
Automatic Verification of Data Summaries

Rayhane Rezgui
EURECOM, France

Rayhane.Rezgui@eurecom.fr

Mohammed Saeed
EURECOM, France

Mohammed.Saeed@eurecom.fr

Paolo Papotti
EURECOM, France

Paolo.Papotti@eurecom.fr

Abstract
We present a generic method to compute the
factual accuracy of a generated data summary
with minimal user effort. We look at the prob-
lem as a fact-checking task to verify the nu-
merical claims in the text. The verification al-
gorithm assumes that the data used to generate
the text is available. In this paper, we describe
how the proposed solution has been used to
identify incorrect claims about basketball tex-
tual summaries in the context of the Accuracy
Shared Task at INLG 2021.

1 Introduction

Natural Language Generation (NLG) can be used
to generate texts out of relational data, where the
goal is to have correct and clear statements that
describe what can be found in tables (Gong et al.,
2019). However, this is not always the case, since
NLG tools, although producing correct sentences
grammar-wise, sometimes fail to generate accu-
rate texts, eventually containing some factual er-
rors (Wiseman et al., 2017).

The goal of our work is to evaluate generated
texts by identifying numerical claims and fact-
checking them with the relational data available
at hand. We apply different techniques on the pro-
vided summaries and use the available relational
data about the matches to state whether the claims
are true or false. The idea behind fact checking
using relational tables is to create an automated
verification pipeline using data-driven algorithms,
such as deep learning models (Nakov et al., 2021;
Saeed and Papotti, 2021). Building upon previous
work in fact-checking statistical claims (Karagian-
nis et al., 2020), we focus on such kind of claims
due to the availability of trustworthy relational ta-
bles to verify them. The goal is not only to be
accurate, but also to limit the user effort, such as
labelling data or writing scripts, in the setup of the
system.

Figure 1: Example of a generated textual summary
from the basketball relational data.

Team PTS AST .. TOV
Kings 99 22 .. 21
Nets 107 20 .. 9

(a) Sample of team statistics in a match.

Team PTS AST .. FGA
Ben McLemore 11 2 .. 9
Sergey Karasev 5 3 .. 5

.. .. .. .. ..
Kevin Garnett 10 2 .. 10

(b) Sample of player statistics in a match.

Statistical claims form a significant part of the
set of claims in the shared task (around 40%) as
the tables mostly contain numerical facts, rather
than textual. Consider samples of the relational
tables of players and teams in Tables 2a and 2b,
respectively. Sentence “Sacramento Kings scored
99 points.” is verified by identifying the team name
(key value “Kings“) and column (label “PTS”). A
comparison between the value in the identified cell
and the value in the text (99) validates the claim.
More complex claims, such as “Kings defeated
Nets”, require comparisons between two cells.

To verify the claims above, our solution con-
sists of three main steps: (i) claim identification,
(ii) identification of properties that construct a val-



idation query over the data for every claim, and
(iii) claim verification. In the following, we first
describe our solution and then report some exper-
imental results and possible directions for future
work.

2 Method

We target claims that can be verified computation-
ally by using operations over the cell values in
the tables (relations). We follow an approach in-
spired from previous work on computational fact-
checking for statistical claims (Karagiannis et al.,
2020). We begin the process by extracting claims
from the input sentences (Section 2.1) and then
identify query properties (Section 2.2), which are
used for building the query that verifies the claim
(Section 2.3).

Figure 3 represents the architecture of the solu-
tion, where we input sentences and get a collection
of properties, including the claims to verify and the
elements of the data that are needed for this task.
Every sentence can contain more than one named
entity (were we focus only on players/teams) as
well as several claims. We have to associate each
claim and the resulting properties to the entity in
question. By looking at the summaries in the task,
it is possible to observe that many sentences fall
into two categories:

• Comparative sentences where the text de-
scribes both teams and compares the scores
from both sides, e.g., “The Sacramento Kings
defeated the Brooklyn Nets 107 - 99.” In this
case, we assume an order in the sentence. The
first claim to be extracted is the one we as-
sociate to the first entity. We enumerate all
the numerical claims and assign them to the
first or second entity based on first appearance.
For our example, 107 is assigned to Kings and
99 to Nets. As for the “defeated” claim, we
associate it to both Kings and Nets.

