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Abstract. We introduce a new learning framework that builds upon the
recent progress achieved by methods for quality control (QC) of image
segmentation to address the poor generalisation of deep learning mod-
els in Out-of-Distribution (OoD) data. Under the assumption that the
label space is consistent across data coming from different distributions,
we use the information provided by a QC module as a proxy of the
segmentation model’s performance in unseen data. If the model’s per-
formance is poor, the QC information is used as feedback to refine the
training of the segmentation model, thus adapting to the OoD data. Our
method was evaluated in the context of the Multi-Disease, Multi-View &
Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge
reporting average Dice Score and Hausdorff distance of 0.905 and 10.472,
respectively.
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1 Introduction

Deep learning (DL) techniques have demonstrated the capability to reproduce
the analysis of an expert in cardiac image segmentation from cardiac magnetic
resonance (CMR) imaging [3]. Despite their success, they still suffer from two
major drawbacks that hinder their translation into clinical practice.

First, unlike experts, DL methods may generate anatomically impossible seg-
mentation results [3], which are an important risk in clinical use. Automated
quality control (QC) tools have been proposed [14, 15] to assess the quality of a
segmentation in the absence of ground truth and flag erroneous segmentations,
so they can be discarded from further clinical analysis. The information about
the detected erroneous segmentations, which is a surrogate measure of the seg-
mentation model’s performance, is generally not incorporated as feedback to the
model. Second, DL methods still fail to generalise to out-of-distribution (OoD)
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samples, i.e. data from other domains than the one of the training set [2]. Unfor-
tunately, this may often be the case at inference time, where new samples may
come from a different scanner, acquisition protocol, or population demograph-
ics. Labeling data from the unseen OoD domain to re-train the original model is
straightforward and yet expensive, labour-intensive, and not scalable to clinical
scenarios. In fact, it is hardly viable to obtain an annotated training set that can
faithfully represent anatomical variability, different demographics, pathologies,
protocols, and scanners. Recently, multiple works have explored alternatives [5,
7, 10, 12, 13] to improve the generalisation capability of CMR segmentation mod-
els, typically, under the assumption that it is possible to know if the new data
is OoD. In practice, this is not necessarily the case.

We hypothesize that segmentation quality measurements are a proxy of a
model’s generalisation capabilities. Therefore, this information can be used to
improve a model’s performance in OoD data. In this work, we propose to use
quality measurements to refine a segmentation model’s generalisation capabil-
ities, when there is no knowledge about the distribution of the testing data.
Under the assumption that the label space is consistent across different distri-
butions, we train a QC assessment module to learn the variability of the ground
truth training data. At inference, the QC module provides estimates of a seg-
mentation model’s performance on unseen data. The OoD detection information
obtained from the QC module is used to refine the segmentation model, allowing
it to improve its generalisation capabilities. The proposed method is evaluated
in the context of the MICCAI Multi-Disease, Multi-View & Multi-Center Right
Ventricular Segmentation in Cardiac MRI (M&Ms-2) Challenge.

Related Work. Previous works on CMR segmentation have addressed poor
generalisation by reducing the model’s complexity through regularisation [10] or
by reducing the number of network parameters [12]. Although these techniques
are very effective to tackle overfitting when the training sets are small, there is
no guarantee they can mitigate poor generalisation to OoD data.

Data augmentation has been explored to enlarge the training set by sim-
ulating various possible data distributions across different domains, applying
geometrical operations to the source training data. This technique, however,
has shown variable performance across different scenarios [5]. Domain adap-
tation techniques propose enlarging the training set by combining labeled in-
distribution data with OoD data [13, 7] using adversarial training, which is prone
to instabilities due to problems, such as mode collapse and non-convergence [1].
Moreover, these methods assume that it is possible to discriminate between in-
and out-of-distribution data, which in practice is not necessarily possible.

