raisonnement pour les règles et les faits souples donnés. Notre solution s’appuie sur
une fonction de perte révisée qui modélise efficacement l’incertitude des règles. Notre
approche gère les règles multi-variables et s’étend bien aux exemples qui nécessitent un
raisonnement sur des règles à entrées multiples.

• Nous montrons que notre approche permet d’obtenir des modèles à réglage fin qui donnent
une probabilité de prédiction très proche de celle produite par un raisonneur formel. Un
PLM réglé sur des règles souples, RULEBERT, peut raisonner efficacement sur des faits
et des règles qui n’ont pas été vus lors de la formation, même lorsqu’il est réglé avec
seulement 20 règles.

Ce chapitre est basé sur les publications suivantes :

Naser Ahmadi, Duyen Truong, Mai Dao, Stefano Ortona, and Paolo Papotti, Rule-
Hub : a Public Corpus of Rules for Knowledge Graphs, ACM Journal of Data
and Information Quality, 2020.

Naser Ahmadi, and Paolo Papotti, Wikidata logical rules and where to find them,
Wiki Workshop, 2021.

Mohammed Saeed, Naser Ahmadi, Paolo Papotti, and Preslav Nakov, Teaching
Soft Rules to Pre-trained Language Models, The 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2021.

138

FIGURE 7.6 – Notre cadre de vérification des faits EXPCLAIM.

Vérification explicable des faits (Chapitre 6)

Nous présentons ExpClaim pour la vérification des faits basée sur des règles extraites de KGs.
ExpClaim est un système de vérification des faits entièrement automatisé et interprétable qui
exploite efficacement les preuves incertaines. La figure 7.6 montre notre cadre, EXPCLAIM. Le
module Rule discovery prend en entrée le KG K pour générer les règles. Nous convertissons
ensuite les règles découvertes Σ dans le langage d’entrée du raisonneur, où le poids d’une règle
est son support. Pour une déclaration (claim) donnée c : p(x,y), p ∈ K et les règles Σ, le module
Evidence Generation collecte les faits pertinents (triples satisfaisant le corps des règles) à partir
du KG et du Web avec le module Text mining.

Nous transmettons ensuite les règles et les preuves au module Reasoner, où différents modes
de calcul peuvent être utilisés pour déduire si p(x,y) ou negp(x,y) fait partie de l’ensemble
de réponses. La sortie du raisonneur comprend une explication de la décision interprétable par
l’humain. Les détails des principales étapes sont donnés ci-après.

Les résultats expérimentaux sur un KG réel montrent que notre méthode (i) obtient des
résultats qualitatifs comparables ou meilleurs que les méthodes ML existantes de type boîte noire
et (ii) produit des explications consommables par l’humain. ExpClaim est présenté dans l’article
suivant :

Naser Ahmadi, Joohyung Lee, Paolo Papotti and Mohammed Saeed, Explainable
Fact Checking with Probabilistic Answer Set Programming, Conference for
Truth and Trust Online (TTO), 2019.

139

140

Bibliography

[1] T. Safavi and D. Koutra, “Relational world knowledge representation in contextual lan-
guage models: A review,” arXiv preprint arXiv:2104.05837, 2021.

[2] A. Piscopo and E. Simperl, “What we talk about when we talk about wikidata qual-
ity: a literature survey,” in Proceedings of the 15th International Symposium on Open
Collaboration, 2019, pp. 1–11.

[3] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, and T. M. Mitchell,
“Toward an architecture for never-ending language learning.” in AAAI, 2010, pp. 1306–
1313.

[4] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann,
“DBpedia-A crystallization point for the web of data,” Web Semantics: science, services
and agents on the WWW, vol. 7, no. 3, pp. 154–165, 2009.

[5] F. M. Suchanek, G. Kasneci, and G. Weikum, “YAGO: A core of semantic knowledge
unifying wordnet and wikipedia,” in WWW, 2007, pp. 697–706.

[6] D. Vrandečić and M. Krötzsch, “Wikidata: A free collaborative knowledgebase,” Comm.
of the ACM, vol. 57, no. 10, pp. 78–85, 2014.

[7] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: a collaboratively
created graph database for structuring human knowledge,” in SIGMOD, 2008, pp. 1247–
1250.

[8] J. Shin, S. Wu, F. Wang, C. De Sa, C. Zhang, and C. Ré, “Incremental knowledge base
construction using DeepDive,” PVLDB, vol. 8, no. 11, pp. 1310–1321, 2015.

[9] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy, S. Sun, and W. Zhang, “From
data fusion to knowledge fusion,” PVLDB, vol. 7, no. 10, pp. 881–892, 2014.

[10] O. Deshpande, D. S. Lamba, M. Tourn, S. Das, S. Subramaniam, A. Rajaraman, V. Hari-
narayan, and A. Doan, “Building, maintaining, and using knowledge bases: a report from
the trenches,” in SIGMOD, 2013, pp. 1209–1220.

[11] C. Unger, A. Freitas, and P. Cimiano, “An introduction to question answering over linked
data,” in Reasoning Web International Summer School. Springer, 2014, pp. 100–140.

141

Bibliography

[12] D. Diefenbach, V. Lopez, K. Singh, and P. Maret, “Core techniques of question answering
systems over knowledge bases: a survey,” Knowledge and Information systems, vol. 55,
no. 3, pp. 529–569, 2018.

[13] H. Bast, B. Björn, and E. Haussmann, “Semantic search on text and knowledge bases,”
Foundations and Trends in Information Retrieval, vol. 10, no. 2-3, pp. 119–271, 2016.

