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Abstract

With on-demand video streaming services dominating today’s Internet traffic, Content
Providers (CPs) strive to offer high streaming quality to their users in order to keep them
engaged with the service. At the same time, Content Delivery Network (CDN) providers
aim to minimize costs related to the content delivery. In this setting, caching contents
close to the users is crucial in order to address these objectives. Typically, caching
decisions are based on the predicted content popularities or on the observed flow of
content requests. However, these requests are heavily influenced by the recommendations
that appear on each user’s interface. Their primary role is to help users navigate through
the ever-growing catalog of available contents by suggesting the ones that are close to
each user’s tastes. Due to their ability to shape requests, recommendations have become
a powerful tool for CPs who invest financial and research resources to improve them and
increase user engagement and revenues.

It is clear that both the caching allocation and the recommendation policy have
an impact on the user satisfaction and financial implications for the CP and the CDN.
Although caching and recommendations are traditionally decided independently of each
other, the idea of co-designing these decisions has been recently proposed in the literature
as a way to minimize delivery costs and traffic at the backbone Internet. This thesis
follows this direction of exploiting the interplay of caching and recommendations in the
setting of streaming services. It approaches the subject through the perspective of the
users, and then from a network-economical point of view.

First, we study the problem of jointly optimizing caching and recommendations
with the goal of maximizing the overall experience of the users. This joint optimization
is possible today for CPs that simultaneously act as CDN owners, implying that the
same entity may handle both caching and recommendation decisions. In future wireless
networks, CPs who lease or own a slice at the edge of the network could also control both
decisions. We introduce the metric of users’ streaming experience as a balanced sum of
streaming quality (affected by caching decisions) and recommendation quality (determined
by recommendation decisions). This is based on findings according to which users value
both the content itself and the streaming quality in which it is delivered. We then model
the joint optimization of caching and recommendations as a maximization problem of
this metric. Although we show that this problem is NP-hard, through a careful analysis,
we prove that it is submodular. Using this property, we provide the first approximation
algorithm for the joint problem. Indeed, we propose a polynomial-time algorithm that
has 1

2 -approximation guarantees (or 1−1/e
2 in the case of contents of heterogeneous sizes).
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Our numerical evaluations validate these theoretical guarantees and show that a better
approximation ratio is achieved in practice for some problem instances.

We then study the case where recommendations and caching are decided by two
separate entities (the CP and the CDN, respectively) who want to maximize their
individual profits. In particular, adjusting recommendations to favor cached items could
greatly benefit the CDN by reducing content delivery costs. However, this approach might
lead to recommendations for contents less relevant to the users, and could potentially
negatively affect user engagement, and thus, the CP’s revenues. We study the arising
financial tradeoffs for the two entities as a result of recommendations and caching. Based
on tools from game theory and optimization theory, we propose a novel cooperation
mechanism between the two entities on the grounds of recommendations. This cooperation
allows them to design a cache-friendly recommendation policy that assures a fair split of
the resulting gains. We also discuss how the proposed scheme could be extended in order
to include caching decisions in this cooperation. We show through simulations that the
proposed mechanism can lead to an important increase in profit for both parties.
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Abrégé

Les services de streaming vidéo à la demande dominent le trafic Internet d’aujourd’hui
et les fournisseurs de contenu (CPs) s’efforcent d’offrir une haute qualité de streaming
à leurs utilisateurs afin de les maintenir engagés avec le service. En même temps, les
fournisseurs du réseau de diffusion de contenu (CDNs) visent à minimiser les coûts
liés à la distribution du contenu. Dans ce contexte, la mise en cache des contenus à
proximité des utilisateurs est cruciale pour répondre à ces objectifs. En règle générale,
les décisions de mise en cache sont basées sur les popularités prévues de contenu ou
sur le flux observé de demandes de contenu. Cependant, ces demandes sont fortement
influencées par les recommandations qui apparaissent sur l’interface de chaque utilisateur.
Leur rôle principal est d’aider chaque utilisateur à découvrir les contenus du catalogue
et suggérer ceux qui sont susceptibles de les intéresser. Comme ces recommandations
influencent les demandes de contenu, elles sont devenues un outil puissant pour les CPs
qui investissent des ressources financières et de recherche pour les améliorer et augmenter
l’engagement des utilisateurs et les revenus.

Il est clair que l’allocation de la mise en cache et la politique de recommandation ont
un impact sur la satisfaction des utilisateurs, ainsi que des implications financières pour le
CP et le CDN. Bien que la mise en cache et les recommandations soient traditionnellement
décidées indépendamment les unes des autres, l’idée de concevoir ensemble ces décisions
a été récemment proposée dans la littérature comme un moyen de minimiser les coûts
de distribution et le trafic Internet. Cette thèse suit cette direction d’exploitation de la
codépendance de la mise en cache et des recommandations dans le cadre des services de
streaming. Elle aborde le sujet du point de vue des utilisateurs, puis d’un point de vue
économique.

Dans un premier temps, nous étudions le problème de l’optimisation simultanée de
la mise en cache et des recommandations dans le but de maximiser l’expérience globale
des utilisateurs. Cette optimisation simultanée est possible aujourd’hui pour les CPs
qui possèdent leur propre CDN, ce qui implique que la même entité peut gérer à la fois
les décisions de mise en cache et de recommandation. Dans les futurs réseaux sans fil,
les CPs qui louent ou possèdent une tranche virtuelle du réseau pourraient également
contrôler les deux décisions. Nous introduisons la métrique de l’expérience de streaming
des utilisateurs comme une somme équilibrée de la qualité du streaming (affectée par
les décisions de mise en cache) et de la qualité des recommandations (déterminée par
les décisions de recommandation). Ceci est basé sur des résultats expérimentaux selon
lesquels les utilisateurs apprécient à la fois le contenu lui-même et la qualité de streaming
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dans laquelle il est diffusé. Nous modélisons ensuite l’optimisation de la mise en cache et
des recommandations comme un problème de maximisation de cette métrique. Bien que
nous montrions que ce problème est NP-difficile, notre analyse nous permet de prouver
qu’il est sous-modulaire. En utilisant cette propriété, nous fournissons un algorithme
d’approximation pour le problème. En effet, nous proposons un algorithme en temps
polynomial qui a des garanties d’approximation 1

2 (ou 1−1/e
2 dans le cas de contenus

de tailles hétérogènes). Nos évaluations numériques valident ces garanties théoriques et
montrent qu’un meilleur rapport d’approximation est atteint pour certaines instances du
problème.

Nous étudions ensuite le cas où les recommandations et la mise en cache sont décidées
par deux entités distinctes (le CP et le CDN, respectivement) qui veulent maximiser
leurs profits individuels. En particulier, l’adaptation des recommandations pour favoriser
les éléments en cache pourrait grandement bénéficier le CDN en réduisant les coûts de
diffusion du contenu. Cependant, cette approche pourrait conduire à des recommandations
de contenus moins pertinentes pour les utilisateurs, et pourrait potentiellement affecter
négativement l’engagement des utilisateurs, et donc, les revenus du CP. Nous étudions
les aspects financiers des recommandations et de la mise en cache pour les deux entités.
Sur la base d’outils issus de la théorie des jeux et de la théorie de l’optimisation,
nous proposons un nouveau mécanisme de coopération entre les deux entités sur la
base de recommandations. Cette coopération leur permet de concevoir une politique de
recommandation qui favorise les contenus en cache et qui assure une répartition équitable
des gains qui en résultent. Nous discutons également de la manière dont le schéma proposé
pourrait être étendu afin d’inclure les décisions de mise en cache dans cette coopération.
Nous montrons à travers des simulations que le mécanisme proposé peut conduire à une
augmentation importante du profit pour les deux parties.
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Chapter 1

Introduction

This introductory chapter describes the main ideas, the framework, and motivations of
the problems studied in this thesis. We present an overview of relevant technologies and
related work. Finally, we discuss the contributions of this thesis and give an outline of
the next chapters.

1.1 Video Streaming Services

Video streaming services and, in particular, Over-the-Top (OTT) services, such as Netflix,
YouTube, and Disney+, steadily gain ground in our leisure time. It has been reported
that a Netflix subscriber/user spends on average 2 hours per day on the service [1]. But as
multimedia technologies and wireless communications evolve, users’ expectations increase.
For example, there has been a constant increase in devices that support Ultra-High-
Definition/4K streaming quality over the last 5 years [2]. Streaming a content of such high
quality (bitrate) to a user increases the Internet traffic, especially considering that large
Content Providers (CPs), like Netflix, have more than 200 million subscribers [3]. This is
confirmed by measurements [4] which state that, in 2021, video streaming represented
54% of the total Internet traffic worldwide.

Due to the high demand for video streaming over the Internet or wireless networks
coupled with bandwidth and physical layer limitations, during their viewing session, a user
can experience phenomena such as image freezing, start-up delays, and so on. When this
happens, the user is likely to abandon the viewing session or the service all together [5].
User abandonment has a direct financial impact on the CP, a long-term impact on
brand image [6], and an increase in user churn. Indeed, according to estimates [7], a 1%
abandonment rate can already lead to a loss in the CP’s revenue of 85, 000 US dollars ($)
per year from ad impressions. It is thus not surprising that CPs, involved entities in the
content delivery, and the research community focus on quantifying these phenomena of
streaming quality, and strive to find ways to eliminate them in practice. A term that is
often used is Quality of Service (QoS), which refers to measurements of such phenomena
and to the research domain that studies them. QoS usually concerns network-related
measurements with typical examples being the bitrate, delays, throughput, and jitter [5].
Another term that is closely related to QoS is Quality of Experience (QoE). QoE attempts

1



Chapter 1. Introduction

to measure how the QoS is perceived by the user [8]. A common way to measure QoE is
the Mean Opinion Score (MOS). However, in the past few years, several models have been
proposed. For example, QoE can be modeled as a weighted sum of different qualitative
and quantitative measurements in order to capture its multidimensional nature [9].

The performance of streaming services in terms of QoS and QoE metrics is closely
related to network conditions and underlying policies. Traditionally, streaming services
employ techniques/algorithms that control the flow of the playback. A commonly used
technique is the Dynamic Adaptive Streaming over HTTP (DASH). In particular, every
video is partitioned into segments (of a few seconds typically), and each segment is
encoded into different bitrates (resolutions and formats). Given the network conditions
and bandwidth capacity, the video player (of limited buffer size/capacity) fetches each
segment at the appropriate bitrate/quality. Therefore, the player can switch to a segment
of lower bitrate in order to avoid rebuffering (which is experienced as video freezing).
There is a line of works in the literature that propose such schemes with a focus on QoS
and/or QoE, that are based on various network conditions (e.g., [10]). However, these
network conditions heavily rely on the location where the video (or each segment) is
stored/cached. Caching is crucial for content delivery (especially in the setting of video
streaming) and can reduce latency and traffic at the backbone network [11]. Today’s
research proposes methods to optimize caching with a focus on QoS/QoE in the framework
of video services or caching in conjunction with DASH schemes. We will elaborate on
such frameworks in the next section.

As we explained, caching has an important impact on the streaming quality perceived
by the user. But streaming quality is not the only aspect that users value in a streaming
service. A recent consumer survey showed that the “recommendations menu” is one of
the important attributes that makes a streaming service attractive to users [12]. This
refers to the list of recommendations that appears when a user lands on the service’s
homepage or after watching a content (for example, in YouTube, the related videos
section). In most of the cases, these recommendations are personalized and are the result
of sophisticated algorithms that are called Recommender Systems (RSs). The role of
these recommendations is to help users discover the ever-growing catalog and increase
retention rates and revenue. Therefore, CPs invest financial and research resources in
order to improve the RS and its accuracy. A notable example is the 1 million dollars
Netflix Prize.

This thesis provides models and solution methods towards an orchestration of caching
and recommendation decisions in the setting of streaming services. We focus on on-
demand video streaming services (whose contents are static, and thus, cacheable) and
we will use, hereafter, the terms streaming and OTT interchangeably when referring to
such services. Of course, video and audio/music streaming services are very similar since
both rely on streaming quality, and both offer recommendations to the users. Examples
of audio/music streaming services are Spotify, Amazon Music, and Apple Music. Our
framework (that we will develop in what follows) could, of course, be applied to these
services. However, the problem is more interesting in the case of video services since
streaming video in the highest possible quality on Netflix uses up to 7Gb per hour [13],
while on Spotify only up to 144Mb per hour [14].
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1.2 Caching Systems

In this section, we provide an overview of caching systems. We present today’s caching
systems and we discuss how caching has been envisioned for future wireless networks
beyond 5G. Finally, we elaborate on different caching policies and we present the advances
of the related work on the subject.

Before presenting today’s caching architectures, it is important to mention the two
main objectives of caching systems:

• maximizing efficiency while minimizing operating and capital expenditures;

• reducing latency (which can improve users’ satisfaction).

These goals are combined with the fundamental challenge of caching systems, which is
large catalogs of contents. This is even more pronounced in video streaming services
since, as explained earlier, every content exists in several video/audio qualities. Therefore,
in order to achieve the two goals listed above, it is crucial to correctly choose the cache
allocation (i.e., which contents are cached in the cache), design the caching policy (i.e.,
how the cache is filled), and conceive the cache deployment (i.e., how many caches should
be deployed and in which architecture).

The most common metric to measure the performance of a cache (and, in extension,
of a caching system) is the cache hit or, equivalently, the (cache) hit ratio. A cache hit is
the event where the requested content is stored at the cache and, therefore, the hit ratio
measures the fraction of the traffic that is served by the cache. Other metrics include
throughput, response time/delay, or cost/price-related metrics.

1.2.1 The Present and the Future of Content Delivery

Today’s Web contents are served through Content Delivery Networks (CDNs) which are
large networks of servers/caches spread all over the world. The idea behind CDNs is to
place contents in caches that are close to the users. This can reduce delivery latency by
minimizing the physical hops in the network and distributing the traffic across multiple
servers. This idea significantly improved the “client-server” paradigm of the early days
of the Internet (see Fig. 1.1a). Before CDNs, all requests were directed to the CP’s
central server, where the entire catalog of contents were stored. This model turned out
to be impractical since a burst of requests could greatly increase access delays and even
cause the failure of the server [15]. On the other hand, in a CDN, upon request, the
content is served by one of servers/caches (also called edge or surrogate servers) that
are located in Points of Presence (PoPs) in the user’s proximity. The edge servers are
inter-connected through the backbone network as illustrated in Fig. 1.1b. When the
requested content is not found in the edge server, an appropriate route to the original
server (where all contents are stored) is selected. Some examples of today’s CDNs are
Akamai, Level 3, and Limelight. Akamai, in particular, is one of the leading CDNs today,
and its network counts 365,000 servers in more than 135 countries [16]. When the content
is not cacheable (live video streaming, gaming, virtual reality applications, etc.), the
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(a) The client-server paradigm in the early days of the Internet.
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Figure 1.1: Three paradigms of content delivery.
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CDN’s role still remains crucial, as it provides the network for distributed request routing
and good throughput of the servers [17].

Typically, a CP subscribes to a CDN through a delivery contract where the pricing
depends on the size of the delivered content, the geographical location of the user, etc. [18].
Given that the CDN’s network management has a financial impact on the CP (through
its impact on the users’ image of its service), as discussed in Sec. 1.1, it is not surprising
that some CPs opt for a mutli-CDN approach, i.e., they employ more that one CDN
for redundancy and for distribution of the traffic load. Disney+, for example, employs 6
different CDNs for the delivery of its content, as reported in [19].

Large CPs have gone one step further by building their own CDN networks. This is,
for example, the case for Netflix and YouTube that have built Open Connect and Google
Global Cache, respectively [20, 21]. This seems to be the trend even outside the OTT
industry since other providers, such as Facebook [22], own their in-house CDN. These
CPs partner with Internet Service Providers (ISPs) and provide them with caches that
are implemented within the ISP network [23]. Then, the CPs are responsible of filling
their caches [24] and they decide how content requests are steered to caches based on the
ISP’s preferred paths and on their own routing algorithms [25,26]. Such CPs, that decide
to built their own CDN solutions, seek efficiency, backbone traffic reduction, performance,
and flexibility [20].

It is clear that CPs strive for at-scale caching solutions, while at the same time
there is an explosive growth of Internet traffic, especially through mobile applications.
Therefore, different scenarios have been envisioned for caching in future wireless networks
beyond 5G that attempt to address these issues (see [27] and references therein). These
scenarios include caching at small base stations (BSs) in close proximity to the users [28]
and/or caching at users’ devices by leveraging device-to-device communications [29].
Moreover, caching with coded multicast transmissions (also called coded caching) has
been proposed for future wireless communications [30, 31]. The main idea behind all the
different scenarios is to bring the (cached) content even closer to the user. This could be
perceived as a rather natural continuation after the client-server paradigm and the CDN
architecture.

We will briefly describe one of the paradigms envisioned for mobile egde caching: the
femto-caching paradigm that was presented in [28]. In this framework, caches are placed
at small-cell base stations (also called helper nodes) where popular files are proactively
stored (e.g., during off-peak hours). If the requested content is not cached in any BS
within the user’s proximity, the file is downloaded via a macro-cellular BS that contains
the entire catalog (see Fig. 1.1c). This approach alleviates the backhaul links and reduces
latency through efficient transmissions of short distance. The idea is that BSs form a
dense network with several BSs covering a single part of a city. BSs can overlap and the
users that are located within the overlapping range can be served by either of the caches.
Of course, this raises the question of optimal request routing. In such networks, the
problem of caching and request routing can be seen as a problem on a bipartite graph.

Moreover, today’s research focuses on Multi-access Edge Computing (MEC) servers,
i.e., BSs that contain communication, storage, and CPU resources. In this case, network
slicing can provide a flexible resource allocation. A network slice is a virtual network
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that is built on top of the physical network in a way that each slice tenant can manages
its resources independently (see [32] and references therein). More specifically, the vision
is that CPs will own their own network slice where they can decide on caching and also
perform computational actions, e.g., transcoding of contents [33]. This could be of great
value for CPs who do not own (or cannot invest on building) a CDN network, but seek
efficient and at-scale caching solutions.

1.2.2 Caching Policies and Related Work

Caching policies are divided into two main categories:

• dynamic, where the cache is typically updated upon a cache miss (or based on
time-related criteria);

• proactive, where the cache is filled before the arrival of requests and the placement
remains fixed for a certain time period.

Typical examples of dynamic policies are the Least-Frequently-Used (LFU) and Least-
Recently-Used (LRU). In particular, upon a miss, LFU policy evicts the least frequently
requested (used) content and, under this policy, the cache will eventually fill with the
most popular contents (if we assume that the content popularities are constant over time).
On the other hand, upon a miss, LRU evicts the content that is least recently requested.
LFU has been proven to be optimal under the Independence Reference Model (IRM),
which is a commonly-used model to describe the patterns of content requests that arrive
at a cache. Essentially, IRM assumes that the contents’ popularities are static, and thus,
it ignores the temporal locality effect, i.e., the fact that the popularity of a content could
be boosted over short periods of time. Despite this property of LFU, it is mostly LRU
and its variations that are commonly used in today’s CDNs, since they come with a
simpler implementation than LFU. In general, today’s CDNs mostly employ dynamic
caching policies (for example, this is the case for the Google Global Cache [34] and the
Facebook CDN [22]).

Dynamic caching policies raise an interesting question in future wireless networks
concerning the locality of requests. In particular, how good can the performance of the
caching policy be, in a BS, when this is based only on the requests arriving locally, versus
the global image of requests over the network (as seen by the macro-cell)? This is, for
example, studied in [35], where it is shown that the global view on the requests can
improve the cache hit rate. Moreover, rather than making assumptions on the request
patterns, the authors in [36] consider a framework where the caching decisions are made
in an adversarial environment, and they devise dynamic caching policies by employing
the theory of online optimization.

Given the challenges met by dynamic policies in the framework of wireless commu-
nications, the approach of proactive caching is proposed and studied in several works,
e.g., [28,37,38], as a means to alleviate backhaul links during high peak traffic. Proac-
tive caching is based on predicted content popularities where the filling of the cache(s)
is completed during off-peak hours (e.g., the early hours of the day). Predicting the
content popularities can be also challenging. For example, the prediction can be based
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on previously observed dynamics in the content requests patterns. In the framework
of device-to-device caching/communications, [37] suggests a popularity prediction by
leveraging information stemming from social media platforms.

Even though proactive caching is mostly studied in the scenario of future wireless
networks beyond 5G, it seems that it has become a trend even in today’s caching networks.
Netflix, for example, fills/updates its caches once per day during off-peak hours [24]. In a
blog post, Netflix claims that it can predict with high accuracy what their subscribers will
watch [39]. Since its cache appliances have limited capacity, Netflix tackles the problem
of various qualities available for every content by assigning a (predicted) popularity
per pair (content, quality), rather than an overall popularity per content [40]. This
seems to be effective in practice since it has been reported that, during prime time (the
weekend), Netflix serves 63% of its traffic through its caches located within the ISPs’
networks [19]. For this reason, in this thesis, we focus on proactive caching policies in the
setting of today’s or tomorrow’s content delivery architectures. We believe that caching
decisions can be further enhanced when taking into account (or combining with) the
recommendations that the users receive. In the next section, we will elaborate on the
impact of recommendations on content requests, especially on video streaming platforms.

Except for the aforementioned references, there are several works focusing on caching.
A large body of works focus on video streaming services due to the percentage of Internet
traffic they generate. For example, [41] studies the problem of maximizing the balanced
sum of delay and incurred costs on a streaming service where the contents are encoded in
several qualities. Another approach is to optimize caching decisions (for contents available
in various qualities) in conjunction with DASH schemes, e.g., as in [42]. A problem
greatly studied is the joint optimization of caching and request routing since the caches
can be of limited bandwidth. For example, this problem was the focus of [43,44]. Finally,
although less studied, the network-economic side of caching can provide useful insights
on the management of caching networks. It has been studied both in the framework
of CDNs [45] and of wireless networks. In the case of wireless networks, related work
addresses interesting questions such as caching policies or leasing strategies of cache
capacity by the CP [46–48].

