
OneJoin: Cross-Architecture, Scalable Edit Similarity Join for
DNA Data Storage Using oneAPI

Eugenio Marinelli Raja Appuswamy
EURECOM
Biot, France

firstname.lastname@eurecom.fr

ABSTRACT
Synthetic DNA has received much attention recently as an archival
storage media due to its high density and durability characteristics.
However, the process of retrieving data from DNA is computa-
tionally bottlenecked by a key read consensus stage that effectively
performs an edit similarity join to identify millions of unique con-
sensus strings from hundreds of millions of noisy copies. In this
work, we present an end-to-end DNA data decoding pipeline based
on OneJoin–a cross-architecture edit similarity join that can exploit
multicore CPUs, integrated GPUs, and multi-vendor discrete GPUs
using a single code base. Central to the effectiveness of OneJoin is
the use of oneAPI–an open, standards-based unified programming
model for achieving portable data parallelism. Based on a rigorous
experimental evaluation using macrobenchmarks and real-world
data from DNA storage experiments, we show that OneJoin can
provide up to 21× improvement in performance over other state-
of-the-art joins and reduce the overall DNA data decoding time
from several hours to just a few minutes.

This work is licensed under the Creative Commons BY-NC-ND
4.0 International License and appears in ADMS 2021, 12th Interna-
tional Workshop on Accelerating Analytics and Data Management
Systems, August 16, 2021, Copenhagen, Denmark.

1 INTRODUCTION
The growing adoption of AI and analytics has resulted in the amount
of enterprise data growing at a cumulative annual rate of over
40% [20]. Analysts predict that Global Datasphere will expand to 160
Zettabytes by 2025 [20]. However, studies have shown that only 20%
of data stored is “hot”, or accessed frequently, with the remaining
80% being “cold”, or accessed rarely [11, 12, 22]. Cold data has been
identified as the fastest growing data segment with a 60% annual
growth rate, and also as the segment with the longest lifetime
with retention periods of 50–60 years [21]. Unfortunately, current
storage media suffer from several limitations that complicates cost-
effective archival of cold data [7]. Thus, researchers have started
exploring radically new storage media that can offer orders of
magnitude improvement in density and durability. One such media
that has received a lot of attention recently is Deoxyribo Nucleic
Acid (DNA).

Synthetic DNA can be up to eight orders of magnitude denser
than tape, and can last several millennia, making it an ideal medium
for cold data storage [7]. Using DNA as a digital storage medium
requires mapping binary digital data into a quaternary (A,C,G,T)
oligonucleotide (oligo) sequence using an encoding algorithm. Once
encoded, the oligos are used to synthesize DNA using a chemical
process that assembles the DNA one nucleotide at a time. Due to

synthesis limitations, each oligo cannot be longer than a few hun-
dred nucleotides. Thus, digital data is stored using millions of oligos.
Data stored in DNA is read back by sequencing the DNA molecules
which produces several noisy copies of the original oligos, also
called reads. As modern sequencers produce millions of reads per
run, each oligo is covered by multiple reads. Thus, a read consensus
procedure is required to infer the original oligos based on reads so
that the inferred sequences can be passed to a decoder to recover
the original data.

At its core, the consensus procedure can be viewed as a large-
scale string similarity join problem. Given a collection of strings,
or reads in our case, the task of similarity join is to find all pairs
of strings that are within a threshold distance. As the reads are
noisy and can contain insertion, deletion, and substitution errors,
it is necessary to use edit (Levenshtein) distance as the comparison
metric. Unfortunately, computing exact edit distance between two
strings is an intractable problem that does not have a sub-quadratic
solution [2]. The DNA data storage scenario amplifies this problem
as it requires edit similarity computation across millions of strings.
As a result, read consensus is a key computational bottleneck in
the DNA data archival pipeline.

Recent work in metric embeddings has led to the development of
randomized algorithms that can transform a set of strings into an
embedded representation such that the edit distance between two
strings in the original set can be approximated by the Hamming
distance between strings in the embedded set [5]. EmbedJoin [28] is
a new string similarity join that uses edit-to-hamming embedding
together with Locality Sensitive Hashing (LSH) [9] to consistently
outperform other join algorithms across a range of string lengths
and edit distance thresholds. This makes EmbedJoin relevant to the
task of read consensus in DNA data storage given the noisy nature
of reads. Unfortunately, despite such improvements, EmbedJoin is
unable to meet the scalability demands of DNA read consensus due
to the sequential nature of algorithm design that limits its execution
to a single CPU.