[14] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun,
and W. Zhang, “Knowledge vault: a web-scale approach to probabilistic knowledge fusion,”
in KDD, 2014, pp. 601–610.

[15] H. Paulheim, “Knowledge graph refinement: A survey of approaches and evaluation
methods,” Semantic web, vol. 8, no. 3, pp. 489–508, 2017.

[16] T. Steiner, R. Verborgh, R. Troncy, J. Gabarro, and R. Van de Walle, “Adding realtime
coverage to the google knowledge graph,” in 11th International Semantic Web Conference
(ISWC 2012), vol. 914. Citeseer, 2012, pp. 65–68.

[17] X. Zou, “A survey on application of knowledge graph,” in Journal of Physics: Conference
Series, vol. 1487, no. 1. IOP Publishing, 2020, p. 012016.

[18] S. Auer and S. Mann, “Towards an open research knowledge graph,” The Serials Librarian,
vol. 76, no. 1-4, pp. 35–41, 2019.

[19] M. Kejriwal, Domain-specific knowledge graph construction. Springer, 2019.

[20] T. Adams, “Google and the future of search: Amit singhal and the knowledge graph,” The
Guardian, vol. 19, 2013.

[21] R. Speer, J. Chin, and C. Havasi, “Conceptnet 5.5: An open multilingual graph of general
knowledge,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31,
no. 1, 2017.

[22] M. Sap, R. L. Bras, E. Allaway, C. Bhagavatula, N. Lourie, H. Rashkin, B. Roof, N. A.
Smith, and Y. Choi, “ATOMIC: an atlas of machine commonsense for if-then reasoning,” in
The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019. AAAI Press, 2019, pp. 3027–3035.

[23] M. Kejriwal, R. Shao, and P. Szekely, “Expert-guided entity extraction using expressive
rules,” in Proceedings of the 42nd international ACM SIGIR conference on research and
development in information retrieval, 2019, pp. 1353–1356.

[24] B. Abu-Salih, “Domain-specific knowledge graphs: A survey,” Journal of Network and
Computer Applications, vol. 185, p. 103076, 2021.

142

Bibliography

[25] S. Wu, L. Hsiao, X. Cheng, B. Hancock, T. Rekatsinas, P. Levis, and C. Ré, “Fonduer:
Knowledge base construction from richly formatted data,” in Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference 2018, Houston,
TX, USA, June 10-15, 2018. ACM, 2018, pp. 1301–1316.

[26] N. Jain, “Domain-specific knowledge graph construction for semantic analysis,” in Euro-
pean Semantic Web Conference. Springer, 2020, pp. 250–260.

[27] M. Bronzi, V. Crescenzi, P. Merialdo, and P. Papotti, “Extraction and integration of partially
overlapping web sources,” PVLDB, vol. 6, no. 10, pp. 805–816, 2013.

[28] L. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek, “Fast rule mining in ontological
knowledge bases with AMIE+,” The VLDB Journal, vol. 24, no. 6, pp. 707–730, 2015.

[29] F. M. Suchanek, M. Sozio, and G. Weikum, “SOFIE: A self-organizing framework for
information extraction,” in WWW, 2009, pp. 631–640.

[30] Z. Abedjan, C. G. Akcora, M. Ouzzani, P. Papotti, and M. Stonebraker, “Temporal rules
discovery for web data cleaning,” PVLDB, vol. 9, no. 4, pp. 336–347, 2015.

[31] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani, P. Papotti,
M. Stonebraker, and N. Tang, “Detecting data errors: Where are we and what needs to be
done?” PVLDB, vol. 9, no. 12, pp. 993–1004, 2016.

[32] Z. Abedjan and F. Naumann, “Amending RDF entities with new facts,” in ESWC, 2014,
pp. 131–143.

[33] Y. Chen, S. Goldberg, D. Z. Wang, and S. S. Johri, “Ontological pathfinding,” in SIGMOD,
2016, pp. 835–846.

[34] P. Suganthan GC, C. Sun, H. Zhang, F. Yang, N. Rampalli, S. Prasad, E. Arcaute, G. Kr-
ishnan et al., “Why big data industrial systems need rules and what we can do about it,” in
SIGMOD, 2015, pp. 265–276.

[35] M. H. Gad-Elrab, D. Stepanova, J. Urbani, and G. Weikum, “Exfakt: A framework for
explaining facts over knowledge graphs and text,” in WSDM, 2019, pp. 87–95.

[36] L. Bellomarini, E. Sallinger, and G. Gottlob, “The vadalog system: Datalog-based reason-
ing for knowledge graphs,” PVLDB, vol. 11, no. 9, pp. 975–987, 2018.

[37] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases. Addison-Wesley, 1995.

[38] X. Chu, I. F. Ilyas, and P. Papotti, “Discovering denial constraints,” PVLDB, vol. 6, no. 13,
pp. 1498–1509, 2013.

[39] Z. Abedjan, L. Golab, and F. Naumann, “Data profiling: A tutorial,” in SIGMOD, 2017,
pp. 1747–1751.

143

Bibliography

[40] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen, “TANE: An efficient algorithm
for discovering functional and approximate dependencies,” The computer journal, vol. 42,
no. 2, pp. 100–111, 1999.

[41] L. Dehaspe and H. Toivonen, “Discovery of frequent datalog patterns,” DMKD, vol. 3,
no. 1, pp. 7–36, 1999.

[42] S. Muggleton and L. De Raedt, “Inductive logic programming: Theory and methods,” The
Journal of Logic Programming, vol. 19, pp. 629–679, 1994.

[43] M. H. Farid, A. Roatis, I. F. Ilyas, H. Hoffmann, and X. Chu, “CLAMS: bringing quality
to data lakes,” in SIGMOD, 2016, pp. 2089–2092.