1.3 Recommendations in Video Streaming Services

Recommendations are ubiquitous in today’s Internet. They appear not only on platforms
of streaming services, but also on other applications such as e-commerce. Their role
is to assist the users’ decision making (since the amount of available information can
be overwhelming), and to help the users explore the available contents/items. Content
providers employ recommendations in order to increase user satisfaction, retention rates,
and, of course, revenues. The role of recommendations becomes more crucial in streaming
services as the catalog of contents grows and users struggle to choose which content to
watch1.

1In particular, today’s streaming services make efforts to deal with the users’ “decision fatigue” and
they are experimenting with new recommendation models (e.g., the linear recommendation model that
imitates the traditional TV program) [49,50].
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Typically, a CP recommends a list of contents to each user that is tailored to match
her tastes. The size of this list can vary according to the device the user uses. As
mentioned earlier, the list of recommendations is considered one of the important virtues
of OTT streaming services (among streaming quality, cost, ease of use, etc.). In fact,
recommendations shape content requests. On Netflix, for example, 80% of requests stem
from the recommendations, while on YouTube this percentage can be up to 53% for the
“related videos” section [51,52].

In the remainder of this section, we will review the techniques of today’s state-of-the-
art recommender systems, and how their outcome can be employed by the CPs in order
to incorporate network-related decisions.

1.3.1 Recommender Systems

The name recommender system (RS) refers to the sophisticated algorithms (and, in
extension, to the domain of research that studies/devises these algorithms) that are used to
issue recommendations. Recommendations can be personalized, e.g., the recommendations
that a Netflix subscriber sees on the service’s homepage, or non-personalized, e.g., the
list of articles/highlights shown on a news webpage. The latter does not normally fall
under the umbrella of RSs.

In their early days, RSs intended to predict the rating a user would give to a movie.
For example, this prediction can be based on the ratings already assigned for movies
previously watched, the ratings given by other users with similar tastes, and the nature
of the contents themselves (e.g., movie genres). Today’s research on RSs not only focuses
on how to ensure accurate predictions of ratings, but also on how to incorporate other
properties in the recommendations. In particular, an RS usually consists of two steps:

1. rating prediction;

2. ranking generation.

The first step tries to predict the missing ratings based on a variety of data that the
CP might collect. Examples of such data include existing ratings, contents’ attributes,
user behavior (abandonment, acceptance of recommendations, etc.), and account infor-
mation [51,53]. A variety of methods can be applied based on the available data, such as
collaborative filtering, machine learning techniques, etc. [53,54].

The second step can be seen as a refinement step (over the outcome of the first step)
that assigns rankings2 (or scores, or relevances) to the contents. In order to facilitate
computations, often only a subset of contents is subject to the second step. When this is
the case, this subset is selected based on the predicted ratings, e.g., the first few hundred
contents with the top ratings or the set of contents whose ratings is above a certain
threshold. In the second step, the CP might want to control some properties/aspects of
the recommendations. For example, it might want to ensure diversity, i.e., recommend
a variety of genres of movies rather than suggesting only movies of a certain kind, or

2Throughout this thesis, we will interchangebly use the terms utilities, relevances, rankings, and scores
to describe these values.
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Figure 1.2: Network-friendly recommendations: from the user’s data to the user’s
interface.

popularity, i.e., steer the recommendations towards trending contents. It may also want
to ensure freshness, that is, steer the recommendations towards newly available contents,
or to incorporate information from social media platforms [55–57]. In practice, these
desired properties can be more complex to describe and model. For example, in [58], the
authors observe that, in e-commerce applications, most of the recommendation policies
aim to minimize either the retailer’s profit or the consumer’s satisfaction. They suggest a
scheme of issuing rankings for products with the objective of maximizing the total surplus,
i.e., the sum of the consumer’s benefit and the retailer’s benefit. Having identified the
desired properties to be incorporated in the rankings, the ranking step is completed
either by applying properly chosen ranking functions or through machine learning and
optimization techniques [54–56].

The output of the RS is the set of rankings (either for the entire catalog or for a
subset of them). Since the ranking step was based on the predicted ratings for each user,
there is a set of rankings corresponding to each user. The rankings represent the utility
or relevance of the contents to the specific user.

1.3.2 Recommendation Decisions

As we saw above, the outcome of an RS is an assignment of rankings to the contents, or
to a subset of contents. On top of a rating-based model, these rankings incorporate some
properties, as decided by the CP. In fact, these properties can be seen as biases that
not only address the CP’s needs, but also try to reflect the complex nature of human
decision making. Throughout this thesis, we will refer to “recommendation decisions”
to describe the decisions that can be made by the CP given the ranking of the RS and
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before recommendations appear on the user’s interface. A reasonable recommendation
decision would be, for example, to recommend the N contents with the highest ranking (or
expected revenue) for the user, where N is the number of recommendations to be listed.
We will call them baseline recommendations. This list could be given in a decreasing
order since it has been shown that the position of a content in the recommendations list
has an impact on the user behavior [52].

Given the discussion in the previous sections, it is clear that caching and recommenda-
tions are inextricably linked when it comes to user satisfaction or the CP’s revenues. This
observation naturally leads us towards the so-called network-friendly or cache-friendly
recommendations (see Fig. 1.2). More specifically, in this thesis, we claim that the
recommendation decisions can be made in a way that they take into account the quality
at which the recommended content can be delivered upon request or even economical
factors (e.g., expected revenue). The former could, for example, depend on the caching
allocation or the network conditions. The idea is that one could steer the recommenda-
tions towards cached contents in order to ensure better streaming quality to the users.
This can be also beneficial to the network itself since less traffic will be generated at
the backbone network. We will elaborate in the next section about the benefits and the
challenges of such an approach.

One could argue that the action of incorporating caching or network-related informa-
tion could be performed during the ranking step of the RS. This might seem a good way
to ensure that the network-friendly recommendations do not deviate too much from the
user’s preferences. However, caching or network management decisions might be made
at different timescales than the RS. For example, the RS might be triggered every time
the catalog is updated and/or the user gives feedback on a content she watched, while
caching might take place every day or every few hours. Furthermore, we will see that it
is possible to develop a framework where a potential deviation from the user’s tastes can
be controlled. A final argument about issuing network-friendly recommendations after
running the RS concerns the computational complexity. In particular, network-related
decisions can be complex and take into account various factors. On the other hand, the
ranking vector that corresponds to each user (as issued by the RS) should be, in principle,
sparse since only a subset of the catalog was subject to this step.

1.4 Interweaving Caching and Recommendation Decisions

In the previous section, we introduced the idea of nudging the recommendations towards
cached items or items that can alleviate the network traffic. The idea of interweaving
caching and recommendation decisions addresses the fact that these two decisions play
an important role in the streaming services. The former has a strong impact on the
streaming quality of the requested contents and the incurred delivery costs, while the
latter shapes content requests and constitutes a significant feature of the service in the
users’ eyes. In this section, we will discuss the motivations for jointly designing caching
and recommendation decisions, the possible ways to do so, as well as the potential
benefits.

Aside from all the arguments presented earlier that support the co-design of caching
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and recommendations, a strong motivation behind our work is the information we have
gathered about real-world implementations and policies in streaming services. We provide
here two examples that concern the Netflix service:

1. Netflix steers user recommendations towards popular (and possibly cached) contents.
This is done, for example, through the “Trending Now” section of every user’s main
page. In particular, “Trending Now” recommendations include short-term popular
contents “combined with the right dose of personalization” [51]. Meanwhile, at
Netflix, caching decisions are based on (predicted) content popularities [39].

2. The Netflix mobile application recently introduced the feature “Downloads for
You” [59]. When a user enables this feature, she allows Netflix to choose and
proactively prefetch recommended contents on the user’s device that the user can
then watch while she is offline or over unstable Internet connections.

The first example could be seen as a hint that real-world systems might employ cache-
friendly recommendations or recommendation-aware caching. However, the second
example definitely illustrates a small-scale co-design of prefetching and recommendations.
This further corroborates the problems that we will study in this thesis.

Caching and recommendation decisions can already be handled jointly in today’s
architectures, especially for the CPs who own CDN infrastructures, e.g., Netflix and
YouTube. The trend towards end-to-end network slicing in future wireless networks
further supports such an approach. In this setting, handling caching and recommendations
together seems appropriate, since each cache will cover fewer users (than today’s CDN
caches), and receive a limited amount of requests. This would render predicting content
popularities, and thus, caching decisions particularly challenging [35].

Interweaving caching and recommendation decisions can be made in three main ways
that we list and describe below:

• Cache-friendly or network-friendly recommendations. As the name suggests, this
direction refers to recommendations that are modified when compared to the
baseline recommendations (see Fig. 1.2). In particular, they are modified in order
to incorporate information on network conditions or caching allocation or even
financial considerations. In this framework, the caching and other related network
conditions are supposed to be fixed. The main shortcoming of this approach is that
the resulting recommendations depend on the other decisions made independently
and ahead of time. For example, if the cache contains contents that are not close to
the user’s tastes, then the cache-friendly recommendations that this user will receive
might be irrelevant to her preferences. This can severely affect the user satisfaction,
and the user might abandon the service or request another content (e.g., through
the search bar). We will see that, in practice, the related work on cache-friendly
recommendations tries to control this deviation from the user’s tastes. This seems
to be a good way to make this approach efficient in practice.

• Recommendation-aware caching. Acting in the inverse way when compared to the
previous approach, this direction modifies caching decisions while taking into account
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the recommendations that the users will receive. This approach is particularly useful
for proactive caching policies. As we mentioned earlier, proactive policies are based
on predicted content popularities. Through the framework of recommendation-
aware caching, these predictions can rely on the recommendations (as issued from
the baseline scheme, i.e., recommending the top related contents to each user), as
well as the user’s behavior towards the recommendations, e.g., tendency to request
contents through the recommendations list. However, this approach can be less
efficient in some scenarios: for example, when the content catalog is big, the caching
concerns a large pool of users with diverse tastes, and the cache capacity is limited,
then only contents with large aggregate popularity will be cached. These cached
contents might feature in the recommendations list of only some users, without
even being the top related contents. In this case, users might not request these
contents, and the caching policy turns out to be inefficient.

• Joint optimization of caching and recommendations. In this approach, the decisions
are taken in a way that caching allocation accounts for the recommendations and
recommendations account for the caching allocation. In fact, the discussion on the
other two approaches above revealed an important co-dependency of caching and
recommendations: cache-friendly recommendations depend on caching allocation
and risk their efficiency in practice, while recommendation-aware caching can
be problematic when the users’ tastes (and thus, the recommendations for these
users) are diverging. Therefore, the joint approach seeks to take these decisions
simultaneously. In optimization theory parlance, this means that we want to solve
a problem where the control variables are caching and recommendations. This
makes this approach more challenging, not only in terms of modeling, but also in
terms of finding solutions. However, these challenges come with a great reward
once overcome, since the joint approach is optimal when compared to the previous
approaches. In fact, in Chapter 2, we provide an example where we illustrate
that caching without taking into account the user recommendations and biasing
recommendations later (to favor cached contents) is suboptimal.

1.4.1 The Benefits

The benefits of interweaving caching and recommendation decisions are multifold. Most
importantly, these benefits concern all the involved parties: the network, the users, and
the CP. The network here refers to the CDN (which can eventually be managed by the
CP itself) and/or the ISP. As explained earlier, when a user clicks/selects one of the
cache-friendly recommendations, this will lead to a cache hit at the cache nearby. This
means that the cache can serve this content without fetching it from a server deep in the
network, and without generating additional traffic at the backbone network. Therefore,
extra retrieval costs will be avoided.

Regarding the benefits from the user’s perspective, when her request is served by the
cache nearby, the user can enjoy high QoS and QoE. This could translate to low start-up
delays, high bitrate, etc. Moreover, when the cache-friendly recommendations do not
deviate irreparably from her tastes, she can enjoy recommendations of high quality. In
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Figure 1.3: Potential benefits of interweaving caching and recommendation decisions.

fact, experiments have shown that the overall satisfaction of a user from an OTT service
is greatly affected by both the streaming quality of the requested content and her interest
in the content itself [60].

Furthermore, through a co-design of caching and recommendations, the CP can see
its revenues significantly increasing due to user satisfaction. This is equivalent to user
engagement, and thus, more ad impressions and/or less user churn. As we will see in
Chapter 3, the CP could also explicitly incorporate financial factors when deciding on
cache-friendly recommendations. The benefits of our approach are illustrated in Fig. 1.3,
where User 1 receives the baseline recommendations (that were issued independently of
the caching allocation), and User 2 receives cache-friendly recommendations.

Finally, the main challenges of interweaving caching and recommendations come from
the challenges faced by caching systems and recommender systems, namely:

• limited cache capacity (combined with ever-growing content catalogs);

• recommendations quality, i.e., offering recommendations to the users that are
closely related to their tastes.

1.4.2 Related Work

To the best of our knowledge, the idea of co-designing caching and recommendations
first appeared less than a decade ago following the increasing success of OTT streaming
services. Nevertheless, it recently gained momentum with related works appearing in
top-tier venues. In this section, we will review some of these works and discuss their
contributions in the field. Additional references that are more specific to each chapter of
the thesis will be provided at the end of each chapter.
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In an early work in this direction [61], the authors propose heuristic algorithms for
recommendations in peer-to-peer networks that take into account both service cost and
user preferences. The authors in [62] study how content delivery costs can be reduced
through proactive caching, and how a further reduction can be achieved by shaping the
content requests. They propose to shape the requests, and thus, decrease the uncertainty
of content requests by modifying the ratings (or “valuations”) of the contents that appear
to the users. Interestingly, [63] takes into account the impact of the positions of the
contents in the recommendations list. In particular, the authors propose a reordering
of the videos appearing in YouTube’s related videos section by “pushing” the cached
items to the top of the list. Adopting a similar “position-aware” approach, [64] presents
a method of designing a cache-friendly recommendation policy where cached items are
placed at the top of the recommendations list. The authors then evaluate this policy in
the experimental testbed that they built, and provide useful insights. For example, they
observe that the users tend to select the top recommendations, even if these are favoring
cached items.

Another direction is to study sequential requests that are generated through rec-
ommendations. For example, such sequences are observed when a user watches several
YouTube videos by clicking on the items of the related videos section. The works [65]
and [66] study the problem of cache-friendly recommendations in the framework of
sequential requests. More specifically, [65] formulates the problem of minimizing the
fetching costs as a Markov chain, and proposes a heuristic solution. A similar probabilistic
model to describe the users’ behavior towards recommendations is adopted in [66]. The
authors formulate the problem of devising cache-friendly recommendations as a Markov
Decision Process, where the viewing session can be of arbitrary length.

As we explained earlier, the joint caching and recommendations problem can be
considered one of the most interesting and challenging ones when compared to the
approaches described earlier. It is thus not surprising that this topic has been tackled
by a plethora of works, e.g., [67–72]. The majority of these works make proactive
caching decisions. More specifically, a decomposition algorithm for the joint problem is
proposed in [67]. The authors formulate the problem as a cache hit rate maximization
problem subject to a preference distortion threshold (that controls how the nudged
recommendations deviate from the user’s tastes). Their policy first decides on caching,
accounting for the impact of recommendations, and then adjusts the recommendations
in order to favor cached items. Similarly, [68] proposes a decomposition heuristic for
the joint caching and recommendations problem. The work in [69] formulates the joint
problem in cache-aided device-to-device networks. With the objective of minimizing the
offloading probability, it proposes a heuristic that decomposes the problem with respect
to the caching and recommendation decisions. The authors in [70] formulate the joint
problem in the somewhat different context of prefetching content over a time-varying
channel, aiming at maximizing the throughput of the base station. They propose online
and offline policies for prefetching and recommendations. The authors in [71, 72] adopt a
different approach than the aforementioned works. Instead of assuming a known model
for user behavior (and specifically how she accepts the recommendations) these works
employ machine learning techniques to learn this behavior. Specifically, [71] formulates
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the problem of deciding on caching and recommendations with the goal of maximizing the
offloading probability at the base station. They employ a learning technique in order to
learn the acceptance probability of the recommendations by the user. Similar in spirit, [72]
presents the problem of jointly deciding on prefetching (in the user’s device) and on the
recommendations the user will receive with the objective of increasing the profit of the
mobile network operator. They learn the users’ behavior towards the recommendations
through a reinforcement learning framework. From some of these works, it is already clear
that it is more beneficial to jointly decide on caching and recommendations than just
devising cache-friendly recommendations. However, since all of these proposed policies
are based on heuristics, they do not provide performance guarantees.

Considering now different setups, [73] introduces the concept of “soft cache hits”
that allows the user to choose an alternative cached content if the initially requested
one is not locally cached. Through this framework, the authors devise approximate
recommendation-aware caching policies for a network of caches that maximize the soft
cache hit rate. Finally, in the different setting of broadcast coded transmissions, [74]
studies the problem of making recommendations bandwidth-aware.

1.5 Thesis Contributions and Outline

We will now summarize the topics studied in each chapter. For every topic, we provide a
brief description of the main motivations and a list of technical contributions.

1.5.1 The Joint Problem (Chapter 2)

In Chapter 2, we study the joint caching and recommendations problem. In the previous
section, we discussed in detail the benefits of this approach when compared to cache-
friendly recommendations or recommendation-aware caching policies. The approach we
adopt is based on the following observations concerning the related work on this topic:

• The joint problem has been mainly addressed by heuristics in the literature. Even
though the proposed algorithms are evaluated in numerical evaluations showcasing
the benefits of the joint approach, no performance guarantees are provided.

• Most of the related work focuses on optimizing network-related metrics (such
as cache hit rate) or on minimizing incurred delivery costs. Even though these
models usually impose some kind of user-centric constraints on the cache-friendly
recommendations, their focus is not the user’s satisfaction.

Motivated by the above, we model the joint problem focusing on the user’s overall
experience. This is based on the fact that users are interested in both the content itself and
the streaming quality in which this is delivered (as shown in real-world experiments [60]).
For this reason, we define the Metric of Streaming Experience (MoSE) as a weighted sum
of streaming quality and recommendations quality:

MoSE = Streaming Quality + βu ·Recommendations Quality,
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where βu is the tuning parameter specific to each user. The value of βu quantifies
the importance of the recommendations quality compared to the streaming quality.
The streaming quality component depends on the caching decisions and any metric
of streaming quality the CP chooses to estimate, while the recommendations quality
depends on the recommendation decision and the relevance of the recommended contents.
This definition is generic enough to capture a variety of scenarios and measurements. We
then formulate the problem of maximizing the aggregate MoSE over all users. The main
contributions of this chapter are listed below.

Contributions of Chapter 2:

1. We introduce the metric of streaming experience (MoSE) for a recommendation-
driven content application. We provide a variety of example functions/values for
the components of our metric MoSE. We then formulate the problem of optimally
deciding on caching and recommendations towards maximizing the users’ MoSE.

2. Although we prove that the formulated problem is NP-hard, we provide a polynomial-
time algorithm that approximates the optimal objective function value within a
constant factor. To the best of our knowledge, this is the first algorithm with
approximation guarantees proposed for the joint problem.

3. We show that the special case of the presented problem for a single cache can be
transformed into an Integer Linear Program (ILP). This is particularly useful for
scenarios of small size since exact algorithms could be applied.

4. Our numerical evaluations reveal a near-optimal performance and significant gains
of our proposed policy over a variety of baseline schemes and existing algorithms
for the joint problem. We also implemented distributed versions of our policy, and
we show that important speedups can be achieved. Our evaluations were conducted
on both real and synthetic datasets, and using realistic values for the problem
parameters.

The work presented in Chapter 2 has been published in [75] and [76]. The details of
these publications are provided below.

[75]: Tsigkari, Dimitra, and Thrasyvoulos Spyropoulos. ”User-centric optimization of
caching and recommendations in edge cache networks.” In 2020 IEEE 21st International
Symposium on” A World of Wireless, Mobile and Multimedia Networks” (WoWMoM),
pp. 244-253. IEEE, 2020.

[76]: Tsigkari, Dimitra, and Thrasyvoulos Spyropoulos. ”An approximation algorithm
for joint caching and recommendations in cache networks.” IEEE Transactions on Network
and Service Management (2022), in press.

1.5.2 Recommendations as a Means of Cooperation (Chapter 3)

In Chapter 3, we study the cache-friendly recommendations problem from a network-
economic point of view. We also extend our model to the joint caching and recommenda-
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tions problem. Our approach is motivated by the following observations:

• Recommendations have become a powerful tool affecting all key stakeholders in
the OTT and content distribution ecosystem. In other words, recommendations
have a big impact in today’s (multi-)billion-dollar industries that are involved in
streaming services.

• The majority of the related work assumes that the same entity controls both
caching and recommendation decisions. However, this is only the case for two CPs
today: Netflix and YouTube. When these decisions are made independently by the
CDN and CP respectively, a possible co-design of caching and recommendations
could create tensions between the two entities. In particular, the cache-friendly
recommendations of the CDN may deviate from the users’ interests, and thus,
negatively affect the CP’s revenues, while the CP’s recommendations might induce
costly data transfers for the CDN.