Our framework differs from previous works in the fact that, first, it is model
agnostic. Any given network can be used for segmentation. Second, being formu-
lated as a semi-supervised problem, our QC module avoids the adversarial setup
of domain adaptation techniques, thus leading to improved robustness and sta-
bility. Finally, differently from all previous approaches, it makes no assumptions
about the nature of the distribution of the unseen data.
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Fig. 1. During the supervised phase, the segmenter M and the QC module R are
trained independently using Dtr. At inference, if the QC module detects OoD data,
a semi-supervised refinement step takes place. The segmenter M is used to segment
unlabelled images from Dte that are then fed to R. The difference between the recon-
struction ŷR and the model’s segmentation ŷM is backpropagated to update M.

2 Method

Figure 1 presents an overview of the proposed framework. It consists of a seg-
mentation network (M) and a QC module (R). The information provided by
the QC module plays two roles. First, it detects erroneous segmentation masks.
Second, the QC information from erroneous segmentation masks is used to refine
the segmentation network in a semi-supervised setup to achieve increased perfor-
mance on OoD data. In the following, we provide a detailed description of these
two components (Sec. 2.1), the learning phases (Sec. 2.2), and the mechanism
used for OoD data detection and quality control (Sec. 2.3).

2.1 Framework Components

Our framework consists of two elements: a segmentation network and a QC mod-
ule. The segmentation network or segmenterM predicts segmentation masks us-
ing CMR images as input. The QC module measures the quality of the predicted
segmentation masks in the absence of ground truth.

The segmenterM. The segmenterM learns a function fM : X → Y , which is
used to predict a segmentation mask ŷM = fM (x). In this sense, it is a standard
segmentation network trained in a supervised setting with a training set Dtr.
It should be noted that the functioning of the framework is not conceived to
depend on a specific segmenter architecture, for which several options in the
literature are tailored to cardiac image segmentation [6].

The QC module R. In our framework, we use the QC for image segmentations
proposed in [9]. It consists in a convolutional autoencoder, which is trained using
in-distribution samples to reconstruct the input segmentation masks through a
function fR : Y → Y , ŷR = fR(y) ≈ y. In our framework, the in-distribution
samples are the ground truth masks from Dtr, i.e. samples without segmentation
errors.
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Under the assumption that the space Y is consistent across domains, R is
used to obtain ŷR = fR(ŷM ), where ŷM is a predicted segmentation mask and
ŷR its reconstruction. Following [9], we use the degree of similarity between
ŷM and ŷR as a surrogate measure for QC of the segmentation, which is also a
measure of the performance ofM on unseen data. Where the degree of similarity
is low (i.e. ŷR 6≈ ŷM ), the segmentation is considered poor and it is flagged as a
potential OoD sample. On such samples, the QC information is backpropagated
to refine M. The procedure is detailed in the following section.

2.2 Learning Phases

Supervised Learning. During the supervised phase, M and R are trained
individually on the available training data Dtr. M is trained to minimise a loss
function measuring the dissimilarity between the ground truth masks {ytr} and
the model’s prediction ŷM , i.e.

LM
SUP = LGD(ŷM ,ytr) + LCE(ŷM ,ytr), (1)

with LGD(·) the generalised Dice loss [16] and LCE(·) the cross-entropy loss. Dif-
ferently from standard supervised training, we keep the best mbest segmenters,
not the single best, according to their performance in a validation set Dval.

The QC module uses the loss LR = LMSE(ŷR,ytr) + LGD(ŷR,ytr), where
LMSE(·) is the mean squared error loss.

Semi-Supervised Refinement of the segmenter M takes place whenever R
detects poor segmentation quality, i.e. when an unseen segmented sample ŷM is
flagged as OoD. The refinement phase (Figure 1) estimates and backpropagates
a semi-supervised loss LM

SEMI, measuring the similarity between the predicted
and the reconstructed masks, i.e.

LM
SEMI = αLWGD(ŷM , ŷR) + LM

SUP, (2)

where LWGD is the weighted generalised Dice loss, giving more importance to
the RV, and LM

SUP the supervised loss from Eq. 1, which differently from LWGD

relies on annotated training data.
Finally, the scaling factor α controls the reliability of the pseudo ground truth

ŷR. When the semi-supervised refinement process starts, ŷR is highly reliable.
As it advances, R becomes a less reliable source for QC and ŷR should be less
trusted. To account for this, we set α = 1/k, where k is a learning epoch.