• Look-Up sentences where the text specifies
information/statistics about one entity. In this
case, we just define that entity as the row of
interest. Otherwise, we associate our claims
to the first player to appear.

After claim and properties are identified, we use
the latter to create a query that fact checks the claim.
The query returns a Boolean value in the final out-
put and it is self-explanatory, i.e., it is a declarative

specification easy to interpret as an explanation of
the checking process. An example of a query that
returns the number of points (PTS) of the team
Sacramento Kings from an identified table t is

SELECT t.PTS FROM t WHERE
t.Team=’Kings’;

whose output is compared against the value of the
extracted claim.

2.1 Claim Identification

Following the data-generation procedure in (Kara-
giannis et al., 2020), we wrote 9 templates to gen-
erate natural-language sentence starting from the
provided tables. These scripts could be replaced
with NLG algorithms in a fully automatic solu-
tion (Parikh et al., 2020). The generated data is
used to fine-tune a BertForTokenClassification
model (Devlin et al., 2019) to identify claims in an
input sentence. More precisely, the input sentence
is tokenized and a binary-classification layer is ap-
plied on every token to predict whether the token is
part of the claim or not. As some claims occur to-
gether, we rely on textual separators (like commas)
to separate them. The following sentence shows
an example of a sentence with six claims under-
lined: “AJ Hammons had 5 rebounds, 10 assists,
6 turnovers, 7 points, 3 steals and 1 block.”

The model is able to correctly identify claims
on the synthetic test dataset. However, we also
tried another simpler regex-based approach where
we focus on key words like the columns (points,
turnovers, etc.) and extract the neighboring words.
Both approaches gave similar results on sentences
sampled from the dataset of the shared task, with
BERT failing to extract the correct claims for some
sentences. This is mainly due to two reasons. First,
neural models are frail w.r.t. small changes in tex-
tual input (Zhang et al., 2020). Second, when multi-
ple claims occur sequentially, there is no clear way
of separating them unless some form of separator is
found (like a comma). A simple fix to this would be
to include spaces in the tokenized input and learn
which spaces are included in a claim and which
are not. The regex solution is pragmatic in cases
where annotated data is not available as it produces
results comparable to the classifier solution.

The regular expressions for claim identification
check for trigger words (such as ’assists’, ’blocks’,
’field goals’, ’minutes’, ’points’,’rebounds’, ’steals’,
’turnovers’) and then identify the following string in
the text. This string can be a numerical value in its



Figure 3: Architecture of the solution. Given a sentence, we identify the claims and the table to verify them. Then
every claim (C1-C3 in the example) is processed individually to obtain a query for its verification. (We take claim
C1 as an example in the figure.)

numerical format (15) or in words (fifteen). These
expressions might identify some false positives. In
the sentence “The only other Net to reach double
figures in points was Ben McLemore”, we identify
a string (“in points”) which cannot be verified as it
does not contain a numerical value. We filter out
such claims before verification. For comparison
sentences, we consider “defeated”, “outscored” and
“lost” in the word list.

2.2 Property Identification

After identifying claims in the text summary, we
ought to predict the data and the operation that
allow us to verify them. We call properties the
elements that ultimately enable the generation of a
verification query for the given claim. Properties
include: (i) the name of the table (relation), (ii) the
primary key value (i.e., the identifier for a tuple
in the relation), (iii) the column (i.e., the attribute
label), as well as (iv) the formula, which include the
simple look up of a value (a) and value comparisons
(b>a, a>b). We describe the main modules, as
depicted in Figure 3 next.

