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ABSTRACT

Real-time remote tracking using under-sampled and delayed
measurements is considered here. We study an autonomous
system where a transmitter monitors the evolution of a dis-
crete Markov source and sends status updates to a destina-
tion over an unreliable wireless channel. The destination is
tasked with real-time source reconstruction for remote actu-
ation. We introduce new goal-oriented sampling and com-
munication policies, which leverage the significance and ef-
fectiveness of messages, as a means to generate and trans-
mit only the most “informative” samples for real-time actua-
tion. Our results illustrate that semantics-empowered policies
significantly reduce both the real-time reconstruction and the
cost of actuation errors, as well as the amount of ineffective
updates.

Index Terms— Goal-oriented communication, semantics
of information, cost of actuation error, real-time tracking.

1. INTRODUCTION

Networked autonomous systems are ubiquitous in various do-
mains, with applications spanning from swarm robotics and
healthcare to autonomous transportation and environmental
monitoring. These systems require reliable real-time commu-
nication, autonomous interactions, and timely computations.
In this context, information is valuable when it is fresh, accu-
rate, and effective. For instance, real-time knowledge of the
trajectory and the velocity of a mobile robot is essential in
autonomous navigation. Timely and accurate updates are of
cardinal importance in mission-critical decision-making. In
this setting, real-time tracking and reconstruction of an infor-
mation source/process from a set of under-sampled and de-
layed measurements is an important yet challenging problem.
Information freshness is assessed by the Age of Information
(AoI) [1, 2], i.e., the time elapsed since the newest success-
fully received update was generated. However, AoI does not
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take into account the source/process evolution and the appli-
cation context. Several metrics [3–7] have been employed to
address the shortcomings of AoI. A line of work that con-
siders AoI and its variants as a criterion for remote estima-
tion can be found in [8–14]. A new communication paradigm
has recently been proposed, which accounts for the seman-
tics (i.e., significance, goal-oriented usefulness, and contex-
tual value) of information and leverages the synergy between
data processing, information transmission, and signal recon-
struction [15–17].

In this work, we consider the problem of real-time track-
ing and reconstruction of an information source. A transmit-
ter (observer) tracks the state of a Markov source and sends
status updates (samples) to a receiver over an unreliable wire-
less channel. Real-time reconstruction is performed at the
destination for the purpose of remote actuation. This fun-
damental setting could model various real-time applications
in autonomous networked systems. We introduce new goal-
oriented, semantics-empowered sampling and communica-
tion policies, which account for the temporal evolution of the
source/process and the semantic and application-dependent
value of data being generated and transmitted. Our approach
is shown to significantly reduce both reconstruction error and
cost of actuation error, as well as the number of uninforma-
tive/ineffective samples.

2. SYSTEM MODEL
We consider a time-slotted communication system, in which
a monitoring device (transmitter) observes a process Xt and
informs a remote actuator (receiver) about its state by send-
ing updates (samples) over a communication channel. This is
depicted in Fig. 1. We assume that transmissions take place
over a wireless erasure channel. The channel realization ht is
equal to 1 if the packet is successfully decoded at the receiver
and 0 otherwise. The success probability is defined as ps =
P (ht = 1). Successful/failed transmissions are declared to
the transmitter using acknowledgement (ACK)/negative ACK
packets, assumed to be delivered instantaneously and error-
free. When the transmission fails, the update is discarded (no
retransmission). The information source is modeled by a two-
state discrete-time Markov chain (DTMC) {Xt, t ∈ Z+

0 }, as-



sumed to be ergodic. At each timeslot t, the state Xt of the
source can be either 0 or 1. The self-transition probabilities
are denoted by 1 − p and 1 − q for states 0 and 1, respec-
tively. Therefore, P

(
Xt+1 = i|Xt = i

)
= 1 (i = 0) (1−p)+

1 (i = 1) (1− q), where 1(·) is the indicator function.
The transmitter is capable of generating update Xt by

sampling the source at will. The action of sampling at times-
lot t is denoted by αs

t, where αs
t = 1 if the source is sampled

and αs
t = 0 otherwise. The action of transmitting a sam-

ple is denoted by αtx
t = 1, otherwise the transmitter remains

silent (αtx
t = 0). The source is reconstructed at the destina-

tion based on successfully received status updates. The state
of the reconstructed source at timeslot t is denoted as X̂t. A
set of operation policies for sampling and transmission are
presented in Section 4.
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X̂t

Fig. 1. Real-time tracking of a two-state Markov source.

3. KEY PERFORMANCE METRICS
In this section, we introduce a new, comprehensive system
metric, namely the Semantics of Information (SoI), which
captures the significance and usefulness of information with
respect to the goal of data exchange and the application re-
quirements. We then present two performance metrics used
to evaluate the accuracy of real-time reconstruction and its
effect on the actuation in our problem under study.