Having this in mind, we propose a novel cooperation mechanism that allows the
two entities to jointly design the recommendation policy. The core of our proposal is
the following simple and practical idea: the CDN charges lower content delivery fees to
the CP when the latter agrees to tune its recommendations towards cached contents.
This discount will balance the CP’s expected viewing gains with the CDN’s induced
savings on retrieval costs. Devising these cooperative recommendations is a new and
highly non-trivial problem whose nature and complexity cannot be properly handled by
existing approaches for cache-friendly recommendations. To the best of our knowledge,
this is the first work proposing the cooperation of the CP and CDN on the grounds of
recommendations.

From the observations listed above, it is clear that such a cooperation could take
place only when incentives are provided to both entities, and when they can reach a
fair agreement. For this reason, we employ tools from cooperative game theory, and we
formulate the problem of cooperative recommendations as a Nash bargaining solution.
This ensures a Pareto optimal solution and a fair split of the cooperation’s gains. In
summary, the contributions of this chapter are listed below.

Contributions of Chapter 3:

1. We provide a solid network-economic framework that takes into account the fi-
nancial aspects of recommendations and the arising tradeoffs between the main
actors. This framework is motivated by real-world business cases regarding the two
entities’ decision mechanisms and revenue models. We then identify and model
the new problem of misaligned incentives among the CP and CDN regarding the
recommendations offered to users.

2. We formulate a rigorous bargaining problem for addressing the trade-off between
recommendation-induced revenues for the CP and retrieval costs for the CDN in
streaming services. The problem’s solution will allow them to devise the cooperative
recommendations while fairly splitting the incurred gains.
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3. We propose the CCR algorithm for the scenario where the two entities share the
necessary information regarding their cost/revenue functions with a third party
that solves the bargaining problem in a centralized fashion. We also propose the
DCR algorithm for the scenario where the CP and CDN have undisclosed private
information. This leads to a distributed bargaining solution where the CP and
CDN solve their own problem instances while being oblivious to each other’s private
information.

4. We discuss how the presented framework can be extended to cooperative caching
policies and analyze its difficulty. This problem of cooperative recommendations
and caching turns out to be hard to solve, but has the potential to further increase
the cooperation’s gains.

5. Through a number of numerical evaluations using a real dataset and realistic system
parameters, we verify the efficiency and operation of the bargaining framework,
and explore the impact of key system parameters on the equilibrium properties.
This provides rich insights on the potential economic benefits of our proposal and
market design guidelines.

The work presented in Chapter 3 has been published/submitted in [77] and [78]. The
details of these publications/submissions are provided below.

[77]: Tsigkari, Dimitra, George Iosifidis, and Thrasyvoulos Spyropoulos. ”Split
the cash from cache-friendly recommendations.” In 2021 IEEE Global Communications
Conference (GLOBECOM), pp. 1-6. IEEE, 2021.

[78]: Tsigkari, Dimitra, George Iosifidis, and Thrasyvoulos Spyropoulos. ”Quid Pro
Quo in Streaming Services: Algorithms for Cooperative Recommendations.” Submitted
and under review (2022).

Finally, in Chapter 4, we conclude by giving some directions for future work. These
directions not only address the potential limitations of our contributions, but also answer
to some questions that naturally arise (and have not been studied yet in related work).
We briefly discuss the challenges and possible solution methods for these proposals.
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Chapter 2

An Approximation Algorithm for the
Joint Caching and Recommendations
Problem

2.1 Introduction

On platforms of streaming services, such as YouTube, Netflix, and Disney+, the streaming
quality (SQ) of the delivered content plays a significant role in the overall user’s experience
on the service. This quality can be characterized, for example, by metrics of QoS or
QoE. Furthermore, the SQ is closely related to the user engagement to the service. It
has been shown that, on platforms of video streaming services, low bitrate can lead
to an increase in the abandonment rate [5]. At the same time, the recommendations
that appear on the user’s interface have a strong impact on content requests. The
goal of these recommendations is to suggest contents based on the user’s interests and,
therefore, the user’s engagement with the service is closely related to the recommendations
quality (RQ) [51].

Caching mechanisms within the Content Delivery Networks (CDNs) that store contents
in caches close to the user can ensure a better delivery in terms of SQ [11] while alleviating
the backhaul link traffic. Making the right caching decisions is crucial in today’s and,
more importantly, in future architectures, as was discussed in Sec. 1.2. This is exactly
where the influence of the recommendations on users’ requests could come into the picture.
At first glance, content caching and recommendation systems seem to be independent,
since they are usually handled by two different entities: the CP and a 3rd party CDN (like
Akamai). However, caching and recommendation decisions can already be handled jointly
in today’s architectures for CPs who own an in-house CDN solution (see Sec. 1.2.1). The
trend towards end-to-end network slicing in future wireless networks further supports
such an approach. In this setting, CPs will own their own virtual network (slice) including
communication, storage, and CPU resources at the base stations of the Radio Access
Network (RAN).

In this chapter, we formulate and analytically study the problem of jointly optimizing
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both caching and recommendation decisions in a generic network of caches. In particular,
we aim to decide on : (i) what content to store at each cache, and (ii) what content
to recommend to each user, based on their location in the caching network and their
predicted preferences. Based on the impact of the RQ and SQ on the user’s engagement
and satisfaction, we adopt a user-centric approach. We define the metric of streaming
experience (MoSE) that captures the fundamental tradeoff between the SQ and RQ.
We formulate this joint optimization problem with the objective of maximizing this
metric. We prove that it can be approximated up to a constant factor. To the best of our
knowledge, this is the first polynomial algorithm to achieve a constant approximation
ratio for the joint problem.

2.2 Problem Setup

2.2.1 Caching Network

We consider a set of C caches with capacity Cj , j = 1, . . . , C and a content catalog K.
Moreover, Cj ≪ |K|, j = 1, . . . , C, as is an important restriction in most caching setups1

and especially in future wireless networks. We will consider both equal and variable-sized
contents. In the second case, we denote by σi the size of content i, where i = 1, . . . , |K|.

Definition 2.1 (Caching variables). We let xij be the binary variable, where xij = 1 when
the content i is cached in cache j, and xij = 0 otherwise. We denote the corresponding
matrix by X = {xij}i,j .

We consider a set U of users, each of which has access to a subset of caches. We
denote this set by C(u) for user u ∈ U . A request for content i by user u is served by
one of the caches belonging to C(u) where the requested content is stored, i.e., by one
of the caches of the set {j : j ∈ C(u) and xij = 1}. The access to a cache could be over
multiple links (as in hierarchical caching or in Information Centric Networking (ICN)) or
direct (e.g., wireless connectivity to a nearby small cell [28]). For the purposes of our
analysis, such networks can be represented as a generic bipartite graph between users
and (associated) caches, as shown in Fig. 2.1. Specifically, every edge of this graph has a
weight suj , which denotes the cache-specific streaming quality2 that can be supported
between user u and cache j. This quality can be related to estimations on the QoS or
QoE, i.e., delays, rebufferings, rate switching, etc. Moreover, it may differ from cache to
cache, or may depend on channel quality, number of hops, scheduling policy, congestion
level, etc. Finally, there is a large cache C0 that fits all the contents, i.e., xi0 = 1 for all
i ∈ K, and is accessible by all users, i.e., C0 ∈ C(u), for all u ∈ U . This could be a large
cache deep(er) in the network. For this reason and w.l.o.g., we let su0 < suj , for all j and
u, as is commonly assumed (e.g., in [28,41]).

1In fact, according to estimations of the size of Netflix catalog [79] and the size of Open Connect
appliances [80], the cache capacity of the appliances varies from 0.1% to 2.3% of the entire catalog.

2This assumption is realistic. At Netflix, for example, information on routes, network proximity to the
users, etc. are gathered by the Open Connect caches and are sent regularly to the Netflix cloud [20].
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In our model, the caches are filled or updated during off-peak hours and, therefore,
the cache allocation is static for the time period between two cache updates (e.g., a day
or a time window of a few hours). In this context, if a requested content is not cached in
any of the caches, the content is served by the large cache C0. Although CDN caches
traditionally have been operated with the use of dynamic caching policies (where the
cache is typically updated upon a cache miss), it has been argued that such policies
perform poorly in the scenario of small caches (under a non-stationary request model) [35].
Hence, in such setups, similar models like ours are much more common in related works,
e.g., [28, 41]. More importantly, there is a trend towards static caching model even
in today’s architectures: Netflix, for example, is updating the Open Connect caches
every night during off-peak hours [24]. This further supports our model. Therefore,
in what follows, all the problem parameters are considered to be known for the time
period between two cache updates. The presented caching setup is generic and could
capture a variety of caching networks, such as femto-caching setups [28], hierarchical
CDN networks [81], etc.

2.2.2 Recommendations and User Model

A list of Nu recommended contents appears to the user u ∈ U . This number may vary
from user to user depending on the device used, as is the case in Netflix [51], for example.
As discussed in Sec. 1.3.1, the recommendations are personalized and might depend on
various factors such as user ratings (e.g., via collaborative filtering), past user behavior,
viewing times, etc. [55]. State-of-the-art RSs usually assign a relevance or utility (or
“ranking”) to each content for each user u [55, 82]. We denote by rui ∈ [0, 1] these
relevances. Typically, the CP would select the Nu items with the highest rui to feature
the recommendations list of user u. In our work, the recommendation decisions (i.e.,
deciding which contents will appear to the user’s recommendations list) are made not
only based on the relevances rui but also on the caching decisions. Therefore, our model
uses the relevances rui (that are derived from a typical RS) as input for our problem.

Definition 2.2 (Recommendation variables). We let yui ∈ {0, 1} denote the binary variable
for content i being recommended to user u (yui = 1) or not (yui = 0). We denote by Y
the matrix of yui. Then, the equations

∑
i∈K yui = Nu, for all u ∈ U , capture the fact

that Nu contents are recommended.

Motivated by the discussion in Sections 1.4 and 2.1, we assume that both caching and
recommendation decisions are made by the same entity (e.g., Netflix).

The user makes content requests, affected by the aforementioned recommendations,
according to the following model:

• with probability αu the user requests a recommended content. Each of the Nu

recommended items will be chosen with equal probability by the user;

• with probability (1 − αu) the user ignores the recommendations and request a
content i of the catalog with probability pui.
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Essentially, αu captures the percentage of time a user u tends to follow the recommenda-
tions. For example, it is estimated, on average, that αu = 0.8 on Netflix [51], but it can
of course differ among users. Assuming prior knowledge of the user’s disposition to follow
the recommendations is common in related works (e.g., [67]) and also in other works
on recommendation systems (e.g., [83]). In practice, αu might change over longer time
intervals both because of intrinsic changes to user behavior or due to decreasing/increasing
trust in the recommendations. Such changes could be addressed by dynamic or stochastic
models. In this work, we assume that our optimization happens at a smaller time scale,
for which the parameter αu is roughly constant (but it can be recalibrated at longer
intervals).

Furthermore, the assumption that each recommended content will be clicked with
equal probability 1/Nu is also common in related works, and might hold in scenarios
where the recommended items are “unknown” to the user, and hence she cannot evaluate
their utility, before requesting them.

As for the pui, they capture the probability of user u requesting the content i outside of
recommendations (e.g., through the search bar). This could be an arbitrary distribution
over the catalog (e.g., with probability mass only on content the user already “knows”).
Alternatively, given the relevances rui, a reasonable choice could also be the normalized
values:

pui = rui/
∑
k∈K

ruk. (2.1)

2.2.3 Example

To better elucidate our model thus far, we present a small-scale example and Fig. 2.1
that illustrates the variables and the parameters defined above. We consider a network
of C = 2 caches of capacity 2, and a large cache C0 containing the entire catalog that
consists of |K| = 9 equal-sized contents. As shown, cache 1 contains contents 1 and 4 (i.e.,
x11, x14 = 1), while x1j = 0 for any other j. There are 3 users present in the network. An
edge between a user u and a cache j means that user u can fetch a content from cache
j. For example, for user 1, we have that C(1) = {0, 1}. Note that such an edge might
actually correspond to a path of multiple physical links. The corresponding cache-specific
stream. quality is indicated as an edge weight. In this example, a single recommendation
(Nu = 1) appears to every user (illustrated by a dashed-line arrow). For example, the
content 4 is recommended to user 1 (i.e., y14 = 1). If user 1 requests it, then it can be
streamed from cache 1 at streaming quality s11. However, if user 1 requests, say, the
content 2, this will be fetched from cache C0 at a (lower) quality s10. Lastly, arrows from
users to recommendations display the probabilities αu. We note that, for the convenience
of the reader, we provide a summary of the notation used in this chapter in Table 2.1.

2.2.4 Metric of Streaming Experience (MoSE)

In the context of media streaming platforms, the user’s entertainment and contentment
with the provided services are affected by the quality of the recommendations she receives,
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Figure 2.1: Illustration of the variables and parameters considered for the joint caching
and recommendations problem in a network of caches. Detailed description of this
example can be found in Section 2.2.3.

i.e., if they are tailored to her tastes or not. On the other hand, it has been observed
that low SQ (e.g., low bitrates, rebufferings, etc.) greatly affects user experience and,
most importantly (for CPs), retention/abandonement rates [5]. In fact, experiments on
video streaming services have shown that the user’s overall experience depends on both
the streaming quality and the user’s interest in a content [60]. Moreover, some recent
experimental evidence suggests that users might be willing to tradeoff (some) content
relevance for (better) QoS [64]. In this direction, we define the metric of streaming
experience as a twofold quantity : one part relates to the recommendation quality; the
second part relates to the streaming quality.

Definition 2.3 (Recommendations Quality - RQ). The recommendations quality, as
perceived by user u, is equal to

∑
i∈K yuiφ(rui), where φ is any non-decreasing function.

The function φ represents the impact of a recommended content’s relevance rui in
the user’s perceived RQ. It could be a linear function, or, more commonly, a concave
function (e.g., log(rui)) to capture diminishing returns beyond a minimum content
relevance. Moreover, we can demand a minimum quality rmin for any recommendation3

3This quantity can serve as an additional safeguard to support the earlier assumptions: e.g., if any
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Table 2.1: Notation Summary for Chapter 2

Notation Description

K catalog of contents

U set of users in the network

C0 large cache containing the entire catalog

C number of caches in the network (C0 is excluded)

Cj capacity of cache j, j = 0, · · · , C
C(u) set of caches that user u communicates with

rui relevance (or utility) of content i for user u

suj cache-specific streaming quality between user u and
(su(j)) cache j, su(j) for ordered qualities (see Def. 2.4)

σi size of content i

Nu number of recommended contents for user u

αu probability that user u follows the recommendations

pui
probability that user u requests content i while not
following the recommendations

φ
function of rui that captures the impact of rui
in the perceived recommendations quality

xij
caching variable, xij = 1 when content i is cached
in cache j, and xij = 0 otherwise

yui
recommendation variable, yui = 1 when content i
is recommended to user u, and yui = 0 otherwise

if we define φ as follows:

φ(rui) =

{
log(rui) if rui ≥ rmin,

−∞ otherwise.
(2.2)

Regarding the SQ, this depends on which cache the requested content is streamed
from. A content i requested by user u will be fetched by the “best” connected cache that
stores it, as in [28].

Definition 2.4 (Ordered cache-specific qualities). If C(u) is the set of caches that user
u has access to, we let su(1) = max{suj , j ∈ C(u)} denote the maximum (cache-specific)
quality for user u. Similarly, su(2) denotes the second highest quality for u, and so forth4.

By definition, su|C(u)| = su0, for every u ∈ U , since we assumed that su0 < suj , for all
j = 1, . . . , C. In the following lemma, the expected streaming quality (SQ) is given as a
function of the caching policy (xij), the values of suj , the recommendations (yui), and
the users preferences (rui).

recommended content’s relevance is above rmin, then, αu, the user’s trust in the recommendations, will
not be compromised.

4As the qualities suj are sorted for every user, the notation su(k)u would be more appropriate. For
simplicity, we drop the sub-index u.
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Lemma 2.1 ((Expected) Streaming Quality- SQ). For a given cache allocation X, a
content i ∈ K will be streamed to user u (upon request) in the quality:

su(X, i) :=

|C(u)|∑
j=1

[
su(j)xi(j)

j−1∏
l=1

(1− xi(l))
]
, (2.3)

where xi(j) are similarly the caching variables assuming a suj-based ordering5. The
expected streaming quality (SQ) for a user u is equal to:

su = αu

∑
i∈K

yui
Nu

su(X, i) + (1− αu)
∑
i∈K

puisu(X, i). (2.4)

Proof. For a requested content i ∈ K, ∏j−1
l=1 (1− xi(l))xi(j) captures the fact that i will be

retrieved by the cache (j) (i.e., the cache with the j-th highest quality) for lack of any
other cache with higher quality in C(u) where the content is cached (i.e., xi(l) = 0, l < j).
Then, this request will be served in the cache-specific quality su(j). Of course, if i is not
cached in any cache, it will be retrieved from C0 which is ranked last, resulting in low
streaming quality. Essentially, su(X, i) is the highest cache-specific quality associated to
content i for user u among all the locations where i is cached. Finally, given that, upon
request, the content i will be streamed in the quality su(X, i), and given the probabilities
of such a request to happen (through recommendations or not), the formula of the
expected streaming quality, su, easily follows.

Remark 2.1. When estimating6 the SQ, suj , the cache-specific streaming quality, can
be chosen to be a function of QoS-related or QoE-related estimations. For example,
suj could be the estimated bitrate between user u and cache j, or it could also include
factors related to rebuffering probabilities, jitter, delays, etc., as is commonly considered
in works related to streaming experience [84]. Our framework is defined in such a way
that is flexible enough to optimize whatever such values(s) the CP deems appropriate or
is able to estimate. Alternatively, suj could be equal to:

suj =

{
1 if j ∈ C(u) \ C0,

0 otherwise.
(2.5)

In that case,
∑

u su estimates the expected cache hits for the (small) caches: upon a
request, it counts 1 if the content is cached. In Table 2.2, we provide a variety of examples
functions/values for suj that exist already in the literature on multimedia streaming
services.

5Given the suj-based ordering, xi(j) indicates if the content i is cached in the cache that offers the
j-th highest quality for user u.

6Since our focus is proactive caching, we consider the estimated or average SQ. The estimation could,
for example, take into account the DASH algorithm that is in place. An interesting direction for future
work would be to consider dynamic policies where the SQ is time-varying or even unknown.
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Definition 2.5 (MoSE function). The metric of streaming experience for user u ∈ U as a
function of the caching and recommendation variables is defined as su+βu

∑
i∈K yuiφ(rui),

where su is given by (2.4) and βu > 0 is a tuning parameter. Then the aggregate MoSE
over all users is equal to:

f(X,Y ) :=
∑
u∈U

[
su + βu

∑
i∈K

yuiφ(rui)
]
. (2.6)

Modeling the streaming experience in this fashion implies a tradeoff between SQ and
RQ, as discussed at the beginning of this section. The value of βu is the weight we attach
to the RQ and quantifies the importance of the RQ compared to the SQ. Moreover, the
value of βu might differ from user to user: large βu means the user u is more sensitive
to the RQ, while small βu that she is more sensitive to the SQ. The choice of βu can
depend, for example, on user behavior: we might want a small βu (i.e., priority to the
SQ) for a user who often abandons the viewing session when the streaming quality is low.
Similarly, one could imagine more complex models (e.g., based on machine learning).
However, it is beyond the scope of this thesis to investigate such models or good choices
for βu, φ, and suj . Instead, our focus is to propose efficient algorithms for any values
and conforming functions.

We stress here that the MoSE was defined in such a generic way that can be adjusted
according to the needs of the CP. Particularly, the CP can choose the quantities suj
and the function φ based on available measurements in network, user behavior, etc. We
provide a detailed example set of choices (derived mostly from related work) for the
different MoSE components, as shown in Table 2.2.

Finally, metrics similar to MoSE are also employed in other recommendation-driven
applications. This is, for example, the case of Google Search. The algorithm employed
by Google Search, that provides links after a search, can be seen as an RS: the results
are personalized (based on previous search history, browser cookies, etc. [85]) and they
are ranked according to their relevance or other criteria (e.g., ads, sponsored links). In
order to improve user experience, Google has incorporated the loading speed of each
webpage as a factor in this ranking [86]. This implies that webpages that are relevant to
the search terms, but are observed to be slow to load, will be ranked further down in the
list of search results.

2.2.5 Joint Caching and Recommendations (Toy Example)

We ask the question: How can we make caching and recommendation decisions in order
to maximize the MoSE?

To better understand the tradeoffs involved, we present a toy example depicted in
Fig. 2.2, and two “naive” policies:

Policy C, for “Conservative”. This policy caches the Cj most popular contents (for the
users connected to the cache j); it then recommends to each user u the Nu contents that
are the most relevant (i.e., highest rui), regardless of whether they are cached or not.
This policy captures today’s status quo.
Policy A, for “Aggressive”. This policy has the same caching policy as policy C, but
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it recommends only cached contents (the most relevant to the user among them). It is
closer to cache-friendly recommendation policies like the one in [73].

USER 1

3 𝑀𝑏𝑝𝑠

USER 2

USER 3

CACHE
(capacity:1)

cache alloc.
per policy

RELEVANCE OF CONTENTS PER USER

1 2 3 4

U1 0.35 0.4 0.1 0.15

U2 0.4 0.05 0.5 0.05

U3 0.15 0.4 0 0.45

Recommender
System

A : 1
C : 1
J : 2

A : 1
C : 2
J : 2

A : 1
C : 3
J : 3

A : 1
C : 4
J : 2

recomm.
per policy

Figure 2.2: Toy example of Sec. 2.2.5. On the left: illustration of the network together
with the caching and recommendation decisions made by policies A, C, and J. On the
right: the matrix of content relevances/utilities per user.