For the column and the formula extraction,
we fine-tune a BertForSequenceClassification
model (Devlin et al., 2019) with generated training
data in Section 2.1. For the column identification,
we have 15 possible classes, whereas for the for-
mula identification we only have 3 classes with
most examples pivoting on the “lookup class” (a).
This is due to the fact that most relevant statis-
tics are already reported in the tables, such as ratios
(a/b), and they can be verified with a simple lookup.

For a given input text, extracting the team names
is crucial as they enable identifying the table and
primary key value(s) of a sentence. The given tex-
tual inputs describe a single basketball match which
usually begin with a general sentence mentioning

the associated teams. We therefore search in the
first sentence of a given text for the mentioned
team names. For every pair of teams, (i.e., for ev-
ery match), we consider one table reporting the
team statistics (Figure 2a) and another one report-
ing player statistics (Figure 2b). These are used
later on for other sentences in the same summary,
where team/player names are identified accordingly
to the associated tables.

There are sentences where both team and player
names occur. In this case, we use the player name
as the primary key value, since claims are more
likely to be related to the player than to the team.
Out of 257 sentences that were extracted from the
test files, 22 sentences contain more than 2 names,
with at least one of them being a player name, such
as “Bradley Beal led the way for the Wizards with
a game - high 18 points , which he supplemented
with five rebounds , four assists and one steal”.
Most of these 22 sentences follow the same struc-
ture (player led team, team was led by a player),
while only one sentence raises an issue, because it
has 2 player names rather than one1.

2.3 Claim Verification

After getting all the elements we need for the ver-
ification, we build queries to look up the data ta-
bles. Since we organize the data in csv files of
the same format (player TeamA vs teamB.csv or
team TeamA vs teamB.csv), the queries share a
fixed structure. Once the table name has been iden-
tified, query generation is driven by the formula
obtained from the classifier. We then collect the
value(s) for the check by identifying the cell values
based on the key and the column predictions; such

1“Sergio Rodriguez was the high-point man for the 76ers,
with 18 points and five assists, while Jahlil Okafor logged 20
minutes off the bench.”



values are finally compared against the claim val-
ues. The claim value is translated to a numerical
value if written in words (thirteen to 13), or con-
sidered True by default in case of a Boolean claim
(“defeated”).

Claim Column Formula Row
18 points PTS a Bradley Beal
five rebounds REB a Bradley Beal
four assists AST a Bradley Beal

Table 1: Extracted properties for an example sentence.

The following example walks through a sen-
tence verified by our solution. Given “Bradley Beal
led the way for the Wizards with a game-high 18
points, which he supplemented with five rebounds ,
seven assists and one steal.”, we show the extracted
claims and properties in Table 1.

Claim Query Output Evaluation
18 points 18.0 True

five rebounds 5.0 True
seven assists 4.0 False

Table 2: Evaluation of the example.

All claims require a lookup (formula is a) in the
table player Hornets vs Wizards.csv, with a pri-
mary key value Bradley Beal and columns PTS,
REB, and AST, respectively. After extracting
these properties, we compose and execute the final
query over the table and compare with the actual
claim as shown in Table 2. Our system did not
identify claims such as “led” & “game-high” as our
claim-identification module is limited by a regular-
expression approach.

3 Results

The evaluation of our solution over the test data
shows that we obtain a precision of 0.329 and a
recall of 0.205. While we expected a limited recall,
as we focus on a specific subset of claims among all
the possible ones in the summaries, we investigated
the possible causes for the low performance and
found three main explanations.

Missing support for coreference resolution. In
some sentences, names are not explicitly mentioned
and the concerned entity is referred to as “he” or
“the visiting team”. As we did not implemented a
specific solution for coreference resolution, this is
a weak point in our system. For example, consider
the sentence “It was his second double-double in

a row, as he’s combined for 54 points and 13 re-
bounds over his last two games.”. The sentence is
not checked by the system since no names were
singled out, leading to the system missing 3 claims.