[44] N. Ahmadi, H. Sand, and P. Papotti, “Unsupervised matching of data and text,” 2021.

[45] R. Cappuzzo, P. Papotti, and S. Thirumuruganathan, “Creating embeddings of heteroge-
neous relational datasets for data integration tasks,” in SIGMOD, 2020.

[46] C. Koutras, G. Siachamis, A. Ionescu, K. Psarakis, J. Brons, M. Fragkoulis,
C. Lofi, A. Bonifati, and A. Katsifodimos, “Valentine: Evaluating matching
techniques for dataset discovery,” CoRR, vol. abs/2010.07386, 2020. [Online]. Available:
https://arxiv.org/abs/2010.07386

[47] Y. Li, J. Li, Y. Suhara, A. Doan, and W. Tan, “Deep entity matching with pre-trained
language models,” PVLDB, 2021.

[48] N. Ahmadi, V.-P. Huynh, V. V. Meduri, S. Ortona, and P. Papotti, “Mining expressive rules
in knowledge graphs,” Journal of Data and Information Quality (JDIQ), vol. 12, no. 2, pp.
1–27, 2020.

[49] N. Ahmadi, T.-T.-D. Truong, L.-H.-M. Dao, S. Ortona, and P. Papotti, “Rulehub: A public
corpus of rules for knowledge graphs,” Journal of Data and Information Quality (JDIQ),
vol. 12, no. 4, pp. 1–22, 2020.

[50] N. Ahmadi and P. Papotti, “Wikidata logical rules and where to find them,” in Companion
Proceedings of the Web Conference 2021, 2021, pp. 580–581.

[51] M. Saeed, N. Ahmadi, P. Nakov, and P. Papotti, “Rulebert: Teaching soft rules to pre-
trained language models,” arXiv preprint arXiv:2109.13006, 2021.

[52] N. Ahmadi, J. Lee, P. Papotti, and M. Saeed, “Explainable fact checking with probabilistic
answer set programming,” in Conference for Truth and Trust Online (TTO), 2019.

[53] G. Weikum, “Knowledge graphs 2021: A data odyssey,” Proc. VLDB Endow., vol. 14,
no. 12, pp. 3233–3238, 2021. [Online]. Available: http://www.vldb.org/pvldb/vol14/
p3233-weikum.pdf

[54] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyanpur, A. Lally, J. W.
Murdock, E. Nyberg, J. M. Prager, N. Schlaefer, and C. Welty, “Building Watson: An
overview of the DeepQA project,” AI Mag., vol. 31, no. 3, pp. 59–79, 2010.

144

https://arxiv.org/abs/2010.07386
http://www.vldb.org/pvldb/vol14/p3233-weikum.pdf
http://www.vldb.org/pvldb/vol14/p3233-weikum.pdf

Bibliography

[55] A. Saeedi, E. Peukert, and E. Rahm, “Using link features for entity clustering in knowledge
graphs,” in European Semantic Web Conference. Springer, 2018, pp. 576–592.

[56] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation embeddings for
knowledge graph completion.” in AAAI, 2015, pp. 2181–2187.

[57] D. J. Pearce and P. H. Kelly, “A dynamic topological sort algorithm for directed acyclic
graphs,” Journal of Experimental Algorithmics (JEA), vol. 11, pp. 1–7, 2007.

[58] B. Golden, “Shortest-path algorithms: A comparison,” Operations Research, vol. 24, no. 6,
pp. 1164–1168, 1976.

[59] R. Mihalcea, P. Tarau, and E. Figa, “Pagerank on semantic networks, with application to
word sense disambiguation,” in COLING 2004: Proceedings of the 20th International
Conference on Computational Linguistics, 2004, pp. 1126–1132.

[60] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embedding: A survey of
approaches and applications,” IEEE Transactions on Knowledge and Data Engineering,
vol. 29, no. 12, pp. 2724–2743, 2017.

[61] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye, “Katara: A
data cleaning system powered by knowledge bases and crowdsourcing,” in Proceedings
of the 2015 ACM SIGMOD international conference on management of data, 2015, pp.
1247–1261.

[62] C. Xiong, J. Callan, and T.-Y. Liu, “Word-entity duet representations for document rank-
ing,” in Proceedings of the 40th International ACM SIGIR conference on research and
development in information retrieval, 2017, pp. 763–772.

[63] G. Weikum, L. Dong, S. Razniewski, and F. Suchanek, “Machine knowledge: Creation
and curation of comprehensive knowledge bases,” arXiv preprint arXiv:2009.11564, 2020.

[64] Z. Zhao, S.-K. Han, and I.-M. So, “Architecture of knowledge graph construction tech-
niques,” International Journal of Pure and Applied Mathematics, vol. 118, no. 19, pp.
1869–1883, 2018.

[65] H. Cunningham, “Gate: A framework and graphical development environment for ro-
bust nlp tools and applications,” in Proc. 40th annual meeting of the association for
computational linguistics (ACL 2002), 2002, pp. 168–175.

[66] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soderland, D. S. Weld,
and A. Yates, “Unsupervised named-entity extraction from the web: An experimental
study,” Artificial intelligence, vol. 165, no. 1, pp. 91–134, 2005.

[67] J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local information into
information extraction systems by gibbs sampling,” in Proceedings of the 43rd annual
meeting on association for computational linguistics. Association for Computational
Linguistics, 2005, pp. 363–370.

145

Bibliography

[68] J. Li, A. Sun, J. Han, and C. Li, “A survey on deep learning for named entity recognition,”
IEEE Transactions on Knowledge and Data Engineering, 2020.