Note that both policies make the caching and recommendation decisions separately.
In this example, we will attempt to show the benefits of a policy that makes jointly these
decisions. Referring to Fig. 2.2, suppose we have a catalog of 4 equal-sized contents and
3 users, all connected to the large cache C0 (not shown in the figure, for simplicity) that
contains all files and a smaller cache C1 of capacity 1. We measure the SQ through the
estimated bitrate. All users can download a content from C1 or C0 with bitrate 3 Mbps
or 2 Mbps respectively. We further assume that Nu = 1 and αu = 1 for all users. We
depict the relevances rui on the right side.

Both policies would cache the item with the highest aggregate relevance/utility, i.e.,
content 1. Policy A would then recommend this item to all users. Policy C would instead
recommend the most related item per user, namely contents 2, 3 and 4 respectively. It is
easy to see that policy C would lead to better RQ, while policy A would lead to better
SQ. However, we would like to know which policy is optimal with respect to maximizing
the aggregate MoSE (as expressed in (2.6)).

A better option would be to cache content 2, observing that this would then facilitate
the recommendation decisions. More precisely, it allows one to recommend content 2 to
both users 1 and 3, achieving cache hits for them with maximum or close to maximum
RQ. Instead, for user 2, the content 3 is recommended (with relevance r23 = 0.5), since
content 2 would seriously degrade the user’s RQ (r22 = 0.05 only). This policy which we
refer to as “J” for Joint in Fig. 2.2, outperforms both A and C in this example in terms
of MoSE (for φ being the logarithmic function and for most values of β > 0).

In this example, it is easy to guess how to outperform the policies A and C (or
even find the optimal one). However, this task becomes significantly harder for bigger
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scenarios (when considering overlapping cache topologies, large content catalogs, multiple
recommendations per user, etc.). To this end, in the next section, we formulate and
analyse this problem, and propose an algorithm with approximation guarantees.

2.3 Problem Formulation and Analysis

The optimization problem we are targeting is the following:

MoSE problem.

maximize
X,Y

f(X,Y )

subject to
∑
i∈K

σixij ≤ Cj for every j = 1, . . . , C; (2.7)∑
i∈K

yui = Nu for every u ∈ U ; (2.8)

xij , yui ∈ {0, 1}, (2.9)

where, according to (2.3), (2.4) and (2.6), f(X,Y ) is equal to∑
u∈U

∑
i∈K

[
αu
yui
Nu

su(X, i) + (1− αu) pui su(X, i) + βuyuiφ(rui)
]

and su(X, i) :=
∑|C(u)|

j=1

[
su(j) xi(j)

∏j−1
l=1 (1 − xi(l))

]
. The constraints in (2.7) are the

capacity constraints for every cache. In the case of equal-sized contents, (2.7) suggests
that no more than Cj items can fit in cache j, and the constraints in (2.8) suggest that
each user receives Nu recommendations. Finally, as expressed in (2.9), the problem’s
variables, xij and yui, are binary.

Lemma 2.2. The MoSE problem is NP-hard.

Proof. An instance of the MoSE problem (when the recommendation variables are fixed)
is the well-known femto-caching problem [28]. The authors in [28] proved that this
problem is NP-hard through a reduction to the set cover problem.

2.3.1 Intuition on Joint Optimization

As we saw in Lemma 2.2, even just the caching part (i.e., maximizing in variable X) of
the MoSE problem is hard to solve. For this simpler problem, the authors in [28] propose
algorithms with approximation guarantees by exploiting submodularity properties of the
objective. However, these algorithms do not account for the recommendation part of the
MoSE problem (variable Y ) and, therefore, the approximation guarantees do not extend
to the joint problem.

One could be tempted to extend the methodology in [28] by using both sets of variables
X and Y as the ground set. However, the authors of [67] prove that a subcase of the
MoSE problem (when βu = 0) is not submodular in X and Y .
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Furthermore, the authors of [73] consider problem variants where the caching decision
is “recommendation-aware”. They show that this problem is hard even for one cache,
but manage to retrieve submodularity properties and use the methodology of [28] to
derive algorithms with approximation guaranties. However, their objective and problem
setup do not contain recommendation variables (among other things, the recommender’s
actions are fixed, and the caching policy simply knows what the recommender would
do). It is thus significantly different than the MoSE problem. Finally, a brief qualitative
comparison of these works is shown in Table 2.3.

Table 2.3: State-of-the-art works on caching and/or recommendations

Related Variables How many Approx.
Works Caching Recomm. caches? guarantees

[28] ✓ ✗ Network ✓

[73] ✓ ✗∗ Network ✓

[67] ✓ ✓ Single cache ✗

This work ✓ ✓ Network ✓
∗In [73], although the problem formulation does not contain any recom-

mendation variable, the caching variable is “recommendation-aware”.

This discussion raises the question of whether the MoSE problem can be efficiently
approximated and how. In the next section, we prove that this is indeed the case. By
first considering something akin to a primal decomposition [90] of the original problem
(rather than handling variables X and Y at the same time as the ground set), we show
that:

(i) for the problem on variables Y , i.e., fixingX (“inner”problem), the global maximizer
can be found efficiently;

(ii) the problem on variables X (“outer” problem), given the global maximizer of Y
(for any X), is in fact submodular.

This property will allow us to devise an algorithm for the joint problem that is polynomial
in the problem size and, somewhat surprisingly, retains the approximation guarantees of
the much simpler ”caching-only” problems considered in [28] and [73].

2.3.2 Towards Efficient Algorithms

The key to our methodology is the following lemma.

Lemma 2.3. The MoSE problem is equivalent to the problem:

Outer problem.

maximize
X

f∗(X) := f(X, argmax
Y

f(X,Y )) (2.10)

subject to (2.7), (2.8), and (2.9).
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The equivalence of the two problems follows straightforwardly from the well known
identity [91]:

max
X,Y

f(X,Y ) = max
X

(max
Y

f(X,Y )). (2.11)

Inner problem and algorithm

The first step would be to find a closed-form expression for f∗ for any cache allocation,
i.e., matrix X. Hence, given X, the problem of choosing the recommendation policy,
i.e., matrix Y , is the problem of finding f∗(X), as defined in (2.10). We formulate this
problem:

Inner problem.

maximize
Y

f(X,Y )

subject to (2.8) and yui ∈ {0, 1}.

The following lemma states that the inner problem can be decoupled into |U| problems.

Lemma 2.4. If F ∗
u (X) := max

Y

(
su + βu

∑
i∈K yuiφ(rui)

)
, for any u and any placement X,

then f∗(X) =
∑

u∈U F
∗
u (X).

Proof. Given a cache placement X, it is easy to see that the recommendation decisions
(variable Y ) for a user do not interfere with the decisions for the other users. Moreover,
the constraints in (2.8) are decoupled for every user.

By (2.3) in Lemma 2.1, we can write F ∗
u (X) as follows.

F ∗
u (X) = max

Y

(∑
i∈K

yui
(αu

Nu
su(X, i) + βuφ(rui)

))
+ (1− αu)

∑
i∈K

su(X, i)pui. (2.12)

Next, we introduce the notion of V-value, which is the coefficient of yui in (2.12).

Definition 2.6 (V-value and ordered V-values). We define, as V-value of a content i ∈ K
for user u ∈ U and for a given cache allocation X, the quantity

Vui(X) :=
αu

Nu
su(X, i) + βuφ(rui), (2.13)

where su(X, i) is defined in (2.3). Similar to Def. 2.4, we define the ordered Vui (sorted
in decreasing order) as the ordered sequence {Vu[k]}k∈K7.

7We do not use the same notation as in Def. 2.4 because the ordering here is done with respect to the
V-value and not the quality suj . In general, Vu(k)(X) ̸= Vu[k](X), for all u ∈ U and k = 1, . . . |K|.
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Lemma 2.5. For a given cache allocation X, we consider the matrix Y ′ such that y′u[k] = 1

for k = 1, . . . , Nu, and y
′
u[k] = 0 otherwise, where [k] is the content index associated to

the k-th highest V-value for the user u ∈ U . Then

F ∗
u (X) =

Nu∑
k=1

Vu[k](X) + (1− αu)
∑
i∈K

(
su(X, i)pui

)
, (2.14)

and f∗(X) = f(X,Y ′) =
∑
u∈U

F ∗
u (X). (2.15)

In words, the optimal solution for the inner problem is to recommend to every user u
the Nu contents with the highest V-value associated to the cache placement X. Note
that this solution depends on the solution of the outer (caching) problem and, hence, the
inner problem needs to be solved as part of solving the outer problem, as shown in (2.11).

Proof. It is straightforward to prove the result above through contradiction, i.e., assuming
some content m with lower V-value than the Vu[Nu] should have been included instead.

Based on Lemma 2.5, the algorithm that finds the solution for the Inner Problem is
summarized in Algorithm 1.

Algorithm 1: Inner algorithm (subroutine)

Input : U , K, Nu, X, {βu}, φ, {αu}, {rui}, {suj}
1 Start with empty matrix Y
2 for every user u ∈ U do
3 for every content i ∈ K do
4 Calculate Vui;

5 Store {Vu[k]}Nu
k=1 (in decreasing order). ;

6 end
7 Set yu[k] = 1 for k = 1, · · · , Nu;

8 end
9 Return Y

Complexity of the inner algorithm

The internal for loop (lines 3− 5) consists of |K| calculations. Next, the complexity for
the step of storing the Nu highest V-values is O(logNu), however Nu is considered to
be a constant. Since these steps are repeated for every user, the total complexity of the
inner algorithm is at most O(|U| · |K|).

Outer problem and submodularity

We proved that the optimal Y can be found efficiently for the inner problem, given
any cache allocation X. We want now to solve the outer problem (defined in Lemma
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2.3, (2.14), (2.15)), i.e., with respect to the caching variables X. While often caching
problems can fit into the category of knapsack/general assignment problems, this is not
the case for the outer problem. We note that the “profit” or gain of storing a content into
a cache is not a constant and depends on the solution of the inner problem. Nevertheless,
we will now prove some interesting properties of the outer problem that will lead us to
an algorithm for the MoSE problem.

First, we extend f∗ as a set function. For any matrix X we define the corresponding
placement PX of cached items:

PX := {(i, j) : xij = 1, i ∈ K, j = 1, . . . , C + 1}.

Essentially, PX consists of the pairs (content, cache) of all the cached contents. Since, by
definition, the large cache C0 contains the entire catalog (i.e., xi0 = 1, for all i ∈ K), X is
a |K|× (C+1) matrix. In other words, PX belongs to the set P := P (K×{1, . . . , C+1}),
where P (K × {1, . . . , C + 1}) is the powerset of K × {1, . . . , C + 1}. Inversely, given
a placement P , we can define the corresponding matrix XP such that xij is equal to
1, for every pair (i, j) in P , and 0 otherwise. Hence, from now on, X and P will be
used interchangeably to denote the content allocation across the network of caches.
We also define the subsets of a placement P representing the storage of the cache m:
P (m) := {(i,m) ∈ P}. We can thus extend F ∗

u , f
∗, su and Vui to the ground set P.

Lemma 2.6. The set function F ∗
u is monotone increasing for all u ∈ U .

Proof. We consider two cache placements P and Q such that P ⊆ Q ⊆ P and we will
prove that F ∗

u (P ) ≤ F ∗
u (Q). Since P ⊆ Q, the contents cached in P are also available in

Q with the same or better streaming quality, i.e.,

su(P, i) ≤ su(Q, i), for all i ∈ K. (2.16)

This is easily proven by contradiction, assuming that there exist a content η such
that su(P, η) > su(Q, η).

Next, by Definition 2.6, the following inequalities are true

Vui(P ) ≤ Vui(Q), (2.17)

Vu[k](P ) ≤ Vu[k](Q), for all i, k ∈ K. (2.18)

Finally, it follows by (2.12) that F ∗
u (P ) ≤ F ∗

u (Q).

Next, we define the marginal gain of F ∗
u and we state an immediate consequence of

Lemma 2.6.

Corollary 2.1 (Marginal gain). For a cache placement P , and a pair (i, j) such that
(i, j) ̸∈ P , we denote by

∆F ∗
u (P, (i, j)) := F ∗

u (P
′)− F ∗

u (P ),

where P ′ := P ∪ {(i, j)}, the marginal gain of F ∗
u at P with respect to (i, j). Then,

∆F ∗
u (P, (i, j)) ≥ 0.
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Lemma 2.7. The set function F ∗
u is submodular8 for all u ∈ U .

We consider two placements A and B such that A ⊆ B ⊆ P and (i, j) ∈ P \B. We
need to prove that

∆F ∗
u (A, (i, j)) ≥ ∆F ∗

u (B, (i, j)). (2.19)

In other words, the marginal benefit of adding content i to the cache j in A is greater
than or equal to the marginal benefit in B. This means that the function F ∗

u has the
diminishing returns property.

In order to prove Lemma 2.7, we need a few intermediate results. All the results and
proofs given here are true for any u ∈ U , so, for simplicity, the index u will be omitted
throughout the two following lemmas and the proof of Lemma 7.

Lemma 2.8. Given P , a placement of cached items, and a pair (i, j) ∈ (K × {1, . . . , C})
such that (i, j) ̸∈ P , we write P ′ := P ∪ (i, j). Then, s(P ′, i) = max{sj , s(P, i)}.

Proof. By (2.3), after adding (i, j) to the placement, if sj is greater than s(P, i), then i
will be retrieved from cache j, i.e., s(P ′, i) = sj . On the other hand, if cache j does not
offer a better quality for the user than before, the quality associated to i will stay the
same, i.e., s(P ′, i) = s(P, i).

Lemma 2.9. Given P , a placement of cached items, and a pair (i, j) ∈ (K × {1, . . . , C})
such that (i, j) ̸∈ P , the following statements are true:

a. ∆F ∗(P, (i, j)) = 0 if and only if sj ≤ s(P, i);

b. ∆F ∗(P, (i, j)) > 0 if and only if sj > s(P, i).

In the second case, the marginal gain is equal to

∆F ∗(P, (i, j)) = (1− α) pi (sj − s(P, i))

+

{
0, if Vi(P

′) ≤ V[N ](P ),

Vi(P
′)−M, if Vi(P

′) > V[N ](P ),

where P ′ = P ∪ (i, j) and M = max{Vi(P ), V[N ](P )}.

Essentially, Lemma 2.9 states that adding (i, j) to P will lead to a positive marginal
gain of F ∗ if and only if the cache j can provide a higher (cache-spec.) quality for the
user than any other cache where i was already cached (in P ).

Proof. By Lemma 2.5, ∆F ∗(P, (i, j)) > 0 if and only if

N∑
k=1

(
V[k](P

′)− V[k](P )
)
> 0 (2.20)

or
∑
k∈K

(s(P ′, k)− s(P, k)) > 0. (2.21)

8For definition, see [92].
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Given that the only difference between P and P ′ is the content i in cache j, the qualities
of the contents other than i remain the same as the addition of (i, j) does not affect them.
As a result, the inequality in (2.21) is true if and only if s(P ′, i) > s(P, i). By Lemma 2.8,
s(P ′, i) = sj and, therefore, (2.21) is equivalent to sj > s(P, i). Next, when the inequality
(2.20) holds, Vi(P

′) > Vi(P ) because, otherwise, V[k](P
′) = V[k](P ), for every k ∈ K. By

(2.13), the inequality Vi(P
′) > Vi(P ) is equivalent to s(P

′, i) = sj > s(P, i). Hence, we
proved that the inequality in (2.20) implies sj > s(P, i), which is equivalent to (2.21).
Therefore, statement (b) holds. Since ∆F ∗(P, (i, j)) ≥ 0 (by Corollary 2.1), it follows
that ∆F ∗(P, (i, j)) = 0 if and only if sj ≤ s(P, i).

Next, we calculate ∆F ∗(P, (i, j)) when sj > s(P, i). First, note that, by (2.14), the
expression F ∗(P ′)− F ∗(P ) consists of two summands. The summand with coefficient
(1− α) pi is equal to

∑
k∈K(s(P

′, k)− s(P, k)) = sj − s(P, i). In order to calculate the
other summand, we compare Vi(P

′) with the V-values of the recommended items in P
before adding (i, j), i.e., the values V[k](P ) for k = 1, . . . , N .

If Vi(P
′) < V[N ](P ), content i will not feature in the recommendations list after

caching it in j. If Vi(P
′) = V[N ](P ), then content i may make it to the recommendations

list by replacing the [N ]-th item in the list, assuming that ties are broken arbitrarily in
the selection process. In both cases, nothing changes in terms of the [N ] highest V-values
in P ′, which implies that

∑N
k=1

(
V[k](P

′)− V[k](P )
)
= 0.

On the other hand, if Vi(P
′) > V[N ](P ), content i will definitely feature in the

recommendations list after adding it in j, which implies (2.20). We consider two subcases:

• i was already among the recommendations in P even before caching it in j, i.e.,
Vi(P ) ≥ V[N ](P ). In this case, since the streaming quality is better at j, a part of
the marginal gain will come from the difference in V-value of i before and after
adding (i, j). This means that

∑N
k=1

(
V[k](P

′)− V[k](P )
)
= Vi(P

′)− Vi(P ).

• i was not recommended before caching it in j, i.e., Vi(P ) < V[N ](P ). Since
Vi(P

′) > V[N ](P ) > Vi(P ), content i gets into the recommendations list by replacing
the N -th recommendation. Hence, a part of the marginal gain will come from the
difference of the new V-value of i and the V-value of the [N ]-th item in P , i.e.,∑N

k=1

(
V[k](P

′)− V[k](P )
)
= Vi(P

′)− V[N ](P ).

Then, the result follows by replacing the findings above in the expression F ∗(P ′)−
F ∗(P ).

We can now prove Lemma 2.7.

Proof of Lemma 2.7. For two placements A and B such that A ⊆ B ⊆ P and a pair
(i, j) ∈ P \B, we need to prove (2.19). As before, A′ and B′ are the sets A ∪ (i, j) and
B ∪ (i, j) respectively. Since A ⊆ B, eq. (2.16) (Lemma 2.6) implies that

s(A, i) ≤ s(B, i). (2.22)

In line with Lemma 2.9, we examine the following cases: i) ∆F ∗(A, (i, j)) = 0;
ii) ∆F ∗(A, (i, j)) > 0. The first case is equivalent to sj ≤ s(A, i), by Lemma 2.9.
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Then, by (2.22), sj ≤ s(B, i). We invoke once again Lemma 2.9 and we get that
∆F ∗(B, (i, j)) = ∆F ∗(A, (i, j)) = 0.

Concerning the second case, it is equivalent to sj > s(A, i) and ∆F ∗(A, (i, j)) is given
by the formula in Lemma 2.9. We consider three subcases:

• sj ≤ s(B, i);

• sj > s(B, i) and Vi(B
′) ≤ V[N ](B);

• sj > s(B, i) and Vi(B
′) > V[N ](B).

In the first subcase, ∆F ∗(B, (i, j)) = 0, by Lemma 2.9 and, therefore, ∆F ∗(A, (i, j)) >
∆F ∗(B, (i, j)) = 0.

Next, sj > s(B, i) is equivalent to ∆F ∗(B, (i, j)) > 0. Since sj > s(A, i) as well, it
holds that

sj = s(A′, i) = s(B′, i). (2.23)

If Vi(B
′) ≤ V[N ](B), Lemma 2.9, (2.22) and (2.23) imply that

∆F ∗(B, (i, j)) = (1− α) pi (sj − s(B, i)) ≤ ∆F ∗(A, (i, j)).

If Vi(B
′) > V[N ](B), by (2.22), (2.23) and (2.18), it follows that

Vi(A
′) = Vi(B

′) > V[N ](B) ≥ V[N ](A). (2.24)

Combining this with (2.22) and Lemma 2.9, in order to prove ∆F ∗(A, (i, j)) ≥ ∆F ∗(B, (i, j)),
we only need to prove that

max{Vi(A), V[N ](A)} ≤ max{Vi(B), V[N ](B)}. (2.25)

It follows by (2.22) that Vi(A) ≤ Vi(B), and therefore Vi(A) ≤ max{Vi(B), V[N ](B)}.
Moreover, V[N ](A) ≤ max{Vi(B), V[N ](B)}, by (2.24). We then obtain (2.25) and this
concludes the proof.

Lemma 2.10. The set function f∗, as defined in (2.10), is monotone increasing and
submodular.

Proof. By Lemma 2.4, f∗(X) =
∑

u∈U F
∗
u (X). It is easy to prove that monotonicity and

submodularity are preserved under non-negative linear combinations. Therefore, the
result is an immediate consequence of Lemmas 2.6 and 2.7.

2.3.3 MoSE Algorithms and Guarantees

We managed to prove through the decomposition in (2.11) that f∗(X) is submodular. The
theory on submodularity optimization suggests that different greedy algorithm variants
give constant approximations for the outer problem, and thus for the MoSE problem. In
fact, the factor of approximation depends on the constraints in (2.7).
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The case of equal-sized contents

We define a greedy algorithm that we call the MoSE algorithm. This algorithm starts
with a placement P consisting of empty caches (except for the large cache that contains
the entire catalog) and greedily fills one by one all the available shots. In every round
of selection, it calculates the marginal gain of f∗ at P with respect to at most C · |K|
elements, i.e., pairs (content, cache), by solving the Inner Algorithm (as subroutine). It
then selects and adds to P the element that maximizes the marginal gain (ties broken
arbitrarily), before the next selection round begins. The algorithm is summarized in
Algorithm 2.