2.3 OoD Detection and QC-based Candidate Selection

At inference time, the selected mbest segmenters predict candidate segmentation
masks ŷM from unseen data Dte, whereas R reconstructs ŷR to provide a quality
measure for each ŷM . Following [9], we use the Dice Coefficient (high is best) and
the Hausdorff Distance (low is best) as segmentation quality pseudo-measures.
We denote them pDC and pHD, respectively.
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For increased robustness, we determine the OoD detection thresholds based
on the distributions of pDC and pHD. For each set of estimated pseudo-measures,
we obtain the first and third quartile, Q1 and Q3 and define the following lower
and upper thresholds:

thlow = QpDC
1 − 1.5(QpDC

3 −QpDC
1 ), (3)

thup = QpHD
3 + 1.5(QpHD

3 −QpHD
1 ). (4)

For a test image xte ∈ Dte with mbest predicted segmentations, if pDC < thlow
or pHD> thup ∀ {ŷM

i }
mbest
i=1 , the sample is considered OoD and model refinement

takes place. The procedure is performed until no more OoD samples are detected
in Dte or until a number of semi-supervised refinement epochs Ksemi is reached.

After semi-supervised refinement, the best ŷM is chosen through a QC-based
selection procedure balancing pDC and pHD. The procedure is as follows:

1. The mbest candidate models are ranked according to the pDC of their pre-
diction ŷM

i .
2. The top ranked candidate model is assessed. If pHD < thup, its prediction

is selected.
3. Otherwise, we discard the model and consider the next best ranked model.
4. Repeat points 2-3 until a segmentation is chosen.
5. If none of the mbest models meets the requirements, ŷM is set to the average

between the best prediction according to the pDC and to the pHD.

We highlight that QC-based candidate selection is completely independent
from semi-supervised refinement. While we use the thresholds thlow and thup to
both determine when M should be refined and select a model during inference,
the latter procedure could be directly applied to already static trained models
where no refinement is desired (equivalent to setting Ksemi = 0).

3 Experiments and Results

3.1 Experimental Setup

Data & Setup. The proposed method was evaluated in the context of the
M&Ms-2 challenge. The goal of the challenge was to segment the right ventricle
(RV) from CMR images in two different views: short axis (SA) and long axis
(LA). The challenge cohort was composed of 360 patients with different RV and
left ventricle (LV) pathologies as well as healthy subjects, who were scanned
in four clinical centres in two different countries using four different magnetic
resonance scanner vendors. The training set contained 200 annotated images, of
which 160 were used for training and 40 for validation on the challenge website.
The remaining data were used for testing.

The accuracy of the segmentation masks was measured using the Dice Simi-
larity Coefficient (DC) and the Hausdorff Distance (HD). Further details about
the data and the challenge can be found in the challenge website1.

1 https://www.ub.edu/mnms-2/
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Fig. 2. Short axis (SA), long axis (LA) and average (AVG) dice score (DC) and Haus-
dorff Distance (HD) obtained on the validation (Val) and final submissions.

Implementation. We chose to use rather simple segmenter modelsM. In par-
ticular, we tested our framework plugging 2 different 2D U-Net architectures, i.e.
the 2D models from the 2D-3D U-Net ensembles winning respectively the M&Ms
Challenge (BN1) [8] and the ACDC Challenge (BN2) [11]. For the QC module,
we used the implementation from [9]. We obtained separate segmenter/QC mod-
ule paired sets for each view. We set mbest = 3. The networks were implemented
in PyTorch and trained on Google Colab Pro, alternating Tesla P100 and Tesla
V100 GPUs. All our code is publicly available2.