[69] S. Geetha, G. A. Mala, and N. Kanya, “A survey on information extraction using entity
relation based methods,” 2011.

[70] S. Sarawagi, Information extraction. Now Publishers Inc, 2008.

[71] X. Han, T. Gao, Y. Lin, H. Peng, Y. Yang, C. Xiao, Z. Liu, P. Li, M. Sun, and J. Zhou,
“More data, more relations, more context and more openness: A review and outlook for
relation extraction,” arXiv preprint arXiv:2004.03186, 2020.

[72] H. Wang, M. Tan, M. Yu, S. Chang, D. Wang, K. Xu, X. Guo, and S. Potdar, “Ex-
tracting multiple-relations in one-pass with pre-trained transformers,” arXiv preprint
arXiv:1902.01030, 2019.

[73] S. Wu and Y. He, “Enriching pre-trained language model with entity information for
relation classification,” in Proceedings of the 28th ACM international conference on
information and knowledge management, 2019, pp. 2361–2364.

[74] M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for collective learning on
multi-relational data,” in Icml, 2011.

[75] M. Nentwig, M. Hartung, A.-C. Ngonga Ngomo, and E. Rahm, “A survey of current link
discovery frameworks,” Semantic Web, vol. 8, no. 3, pp. 419–436, 2017.

[76] A. Bordes, X. Glorot, J. Weston, and Y. Bengio, “A semantic matching energy function for
learning with multi-relational data,” Machine Learning, vol. 94, no. 2, pp. 233–259, 2014.

[77] D. C. Faye, O. Cure, and G. Blin, “A survey of rdf storage approaches,” Revue Africaine
de la Recherche en Informatique et Mathématiques Appliquées, vol. 15, pp. 11–35, 2012.

[78] R. kumar Kaliyar, “Graph databases: A survey,” in International Conference on Computing,
Communication & Automation. IEEE, 2015, pp. 785–790.

[79] S. Ortona, V. V. Meduri, and P. Papotti, “Robust discovery of positive and negative rules in
knowledge bases,” in ICDE, 2018, pp. 1168–1179.

[80] M. Loster, F. Naumann, J. Ehmueller, and B. Feldmann, “Curex: A system for extracting,
curating, and exploring domain-specific knowledge graphs from text,” in Proceedings of
the 27th ACM International Conference on Information and Knowledge Management,
2018, pp. 1883–1886.

[81] “Shapes constraint language (SHACL),” W3C, Tech. Rep., Jul. 2017. [Online]. Available:
https://www.w3.org/TR/shacl/

[82] J. E. L. Gayo, E. Prud’hommeaux, H. R. Solbrig, and J. M. Á. Rodríguez, “Validating
and describing linked data portals using rdf shape expressions.” in LDQ@ SEMANTICS.
Citeseer, 2014.

146

https://www.w3.org/TR/shacl/

Bibliography

[83] L. A. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek, “Amie: association rule mining
under incomplete evidence in ontological knowledge bases,” in WWW. ACM, 2013, pp.
413–422.

[84] J. Lajus, L. Galárraga, and F. Suchanek, “Fast and exact rule mining with amie 3,” in
European Semantic Web Conference. Springer, 2020, pp. 36–52.

[85] Y. Dai, S. Wang, N. N. Xiong, and W. Guo, “A survey on knowledge graph embedding:
Approaches, applications and benchmarks,” Electronics, vol. 9, no. 5, p. 750, 2020.

[86] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translating
embeddings for modeling multi-relational data,” in NIPS, 2013.

[87] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations
in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[88] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding by translating on
hyperplanes.” in AAAI, 2014, pp. 1112–1119.

[89] B. Shi and T. Weninger, “Proje: Embedding projection for knowledge graph completion,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017.

[90] W. Qian, C. Fu, Y. Zhu, D. Cai, and X. He, “Translating embeddings for knowledge graph
completion with relation attention mechanism.” in IJCAI, 2018, pp. 4286–4292.

[91] J. Weston, A. Bordes, O. Yakhnenko, and N. Usunier, “Connecting language and
knowledge bases with embedding models for relation extraction,” arXiv preprint
arXiv:1307.7973, 2013.

[92] J. L. Martinez-Rodriguez, I. Lopez-Arevalo, and A. B. Rios-Alvarado, “Openie-based
approach for knowledge graph construction from text,” Expert Systems with Applications,
vol. 113, pp. 339–355, 2018.

[93] J. Marciniak, “Wordnet as a backbone of domain and application conceptualizations
in systems with multimodal data,” in Proceedings of the LREC 2020 Workshop on
Multimodal Wordnets (MMW2020). Marseille, France: The European Language
Resources Association (ELRA), May 2020, pp. 25–32. [Online]. Available:
https://www.aclweb.org/anthology/2020.mmw-1.5

[94] D. Ferrucci and A. Lally, “Uima: an architectural approach to unstructured information
processing in the corporate research environment,” Natural Language Engineering, vol. 10,
no. 3-4, pp. 327–348, 2004.

[95] A. Ardalan, D. Paulsen, A. S. Saini, W. Cai, and A. Doan, “Toward data cleaning with a
target accuracy: A case study for value normalization,” arXiv preprint arXiv:2101.05308,
2021.

147

https://www.aclweb.org/anthology/2020.mmw-1.5

Bibliography

[96] G. Rizzo and R. Troncy, “Nerd: a framework for unifying named entity recognition
and disambiguation extraction tools,” in Proceedings of the Demonstrations at the 13th
Conference of the European Chapter of the Association for Computational Linguistics,
2012, pp. 73–76.