Algorithm 2: MoSE algorithm (equal-sized contents)

Input :C, {Cj},U , K, {Nu}, {suj}, {rui}, {βu}, {αu}
1 Start with empty caches, i.e., P = ∪Cj=1P

(j), where P (j) = ∅, for all j = 1, . . . , C

2 Outer algorithm:

3 while caches are not full, i.e., |P (j)| < Cj for all j, do
4 for every (not full) cache j = 1, . . . , C, do

5 for every content i ∈ K s.t. (i, j) /∈ P (j), do
6 Estimate ∆f∗ (P, (i, j)) by calling Inner Algorithm(X); Store

max∆f∗ (P, (i, j)).
7 end

8 end
9 (η, θ) := argmax(i,j)∆f

∗ (P, (i, j)).

10 Add (η, θ) to P , i.e., P (θ) ← P (θ) ∪ (η, θ).

11 end
12 Return X∗ ↔ P, Y ∗ = f∗(X∗)

Theorem 2.1 (Homogeneous sizes). If we let OPT denote the optimal objective function
value of the MoSE problem with equal-sized contents, and (X∗, Y ∗) denote the feasible
solution given by the MoSE algorithm, then

f(X∗, Y ∗) ≥ 1

2
OPT.

Proof. Since the constraints in (2.7) are matroid constraints, as in [28], the theory on
submodular maximization [92] suggests that a 1/2-approximation is achievable by the
above greedy algorithm.

We should note here that a better than 1/2-approximation can be achieved in some
special cases or at the cost of a larger running time, see for example [93] or [94].

The general case of contents of heterogeneous sizes

The fundamental difference between the two cases is the capacity constraints. The
constraints in (2.7) in the general case are knapsack constraints. However, the MoSE
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algorithm is oblivious of the content’s size. The following algorithm is an adaptation
of the MoSE algorithm that takes size into account. More precisely, in every round of
selection, it adds to the cache the element (content, cache) that maximizes the ratio
of marginal gain to the content’s size, while satisfying the constraints in (2.7). It is
summarized in Algorithm 3.

Algorithm 3: s-MoSE algorithm (size-aware)

Input : Same as in MoSE alg. and {σi}
1 Start with P = ∪Cj=1P

(j), where P (j) = ∅, for all j;
2 Outer algorithm:
3 while caches are not full, i.e.,

∑
k∈P (j) σk < Cj, do

4 for every (not full) cache j = 1, . . . , C, do

5 for every content i ∈ K such that (i, j) /∈ P (j) and σi ≤ Cj −
∑

k∈P (j) σk, do

6 Estimate δf∗(P, (i, j)) := ∆f∗(P,(i,j))
σi

7 by calling Inner Algorithm(X);
8 Store max(i,j) δf

∗ (P, (i, j)).

9 end

10 end
11 (η, θ) := argmax(i,j)δf

∗ (P, (i, j)). Add it to P .

12 end
13 Return X∗ ↔ P, Y ∗ = f∗(X∗)

Theorem 2.2 (Heterogeneous sizes). If we let OPTs denote the optimal objective function
value of the MoSE problem in the general case (contents of heterogeneous sizes), and
(X∗, Y ∗), (Xs, Ys) denote the feasible solutions given by the MoSE and s-MoSE algorithms
respectively, then

max{f(X∗, Y ∗), f(Xs, Ys)} ≥
1− 1/e

2
OPTs.

Proof. In the case of variable-sized contents, both MoSE and s-MoSE algorithms can
perform arbitrarily badly [95]. According to the result in [95], it suffices to choose the
maximum objective function value achieved by the two algorithms in order to achieve a
1−1/e

2 -approximation.

It is worth mentioning that, in [96], the author describes an algorithm with better
approximation ratio but at the cost of higher computational complexity. We elaborate
on the complexity of the proposed algorithms in the next section.

Complexity, implementation speed-ups and distributed techniques

It is easy to see that the complexity of both the MoSE and the s-MoSE algorithms
is the same. The algorithms need to run at most

∑j=C
j=1 |Cj | times in order to fill all

caches. At each iteration, they evaluate the marginal gain of at most C · |K| pairs
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(content, cache). For every evaluation, they call the Inner Algorithm of complexity
O(|U| · |K|) and complete |U| calculations that concern the non-recommendation part
of the objective function. Therefore, the total complexity of the MoSE and s-MoSE
algorithms is O(|U| · |K|2 · C ·∑j=C

j=1 |Cj |).
Implementation-wise, there is a way to speed up both algorithms by using the so-called

lazy evaluations method [95]. This method takes advantage of the monotonicity and
submodularity of the objective function in order to avoid unnecessary calculations in the
selection process of the caching placement. More precisely, this method is based on the
observation that the marginal value ∆f∗(Pk, (e, j)) is bounded above by ∆f∗(Pk−1, (e, j))
for all e ∈ K, where Pk−1 ⊂ Pk. Therefore, at each iteration, one could keep a sorted list
of the marginal value of every content, and if ∆f∗(Pk, (e, j)) ≥ ∆f∗(Pk−1, (e

′, j)), for all
e′ ̸= e, then there is no need to calculate ∆f∗(Pk, (e

′, j)) for e′ ̸= e, and the element e will
be added in cache j. Furthermore, recent works propose methods for further acceleration,
e.g., a randomized greedy algorithm in [97].

Finally, we note that there is a technique suggested in the literature for distributed/multi-
processor implementations of greedy algorithms of submodular maximization [98], such
as the MoSE algorithm. More precisely, for a set of m processors/nodes, this technique
starts by partitioning the ground set, i.e., the catalog of contents, into m subsets. Then
each processor solves in parallel the MoSE problem only on one of the subsets by applying
our proposed policy. This leads to m solutions (caching allocation and users’ recommen-
dations) DS1, . . . ,DSm. Next, we define a new subset of the catalog by merging the
contents for which the caching variable was equal to 1 in at least one of the previous
solutions. We then run on this subset the MoSE algorithm which gives the solution
MS. Finally, among the solutions DS1, . . . ,DSm and MS, the one with the largest
value of the objective function is selected. We note that, under some conditions, this
implementation offers approximation guarantees that depend on the guarantees of the
centralized algorithm and on the number m. For more details on the algorithm and
these approximation guarantees we refer the reader to [98]. We will call m-DMoSE the
algorithm described above, where m is the number of processors.

2.3.4 The Single-Cache Case

We study now the case where C = 1, i.e., apart from the large cache C0, there is only
one cache. We prove that, in this case, the MoSE problem can be transformed into an
Integer Linear Program (ILP) problem and, thus, common optimization methods can be
applied to find the optimal solution for small problem’s instances. This will be useful in
the next section since it will allow us to compare the performance of our algorithm with
the optimal joint policy.

We introduce the variable {zui}i,u such that zui = xiyui. The objective of the MoSE
problem in (2.7) becomes

g(X,Y, Z) =
∑
u∈U

∑
i∈K

[αu

N
((su1 − su0) zui + su0yui)

+ (1− αu) pui ((su1 − su0)xi + su0) + βuyuiφ(rui)
]
. (2.26)
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Therefore, the MoSE problem for C = 1 is equivalent to:

Z Problem.

maximize
X,Y,Z

g(X,Y, Z) (2.27)

subject to (2.7), (2.8),

zui = xiyui; (2.28)

xij , yui, zui ∈ {0, 1}. (2.29)

The equivalence comes from the fact that a pair (X̃, Ỹ ), where X̃ = {x̃}i and
Ỹ = {ỹ}u,i, is optimal for the MoSE problem if and only if (X̃, Ỹ , Z̃) where Z̃ = {z̃}ui
such that z̃ui = x̃iỹui is optimal for the Z problem.

Notice that, although g(X,Y, Z) is linear in the variables X,Y and Z, the constraints
(2.28) are nonlinear. However, we will prove that these constraints can be replaced by
the following inequalities:

zui ≤ xi, (2.30)

zui ≤ yui, for all u ∈ U , i ∈ K. (2.31)

Lemma 2.11. The MoSE problem for C = 1 is equivalent to the following ILP problem:

MoSE ILP problem.

maximize
X,Y,Z

g(X,Y, Z)

subject to (2.7), (2.8), (2.29)− (2.31).

Proof. It suffices to prove that a solution for the Z problem is also a solution for the
MoSE ILP problem and the inverse. Let us assume that (X̄, Ȳ , Z̄) is a solution for the
Z problem. Since X̄ and Ȳ are binary variables, the expression z̄ui = x̄iȳui implies the
inequalities (2.30) and (2.31). Hence, (X̄, Ȳ , Z̄) is also a solution for the MoSE ILP
problem.

Inversely, let us assume that (X̃, Ỹ , Z̃) is a solution for the MoSE ILP problem. It
suffices to prove that z̃ui = x̃iỹui for every u ∈ U and i ∈ K. For the u and i such that
x̃i = 0 or ỹui = 0, the inequality constraints imply that z̃ui = 0. For the u and i such that
x̃i = 1 and ỹui = 1, we will necessarily have that z̃ui = 1 since the coefficient of zui in the
objective function g is strictly positive in a maximization problem. Hence, considering
that all variables are binary, it follows that z̃ui = x̃iỹui, and this concludes the proof.

2.4 Performance Evaluation

In this section, we validate the theoretical approximation guarantees of the proposed
policy (MoSE algorithm) and we compare it with other policies in a variety of scenarios.
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2.4.1 Scenario 1

As a first step, we compare the performance of the MoSE algorithm with its distributed
implementations 2-DMoSE and 4-DMoSE (i.e., in 2 and 4 processors, see Sec. 13) and
with the optimal policy (oracle). We consider a scenario with a single cache and the large
cache C0 that contains the entire catalog. As shown in Sec. 2.3.4, the MoSE problem for
C = 1 can be transformed into an ILP problem. Therefore, in order to find the optimal
policy (oracle), we use the standard MATLAB solver which employs methods such as
branch-and-bound, cutting-plane method or exhaustive search.

We consider 20 users connected to the cache and a catalog of 200 unit-sized con-
tents. We assume that the cache can fit 15 contents and every user receives N = 2
recommendations. The small size of the scenario is necessary to be able to calculate the
optimal objective value. We will consider much larger scenarios subsequently. Moreover,
the impact of the recommendations is determined by αu, whose values follow a uniform
distribution between 0.7 and 0.9 (in line with the statistics gathered on Netflix [51]). In
this scenario, we consider a synthetic dataset for the relevances rui and the popularities
pui. We chose pui such that the aggregate content popularities over all users, i.e.,

∑
u pui,

follow a Zipf distribution (with parameter 0.6). Then, rui are chosen randomly in [0, 1]
such that their normalized value, i.e., rui/

∑
k ruk, are equal to pui, for every i ∈ K, as in

(2.1).
In this scenario, we measure the SQ as cache hits with the values suj as in (2.5), and

the RQ (Def. 2.3) by considering φ(rui) = log(rui). For a variety of values of βu = β > 0,
we queried the oracle and we calculated the MoSE given by the proposed algorithm
and its distributed implementations. For some of the values β, Table 2.4 shows the
approximation ratio achieved and Table 2.5 shows the average execution time per instance
of the problem.

As we saw in Sec. 2.3.3, the ratio f(X∗, Y ∗)/OPT cannot be lower than 1/2. We
observe that, in practice, the achieved ratio is much higher than 1/2, as is also observed
for other submodular problems, e.g., in [43]. In fact, among all the different values of β
we considered (30 in total), the lowest observed approximation ratio was equal to 0.9757.
Moreover, the approximation ratios achieved by the distributed algorithms 2-DMoSE
and 4-DMoSE are also close to 1. However, as expected by the discussion in Sec. 13, they
do not perform as well as the (centralized) MoSE algorithm for some instances of the
problem (e.g., for β = 3.2).

Observation 2.1. Our numerical results validate the theoretical approximation guarantees
of our policy and also suggest a much better approximation ratio in practice.

Regarding Table 2.5, we see that the average execution time of the MoSE algorithm is
of much lesser magnitude than the oracle’s one. We note that we implemented MoSE with
the lazy evaluations technique which avoids unnecessary calculations (see Sec. 13). When
MoSE is implemented in 2 and 4 processors, the execution time decreases significantly,
and we observe a 2x speedup.

Observation 2.2. Implementing the MoSE algorithm leads to significant savings in
execution time when compared with the oracle. These savings can be further pronounced
in the case of a distributed/multi-processor implementation.
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Table 2.4: Approximation ratio (f(X∗, Y ∗)/OPT )

Parameter β 0.01 1 1.7 3.2

Approx. ratio for MoSE∗ 1 0.9977 0.9979 1

Approx. ratio for 2-DMoSE 0.9998 0.9935 0.9979 0.9818

Approx. ratio for 4-DMoSE 0.9998 0.9750 0.9979 0.8836
∗theoretical lower bound: 0.5 (see Theorem 2.1)

Table 2.5: Execution Time (AVG) Per Policy

MoSE 2-DMoSE 4-DMoSE Oracle

0.0221 sec. 0.0147 sec. 0.0111 sec. 120.195 sec.

Next, we investigate if this close-to-optimal performance is reflected in the SQ-RQ
tradeoffs. At the same time, we will compare these tradeoffs with the ones achieved by a
proposed heuristic in the literature for a similar problem [67].

Cache-aware recommendations (CAwR). CAwR [67] makes caching and recommendation
decisions at every cache independently. It decomposes the problem into the caching
and recommendation steps. First, given the content preference distribution for every
user (equivalent to the content popularity distribution pui or content relevances rui of
our model) and the weight every user gives to recommendations (the αu of our model),
the aggregate request probability of every content is calculated. Then, the N items with
the highest probability are cached. Note that, in the case of variable-sized contents, the
cache allocation decisions are made by solving a 0 − 1 knapsack problem, where the
“value” of every content is the aforementioned probability and the “weight” is its size.
Then, in the recommendation step, the recommendations are made partially by cached
contents and by non-cached contents that are of high utility for the particular user. The
balance between cached and non-cached contents is determined by a so-called distortion
parameter rd ∈ [0, 1), which is similar to the parameter β of our model.

Figure 2.3 depicts the SQ-RQ tradeoffs given by the oracle, our policy, and CAwR as
points in the plane. We obtained these tradeoffs for 30 different values of βu = β in the
range [0.01, 70] and the distortion parameter rd. The RQ values (x-axis) are normalized
with respect to the two“extreme”policies A and C (defined in Section 2.2.5). For example,
RQ = 50% implies that the RQ value lies in the middle of the interval [RA, RC ], where
RA and RC are the RQ values achieved by policies A and C respectively. Moreover, since
suj are as in (2.5), the normalized SQ values (y-axis) give the cache hit rate.

We remind the reader that each of these points corresponds to a different objective
tradeoff, between SQ and RQ, that a CP might have, i.e., these curves could also be
interpreted as Pareto curves. As we discussed in Sec. 2.2.4, β captures the weight we
attach to the RQ compared to the SQ. For a small value of β (on the left), caching
decisions are made based on the aggregate (over all users) interest in contents and
recommendations concern mostly cached items. This leads to high SQ/cache hits but
compromised RQ. As β increases, we trade off a better RQ for a worse SQ. In fact, a
better RQ would imply recommendations to each user that are close to her tastes and it
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Figure 2.3: Scenario 1, SQ-RQ tradeoff points for some values of the parameters β and
rd.

is β that determines how close. As these tastes can differ from one user to the other and
the cache capacity is limited, caches cannot store all the different recommended contents
and this leads to decreased SQ/cache hits.

Observation 2.3. Our policy’s tradeoff curve almost coincides with the optimal. Further-
more, it dominates the tradeoff curve of CAwR, i.e., our policy outperforms CAwR in
terms of at least SQ or RQ (or both).

For example, for a desired value of SQ of around 84%, CAwR achieves 20% RQ and our
policy 68%. More importantly, most of the tradeoffs of our policy (e.g., around 80− 95%
RQ and 70− 80% SQ) are not achievable by any tuning of the CAwR algorithm. Finally,
we observe that for large β and small rd (points in the extreme right) the recommendation
and caching decisions of the two policies coincide. In fact, both policies recommend to
each user the contents with the highest utility for the user and both policies store the
contents with the highest aggregate probability to be requested (given the aforementioned
recommendations).

2.4.2 Scenario 2

We proceed with simulating larger scenarios. For this, we consider a single cache with
100 or 200 connected users and a catalog consisting of 6000 or 10000 contents9. We
consider realistic values (according to footnote 1, p. 20) for cache capacity varying from
1% to 2.3% of the entire catalog. The probabilities αu are chosen randomly in [0.7, 0.9],
in line with the statistics gathered on Netflix [51], and N varying from 2 to 10. For these
experiments, we use a real dataset for the matrix of relevances rui:

9Note that according to [99], the total number of titles (movies and TV shows) available on Netflix in
the USA is equal to 5848.
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(a) Equal-sized contents

(b) Variable-sized contents (c) Equal-sized contents, rmin = 0 and 0.6

Figure 2.4: Scenario 2, SQ-RQ tradeoff points. Comparison of our policy with a policy
proposed in the literature (CAwR) and the baseline policy γ.

MovieLens dataset. The MovieLens dataset [100] is a collection of 5-star movie ratings
collected on MovieLens, an online movie recommendation service. This dataset has also
been used in related works on caching and recommendations, e.g., in [73]. Here, we used
a variety of subsets of the total 20000263 ratings available in the original dataset. It is
commonly assumed that the relevance of a content for a user is the predicted rating of
this user for the content [82]. Therefore, we interpret the rating as the content relevance.
Since the range of ratings is 0.5 − 5 with 0.5 increments, we map every rating r to a
random number in the interval (r/5 − 0.1, r/5]. As is common, this matrix is quite
sparse. To obtain the missing ratings, we perform matrix completion through the TFOCS
software [101]. TFOCS performs nuclear norm minimization in order to find the missing
entries of a low-rank matrix.
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Equal-sized contents

We assume that the contents are of unit size. We will show the performance improvement
achieved by our policy over a baseline scheme, policy γ, and the earlier introduced CAwR.
To begin, we define policy γ:

Baseline policy γ. It is a generalization of policies A and C. Policy γ caches the most
popular contents and then recommends a combination of cached contents and contents of
high relevance per user depending on the parameter γ. More specifically, it recommends
⌈γ · N⌉ cached contents, where ⌈·⌉ denotes the ceiling function, while the rest of the
recommendations are the contents of the highest relevance per user. For γ = 0, policy γ
coincides with policy C, and, for γ = 1, it coincides with policy A.

As before, we measure the SQ as cache hits and the RQ as
∑

i log(rui). In Fig. 2.4(a),
we plot the tradeoffs achieved by policy γ, CAwR, and our policy for different values
of the parameters γ, rd, and β respectively. In this instance, N = 2, which results in 3
possible objective values for policy γ. In fact, one point corresponds to recommending 2
cached items, the next one to recommending one among the cached items and the one of
the highest relevance, and the last point to recommending the 2 first contents ranked in
terms of relevance.

Observation 2.4. The SQ-RQ tradeoff curve of our policy dominates that of CAwR and
that of the baseline policy γ in large, realistic scenarios, driven by real datasets.

We notice, for example, that, in terms of SQ, there is a relative improvement of up
to 10% with respect to CAwR and of up to 54% with respect to policy γ, while the
improvement is much larger in terms of RQ. This is an encouraging finding that suggests
that the theoretical gains could also be experienced in practice. Finally, note that the
performance gain of our policy over policy γ is mainly due to the joint decisions on
caching and recommendations that our policy makes.

Contents with heterogeneous sizes

So far, we have considered scenarios with equal-sized content (e.g., chunks), as is often
assumed in related work [28]. Here, we turn our attention to a scenario with contents of
heterogeneous size, as analyzed in Section 12. The sizes of the contents were chosen in
{1, 15} and, according to the findings of [102] on YouTube videos, 90% of the contents
have a size of at most 2 size units, while only 0.1% have a size over 10 size units. We
adjust the cache capacity to 2.3% of the total size of the catalog

∑
i∈K si. Figure 2.4(b)

depicts the tradeoffs achieved by the two policies. In this context, our policy runs both
the MoSE and s-MoSE algorithms and selects the maximum achieved objective function
value between the two, as explained in Section 2.3.3. As expected, the difference between
the tradeoff curves is similar to the one in Fig. 2.4(a). More specifically, we observe a
relative gain of up to 63% in RQ and up to 15% in SQ of our policy with respect to
CAwR.

Observation 2.5. Heterogeneous content sizes do not have an impact on the performance
gains of our policy which, in this context, still outperforms existing schemes.
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RQ-related constraints

While the previous results are promising, one might argue that the proposed policy could
still recommend some rather unrelated contents, i.e., contents of relevance rui close to
0, in favor of a higher objective value, or worse, that some users might receive much
better recommendations, i.e., tailored to their tastes, than others. For this reason, we
will evaluate the performance of our policy and that of existing schemes when additional
constraints on RQ are added to the problem. In particular, we measure RQ by considering
φ as in (2.2). This leads to recommendations of contents whose relevance per user is at
least rmin. Since the recommendation decisions are made by solving the “inner problem ”
(as explained in Section 2.3.2), the caching decisions also take into account this constraint.
Subsequently, we adjust CAwR such that, at the recommendation step, the contents with
rui < rmin cannot be recommended to the user.

Figure 2.4(c) demonstrates that, for values of β close to 0 and values of rd close to 1,
the performance in SQ for both policies naturally drops when rmin = 0.6 in comparison
to the performance when rmin = 0. This is because fewer contents can be recommended
per user and these can largely differ from one user to the next. Therefore, only a few of
them can be cached due to the limited cache capacity, and less cache hits will occur. In
fact, in the dataset used for this experiment, on average, for every user, only 3% of the
catalog is of relevance/utility greater than or equal to 0.6.

Observation 2.6. Our policy does not choose to radically compromise RQ, leading to
similar performance tradeoffs even when additional strict constraints on RQ are imposed.

We notice that the tradeoff points of our policy for rmin = 0 and rmin = 0.6 coincide
for most of the values of β, while the maximum observed gain of the latter over the
former in terms of RQ is 25%. Finally, we observe that even the constraint version of our
(close-to-optimal) policy is still able to outperform CAwR with looser constraints on RQ.