3.1. Semantics-empowered metrics
Let I ∈ Rm denote the vector of m information attributes,
which can be decomposed into innate (objective) and contex-
tual (subjective). Innate are the attributes inherent to infor-
mation regardless of its use, such as freshness or AoI, i.e.,
∆t = t − Ut where Ut is the generation time of the newest
sample that has been delivered at the destination by time in-
stant t, precision, and correctness. Contextual are attributes
that depend on the particular context or application for which
information is being used. The most relevant ones are timeli-
ness, a function g : R≥0 → R of AoI, i.e., g(∆t), and com-
pleteness. Another relevant attribute is accuracy (distortion)
δ : X × X → R≥0 where X is the state space of Xt. For
example, δ(Xt, X̂t) = (Xt − X̂t)

2. We can also include the
notion of perception via some divergence or distance func-
tion D(·∥·) : D × D → R between probability distributions
defined in the same probability space D (e.g., Wasserstein,
Levenshtein, Hellinger, etc., depending on the application).

Formally, SoI is a composite function St = ν(ψ(I),
where ψ : Rm → Rz,m ≥ z is a nonlinear function and
ν : Rz → R is a context-dependent, cost-aware function that
maps qualitative information attributes to their application-
dependent value. Below, we provide two such metrics, which
are relevant to remote real-time tracking and actuation.

3.2. Real-time reconstruction error
The real-time reconstruction error measures the discrepancy
between the original Xt and the reconstructed source X̂t at
timeslot t, i.e., Et = 1

(
Xt ̸= X̂t

)
=

∣∣∣Xt − X̂t

∣∣∣. In other
words, δ(·, ·) is the 0−1 loss function or the Hamming distor-
tion measure. For a two-state DTMC, Et takes values 0 or 1.
Our analysis can easily be generalized to an N -state Markov
source (N < ∞), in which case the reconstruction error can
take any value from 0 to N . The system can be either in an
erroneous state (Et = 1) or in a synced state (Et = 0). The
time-averaged reconstruction error is given by

Ē = lim
T→∞

∑T
t=1Et

T
= lim

T→∞

1

T

T∑
t=1

1
(
Xt ̸= X̂t

)
. (1)

The evolution of the state of the system, Et, can be de-
scribed by a Markov Chain as depicted in Fig. 2. The synced
state is denoted by 0 (Et = 0 at timeslot t), whereas 1 denotes
the erroneous state. The one-step transitions probabilities are
defined as

pji = P
(
Et+1 = j|Et = i

)
,∀i, j ∈ {0, 1}. (2)
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Fig. 2. DTMC describing the state Et of the system.

We now give general expressions for the transition proba-
bilities. To obtain p00 we need to calculate

p00 =

1∑
i=0

P
(
Et+1 = 0|Et = 0, Xt = i

)
P (Xt = i) , (3)

with P (Xt = i) = 1 (i = 0) q
p+q + 1 (i = 1) p

p+q and

P
(
Et+1 = 0|Et = 0, Xt = 0

)
=

= 1− p+ pP
(
αs
t+1 = 1, αtx

t+1 = 1, ht+1 = 1
)
. (4)

In a similar way, we obtain P
(
Et+1 = 0|Et = 0, Xt = 1

)
.

We also have

P
(
Et+1 = 1|Et = 1, Xt = 0

)
= (1− p)

×
[
P
(
αs
t+1 = 1, αtx

t+1 = 1, ht+1 = 0
)
+ P

(
αs
t+1 = 0

)]
. (5)



The exact values of transition probabilities depend on the
sampling and transmissions actions, dictated by the policies
introduced in Section 4. We can also compute the stationary
distribution of this two-state DTMC, where π0 is the prob-
ability the system is synced (or the percentage of time the
system is synced), and π1 the probability the system is in an
erroneous state.

3.3. Cost of actuation error
The second performance metric is the cost of actuation er-
ror, which captures the significance of the error at the point
of actuation. Note that some errors may have larger impact
than others. At timeslot t, Ci,j denotes the cost of being in
state i at the original source and in j ̸= i at the reconstructed,
i.e., Et = 1. Whenever i = j, there is no error, and con-
sequently no cost. We consider the general and practically
relevant case of non-commutative errors, i.e., C0,1 ̸= C1,0.
This means that different erroneous actions may have differ-
ent cost (penalty) due to different repercussions for the system
performance. We assume thatCij does not change over time.1

In order to calculate the average cost of actuation error, we
can use a two-dimensional Markov chain describing the joint
status of the system regarding the current state at the original
source and whether the reconstructed source is synced or not.
That way, we can obtain expressions for the average real-time
reconstruction error and the average cost of actuation error.
The latter can be written as

C̄A = π(0,1)C0,1 + π(1,0)C1,0 (6)

where π(i,i+1 (mod 2)) is obtained from the stationary distri-
bution of the two-dimensional DTMC.

Remark. The above Markov chain formulation provides a
very general view of the system, which can be used to derive
optimal online policies using Markov Decision Processes or
Deep Reinforcement Learning.