[97] A. Fader, S. Soderland, and O. Etzioni, “Identifying relations for open information extrac-
tion,” in Proceedings of the 2011 conference on empirical methods in natural language
processing, 2011, pp. 1535–1545.

[98] M. Hearst, “Automatic acquisition of hyponyms from large text corpora in proc,” in 14th
International Conference Computational Linguistics, Nantes France, 1992.

[99] F. Mesquita, J. Schmidek, and D. Barbosa, “Effectiveness and efficiency of open relation
extraction,” in Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, 2013, pp. 447–457.

[100] M. A. Jaro, “Advances in record-linkage methodology as applied to matching the 1985
census of tampa, florida,” Journal of the American Statistical Association, vol. 84, no. 406,
pp. 414–420, 1989.

[101] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient text
classification,” arXiv preprint arXiv:1607.01759, 2016.

[102] L. Getoor and A. Machanavajjhala, “Entity resolution for big data,” in ACM SIGKDD,
2013, pp. 1527–1527.

[103] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know: Unanswerable questions
for squad,” in ACL, 2018, pp. 784–789.

[104] J. Guo, Y. Fan, X. Ji, and X. Cheng, “Matchzoo: a learning, practicing, and developing
system for neural text matching,” in SIGIR, 2019, pp. 1297–1300.

[105] W. Chen, H. Wang, J. Chen, Y. Zhang, H. Wang, S. Li, X. Zhou, and W. Y. Wang, “Tabfact:
A large-scale dataset for table-based fact verification,” in ICLR, 2020.

[106] G. Karagiannis, M. Saeed, P. Papotti, and I. Trummer, “Scrutinizer: A mixed-initiative
approach to large-scale, data-driven claim verification,” Proc. VLDB Endow., vol. 13,
no. 11, pp. 2508–2521, 2020.

[107] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation,” in Empirical Methods in Natural Language Processing (EMNLP), 2014,
pp. 1532–1543. [Online]. Available: http://www.aclweb.org/anthology/D14-1162

[108] M. Ebraheem, S. Thirumuruganathan, S. R. Joty, M. Ouzzani, and N. Tang, “Distributed
representations of tuples for entity resolution,” Proc. VLDB Endow., vol. 11, no. 11, pp.
1454–1467, 2018.

[109] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Arcaute,
and V. Raghavendra, “Deep learning for entity matching: A design space exploration,” in
SIGMOD. ACM, 2018, pp. 19–34.

148

http://www.aclweb.org/anthology/D14-1162

Bibliography

[110] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirec-
tional transformers for language understanding,” in ACL, 2019, pp. 4171–4186.

[111] M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. Ontañón,
P. Pham, A. Ravula, Q. Wang, L. Yang, and A. Ahmed, “Big Bird: Transformers
for longer sequences,” CoRR, vol. abs/2007.14062, 2020. [Online]. Available:
https://arxiv.org/abs/2007.14062

[112] S. Shaar, N. Babulkov, G. D. S. Martino, and P. Nakov, “That is a known lie: Detecting
previously fact-checked claims,” in ACL, 2020, pp. 3607–3618.

[113] A. Adhikari, A. Ram, R. Tang, and J. Lin, “Docbert: Bert for document classification,”
arXiv preprint arXiv:1904.08398, 2019.

[114] Y. Ibrahim, M. Riedewald, G. Weikum, and D. Zeinalipour-Yazti, “Bridging quantities in
tables and text,” in ICDE. IEEE, 2019, pp. 1010–1021.

[115] J. Herzig, P. K. Nowak, T. Müller, F. Piccinno, and J. M. Eisenschlos, “Tapas: Weakly
supervised table parsing via pre-training,” in ACL, 2020, pp. 4320–4333.

[116] P. Yin, G. Neubig, W. Yih, and S. Riedel, “Tabert: Pretraining for joint understanding of
textual and tabular data,” in ACL, 2020, pp. 8413–8426.

[117] H. Chen, S. Wadhwa, X. D. Li, and A. Zukov-Gregoric, “Yelm: End-to-end contextualized
entity linking,” arXiv preprint arXiv:1911.03834, 2019.

[118] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and D. Brown,
“Text classification algorithms: A survey,” Information, vol. 10, no. 4, p. 150, 2019.

[119] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fidler,
“Skip-thought vectors,” in NIPS, 2015, pp. 3294–3302.

[120] C. De Boom, S. Van Canneyt, T. Demeester, and B. Dhoedt, “Representation learning for
very short texts using weighted word embedding aggregation,” Pattern Recognition Letters,
vol. 80, pp. 150–156, 2016.

[121] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese bert-
networks,” arXiv preprint arXiv:1908.10084, 2019.

[122] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and performance: A
survey,” Knowledge-Based Systems, vol. 151, pp. 78–94, 2018.

[123] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social representa-
tions,” in SIGKDD, 2014, pp. 701–710.

[124] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in
SIGKDD, 2016, pp. 855–864.

[125] C. Fu, X. Han, L. Sun, B. Chen, W. Zhang, S. Wu, and H. Kong, “End-to-end multi-
perspective matching for entity resolution,” in IJCAI, 2019.

149

https://arxiv.org/abs/2007.14062

Bibliography

[126] R. C. Fernandez and S. Madden, “Termite: a system for tunneling through heterogeneous
data,” in aiDM. ACM, 2019, pp. 7:1–7:8.

[127] M. Günther, P. Oehme, M. Thiele, and W. Lehner, “Learning from textual data in database
systems,” in CIKM, 2020, pp. 375–384.

[128] D. Freedman and P. Diaconis, “On the histogram as a density estimator: L2 theory,” Z.
Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 57, no. 4, pp. 453–476, 1981.