2.4.3 Scenario 3

So far, we studied scenarios with a single cache in order to be able to compare the
performance of the proposed policy with the related work. We remind the reader that
the approximation guarantees of our policy hold for arbitrary networks of caches where
users might have access to more than one cache. The algorithm proposed in [28] makes
caching decisions taking into account such coverage overlaps. However, this problem
setup does not contain recommendations. In this scenario, we evaluate the performance,
in terms of MoSE, of our policy and some non-joint policies whose caching decisions are
made according to [28].

We consider a cellular network in a square area of 500m2 with 9 small-cell BS (helpers)
and a macro-cell base station (the large cache of our scenario). A total of 100 users are
placed in the area according to a homogeneous Poisson point process (in line with the
related works [28], [73]), while helpers are placed in a grid. Helpers’ communication
ranges are set to 200 m, which results in an average of 3.5 helpers per user. In this
scenario, we will measure the SQ as a function of the estimated bitrate. More precisely,
we assume that suj = ψ(buj), where buj are the estimated bitrate that can be supported
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(a) ψ linear, φ logarithmic

(b) ψ and φ linear (c) ψ and φ logarithmic

Figure 2.5: Scenario 3, MoSE versus β for different types of SQ (suj = ψ(buj)) and
RQ (φ(rui)) values/functions. Comparison of our policy with the A-femto and C-femto
policies.

between user u and cache j and ψ is an increasing function of buj . Without loss of
generality, we assume that the rate from the large cache (or macro-cell cache) C0 is 0.5
Mbps, while the buj values for edge caches are chosen randomly between 2 and 15 Mbps10.
In fact, the required Internet connection speed on YouTube [103] is 0.5 Mbps, and the
recommended speed to watch a video in 4K is 20 Mbps.

We consider a subset of 6000 unit-sized contents of the Movielens dataset and αu and
φ, as in Scenario 2. We set the helper’s capacity to 1.5% of the catalog size and N = 5.
We will compare the performance of our policy, in terms of the MoSE, with two policies
that are based on the algorithm proposed in [28]:

10As we are interested in capturing both wired (CDN) and wireless (femto-caching) scenarios, the
physical layer details are beyond the scope of this analysis.
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A-femto and C-femto policies. They generalize the policies A and C described in Section
2.2.5 in a network of caches. They both make the caching decisions based on the femto-
caching policy proposed in [28] that takes into account the fact that users have access to
multiple caches in the network. Then, the recommendations part of the policies A and C
is applied.

For ψ being the identity function, i.e., suj = buj and for different values of β > 0, the
achieved MoSE of our policy, the A-femto, and the C-femto policies are shown in Fig.
2.5(a). We observe that, for β close to 0, i.e., priority is given to the SQ, the performance
of the A-femto policy and our policy coincide. This is because both policies make the
same caching and recommendation decisions, i.e., cache and recommend the most popular
items. The MoSE achieved by the C-femto policy is lower since, although it provides the
best RQ, the recommended items are not necessarily among the cached ones and thus,
they need to be retrieved from the large cache at the cost of lower SQ. In fact, this is
illustrated in small scale in the toy example in Sec. 2.2.5. As β increases, the priority
moves towards RQ, and hence, the performance of the A-femto policy starts to worsen
until it is dominated by the one of the C-femto policy. Our policy continues to perform
better than both of them as a result of caching and recommendation orchestration.
Furthermore, the performance gap between our policy and the C-femto policy remains
constant.

Observation 2.7. The performance gains of the proposed policy over non-joint policies
are prominent in generic networks of caches as well.

In the cases studied above, we have considered the SQ and RQ functions (i.e., ψ and
φ respectively) being the identity or the function in (2.5) and the logarithmic function
respectively. One might wonder how these choices affect the performance of our policy.
For this reason, we explore their impact here. We ran on the same dataset as above the
experiment for: i) both ψ and φ being linear functions (Fig. 2.5(b)), and ii) both ψ and
φ being logarithmic functions (Fig. 2.5(c)). We remind the reader that the rationale for
the logarithmic function has been elaborated in Sec. 2.2.4. We notice that the relative
improvement in performance of the proposed policy in comparison to the A-femto and
C-femto policies are similar for the different choices of functions considered (Fig. 2.5(a)-
(c)). We note that a variety of coefficients of these functions have been considered in
every case. Furthermore, we observe that even though the range of the y-axis varies in
Fig. 2.5 (a)-(c), the relative gains are similar and the preceding analysis on the relative
performance of the three policies holds in every case.

Observation 2.8. The performance improvements are consistent for different choices of
SQ and RQ functions.

2.5 Related Work

Hierarchical caching. Optimization of hierarchical caching (e.g., CDNs or ICNs) has been
widely explored both in the context of wired [81] and wireless networks [28]. Various
aspects of this problem have been explored such as caching for different video streaming
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qualities [41] etc. See, for example, a recent survey on caching in [27]. Nevertheless, these
works are oblivious to the impact of the recommendations, beyond the simple (usually
IRM) popularity model used as input.
Caching-recommendation interplay. We refer the reader to Sec. 1.4.2 for an overview
of the related work on this topic. However, we note that [67] and [68] tackle the joint
problem in a problem setup that is closer to ours. The heuristics proposed in these works
decompose the joint problem into caching and recommendations subproblems.
Joint optimization theory. Submodularity-based proofs for caching-related problems
have flourished since the seminal paper of [28], where the focus is on one set of vari-
ables (caching). Joint optimization in a discrete setup has been widely considered in many
caching-related and other networking problems. For example, routing or user association
variables (subject to capacity constraints) are treated jointly with caching in [104]. It is
shown that these problems can be mapped to variants of the facility location problem,
and related approximation algorithms can be adapted to the problem. However, facility
location algorithms are not applicable to the joint caching and recommendations problem
at hand. Moreover, we note that iterative methods based on Benders decomposition have
also been considered for jointly optimizing the economic costs of caching policies [48].
The decomposition and submodularity method we use is similar in spirit to the methods
in [105] and [43]. While the former studies quite a different problem than ours, the latter
proposes an approximation algorithm for the joint caching and routing problem in cache
networks.

2.6 Conclusion

In this chapter, we studied the problem of jointly making caching and recommendation
decisions in a generic caching network. This is a problem of great interest as entities like
Netflix can now manage both caching and recommendations in their network. To this
end, we introduced a metric of user’s streaming experience (MoSE) as a balanced sum of
SQ (affected by the caching allocation) and RQ (determined by the recommendations
the user receives) and we formulated the problem of maximizing users’ MoSE. This
formulation captures the user’s expectations for SQ and RQ from a recommendation-
driven application, while, at the same time, allows us to explore the underlying SQ-RQ
tradeoffs of the problem. Moreover, the model we considered is generic since SQ can be
replaced by any caching gain/profit. We proposed a polynomial-time algorithm that has
1
2 -approximation guarantees (or 1−1/e

2 in the case of contents of heterogeneous content
sizes). Our numerical results in realistic scenarios show important performance gains of
our algorithm with respect to baseline schemes and existing heuristics.
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Chapter 3

Models for Cooperative
Recommendations

3.1 Introduction

Recommender systems (RSs) permeate today’s streaming services, and are substantially
affecting the content requests issued by their subscribers. Indeed, by proposing contents
that are relevant to their users’ interests, Content Providers (CPs) can increase the viewing
activity in their platforms, reduce user churn, and eventually boost their revenues [51].
Therefore, it is not surprising that CPs comprehend the business value of these systems
and invest research and financial resources to improve their accuracy.

At the same time, recommendations can be leveraged by content caching networks to
steer user requests towards nearby-cached contents. These caching networks are either
today’s traditional Content Delivery Networks (CDNs) or edge cache providers in future
wireless architectures (we will use, hereafter in this chapter, the term CDN to imply any
such caching network provider). The terms of cache/network-friendly recommendations
capture exactly this idea: recommendations aiming to reduce the CDNs’ routing expenses
without deviating irreparably from the users’ viewing preferences. This idea may not
only reduce the operating and retrieval costs of CDNs, but can also improve the service
quality for the users by achieving smaller viewing start-up delays and/or higher bitrates
of the streamed content (as was shown in Chapter 2).

Clearly, RSs have already become a powerful tool affecting all key stakeholders in the
content distribution ecosystem. As their influence further increases, it is imperative to
ensure they will foster synergies instead of creating misaligned incentives. Specifically, a
hitherto unexplored aspect in this context is the tension between CPs and CDNs when it
comes to recommendations: the cache-friendly recommendations of CDNs may deviate
from the users’ interests, and thus, negatively affect the CPs’ revenues; while the CPs’
recommendations might induce costly data transfers for the CDNs. This problem is more
pronounced in the case where Over-The-Top (OTT) CPs lease CDN infrastructure to
deliver their services, but appears also in content streaming platforms with self-owned
caching infrastructure.
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Figure 3.1: The CP and CDN cooperate by agreeing on the recommendations the users
receive. The incentives of the cooperation are provided by the reduced price the CP is
charged for the content delivery and the resulting increase in the number of cache hits
that leads to lower retrieval costs for the CDN.

The goal of this chapter is to investigate this new problem by: 1) understanding and
modeling the root causes of the CP’s and CDN’s potential conflicts when it comes to
recommendations; 2) proposing a cooperation framework to enable their agreement; and
3) designing algorithms for realizing this coordination based on the information the two
entities want to disclose. The core of our proposal is the following simple and practical
idea: the CDN charges lower content delivery fees to the CP when the latter agrees to
tune its recommendations towards cached contents. This discount will balance the CP’s
expected viewing gains with the CDN’s induced savings on retrieval costs (see Fig. 3.1).

Devising these cooperative recommendations is a new and highly non-trivial problem
whose nature and complexity cannot be properly handled by existing approaches for
cache-friendly recommendations. Moreover, we explore how this problem can be tackled
in conjunction with the CDN’s caching policy. Even though adding the caching as a
variable makes the problem harder, this extended problem has the potential to further
increase the cooperation gains.
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3.2 Problem Setup

3.2.1 Recommendations, Content Requests, and Caching

In this chapter, we present a cooperation scheme between the CP and CDN on the basis
of the recommendations the former offers to its users. Following the current business
models for the two entities, we model their utility functions that represent their profit
from the OTT market. For the convenience of the reader, we provide a summary of the
notation introduced in this chapter in Table 3.1.

Content Recommendation Model: The CP owns a content catalog K that is accessible
to a set U of users through the CP’s OTT service. A (personalized) list of Nu items are
recommended to each user u ∈ U . The recommendations are based on the predicted
relevance of each content to the user’s tastes, viewing history, context, etc. These
relevances (sometimes also called “scores” or “rankings”) are calculated by today’s state-of-
the-art RS (that is employed by the CP) using techniques such as collaborative filtering,
deep neural networks, reinforcement learning, etc. [51], [106]. We denote by rui ∈ [0, 1]
these relevances. Typically, the CP would select the Nu items with the highest rui or the
ones with the highest expected revenue to feature the recommendations list of user u [51].
In particular, the recommendation policy could depend on the revenue model of the
CP (as we will see in the next section), i.e., whether the revenues depend mostly on user
engagement or/and advertisements (ad impressions). In this chapter, the recommendation
decisions (i.e., deciding which contents will appear in the user’s recommendations list)
are made not only based on the utilities rui but also on the cooperation terms.

Definition 3.1. Our problem considers two sets of recommendations:

• (Input) Baseline Recommendations: Y b = (ybui ∈ {0, 1}, u ∈ U , i ∈ K), where ybui = 1
if content i is recommended to user u. These are decided by the CP before any
cooperation and are input parameters for our problem. For example, these could be
the top Nu most relevant contents (to each user), as mentioned above.

• Cooperative Recommendation Variables: Y = (yui ∈ [0, 1], u ∈ U , i ∈ K), which are the
probabilistic recommendation variables optimized jointly by the CP and CDN. These
are the control variables of our problem.

In contrast to Chapter 2, the control variables are continuous here. Using continuous
variables for the cooperative recommendations allows the CP to provide some variety to
the recommendations it offers to the same user from session to session.

Content Request Model: As in Chapter 2, each user u makes content requests
according to the following model:

• The user follows the recommendations with probability αu; where, w.l.o.g. each of
the Nu items is considered equally likely to be requested. Hence, each recommended
content is requested by the user with probability αu/Nu.

• With probability (1−αu), the user ignores the recommendations and requests a content
i ∈ K of the catalog with probability pi.
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Figure 3.2: Sources of revenue and cost for the CP and the CDN as described in Sec. 3.2.2.
The delivery contract is the foundation of their economic relationship.

Content Caching Model: A CP subscribes to a CDN provider through a Service Level
Agreement (SLA) for the delivery of the contents to the users. The CDN manages a
set of C caches with capacity Cj , j = 1, . . . , C, where Cj ≪ |K|. Moreover, there is a
root cache C0 that stores all the contents. W.l.o.g., we consider equal-sized contents
(divided in chunks), as is common in related works (e.g., [107], [35]). The CDN optimizes
the caching decisions based on performance (e.g., latency, cache hits) and cost criteria
(routing costs). These decisions are described as follows:

Definition 3.2. The (input) baseline caching is denoted by Xb = (xbi ∈ {0, 1}, i ∈ K, j =
1, . . . , C), where xbij = 1 if content i is fully stored in cache j. These are determined by
the CDN before any cooperation and are input parameters.

To better focus on the mechanics of the cooperation mechanism, we will develop our
framework in the context of cache-friendly recommendations, i.e., assuming that the
caching policy is decided at a different timescale than the recommendations and is fixed
during the cooperation. We revisit caching variables, and how these could potentially
also be designed jointly with recommendations later, in Sec. 3.4.

3.2.2 Revenue/Cost Models and Utility Functions

We will now discuss the various sources of revenues and costs for the CP and CDN (illus-
trated in Fig. 3.2) in order to define their utility functions. While these sources can, of
course, be highly nuanced from scenario to scenario, we propose a model that tries to
capture key elements while staying tractable.

CP revenues: When a user u requests a content i, this content is associated with an
expected revenue Rui that is estimated by the CP as a result of its revenue model and
the associated costs related to the purchase of contents (through licensing or production).
In fact, there are 4 main revenue models for streaming platforms [108]:
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• ad-based (e.g., YouTube (non-Premium))

• subscription-based (e.g., Netflix)

• transaction-based or pay-per-view (e.g., iTunes)

• hybrid model (e.g., Amazon Prime Video).

The CP’s expected revenue depends on the content relevances rui in a non-trivial way.
For this reason, we capture this relation by a fairly generic model:

Rui = ϕui(rui), (3.1)

where ϕui can be any nondecreasing function of rui that describes the impact of user’s
(predicted) interest in a content on the CP’s revenues1. For example, ϕui could be related
to the probability of a user abandoning the viewing session as a function of rui.

CP costs/CDN revenues: The delivery of a requested content is done by the CDN
that charges the CP on a basis of the amount of requests. We remind the reader that
these charges apply to CPs without an in-house CDN, which is still the case for a large
number of CPs, e.g., Disney+, Hulu. We assume that the CP has to pay λ currency
units per request2.

CDN costs: The main source of expenditures for the CDN is the cost related to the
delivery of a requested content to the user3. We let C(u) be the subset of caches that
a user u has access to including the root cache (which is accessible by every user). A
request for content i by user u may be served by at least one of the small caches in C(u)
where i is stored. If the content is not cached, it will be served by the root cache C0.

We assume that every link between user u and the caches in the set C(u) is characterized
by a delivery (retrieval) cost (for the CDN). We let kuj denote this cost per request
for user u by the cache j. The value of kuj can be estimated as a result of transit fees
the CDN pays to transit networks or Internet Service Providers (ISPs) to retrieve the
content from the origin servers of the CPs and make it available to the users. Moreover,
they can include maintenance-related costs, e.g., related to storage capacity, hardware,
estate, energy, etc [45]. The delivery cost from the root cache C0 to user u is ku0, where
ku0 > kuj for all j = 1, . . . , C. The CDN serves each request through the lowest-cost
cache that has the requested item, as is common in most caching setups [28, 81]. We
denote the sequence of increasing user-cache costs by ku(1), ku(2), . . . , k|C(u)|. Then, based

on the caching decisions Xb, the delivery cost for content i by user u is:

Kui(X
b) =

|C(u)|∑
j=1

[
ku(j)x

b
i(j)

j−1∏
l=1

(
1− xbi(l)

)]
. (3.2)

1These functions are built by the CPs using historical data; and are typically concave capturing
diminishing returns on the relevances rui.

2We can extend our model to different pricing schemes with small modifications. For example, if
the CDN charges the CP per content/chunk delivered, then λ can be multiplied by the abandonment
probability.

3We focus here on the revenues and costs that are relevant in our model. Obviously, additional costs
are incurred by both the CP and CDN, e.g., fixed business costs.
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Table 3.1: Notation Summary for Chapter 3

Content Requests and Recommendations

K catalog of contents

U set of users in the network

Nu number of recommended contents for the user u

αu probability that user u follows the recommendations

pi
probability that a user requests content i while not
following the recommendations

Revenues and Costs

λ price per chunk requested that the CP pays to the CDN

ρ discount on the delivery price λ, ρ ∈ (0, 1)

Rui CP’s revenue (expected) per view from user u for content i

rui relevance (predicted) of content i to user u

Kui CDN’s cost of delivering content i to user u

Input Parameters

ybui (input) baseline recommendations, before any cooperation

xbij (input) caching allocation, before any cooperation

Variables

yui
cooperative recommendation variable corresponding to
user u and content i for the centralized solution

ψui, ψ̃ui
cooperative recommendation variables for the distributed
algorithm, as decided by the CP and the CDN respectively

CP’s and CDN’s utilities before cooperation: Based on the above problem setup and
revenue models, we can now derive the total utility (revenues minus costs) each of the
two parties enjoys before cooperating. We define the baseline (initial) utility of the CP
before any cooperation as the expected revenue minus the expected price it has to pay to
the CDN:

U b =
∑
u∈U

∑
i∈K

αu

Nu
ybui(Rui − λ). (3.3)

We do not account for the revenue that comes from the content requests that are not a
result of recommendations, i.e., when, with probability 1− αu, the user does not follow
any of the recommendations. It is easy to see that these requests do not affect the
cooperation (whose control variables are the recommendations). Moreover, note that
the definition of U b is generic and does not depend on how the CP devises the standard
recommendations (i.e., the values ybui).

Given the caching and recommendation decisions before the CP-CDN cooperation,
the baseline (initial) utility of the CDN is expressed as the expected revenue (from the
delivery contract) minus the expected delivery (or retrieval) costs:

Ũ b =
∑
u∈U

∑
i∈K

αu

Nu
ybui

(
λ−Kui

)
. (3.4)
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3.2.3 Towards Cooperative Decisions

The goal of our cooperative framework is to improve the aforementioned utilities of both
parties4. As explained earlier, such improvements can result by motivating the CP to
modify some of its original recommendations towards lower cost items (e.g., cached ones).
To ensure that the CP will not lose revenue from these modifications (we remind the
reader that this revenue relates to how related the recommended contents are for users,
see (3.1)) we assume the CDN offers a discount on the content delivery fees of such “lower
cost” content. In particular, we let ρ denote this discount on the price λ, where 0 < ρ < 1.
The value of ρ is either set5 by the CDN or by a regulatory authority (who acts as a
mediator for their cooperation). Then, the new price the CP would have to pay to the
CDN is

Λui = λ[1 + ρ(ybui − 1)]. (3.5)

Specifically, if a content i is recommended now but it was not before the cooperation
(i.e., yui > 0 and ybui = 0), then the discount ρ applies. If, on the contrary, the content
continues to be recommended (even partially) as before (i.e., yui > 0 and ybui = 1), no
discount applies. One could also include in the model an extra requirement that the
discount is applied to newly recommended content that is also cached. Our problem
formulation, to follow, is applicable to either scenario, so w.l.o.g. we will focus on the
former. We note that the requests that do not come through recommendations are not
subject to any discount. Then, the new utility for the CP and CDN are:

U =
∑
u∈U

∑
i∈K

αu

Nu
yui(Rui − Λui), (3.6)

Ũ =
∑
u∈U

∑
i∈K

αu

Nu
yui

(
Λui −Kui

)
. (3.7)

3.2.4 Toy Example

To better understand the cooperation model and the tradeoffs involved, we present a
toy example depicted in Fig. 3.3. We consider a scenario with two users, a catalog of
four equal-sized contents and a single cache with capacity 2. Upon request, a content is
served by the cache, if it is cached there. Otherwise, it will be served by the root. For
simplicity, we assume that the users will receive a single recommendation that will follow
with probability 1 and that all contents are equally relevant to the users. The CP pays
to the CDN $0.5 per request (outside of any cooperation) while the CDN offers to the
CP a discount of 30% on the delivery fees if they cooperate and the CP modifies its
recommendations. The revenues and costs related to the contents are depicted in the
table on the top right of the figure.

4We are specifically interested to maximize the gains and ensure they are “fairly” shared; we elaborate
on the fairness framework in the next section.

5We will discuss in Sec. 3.5 how the value of ρ could be chosen in practice.
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In the table on the bottom, we see the pre-cooperation (baseline) and cooperative
decisions taken as well as the utilities (profits) of the two entities. In particular, outside
of any cooperation, the CP would recommend the contents that will bring the highest
revenue, i.e., Movie A to User 1 and Movie B to User 2, while the CDN would cache some
contents without knowledge of the recommendations and how they shape the requests.
We assume that Movies C and D are cached based on the aggregate popularity observed
in a period of time prior to the cooperation.