4. GOAL-ORIENTED SAMPLING AND
COMMUNICATION POLICIES

In this section, we propose two semantics-empowered poli-
cies of information acquisition (sampling) and transmission
for real-time reconstruction of a Markov source with the pur-
pose of actuation. We start by presenting two conventional
policies, which are used for comparison purposes. Due to
space limitations, expressions only for the last goal-oriented
policy are provided; analyzing the other policies involves a
modification of the general expressions given in Section 3.

4.1. Uniform
In this baseline policy, sampling is performed periodically, in-
dependently of the temporal evolution of the source. Despite
being simple and easy to implement, process-agnostic poli-
cies could result in missing several state transitions during

1Penalty functions based on non-linear aging [3], where the cost of being
in an erroneous state is increasing over time, can be employed.

the time interval between two collected samples. In the case
of erasure, the most recently acquired sample is transmitted.

4.2. Age-aware
In this policy, the receiver triggers the acquisition and trans-
mission of a new sample, once the AoI reaches a predefined
threshold Ath. This can be extended to different AoI thresh-
olds depending on the state [18].

Whenever a transmission fails, the receiver tries to antic-
ipate the update based on the statistics of the source process.
In that case, the receiver, given its current state, tries to pre-
dict the next state based on the state transition probabilities,
assumed to be known (or learned after a period of time). This
policy remains source-agnostic regarding the value of infor-
mation but takes into account the timeliness.

4.3. Change-aware
In this policy, sample generation is triggered at the transmit-
ter whenever a change at the state of the source (with respect
to the previous sample) is observed. Consider that for a cer-
tain period of time Xt+kt = i, k = 0, 1, . . . ,K, at the end
of which the state changes, i.e., Xt(K+1)+1 = j, j ̸= i, and
hence the transmitter generates and transmits a new status up-
date sample.

4.4. Semantics-aware
This policy extends the previous one into that the amount
of change is not solely measured at the source, but is also
tracked by the difference in state between receiver and trans-
mitter. Sample generation is triggered whenever there is dis-
crepancy betweenXt and X̂t. Assume that at a given timeslot
t, Xt = X̂t. Then, a change in Xt (source’s state) occurs in
t + 1 with a given probability, resulting in transmission of a
newly acquired sample. If transmission fails, X̂t+1 = X̂t.
Suppose now that in the next slot, Xt+2 = Xt. Thus, there
is no discrepancy between the original and the reconstructed
source (X̂t+2 = Xt+2), thus, there is no need for sending an
update. Particularizing the general expressions in Section 3,
the transition matrix PE for the DTMC that models the sys-
tem state is given by

PE =

[
1− 2pq(1−ps)

p+q
2pq(1−ps)

p+q

ps +
2pq(1−ps)

p+q 1− ps − 2pq(1−ps)
p+q

]
.

Then, we obtain the the probability that the system is in
an erroneous (not synced) state

Ē =
2pq(1− ps)

ps(p+ q) + 4pq(1− ps)
. (7)

Note that the previous expression is also the percentage of
time that the system is not synced or the time-average recon-
struction error.

Remark. Evidently, sampling and transmission at every
timeslot could provide the best performance for achieving the
goal (real-time reconstruction). However, this comes at the



expense of very large number of samples, which are not nec-
essarily useful and which require excessive resources (e.g.,
energy, network) for their acquisition, transmission, and pro-
cessing. The proposed semantics-empowered policies reduce
or even eliminate the generation of uninformative sample
updates, thus improving network resource usage and being
scalable.

5. NUMERICAL RESULTS
We evaluate the performance of above policies in terms of
average real-time reconstruction error and average cost of ac-
tuation error. We consider two scenarios regarding the source
variability, the first being when the source is slowly changing
(p = 0.1, q = 0.15), depicted in Fig. 3, and the second being
when the source is rapidly changing (p = 0.2, q = 0.7), de-
picted in Fig. 4. In addition, regarding the probability of suc-
cessful transmission we consider two distinct cases, ps = 0.5
and ps = 0.9, to investigate the impact of transmission er-
rors on reconstruction and actuation. In uniform sampling, a
sample is acquired every 5 timeslots, and for the age-aware
policy we set Ath = 5. Additionally, the actuation errors are
C0,1 = 5 and C1,0 = 1.
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Fig. 3. Slowly varying source with p = 0.1 and q = 0.15.

For slow varying sources, the semantics-aware policy sig-
nificantly outperforms the change-aware policy due to the fact
that the system manages to rapidly eliminate the discrepancy
between the original and the reconstructed state of the source,
even in the case of low channel quality (ps = 0.5). On the
other hand, for rapidly varying sources, both semantics- and
change-aware policies exhibit very good reconstruction error
performance, while semantics-aware provides the lowest ac-
tuation error without wasting any resources for transmitting
uninformative samples.
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Fig. 4. Rapidly changing source with p = 0.2 and q = 0.7.

6. CONCLUSION

In this work, we showcased the potential of goal-oriented data
generation and communication policies in a remote real-time
tracking and actuation scenario. Accounting for the semantics
of information semantics could lead to significant reduction in
task-dependent error metrics and in ineffective traffic volume.
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