[129] G. A. Miller, WordNet: An electronic lexical database. MIT press, 1998.

[130] I. Yamada, H. Shindo, H. Takeda, and Y. Takefuji, “Joint learning of the embedding of
words and entities for named entity disambiguation,” in SIGNLL, 2016.

[131] E. J. Gerritse, F. Hasibi, and A. P. de Vries, “Graph-embedding empowered entity retrieval,”
in European Conference on Information Retrieval, 2020, pp. 97–110.

[132] P. Mcnamee and J. Mayfield, “Character n-gram tokenization for european language text
retrieval,” Information retrieval, vol. 7, no. 1-2, pp. 73–97, 2004.

[133] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman, “Search in power-law
networks,” Physical review E, vol. 64, no. 4, p. 046135, 2001.

[134] Y. Liu, T. Safavi, A. Dighe, and D. Koutra, “Graph summarization methods and applica-
tions: A survey,” ACM Comput. Surv., vol. 51, no. 3, pp. 62:1–62:34, 2018.

[135] M. P. Stumpf, C. Wiuf, and R. M. May, “Subnets of scale-free networks are not scale-free:
sampling properties of networks,” Proceedings of the National Academy of Sciences, vol.
102, no. 12, pp. 4221–4224, 2005.

[136] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining, 2006,
pp. 631–636.

[137] V. Krishnamurthy, M. Faloutsos, M. Chrobak, L. Lao, J.-H. Cui, and A. G. Percus,
“Reducing large internet topologies for faster simulations,” in International Conference on
Research in Networking. Springer, 2005, pp. 328–341.

[138] N. K. Ahmed, J. Neville, and R. Kompella, “Network sampling: From static to streaming
graphs,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 8, no. 2, pp.
1–56, 2013.

[139] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: densification laws, shrink-
ing diameters and possible explanations,” in Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining, 2005, pp. 177–187.

[140] A. Rezvanian and M. R. Meybodi, “Sampling social networks using shortest paths,”
Physica A: Statistical Mechanics and its Applications, vol. 424, pp. 254–268, 2015.

150

Bibliography

[141] Y. Li, Z. Wu, S. Lin, H. Xie, M. Lv, Y. Xu, and J. C. Lui, “Walking with perception:
Efficient random walk sampling via common neighbor awareness,” in 2019 IEEE 35th
International Conference on Data Engineering (ICDE). IEEE, 2019, pp. 962–973.

[142] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on graphs: Methods
and applications,” arXiv preprint arXiv:1709.05584, 2017.

[143] K. Lee, H. Jo, J. Ko, S. Lim, and K. Shin, “Ssumm: Sparse summarization of massive
graphs,” in SIGKDD, 2020, pp. 144–154.

[144] S. Schoenmackers, O. Etzioni, D. S. Weld, and J. Davis, “Learning first-order horn clauses
from web text,” in Empirical Methods in Natural Language Processing, 2010, pp. 1088–
1098.

[145] W. Fan and F. Geerts, Foundations of Data Quality Management, ser. Synthesis Lectures
on Data Management. Morgan & Claypool Publishers, 2012. [Online]. Available:
http://dx.doi.org/10.2200/S00439ED1V01Y201207DTM030

[146] S. Kruse and F. Naumann, “Efficient discovery of approximate dependencies,” PVLDB,
vol. 11, no. 7, pp. 759–772, 2018.

[147] W. Fan, Y. Wu, and J. Xu, “Functional dependencies for graphs,” in SIGMOD, 2016, pp.
1843–1857.

[148] W. Fan, C. Hu, X. Liu, and P. Lu, “Discovering graph functional dependencies,” in
SIGMOD, 2018, pp. 427–439.

[149] G. Töpper, M. Knuth, and H. Sack, “Dbpedia ontology enrichment for inconsistency
detection,” in I-SEMANTICS, 2012, pp. 33–40.

[150] D. Wienand and H. Paulheim, “Detecting incorrect numerical data in dbpedia,” in ESWC,
2014.

[151] B. Min, R. Grishman, L. Wan, C. Wang, and D. Gondek, “Distant supervision for relation
extraction with an incomplete knowledge base.” in HLT-NAACL, 2013, pp. 777–782.

[152] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathematics of operations
research, vol. 4, no. 3, pp. 233–235, 1979.

[153] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination
of minimum cost paths,” IEEE transactions on Systems Science and Cybernetics, vol. 4,
no. 2, pp. 100–107, 1968.

[154] A. Bordes, J. Weston, R. Collobert, and Y. Bengio, “Learning structured embeddings of
knowledge bases,” in AAAI, 2011.

[155] C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee, “Linked data on the web,” in WWW,
2008, pp. 1265–1266.

151

http://dx.doi.org/10.2200/S00439ED1V01Y201207DTM030

Bibliography

[156] C. Mangold, “A survey and classification of semantic search approaches,” International
Journal of Metadata, Semantics and Ontologies, vol. 2, no. 1, pp. 23–34, 2007.

[157] M. Schmidt, M. Meier, and G. Lausen, “Foundations of sparql query optimization,” in
ICDT, 2010, pp. 4–33.

[158] T. P. Tanon, C. Bourgaux, and F. M. Suchanek, “Learning how to correct a knowledge base
from the edit history,” in WWW, 2019, pp. 1465–1475.

[159] Internet Engineering Task Force (IETF), “The javascript object notation (JSON) data
interchange format,” https://tools.ietf.org/html/std90.

[160] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of sparql,” in Interna-
tional semantic web conference, 2006, pp. 30–43.