Therefore, the requests for the recommended contents will lead to cache misses and
extra retrieval costs (for the CDN). However, if the two entities cooperate, then it would
be better to recommend Movie C to both users. In that case, the CP will pay reduced
delivery fees (that will compensate for the differences in the revenues Rui), while the CDN
will avoid the extra costs. We see that, already in this toy example, the cooperation leads
to gains of at least 20% for each entity. Note that any other solution, e.g., recommending
movie D to both users, would result in worse gains for at least one entity and thus in an
unfair allocation of the cooperation gains.

In this example, it is easy to guess how to find the cooperative recommendation
policy that boosts both entities’ profits. However, this task becomes significantly harder
for bigger scenarios (large content catalogs, multiple recommendations per user, etc.).
Moreover, one might wonder: would the CP and CDN be willing to exchange information
on their utility functions in order to find the solution (since these functions constitute
sensitive business information)? And how the cooperative recommendations can impact
the users? To this end, in the next section, we formulate a cooperation mechanism while
addressing these concerns.

Non-cooperation (baseline scheme):
Recomm. (𝑌𝑏): Movie A → User 1, B→ User 2
• CP’s util. (𝑈𝑏): 2*(1-0.5)= $ 1
• CDN’s util. ( 𝑈𝑏): 2*(0.5-0.22)=$0.56

Cooperation:
Recomm. (𝑌): Movie C → User 1 & User 2

• CP’s util. (𝑈): 2*(0.95-0.35)=$ 1.2        (+ 20 %)
• CDN’s util. ( 𝑈): 2*(0.35-0.01)=$ 0.68 (+ 21 %)

For U=2 (two users), 𝑁𝑢=1 (single recomm.), 𝛼𝑢=1, and caching allocation(𝑋𝑏): Movie C & Movie D 

Cooperation:

CP CDN

$ 0.5/ request

offers 30% off (ρ=0.3)

gains

CP’s revenue
(𝑅𝑢𝑖)

CDN’s delivery cost  
(𝐾𝑢𝑖 (𝑋

𝑏))

Movie A Movie B Movie C Movie D

•  $0.01 if cached
• $0.22 if not cachedUser 1 $1 $0.2 $0.95 $0.94

User 2 $0.1 $1 $0.95 $0.3

CACHED by the CDN

(new notation)

Figure 3.3: Toy example presented in Sec. 3.2.4. In this example, the CP-CDN cooperation
leads to financial gains of 20% and 21% respectively. These gains derive from the discount
on the delivery fees (for the CP) and the fetching/retrieval savings (for the CDN).
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3.3 Problem Formulation and Algorithms

The toy example above illustrated that the CP-CDN cooperation should provide adequate
incentives for both entities. This means that the cooperative recommendation policy
should be devised in a way that it satisfies: U ≥ U b and Ũ ≥ Ũ b. As explained earlier,
the CDN will propose a discount on the delivery fees in order to incentivize the CP to
tune its recommendations towards cached contents. Given this discount, the two parties
will try to benefit as follows:

• CDN: it increases cache hits (through cache-friendly recommendations) and thus it
reduces the delivery costs (term Kui in (3.7)). These cost savings will compensate
the lower delivery fees (term Λui in (3.7)).

• CP: it modifies the recommendations only if the cooperative ones lead to minor
loses in expected revenue Rui, that can be amortized by the applied fee reduction.

Moreover, both parties have the following concrete goals: 1) benefit as much as possi-
ble (hence the need for an optimization framework), and 2) reach a “fair” agreement (that
is, the allocation of the cooperation gains should be Pareto optimal, i.e., there is no other
solution that would benefit one party more without deteriorating the other’s gains).

Having these desired properties as guideline, we model this optimization problem as
a Nash Bargaining Solution (NBS) [109,110]. The NBS is defined as the maximization of
the product of payoffs (i.e., the utility gains) of the two entities subject to individual
rationality constraints, or equivalently the maximization of the logarithm of this product
where the constraints are implicit in the domain of the logarithms [110]. Therefore, the
NBS would be

max
Y

[
log(U(Y )− U b) + log(Ũ(Y )− Ũ b)

]
, (3.8)

where U(Y )− U b and Ũ(Y )− Ũ b represent the gains in utility of the CP and the CDN
from a potential cooperation.

3.3.1 Centralized Cooperative Recommendations

We will first formulate and study the centralized problem where the two entities share
their cost/revenue functions.

CCR: Centralized Cooperative Recommendations.

min
Y

[
− log

(∑
u,i

αu

Nu
yui(Rui − Λui)− U b

)

− log

(∑
u,i

αu

Nu
yui(Λui −Kui)− Ũ b

)]
(3.9)

s.t.
∑
i∈K

yui = Nu, ∀u ∈ U , (3.10)

yui ∈ [0, 1],∀u ∈ U , i ∈ K, (3.11)
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where the baseline utilities U b and Ũ b are defined in (3.3) and (3.4). The constraints
in (3.10) suggest that each user receives Nu recommendations6. Moreover, we note that
the inequalities

U − U b =
∑
u,i

αu

Nu
yui(Rui − Λui)− U b ≥ 0, (3.12)

Ũ − Ũ b =
∑
u,i

αu

Nu
yui(Λui −Kui)− Ũ b ≥ 0 (3.13)

are implicit constraints as the domain of the logarithms must be non-negative. In fact,
(U b, Ũ b) is the “disagreement point” of the cooperation [109]: if U < U b or Ũ < Ũ b, there
will be no feasible solution and, thus, no agreement on cooperation. Then the CP will
keep its baseline recommendations Y b while the CDN will not provide a price discount.

By formulating the optimization problem in this way, the solution uniquely satisfies
the Nash’s axioms [109,110]. First, the solution is Pareto optimal. Furthermore, due to
the implicit domain constraints, the payoff of every entity is no worse than the payoff it
would get outside of any cooperation, i.e., (U b, Ũ b). Finally, if the positions of the two
entities (in terms of utility functions and the disagreement point) are symmetric, then
the solution treats them symmetrically.

The next lemma shows that the CCR problem is tractable.

Lemma 3.1. The CCR Problem is convex.

Proof. The objective function is convex since the logarithm is a concave function and
the arguments of the logarithms are linear functions of Y . Moreover, the problem’s
constraints are linear.

As a result of Lemma 3.1, standard interior-point or dual methods would efficiently
give the optimal solution. We summarize below the algorithm to devise the cooperative
recommendations in a centralized manner. This algorithm could be run either by a
trusted third party (cooperation mediator) that collects the necessary information or by
the two entities together.

The CCR Algorithm. The CP communicates the values αu, Nu, Y
b, U b and its utility

function U . The CDN communicates the discount ρ, the value of Ũ b, and its utility
function Ũ . Then, the CCR Problem is solved through standard dual or interior-point
methods. It returns Y ∗, the optimal cooperative recommendation policy.

Remark 3.1. The proliferation of encrypted user-cache communication through HTTPS/TLS
requests is considered an obstacle for efficient content caching within the OTT services.
However, there are protocols proposed in literature that can ensure that the CDN’s caches
are blind to the cached contents (e.g., [111]). Similar protocols could be embedded in
our framework since the CDN needs only to estimate the retrieval cost of the cached
items (that could be encrypted). Designing such a protocol is an interesting direction for
future work.

6If the solution Y ∗ contains more than Nu positive values (due to the probabilistic model) we can
easily select exactly Nu following the technique in [107] and being compatible with Y ∗ on expectation.
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3.3.2 Distributed Cooperative Recommendations with Minimum Information
Sharing

As explained earlier, in order to solve the CCR Problem the two entities need to share
their utility functions. However, in the highly competitive ecosystem of streaming services
and content distribution, these functions constitute sensitive information. Withholding
such information might prevent the two parties from cooperating. Therefore, there is need
for a cooperation mechanism that can assure privacy. Establishing such a mechanism
is not trivial since fairness needs to be guaranteed, as in the centralized solution. We
remind the reader that the NBS framework requires that both utility functions are taken
into account in the same objective (see (3.8)).

We overcome this challenge by applying the Alternating Direction Method of Mul-
tipliers (ADMM) [112] to solve the problem in a distributed way. The idea behind
ADMM is to split the problem into two subproblems, where each subproblem contains
only one entity’s utility function. Then, the cooperative recommendation problem is
solved iteratively: each entity solves the subproblem that contains only its utility function
and makes local recommendation decisions. Through coordination and after a sufficient
number of iterations, the subproblems’ solutions coincide. The coordination preserves the
entities’ private information and is carried out by a cooperation mediator, which is either
a trusted third party or the two entities together. In order to define this distributed
algorithm, in what follows: 1) we reformulate the CCR Problem into an equivalent
problem (DCR Problem) that can be split into two subproblems, 2) based on the theory
on ADMM, we propose the distributed DCR algorithm, and 3) we prove that the resulting
cooperation gains converge to the ones of the centralized problem.

Instead of the recommendation variables Y , we introduce here the local recommen-
dation variables Ψ = (ψui ∈ [0, 1]) and Ψ̃ = (ψ̃ui ∈ [0, 1]) that are the variables in the
CP’s and CDN’s subproblems respectively. We reformulate the CCR Problem into the
following equivalent problem:

DCR: Distributed Cooperative Recommendations.

min
Ψ,Ψ̃

[
− log

(∑
u,i

αu

Nu
ψui(Rui − Λui)− U b

)

− log

(∑
u,i

αu

Nu
ψ̃ui(Λui −Kui)− Ũ b

) ]
(3.14)

s.t. ψui = ψ̃ui,∀u ∈ U , i ∈ K, (3.15)∑
i∈K

ψui = Nu,∀u ∈ U , (3.16)∑
i∈K

ψ̃ui = Nu,∀u ∈ U , (3.17)

ψui, ψ̃ui ∈ [0, 1],∀u ∈ U , i ∈ K, (3.18)

where ψui and ψ̃ui are the local recommendation variables as decided by the CP and the
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CDN respectively. The constraints in (3.15) are the consistency constraints that require
all local recommendation variables to agree.

The augmented Lagrangian for the DCR problem is:

Lq(Ψ, Ψ̃, Z) = − log
(
U(Ψ)− U b

)
− log

(
Ũ(Ψ̃)− Ũ

)
+

∑
u,i

zui(ψui − ψ̃ui) +
q

2

∣∣∣∣Ψ− Ψ̃
∣∣∣∣2
F
, (3.19)

where Z = (zui) are the dual variables, q is the penalty parameter, and || · ||F the
Frobenius norm. Moreover, the dual function is

d(Z) = inf
(Ψ,Ψ̃)

s.t. (3.16)-(3.18)

Lq(Ψ, Ψ̃, Z) (3.20)

The ADMM for the DCR Problem is described below (see also Fig. 3.4):

The DCR algorithm. The CP communicates αu, Nu , Y b and the value of U b. The CDN
communicates ρ and the value of Ũ b. Then, at every iteration k + 1:

• The CP solves its subproblem and communicates its local solution:

Ψ(k+1) := argmin
Ψ

s.t. (3.16), (3.18)

Lq

(
Ψ, Ψ̃(k), Z(k)

)
. (3.21)

• The CDN solves its subproblem and communicates its local solution:

Ψ̃(k+1) := argmin
Ψ̃

s.t. (3.17),(3.18)

Lq

(
Ψ(k+1), Ψ̃, Z(k)

)
. (3.22)

• The cooperation mediator updates and communicates the dual variables:

Z(k+1) := Z(k) + q
(
Ψ(k+1) − Ψ̃(k+1)

)
. (3.23)

We highlight here that each entity keeps private its utility function from the other
entity and the mediator. Concerning the practicalities of the DCR algorithm, its iterations
will terminate according to standard residual criteria (see [112]). We note that ADMM
tolerates inexact minimization for the subproblems under the condition that the relative
errors are summable [113]. Moreover, when the subproblems are solved in an iterative way,
the warm-start technique can speed up the process. The following lemma guarantees that
the DCR algorithm converges (after a sufficient number of iterations) to the centralized
objective function value and solution.

Lemma 3.2. If p∗ is the optimal value of the CCR Problem, and DO(k) is the DCR
Problem’s objective function value at iteration k, i.e., DO(k) = − log

(
U(Ψ(k))− U b

)
−

log
(
Ũ(Ψ̃(k))− Ũ b

)
, then DO(k) → p∗, as k →∞. Moreover, if Y ∗ is the solution of the

CCR Problem, then Ψ(k), Ψ̃(k) → Y ∗, as k →∞.
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Figure 3.4: Illustration of the DCR algorithm’s steps. Each entity solves its subprob-
lem (without sharing its utility function) based on the other’s local solution and the
dual variables. They communicate their local solutions to the cooperation mediator that
updates and communicates the dual variables.

Proof. According to the results in [112], we need to prove two conditions: 1) the extended-
real-valued functions − log(U(Ψ)− U b) and − log(Ũ(Ψ̃)− Ũ b) are closed, proper, and
convex, and 2) the unaugmented Lagrangian L0 has a saddle point. The two functions
are indeed convex (in fact strictly convex) and closed. The corresponding extended-
real-valued functions are proper since they are not identically equal to +∞. We will
now prove that strong duality holds. When a feasible primal solution Ψ∗ = Ψ̃∗ exists
such that U(Ψ∗)− U b > 0 and Ũ(Ψ∗)− U b > 0, then strong duality holds by Slater’s
condition (which reduces to feasibility when the problem constraints are linear). Therefore,
by feasibility and by strong duality, it follows that the unaugmented Lagrangian L0 has
a saddle point [91].

Since we proved objective convergence, then the local solutions will converge to the
centralized solution Y ∗ since the DCR’s objective function is strictly convex. This means
that there is at most one global minimizer.

Essentially, Lemma 3.2 implies that the properties of the centralized solution inherited
by the NBS framework (Nash axioms, see Sec. 3.3.1) hold also for the DCR’s solution.
This is important since it guarantees that the cooperation gains and the fair split of these
gains will not be compromised when the two entities apply the DCR algorithm (instead
of the CCR).

3.3.3 Ensuring High Quality of Cooperative Recommendations

One might argue that the cooperative recommendations have the potential to degrade
user’s recommendations. Note that user’s interest in the content is one of the factors
that determine user’s overall experience in OTT services, as shown in experiments [60].
However, the CP can limit a potential recommendation degradation by adding extra
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constraints in the problem. For example, adding in the CCR Problem the constraints∑
i

yuirui
Nu

≥ Tu, for every user u, (3.24)

forces the average relevance of the cooperative recommendations to the user u to be at
least equal to a threshold Tu ∈ (0, 1]. Adding these constraints does not have an impact
on the problem analysis (since they are linear with respect to the variables Y ). In the
(distributed) DCR Problem, the same constraints (with the local variables ψui instead of
yui) can be applied when the CP solves its subproblem (with no need of communicating
these constraints to the CDN).

3.4 Extension to Caching Decisions

So far, we have focused our framework on scenarios where the recommendations are the
only variables that can be re-designed by the CP and CDN, in the time-scale of interest.
A natural question that arises is whether also modifying the caching decisions in parallel,
could yield even better profits: recommendations could concern contents that are cached
in the cache that is closest to the user while they still bring high revenue to the CP.
This is particularly useful in today’s and future wireless architectures where caches are
small while the CP’s catalog is constantly growing. This is also in line with recent works
proposing the joint optimization of caching and recommendation decisions, e.g., [67] and
the problem presented in Chapter 2. Nevertheless, none of these works either explores
the financial aspects of the caching-recommendation interplay, nor is it straightforward
how to include these into our problem formulation and solution methodology.

A complete treatment of this topic goes beyond the scope of this thesis, due to the
additional complexity it introduces in the solution methodology, and is subject to future
work. Nevertheless, we will show here how to include such variables into our model,
and provide some preliminary analysis and a heuristic for this extended problem. We
complement this analysis with related validation results in Sec. 3.5 that already show the
proposed method can further increase the cooperation gains for both parties.

Caching Setup and Variables. In this section, we consider, for simplicity, a scenario
where the CDN manages only one small cache whose capacity is C1. Moreover, there is a
root cache C0 that stores all the contents. We employ the prevalent continuous caching
model that is valid either when coded caching is used [28] or when the files can be divided
in equally-sized chunks and stored independently [107], [35], [114]. We assume that the
contents are equal-sized (divided in chunks). In addition to the variables and input values
that were introduced in Sec. 3.2, we define the cooperative caching variables:

Definition 3.3. The cooperative caching variables are denoted by X = (xi ∈ [0, 1], i ∈ K),
where xi is the portion of content i that is stored at the cache. These (together with the
recommendation variables yui) constitute control variables throughout this section.

We optimize proactive caching decisions, which constitute a key element of CDN’s
operations today, as explained before. Therefore, as is common in related works [28, 114],
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we assume that the CDN proactively stores contents in its caches and this allocation stays
fixed during the period between two updates/fills and between two CP-CDN cooperation
instances.

According to (3.2), the retrieval cost for the CDN is in the single-cache scenario is:

Kui(X) = ku0 + xi(ku1 − ku0). (3.25)

In contrast to the definition of the utility functions in Sec. 3.2, we redefine here the
CDN’s utility functions in order to include the profit that comes from requests out of
recommendations (note that now this term contains the control variables). The CDN’s
baseline utility (before cooperation) and the utility for cooperation are defined as:

V b = Ũ b(Xb) +
∑
u,i

(1− αu)pi

(
λ− ku0 − xbi(ku1 − ku0)

)
(3.26)

V =
∑
u,i

[αu

Nu
yui (Λui − ku0 − xi(ku1 − ku0)) ,

+(1− αu)pi (λ− ku0 − xi(ku1 − ku0))
]
. (3.27)

In the second summand of V , the delivery fees are λ since the discount does not apply to
requests out of recommendations. We stress here that, for the CP, the corresponding term
does not contain any of the control variables and it cancels out in the difference U − U b.
We can now formulate the optimization problem that can allow us to devise cooperative
recommendation and caching policies in a centralized7 manner (with information sharing
between the two entities).

CCRCache: Centralized Cooperative Recommendations & Caching.

min
X,Y

[
− log

(
U(Y )− U b

)
− log

(
V (X,Y )− V b

)]
(3.28)

s.t.
∑
i∈K

yui = Nu, ∀u ∈ U , (3.29)∑
i∈K

xi ≤ C, (3.30)

xi, yui ∈ [0, 1], ∀u ∈ U , i ∈ K, (3.31)

where U b and V b are in defined in (3.3) and (3.26). According to (3.26) and (3.27), the
CDN’s gain in utility is:

V (X,Y )− V b =
∑
u,i

[
αu
Nu

yui
(
Λui − ku0 − xi(ku1 − ku0)

)
− (1− αu)pixi(ku1 − ku0)

]
− Ũ b. (3.32)

The inequality in (3.30) is the cache capacity constraint and, as expressed in (3.31),
the control variables are continuous. Finally, the inequalities U(Y ) − U b ≥ 0 and
V (Y,X)− V b ≥ 0 are implicit domain constraints.

7We only present the centralized problem here. In fact, the presented framework could be also
implemented in a distributed way.
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Lemma 3.3. The CCRCache Problem is bi-convex.

Proof. The objective function is bi-convex, i.e., convex with respect to Y for every fixed
X and convex with respect to X for every fixed Y , since the logarithm is a concave
function, the utility function U is linear with respect to Y , and the function V is bilinear
in X and Y (since it contains the products yuixi, see (3.32)). Furthermore, all problem’s
constraints are linear.

An approach to tackle a bi-convex optimization problem would be to transform it into
an equivalent problem that is instead convex in (X,Y ). However, such transformations
leading to convex equivalent problems are the exception, rather the rule. Standard
transformation“tricks” include replacing the products yuixi by new variables or discetizing
one of the variables involved in the product [115]. The former option is not possible in our
problem (since the variables yui and xi appear also outside of this product), and the latter
could lead to a problem with a large number of new variables. Another approach includes
the GOP (global optimization) algorithm that guarantees convergence to the global
optimum [116,117]. Unfortunately, this algorithm comes at the cost of high complexity
that could be prohibitive in real-world systems with vast catalogs and multiple users.

Moving away from “exact” methods that attempt to find global optima, Alternate
Convex Search [118], and more recently ADMM methods [112], have been popular
heuristics for bi-convex problems. Although there are problem instances whose structure
permits such algorithms to (provably) converge to global optima (e.g., the well-known
matrix factorization problem), they (at best) guarantee convergence to stationary points.
We saw in Sec. 3.3.2 how ADMM can be applied in order to provide a distributed solution.
The same method can be applied for bi-convex problems since its core idea consists of
splitting the main problem into subproblems. Here, the CCRCache Problem can be
broken into a subproblem that contains the recommendation variables and another that
contains the caching variables. In order to apply ADMM, we reformulate the CCRCache
Problem into an equivalent problem by introducing new variables and adding bilinear
constraints:

CCRCache′ Problem.

min
X,Y,Z

[
− log

(
U(Y )− U b

)
− log

(
G(X,Y, Z)− V b

)]
(3.33)

s.t. (3.29), (3.30),

zui = xiyui, ∀u ∈ U , i ∈ K, (3.34)

xi, yui, zui ∈ [0, 1], (3.35)

where the Z = (zui ∈ [0, 1]) are auxiliary variables that replace the products xiyui and
G(X,Y, Z) is defined as follows:

G(X,Y, Z) =
∑
u,i

[
αu
Nu

(yui(Λui − ku0)− zui(ku1 − ku0))
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− (1− αu)pixi(ku1 − ku0)
]
. (3.36)

It is important to note that the objective of the CCRCache′ Problem is convex in
(X,Y, Z) while the bi-linear constraints in (3.34) couple all variables together. We describe
below how ADMM [112, Sec. 9.2] can be applied in the CCRCache′ Problem. Even
though ADMM for bi-convex problems has no guarantee of convergence, it is expected to
have better convergence properties (faster convergence to a local or global optimum or
better objective function value) than other local heuristics [112].