3.2 Results

Figure 2 presents the performance achieved by the model of each view and the
overall average performance (AVG) in the validation and final submissions of the
challenge. Despite using a simple segmenter model M (BN1), our results show
competitive performances. In particular, performance in the SA is comparable
to that reported for the RV in the ACDC Challenge [3] and M&Ms Challenge [4]
using more complex 3D segmenter models.

Table 1 displays the performance of our final model stratified according to
the conditions present in both the training and test sets. As expected, the per-
formances look quite homogeneous, without any evident drop on the two condi-
tions, tricuspidal regurgitation and dilated right ventricle, that were not present
in the training set. Only the LA-view for dilated right ventricle shows a drop in
performance indicating poor generalisation.

We performed an ablation study to gain an understanding of the properties
of our framework. We analysed performance in three scenarios: 1) using the best

2 https://github.com/robustml-eurecom/MnMs2
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Table 1. Short axis (SA) and long axis (LA) dice score (DC) and Hausdorff Dis-
tance (HD) per pathology. Tricuspidal Regurgitation and Dilated Right Ventricle were
excluded from the labelled training set by the challenge organisers.

SA LA
DC HD DC HD

Normal 0.902 ± 0.064 10.89 ± 5.16 0.918 ± 0.062 7.05 ± 6.34

Tetralogy of Fallot 0.899 ± 0.065 12.80 ± 6.22 0.916 ± 0.038 8.33 ± 4.67
Interatrial Communication 0.869 ± 0.137 12.09 ± 4.98 0.912 ± 0.083 8.03 ± 7.48
Congenital Arrhytmogenesis 0.911 ± 0.069 12.70 ± 10.1 0.929 ± 0.029 5.60 ± 1.72
Hypertrophic Cardiomyopathy 0.908 ± 0.083 10.67 ± 5.91 0.916 ± 0.058 6.30 ± 3.30
Dilated Left Ventricle 0.897 ± 0.077 11.99 ± 6.53 0.906 ± 0.053 8.13 ± 9.30

Tricuspidal Regurgitation 0.909 ± 0.051 12.10 ± 8.08 0.910 ± 0.041 6.06 ± 2.98
Dilated Right Ventricle 0.913 ± 0.045 10.83 ± 4.82 0.881 ± 0.062 9.68 ± 6.58

segmenter, according to the validation set, after supervised training (M); 2)
using QC-based candidate selection to choose the best model from the mbest

candidates at inference time without performing refinement ({M}+QC); and 3)
using the complete framework (full). Figure 3 summarizes the results using the
two different base networks (BN1, BN2).

The results reveal the effects of QC on the segmentation performance. Over-
all, the use of QC information leads to improvements in the segmentation accu-
racy across different segmenter models, especially for the HD, which by defini-
tion is a measure more prone to anomalies. Figure 4 illustrates this through an
example of failure in the segmentation process, solved after the proposed semi-
supervised refinement. However, in one case (LA segmentation with segmenter
model BN1), the use of the full framework reports a drop in performance. Since

Fig. 3. Ablation study. DC (↑) and HD (↓) results for two segmenters (BN1, BN2) un-
der three configurations: standard supervised learning (M), QC-based model selection
({M}+QC) and the full framework (full).
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Fig. 4. A visual example of right ventricle segmentation before (left) and after semi-
supervised refinement (right). In the middle, the output of the QC module when
plugged with the initial segmentation on the left.

using QC to select a model does not degrade the performance, we explain this
behavior as a failure of the semi-supervised training stage.

4 Conclusions

In this work, we investigate how to couple QC information to refine a segmen-
tation model to increase its performance on unseen OoD data. Differently from
previous works, our framework assumes no previous knowledge about the distri-
bution of the unseen data, yet it is able to determine when the model should be
refined (OoD images) or not (in-distribution images). We evaluated our frame-
work within the M&Ms-2 Challenge reporting performances which are compa-
rable to those of similar previous challenges [3, 4], while using a simple 2D seg-
menter model. This encourages us to pursue this line of work by investigating
more sophisticated mechanisms to establish the OoD detection threshold. This,
in fact, remains an open problem in the anomaly detection literature.
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