[161] M. G. Kendall, “The treatment of ties in ranking problems,” Biometrika, vol. 33, no. 3, pp.
239–251, 1945.

[162] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov, “RoBERTa: A robustly optimized BERT pretraining approach,” 2020.
[Online]. Available: https://openreview.net/forum?id=SyxS0T4tvS

[163] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning, “What does bert look at? an
analysis of bert’s attention,” in BlackBoxNLP@ACL, 2019.

[164] A. Rogers, O. Kovaleva, and A. Rumshisky, “A primer in BERTology: What we know about
how BERT works,” Transactions of the Association for Computational Linguistics, vol. 8,
pp. 842–866, 2020. [Online]. Available: https://www.aclweb.org/anthology/2020.tacl-1.54

[165] M. T. Ribeiro, T. Wu, C. Guestrin, and S. Singh, “Beyond accuracy: Behavioral
testing of NLP models with CheckList,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Online: Association
for Computational Linguistics, Jul. 2020, pp. 4902–4912. [Online]. Available:
https://www.aclweb.org/anthology/2020.acl-main.442

[166] N. Kassner and H. Schütze, “Negated and misprimed probes for pretrained language
models: Birds can talk, but cannot fly,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Online: Association
for Computational Linguistics, Jul. 2020, pp. 7811–7818. [Online]. Available:
https://www.aclweb.org/anthology/2020.acl-main.698

[167] J. Lee and Y. Wang, “Weighted rules under the stable model semantics.” in KR, 2016, pp.
145–154.

[168] P. Clark, O. Tafjord, and K. Richardson, “Transformers as soft reasoners over
language,” in Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20, 7 2020, pp. 3882–3890. [Online]. Available:
https://doi.org/10.24963/ijcai.2020/537

152

https://tools.ietf.org/html/std90
https://openreview.net/forum?id=SyxS0T4tvS
https://www.aclweb.org/anthology/2020.tacl-1.54
https://www.aclweb.org/anthology/2020.acl-main.442
https://www.aclweb.org/anthology/2020.acl-main.698
https://doi.org/10.24963/ijcai.2020/537

Bibliography

[169] Y.-A. Wang and Y.-N. Chen, “What do position embeddings learn? an empirical
study of pre-trained language model positional encoding,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP). Online:
Association for Computational Linguistics, Nov. 2020, pp. 6840–6849. [Online]. Available:
https://www.aclweb.org/anthology/2020.emnlp-main.555

[170] M. Babakar and W. Moy, “The state of automated factchecking,” Full Fact, 2016.

[171] N. Hassan, F. Arslan, C. Li, and M. Tremayne, “Toward automated fact-checking: Detect-
ing check-worthy factual claims by claimbuster,” in KDD, 2017.

[172] I. Jaradat, P. Gencheva, A. Barrón-Cedeño, L. Màrquez, and P. Nakov, “ClaimRank:
Detecting check-worthy claims in Arabic and English,” in NAACL-HTL, 2018, pp. 26–30.

[173] B. Shi and T. Weninger, “Discriminative predicate path mining for fact checking in
knowledge graphs,” Knowledge-Based Systems, vol. 104, pp. 123–133, 2016.

[174] G. L. Ciampaglia, P. Shiralkar, L. M. Rocha, J. Bollen, F. Menczer, and A. Flammini,
“Computational fact checking from knowledge networks,” PloS one, vol. 10, no. 6, 2015.

[175] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning with neural tensor networks
for knowledge base completion,” in NIPS, 2013, pp. 926–934.

[176] K. Popat, S. Mukherjee, A. Yates, and G. Weikum, “Declare: Debunking fake news and
false claims using evidence-aware deep learning,” in EMNLP, 2018, pp. 22–32.

[177] K. Popat, S. Mukherjee, J. Strötgen, and G. Weikum, “Credibility assessment of textual
claims on the web,” in CIKM, 2016.

[178] M. Gelfond and V. Lifschitz, “The stable model semantics for logic programming,” pp.
1070–1080, 1988.

[179] J. Lee, V. Lifschitz, and R. Palla, “A reductive semantics for counting and choice in answer
set programming,” in AAAI, 2008, pp. 472–479.

[180] P. Ferraris, J. Lee, and V. Lifschitz, “Stable models and circumscription,” Artificial Intelli-
gence, vol. 175, pp. 236–263, 2011.

[181] J. Lee, S. Talsania, and Y. Wang, “Computing LPMLN using ASP and MLN solvers,”
Theory and Practice of Logic Programming, 2017.

[182] P. Shiralkar, A. Flammini, F. Menczer, and G. L. Ciampaglia, “Finding streams in knowl-
edge graphs to support fact checking,” in ICDM, 2017, pp. 859–864.

[183] V. Huynh and P. Papotti, “Towards a benchmark for fact checking with knowledge bases,”
in Companion of The Web Conference 2018 on The Web Conference (WWW), 2018.

[184] J. Lehmann, D. Gerber, M. Morsey, and A. N. Ngomo, “Defacto - deep fact validation,” in
ISWC, 2012, pp. 312–327.

153

https://www.aclweb.org/anthology/2020.emnlp-main.555

Bibliography

[185] T. D. Cao, I. Manolescu, and X. Tannier, “Searching for truth in a database of statistics,”
in WebDB, 2018, pp. 4:1–4:6.

[186] Y. Wu, P. K. Agarwal, C. Li, J. Yang, and C. Yu, “Toward computational fact-checking,”
Proceedings of the VLDB Endowment, vol. 7, no. 7, pp. 589–600, 2014.

[187] M. Richardson and P. Domingos, “Markov logic networks,” Machine learning, vol. 62, no.
1-2, pp. 107–136, 2006.