The CCRCache algorithm. The CP and the CDN exchange the following information:
αu, Nu, Y

b, U , U b, ρ, G, and V b. Then, the two entities together (or through a mediator)
solve iteratively the CCRCache′ problem. At every iteration k + 1 the following steps
take place:

• Solving the (Y,Z)-subproblem:

(
Y (k+1), Z(k+1)

)
= argmin

s.t. (3.29),(3.35)

[
− log

(
U(Y )− U b

)
− log

(
G(X(k), Y, Z)− V b

)
+
q

2

∣∣∣∣∣∣Z − (
diag(X(k))Y

)T ∣∣∣∣∣∣2
F

]
. (3.37)

• Solving the X-subproblem:

X(k+1) = argmin
s.t. (3.30),(3.35)

[
− log

(
G(X,Y (k+1), Z(k+1))− V b

)
+

q

2

∣∣∣∣∣∣Z(k+1) −
(
diag(X)Y (k+1)

)T ∣∣∣∣∣∣2
F

]
. (3.38)

• Updating the dual variables denoted by H:

H(k+1) = H(k) +

(
Z(k+1) −

(
diag(X(k+1))Y (k+1)

)T
)
. (3.39)

Both the (Y,Z)- and X-subproblems are convex (in fact strongly convex) and can be
solved efficiently through standard interior-point or dual methods. The iterations can
terminate according to standard residual criteria, i.e., when the differences zui − xiyyi
are sufficiently small. As a final remark, we stress here that we do not claim that this is
necessarily the best method for this problem, and other techniques could further enhance
the method’s performance [119]. Our sole goal is to apply a reasonably tested method for
such problems, and evaluate if the control over the caching variables can reap additional
benefits (see Sec. 3.5).
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3.5 Performance Evaluation

In this section, we evaluate numerically the payoffs that can be achieved through the
proposed cooperation scheme. We will study two scenarios: Scenario I will focus on the
evaluatation of the CCR and DCR algorithms in terms of cooperative gains and their
impact on the quality of recommendations, while investigating the role of key problem
parameters; Scenario II will focus on exploring the benefits of the CCRCache algorithm.
First, we present the default input parameters that, unless otherwise stated, will be used
across the simulations.

Catalog and Recommendations: Our scenario consists of 100 users who have access
to a catalog of 6000 contents. Every user receives Nu = 5 recommendations and the
probability of following the recommendations varies in [0.6, 1), as in Netflix, where the
average is equal to 0.8 [51]. For the matrix of content relevances rui, a subset of the
Movielens dataset [100] containing 5-star ratings of movies was used. The ratings were
mapped in the interval [0, 1] and we performed matrix completion to obtain the missing
ratings (as in Chapter 2). Finally, the baseline recommendations (before any cooperation),
i.e., the values ybui, were set to be the ones maximizing U b in (3.3).

Caching Topology: We consider a network of 9 caches and a root cache containing
all contents. Every user has access to 2 of the caches (chosen randomly) and to the root
cache. We assume that the (baseline) caching allocation, i.e., Xb, as decided by the CDN,
is based on a popularity distribution over the catalog as observed by every cache in a time
period that precedes the cooperation. For this, we set the content popularities observed
by cache j to be the normalized content utilities rui aggregated over the connected users,
i.e., rui/

∑
u∈Cj

rui, where Cj is the set of connected users to the cache j.

Revenues and Costs: The values of Rui (CP’s revenue per content), were derived
through an equation that depends on the content relevances (see Sec. 3.2.2). Unless
otherwise stated, this equation will be: Rui = 0.15+0.09rui (in $). Note that this implies
that the baseline recommendations Y b are the ones with the highest relevances rui per
user8. Concerning the CDN’s retrieval costs, they have been chosen randomly from the
range [0.0005, 0.02]($) for the connected caches, while the cost for the root cache is fixed
at $0.055. Finally, the CDN charges the CP $0.11 per request (according to [120]) for
the delivery.

3.5.1 Scenario I

For the default parameters that were described above, for cache sizes varying (randomly)
from 1− 4% of the content catalog, and for different values of the discount ρ, we evaluate
the proposed cooperation in Fig. 3.5. The first subplot (top) depicts the relative gains in
utility for the two entities, i.e., the quantities 100 · (U − U b)/U b and 100 · (Ũ − Ũ b)/Ũ b,
as given by the CCR algorithm. We observe that, for low discount, the CDN benefits

8The equation Rui = 0.15 + 0.09rui could, for example, capture an ad-based revenue model where rui
can be interpreted as the user retention rate and, thus, the quantity 0.09rui is the portion of ad-based
revenue. It is worth noting that, in [77], we obtained similar performance results when Rui is a concave
function of rui.
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Figure 3.5: Scenario I: Relative increase in utility for the CP and the CDN, total
cooperative gains, cache hit rate for recommendations, and quality of recommendations
achieved through the proposed cooperation scheme (CCR algorithm) for different values
of discount ρ ∈ [0.05, 0.5].
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from the cooperation more than the CP. This is because the CDN saves on routing costs
without its revenue from the delivery fees decreasing significantly. On the other hand,
we see that the CP benefits the most for high discount as its savings on the delivery
fees become important. However, for very high discount, close to 50%, the cooperation
becomes unprofitable for the CDN and, therefore, the cooperation would cease, and the
recommendations would revert back to the baseline ones. It is important to highlight here
that these points are Pareto optimal points. As explained in Sec. 3.3, this means there is
no other solution that is better than the solution for one entity and not worse than the
solution for the other entity. In the second subplot (of Fig. 3.5), we plot the total relative
gains achieved from the cooperation, i.e., the quantity (U − U b + Ũ − Ũ b)/(U b + Ũ b).

Observation 3.1. The proposed cooperation can lead to significant gains, up to 32% for
the CDN and up to 20% for the CP in our scenario. The total cooperative gains can
reach up to 15% when compared to the total baseline utilities.

It is worth noting that even gains of 3% or 6% (i.e., CP’s gains for ρ = 5% and
10% respectively) already correspond to very large absolute monetary sums saved (if one
extrapolates to a much larger pool of users and requests, as in practice). Especially when
referring to large CPs, like Netflix, that report annual profits of more than 2 billion US
dollars [121].

Even though each pair of points in the top subplot corresponding to a value of ρ
is Pareto optimal, we see that ρ affects the gains of each entity. Obviously, the CDN
would rather offer only a small discount, while the CP would prefer the largest discount
possible. One could argue that the “best” ρ is between 25% and 30%, i.e., where the
two lines meet, since it does not give advantage to any entity. Defining what is the
“best” ρ and devising a method to find it is an interesting direction for future work. For
example, one could model it as a game with alternating offers, or simply determine ρ
through exhaustive search from this plot. Besides, this plot reveals the effect of possible
regulatory interventions that, e.g., could set bounds on such discounts in order to foster
new business models, protect users’ interests and so on.

In the third subplot (of Fig. 3.5), we depict the cache hit rate for the small caches gener-
ated by the cooperative recommendations, i.e., the quantity

∑
u,i

∑
j∈C(u)\C0

αu/Nuyuixij ,
where C(u) \ C0 is the set of small caches that user u is connected to. Note that αu/Nu

is the probability the user will click on a specific recommendation. We also plot the
cache hit rate of the baseline recommendations Y b. We see that, before cooperation,
only 42% of the recommendations were generating a cache hit at the CDN’s caches
while this percentage can go up to 100% for the cooperative recommendations. We
remind the reader that, in our scenario, every user is connected to two small caches, and,
therefore, we count a cache hit when the content in question is cached in at least one
of the two caches. In fact, the cache hit rate could be smaller in scenarios where every
user is connected to a single cache, or where the baseline caching allocation contains less
popular/relevant contents. More importantly, even if the CDN can serve from its small
caches a big portion of the requests that come from recommendations, there is still room
for improvement: these cache hits are not necessarily at the caches closest to each user.
We will elaborate on that in Sec. 3.5.2 (Scenario II). We stress here that high cache hit
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rate is also beneficial for the user since it implies small start-up delays.

In the forth subplot (of Fig. 3.5), we investigate the impact of cooperative recom-
mendations on the users’ perception of the recommender. For that, we measure the
recommendations quality (RQ) as defined in 2.2.4 (Def. 2.3). In particular, the RQ for
user u measures the sum of relevance of the received recommendations:

∑
i ruiyui (for

simplicity, we consider φ in Def. 2.3 to be the identity function). The forth subplot
shows the aggregate RQ (summed over the users) achieved by the cooperative and the
baseline recommendations. The y-axis is regularized with respect to the highest existing
relevances. The errorbars show the minimum and maximum RQ observed for individual
users for every instance.

Observation 3.2. As the cooperative recommendations favor cached items and significantly
increase the cache hit rate, the users’ aggregate RQ is barely compromised (≥ 96%) in
our scenario. The user’s RQ is at least 83%, where 100% stands for the most relevant
recommendations and the baseline here.

Next, we perform a sensitivity analysis with respect to two key problem parameters:
the capacity of CDN’s caches and the CP’s revenues Rui. For the default simulation
parameters, Fig. 3.6 depicts the relative increases in utility, as obtained by the CCR
algorithm, for different relative cache sizes and different values of discount ρ.

Observation 3.3. As the relative cache size decreases, we notice the highest utility gains
for both the CP and the CDN.

The observation above is particularly promising for today’s and future wireless
architectures where base stations are equipped with caches of small capacity. As the
cache size increases (10 − 30% of the catalog), the utility gains decrease. Note that
when the cache capacity is large, the baseline recommendations (Y b) are likely to be
already cached. Therefore, fewer (when compared to the case of small cache capacity)
recommendations need to be adjusted to favor cached items.

Next, we fix the discount at 30% and the cache size at 1− 4%. In Fig. 3.7, we see how
the CP’s revenue values Rui affect the payoffs of the cooperation. We have plotted the
relative increase in utility for both entities for 5 different revenue ranges from [0.1, 0.2)
to [0.1, 1)($). We observe that, for the range [0.1, 0.2), the CP could have an increase of
22% of its utility. Then, as the range widens, the payoff for the CP decreases. In fact,
when the CP’s average revenue Rui is much larger than the delivery fee, a reduction on
the fee will not have a significant impact on the CP’s utility. On the other hand, the
CDN’s payoff is not affected as much as the range changes since its utility function does
not contain the parameters Rui.

Observation 3.4. When the range of Rui is narrow, the CP can enjoy an increase in its
utility of 22%, for discount ρ = 30%. As the range widens, the CP would need higher
discount in order keep the gains at the same level.

In the remainder of this subsection, we will focus on the proposed distributed algo-
rithm (DCR). For the same problem parameters as in Fig. 3.5 and the discount fixed

71



Chapter 3. Models for Cooperative Recommendations

1 2 3 4 5 10 20 30

Relative Cache Size (%)

0

5

10

15

20

25

30

35

40

R
el

at
iv

e
In

cr
ea

se
in

U
ti

li
ty

(%
)

discount % = 10%

CDN

CP

discount % = 25%

CDN

CP

discount % = 30%

CDN

CP

Figure 3.6: Scenario I: Relative increase in utility for different discount values ρ and for
different relative cache sizes (1− 30%).

at 30%, we will evaluate the convergence of the DCR algorithm and its impact on the
cooperation payoffs. The top subplot of Fig. 3.8 depicts the primal residual obtained
within 50 iterations for two different values of the penalty parameter q (see eq. (3.23)
in Sec. 3.3.2). Note that the primal residual at iteration k is equal to ||Ψ(k) − Ψ̃(k)||F
and it measures how different the CP’s and CDN’s local solutions are. In the bottom
subplot, we plot the suboptimality gap in percentage, i.e., |DO(k) − p∗|/|p∗|, at iteration
k, where p∗ is the optimal objective function value that is obtained by the CCR algorithm.
This gap measures how far the distributed objective value is from the centralized one
and, according to Lemma 3.2, tends to zero for a sufficiently large number of iterations.
Note that, as p∗ is in principle unknown, only the primal and dual residuals are used as
stopping criteria.

As we know from the theory on ADMM [112], the higher the penalty parameter is,
the lower the primal residuals are. In fact, for q = 0.01, we observe a residual’s value of
less than 4 · 10−3 and suboptimality gap of 0.14%. On the other hand, when q = 0.003,
the residual and the suboptimality gap are equal to 6 · 10−3 and 0.03% respectively.
These numbers show a rather fast convergence for the size of our scenario. However,
this performance can be further enhanced by applying techniques that, although do not
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Figure 3.7: Scenario I: Relative increase in utility for different ranges of Rui (CP’s
revenues per content) as obtained by the CCR algorithm.

guarantee faster convergence, can work well in practice (see [112] for a review on such
techniques).

Observation 3.5. Within 20 iterations, the (distributed) DCR algorithm can reach a
suboptimality gap of less than 0.1% when compared to the optimal objective function
value achieved by the (centralized) CCR algorithm.

Table 3.2: Relative gains obtained by DCR∗ and CCR

DCR DCR DCR
CCR

k = 2 k = 15 k = 30

CP’s gains (%) 17.67 16.79 16.81 16.84

CDN’s gains (%) 11.65 11.63 11.63 11.63
∗k stands for the number of iterations of the DCR algorithm

Finally, Table 3.2 shows the CP’s and CDN’s relative gains that result from the
DCR algorithm (with q = 0.003) for different number of iterations and from the CCR
algorithm.

Observation 3.6. Within only a few iterations, the relative increases in utility obtained
by the the DCR algorithm approach the Pareto optimal points obtained by the CCR
algorithm.
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3.5.2 Scenario II

As we saw in Fig. 3.5, the cooperative recommendations can lead to a high cache hit
rate at the CDN’s caches. Although this rate implies significant savings for the CDN,
the cache hits do not necessarily happen at the cache that generates the lowest retrieval
cost (when delivered to each user). What is more, if the CDN could cache another
content, that is potentially more related to the ones in the baseline recommendations,
then the CP could further increase its benefits, without actually increasing the cache hit
rate, per se. For this reason, we will evaluate now the potential benefits of extending the
cooperation towards caching decisions, as we discussed in Sec. 3.4, where we proposed
the CCRCache algorithm.

For the default parameters that were described in the beginning of Sec. 3.5, for
capacity of caches equal to 5% of the content catalog, and for different values of the
discount ρ, we compare the CCR and CCRCache algorithms in Fig. 3.9. More specifically,
we apply the CCR algorithm for every problem instance where only the recommendations
are the cooperation variables and we apply the CCRCache algorithm for the same instance
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where caching is also a cooperation variable. The top subplot depicts the relative gains in
utility for the two entities, while the bottom subplot shows the objective function values
obtained. We notice that CCRCache leads to larger gains (for at least the CDN) and
smaller (better) objective functions values than the ones obtained by the CCR algorithm.
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Figure 3.9: Scenario II: Relative gains in utility (for the two entities) and optimal objective
function values achieved by the CCRCache and the CCR algorithms for different values
of discount ρ ∈ [0.05, 0.4].

Observation 3.7. When caching becomes a cooperation variable, the CP-CDN cooperation,
through the CCRCache algorithm, can boost CDN’s utility up to 42%. At the same
time, the CP’s utility gains are at least as high as when recommendations are the only
cooperation variables (through the CCR algorithm).

3.6 Related Work

Several works in literature focus on the cache-friendly recommendations or the joint
caching-recommendation paradigm. We refer the reader to Sec. 1.4.2 for an overview
of the related work on this topic. We note here that, since most of the related work
assumes that the same entity decides on caching and recommendations, these works do
not explore the financial aspects of the recommendations from the point of view of both
the CP and the CDN. More importantly, none of the existing algorithms guarantee a fair
split of the financial gains that come from cache-friendly recommendations.
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The theoretical framework of the NBS that we employ in this work was introduced
by John Nash in 1950 in [109]. The NBS is a cooperation mechanism that has been
employed, among others, in problems of spectrum access coordination [122], bandwidth
allocation [123], and content caching [124]. More specifically, in [124], caches that belong
to a network collaborate with each other in order to decide on the caching allocation.
Moreover, in [125], the authors model a CDN-ISP collaboration as an NBS problem.

Game theory has also been employed by works that study the dynamics between CPs
and edge caching providers and propose cooperations or coalitions. For example, [126] and
[127] model a coalitional game between a last-mile ISP and CPs. The authors in [128]
suggest that the caching network providers should give incentives to the CP in a form of a
subsidy (that is paid in proportion to the savings that come from caching). Nevertheless,
these works focus on the caching allocation or deployment, without exploiting the impact
of recommendations on content requests.

3.7 Conclusion

In this chapter, we proposed a novel cooperation framework in which the CP and the
CDN jointly decide on the recommendations in order to favor cached contents. The
optimization problem of the cooperation was formulated in such a way that the cooperative
recommendations lead to a fair and efficient allocation of financial gains between the two
entities. We also developed a distributed algorithm when the two entities are not willing
to share private information on their revenue/cost functions. Furthermore, we explored
how this cooperation framework could be extended towards the CDN’s caching decisions.
Although this problem is harder to solve, it has the potential to further increase the
cooperation gains. Our numerical evaluations show that, in realistic scenarios, the two
entities can benefit of an increase in their expected net revenue of up to 37% and up to
42% when caching is a cooperation variable.
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Conclusions and Perspectives

Overall Conclusions

In this thesis, we studied the problem of interweaving caching and recommendation
decisions in the setting of on-demand video streaming services. We approached the
problem through two main perspectives. First, we presented the problem of jointly
designing caching and recommendations with the objective of maximizing user satisfaction.
Then, we studied the problem of cache-friendly recommendations (and extended it to the
caching decisions as well) with the goal of maximizing the CP’s and CDN’s profits while
fairly sharing the incurred financial surplus.

Our first notable contribution was the user-centric modeling of the joint problem of
caching and recommendations, for which we provided an approximation algorithm. Our
numerical evaluations showed that this algorithm not only approximates the optimal
policy, but also outperforms policies that have been proposed in the literature. We also
showed that distributed/multi-processor implementations of the proposed policy can lead
to significant speedups in execution time.

Our second main contribution was the framework for a novel cooperation between
the CP and the CDN on the basis of recommendations. Our game-theoretical approach
together with elements from convex optimization theory allowed us to construct a
cooperation scheme that leads to a fair and efficient allocation of financial gains between
the two entities. Furthermore, we explored how this cooperation framework could be
extended towards the CDN’s caching decisions. Our numerical evaluations showed that
the proposed cooperation can lead to significant gains, up to 32% for the CDN, and up
to 20% for the CP.

We believe that the contributions of this thesis could serve as a stepping stone towards
efficient caching and recommendation policies that are beneficial for everyone. Such
policies could potentially change the landscape of streaming services for the best. Of
course, further improvements regarding either our framework or alternative research
approaches could be made. In what follows, we provide some ideas in this direction.
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Possible Directions for Future Work

Throughout Chapters 2 and 3, we have discussed some directions for future work. In
addition to that, we now provide 4 main axes for future work that we find challenging in
terms of methodology, but particularly promising.

1. Request Routing in the Joint Problem. An interesting direction would be to incor-
porate request routing decision variables in the joint problem studied in Chapter 2.
This direction could address possible transmission or bandwidth limitations for
the caches, especially where they handle large volumes of Internet traffic. We
note that the joint caching and routing problem has been already addressed in
several works in the literature, e.g., [43,44], but none of these take into account the
impact of recommendations on the content requests. In the joint routing, caching,
and recommendations problem, one would be tempted to apply the decomposition
methodology we employed in Chapter 2, and possibly extract submodularity prop-
erties. However, such an approach might not be fruitful since the authors in [44]
have shown that the joint routing and caching problem is not submodular for a
generic network of caches. Therefore, additional optimization methods might be
needed.

2. Dynamic Policies. In this thesis, we studied proactive caching and recommendation
decisions. This is in line with the trend towards proactive caching in today’s CDNs,
but also in future wireless networks. However, as we mentioned in Sec. 1.2.2, a
large number of today’s CDNs employ dynamic policies. Therefore, an interesting
research thread would be to design dynamic policies that take into account the
interplay of caching and recommendations. For example, we could design a dynamic
caching policy that, upon an eviction, calculates the utility of a content as a function
of the recommendations that will appear on the user’s interface. Furthermore, we
could adjust, on-the-fly, the recommendations as a function of what is cached at
the moment where each user lands on the streaming service. This might raise
computational challenges since every eviction at the cache could potentially affect
all the users connected to the cache, and thus, a recalibration of recommendations
might be needed.

3. Caching over the Recommendations Graph. In the context of sequential content
requests, an interesting question is about the impact of the recommendations graph
on the caching policies. This can be also extended to caching/prefetching contents
at the users’ devices, especially in the context of device-to-device communications
in future wireless architectures. For example, in [129] and [130], the authors present
a game between a user/surfer who moves over the graph of hyperlinks on the
Internet and a Web browser that tries to prefetch the links before the user requests
them. Extending this approach to the recommendations graphs where the users
navigate could result in efficient prefetching policies that can potentially improve
user experience.

4. Extensions of the Cooperation Model. The cooperation model presented in Chap-
ter 3 could be extended in several directions. For example, as we discussed in
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Sec. 3.5.1, one could add the discount parameter ρ as a control variable in the
cooperation problem. Another direction would be to model a cooperation where
more than two entities are bargaining. In particular, as we mentioned in Sec. 1.2.1,
a lot of CPs (that do not own their proper CDN) employ more than one CDN for
the delivery of contents to their users. We could, for example, address the problem
of a bargaining game between a CP and multiple CDNs. This problem is likely to
require a different modeling approach (and different tools from cooperative game
theory) than our proposed scheme.
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