Claims requiring complex retrieval. Some sta-
tistical values are hard to fact check, such as the
number of wins in the season. Consider the sen-
tence “Over his last three games, he’s combined
for 34 points, 13 rebounds and five assists, while
playing just 21 minutes per game.’. The verifica-
tion of this claims requires to identify the last 3
games played by the player, and to sum up their
scores. As another example, “Greg Monroe was
the only other Laker [...]”. The only way to know if
he was the only other Laker to achieve something
is to look at all the Lakers players scoring. These
kinds of processes go beyond the ability of our data
retrieval modules.

Limits in the identification of the claims. Some
of the wording used in the text turned out to be
hard to process both with the regex function and
the Bert model. For example, all claims containing
an expression like “double-double” or “6-for-13”.

4 Future Work

We presented a solution for verifying statistical
data claims in data summaries with limited human
supervision. We believe our work shows some of
the opportunities and challenges for the problem
of verifying data summaries with computational
methods (Saeed and Papotti, 2021). While there
are some promising results for specific cases, the
road to accurate and general solutions is still long.
The main challenge lies in the limited amount of
training data and the large variety of claim kinds,
as we discuss next.

The claims in Figure 1 vary from those expressed
using adjectives (e.g., strong) to others pivoting on
verbs (e.g., leading). Fact-checking these claims
requires to go beyond a lookup in a table, but rather,
we seem to suggest the need for domain-specific
rules or models, depending on the nature of the
claim. For instance, for the sentence “the Griz-
zlies had a strong first half”, if we interpret that
the claim “strong” relates to the points scored in
the first half, it means that we are interested in the
sum of the first two quarters, TEAM-PTS QTR1 +
TEAM-PTS QTR2, and we have to set a threshold
to the number of points starting from which the
word “strong” applies. But this rule would apply



only to “strong” (and similar adjectives) used for
points and the threshold would change for “fouls”.
In other words, we have to handle all the possible
qualitative adjectives that can appear in the text
for all attributes, which is challenging to do ex-
haustively and accurately. It is easy to see that this
problem is challenging as it would either require
a lot of manually defined rules or the annotations
of a large number of claims to train models that
handle all cases.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Heng Gong, Xiaocheng Feng, Bing Qin, and Ting Liu.
2019. Table-to-text generation with effective hier-
archical encoder on three dimensions (row, column
and time). In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 3143–3152, Hong Kong, China. Association
for Computational Linguistics.

Georgios Karagiannis, Mohammed Saeed, Paolo Pa-
potti, and Immanuel Trummer. 2020. Scrutinizer:
A mixed-initiative approach to large-scale, data-
driven claim verification. Proc. VLDB Endow.,
13(11):2508–2521.

Preslav Nakov, David P. A. Corney, Maram Hasanain,
Firoj Alam, Tamer Elsayed, Alberto Barrón-Cedeño,
Paolo Papotti, Shaden Shaar, and Giovanni Da San
Martino. 2021. Automated fact-checking for assist-
ing human fact-checkers. In IJCAI, pages 4826–
4832. ijcai.org.

Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann,
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and
Dipanjan Das. 2020. ToTTo: A controlled table-to-
text generation dataset. In Proceedings of EMNLP.

Mohammed Saeed and Paolo Papotti. 2021. Fact-
checking statistical claims with tables. IEEE Data
Eng. Bull., 44(3).

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi,
and Chenliang Li. 2020. Adversarial attacks on
deep-learning models in natural language process-
ing: A survey. ACM Trans. Intell. Syst. Technol.,
11(3).

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1310
https://doi.org/10.18653/v1/D19-1310
https://doi.org/10.18653/v1/D19-1310
https://doi.org/10.18653/v1/D17-1239
https://doi.org/10.1145/3374217
https://doi.org/10.1145/3374217
https://doi.org/10.1145/3374217