[188] A. Srinivasan, “The Aleph manual,” 2001.

[189] J. Leblay, “A declarative approach to data-driven fact checking,” in AAAI, 2017, pp.
147–153.

[190] A. Pradhan, “Explainable fact checking by combining automated rule discovery with
probabilistic answer set programming,” Ph.D. dissertation, Arizona State University, 2018.

[191] J. Rammelaere and F. Geerts, “Explaining repaired data with CFDs,” PVLDB, vol. 11,
no. 11, pp. 1387–1399, 2018.

[192] J. He, E. Veltri, D. Santoro, G. Li, G. Mecca, P. Papotti, and N. Tang, “Interactive and
deterministic data cleaning,” in SIGMOD, 2016, pp. 893–907.

[193] S. Sadiq, G. Governatori, and K. Namiri, “Modeling control objectives for business process
compliance,” in International conference on business process management. Springer,
2007, pp. 149–164.

[194] A. Silberschatz and A. Tuzhilin, “What makes patterns interesting in knowledge discovery
systems,” IEEE Trans. Knowl. Data Eng., vol. 8, no. 6, pp. 970–974, 1996.

[195] J. Thorne, A. Vlachos, C. Christodoulopoulos, and A. Mittal, “FEVER: a large-scale
dataset for fact extraction and verification,” in NAACL-HLT, 2018.

[196] A. Gatt and E. Krahmer, “Survey of the state of the art in natural language generation: Core
tasks, applications and evaluation,” Journal of Artificial Intelligence Research, vol. 61, pp.
65–170, 2018.

[197] O. Tafjord, B. D. Mishra, and P. Clark, “Proofwriter: Generating implications, proofs, and
abductive statements over natural language,” 2020.

[198] V. Lifschitz, “What is answer set programming?” pp. 1594–1597, 2008. [Online].
Available: http://dl.acm.org/citation.cfm?id=1620270.1620340

154

http://dl.acm.org/citation.cfm?id=1620270.1620340

	Abstract
	Abrégé [Français]
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Notations
	1 Introduction
	1.1 A Knowledge Graph for Audit Information
	1.1.1 Building and curating the Audit Knowledge Graph

	1.2 Quality of Data
	1.3 Outline of the Thesis

	2 Knowledge Graphs
	2.1 Knowledge Graphs
	2.1.1 Knowledge Graph Architecture
	2.1.2 Knowledge Graph Construction

	2.2 Knowledge Graph Curation
	2.3 Summary

	3 Nodes and Relations Identification
	3.1 Node Identification
	3.1.1 Related Work
	3.1.2 Finding Representative Entities
	3.1.3 Creating Entity Families
	3.1.4 Evaluation

	3.2 Matching Text and Data
	3.2.1 Related Work
	3.2.2 A Graph for Heterogeneous Corpora
	3.2.3 Graph Expansion and Compression
	3.2.4 Matching Text and Structured Data
	3.2.5 Embeddings Generation
	3.2.6 Experiments

	3.3 Summary

	4 Mining Expressive Rules in Knowledge Graphs
	4.1 Related Work
	4.2 Rule Mining
	4.2.1 Logical Rules
	4.2.2 Rule Coverage

	4.3 Rule Discovery for Noisy Knowledge Graphs
	4.3.1 Weight Function
	4.3.2 Problem Definition

	4.4 Generation of Rules and Examples
	4.4.1 Rule Generation
	4.4.2 Negative Examples Generation

	4.5 Discovery Algorithm
	4.5.1 A Greedy Algorithm Based on Marginal Weight
	4.5.2 Graph Traversal with A* Search
	4.5.3 Algorithm Analysis

	4.6 Conditional Rules
	4.6.1 Type condition
	4.6.2 Entity condition

	4.7 Experiments
	4.7.1 Quality of Generic Rules Discovered by RuDiK
	4.7.2 Conditional Rules

	4.8 Summary

	5 A Public Corpus of Rules
	5.1 Rulehub
	5.1.1 Rule Confidence
	5.1.2 A Corpus of Rules
	5.1.3 Experiments

	5.2 Extracting Logical Rules from Wikidata
	5.2.1 Searching Logical Rules
	5.2.2 Experiments

	5.3 Teaching soft rules to language models
	5.3.1 Dataset Generation
	5.3.2 Teaching PLMs to Reason
	5.3.3 Experiments

	5.4 Summary

	6 Explainable Fact Checking using Logical Rules
	6.1 Preliminaries
	6.2 Related Work
	6.3 Framework
	6.3.1 Rule Generation
	6.3.2 Evidence Generation
	6.3.3 Inference for Fact Checking

	6.4 Experiments
	6.5 Summary

	7 Conclusion and Future Work
	7.1 Future Work

	Appendices
	A Text to Data Matching: More experimental results
	A.1 Ablation Study
	A.1.1 Impact of parameters
	A.1.2 Improving graph generation

	B Rulehub: More experimental results
	B.1 Other Predicates Confidence Results
	B.2 A Sample of Rules Used for Evaluations
	B.3 Quality Evaluation Measure Experiment
	B.4 Important factors in Computing Rules Confidence
	B.5 RuleHub Web Page
	B.5.1 Add new rules
	B.5.2 Evaluate rules

	C ExpClaim: More Experimental Results
	C.1 REASONER
	C.1.1 Answer Set Programming ASP
	C.1.2 LPMLN

	C.2 Rule discovery

	D RuleBERT: More on Reasoning with Soft Rules
	D.1 Rules Support
	D.2 More Experimental Details
	D.3 Ablation
	D.3.1 Role of Example Formats

	D.4 Data Generation Example

