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Quality of the uncertainty
estimation



Deep neural networks are poorly calibrated

Expected calibration error:

ECE =
B∑

b=1

nb
N |acc(b)− conf(b)|

• For regularized-loss training, deeper models
are more accurate, more confident but less
calibrated

• Uncertainty provided by the Bayesian
models are well calibrated
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Things become more difficult to evaluate under dataset shift

Consider CIFAR10 and ImageNet 16 different random perturbation at 5 different intensity level.
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Out-of-Distribution analysis of probabilistic models on CIFAR10
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• Accuracy decreases as similar rate . . .

• . . . but even probabilistic models become over-confident (still better than point-estimates)

Ovadia et al. (2019). Can You Trust Your Model’s Uncertainty? Evaluating Predictive Uncertainty Under
Dataset Shift. NeurIPS
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Being Bayesian on the last-layer only might not sufficient

Combinations of Conv.Nets and Bayesian layers (like Gaussian processes) can still be
over-confident.

A
cc

u
ra

cy
CIFAR10-LENET CIFAR10-RESNET CIFAR100-RESNET 

GPDNN CGP SVDKL 

Confidence

0.0

0.5

1.0

0.0 0.5 1.0
Confidence

0.0

0.5

1.0

0.0 0.5 1.0
Confidence

0.0

0.5

1.0

0.0 0.5 1.0
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Tran et al. (2019). Calibrating Deep Convolutional Gaussian Processes. AISTATS
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Full posteriors are worse than anything else (including non-Bayesian)
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Conclusions



Bayesian Inference for Deep Learning

1. How can we work with intractable posterior?

I Approximation with variational inference, Laplace or ensembles
I Sampling the true posterior with MCMC methods

2. How can we handle millions to billions of parameters? Scalability to big datasets?

I Stochastic gradient methods and Monte Carlo integration

3. What kind of priors should we use for these models? How can we do model selection?

I Functional priors or empirical Bayes methods are possible solutions

4. Can we trust the uncertainty quantification of Bayesian inference?

I Yes (mostly), but the prior belief plays an important role

“Far better an approximate answer to the right question, which is often vague, than an exact
answer to the wrong question, which can always be made precise.”

J. Tukey (1962). The Future of Data Analysis. Ann. Math. Stat
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