Figure 1 demonstrates this by breaking down the execution time
of various stages of EmbedJoin on an input dataset of 470k strings
(experimental setup in Section 4). Clearly, EmbedJoin minimizes
the overhead of exact edit distance computation, as less than 5%
of time spent in the verification phase that performs this compu-
tation. However, the total execution time is still nearly 9 minutes
for this dataset of just 470k strings, as the filtering stages involving
Embedding and LSH are sequential by design to realize a few key
optimizations, and they contribute to more than 90% of overall exe-
cution time. While a sequential design might be sufficient for small
datasets, it makes EmbedJoin unscalable for DNA read consensus
with millions of reads.

Eugenio Marinelli Raja Appuswamy

Ti
m

e
(s

)

0

100

200

300

400

500

600

EmbedJoin OneJoin-Gen9+Xeon

Embedding LSH Verification

Figure 1: Execution time break down of EmbedJoin and One-
Join under GEN-470KS dataset.

We make three contributions in this work.
• We present OneJoin, a cross-architecture, edit similarity join
implemented using oneAPI–an open, standards-based uni-
fied programming model for achieving portable data paral-
lelism. In prior work, we developed XJoin, the first database
operator to be implemented using oneAPI [16]. OneJoin is the
first hardware-accelerated approximate edit similarity join.
We describe various design aspects involved in transforming
EmbedJoin, a single-threaded, CPU-based algorithm, into
OneJoin, a oneAPI-based data parallel algorithm that can
execute on CPUs, on-die integrated GPUs, and multi-vendor,
PCIe-attached discrete GPUs using a single code base.

• We present a scalable solution to the DNA read consensus
problem using OneJoin. Current read consensus solutions
are either open-source but non scalable [23], or scalable but
properietary [18]. We make our code 1 publicly available to
provide a reference implementation for further work on both
oneAPI-accelerated data analytics and DNA read consensus.

• Using both synthetic and real-world experimental data, we
present an experimental evaluation with the following goals:
(i) benchmark the performance of OneJoin with state-of-
the-art similarity joins, (ii) demonstrate the benefit of using
DPC++ by evaluating OneJoin with heterogeneous proces-
sors (CPU and GPU), and (iii) show the scalability of OneJoin
by using it for DNA read consensus. Figure 1 shows an ex-
ample where OneJoin processes the same dataset 14× faster
than EmbedJoin by utilizing a 6-core Xeon CPU and an Gen9
Intel iGPU for key data-parallel computations, making it a
scalable candidate for DNA read clustering.

2 BACKGROUND
In this section, we first describe CGK Embedding and Locality-
Sensitive Hashing for Hamming distance. These are the two main
algorithmic tools used by EmbedJoin in performing an edit similar-
ity join. Then, we describe the EmbedJoin algorithm itself.

2.1 Embedding
The edit distance between two strings 𝑥 and 𝑦 is defined as the
minimum number of insertion, deletion, or substitution operations
required to change 𝑥 into 𝑦. Hamming distance, in contrast, only
counts the number of substitution operations required to change 𝑥
1https://github.com/Eug9/oneoligo.git

into 𝑦. For instance, the strings 𝐴𝐶𝐴𝐶𝑇 and 𝐺𝐴𝐶𝐴𝐶 have a ham-
ming distance of five as none of the characters match, but an edit
distance of two, as inserting a 𝐺 and deleting a 𝑇 in the first string
produces the second string. Thus, compared to Hamming distance,
edit distance retains the information of the orderings of characters
and captures the best alignment between two strings. However,
edit distance is computationally more expensive than Hamming
distance; while computing the latter can be done in linear time,
computing edit distance requires a dynamic programming formu-
lation with quadratic time complexity [2]. Thus, researchers have
investigated metric embedding techniques that can be used to trans-
form strings into an embedded representation making it possible
to model problems over those strings in an easier metric space.

CGK embedding is one such algorithm that was proposed re-
cently by Chakraborthy et al.[5]. Applied to the DNA read dataset,
the input is a string sequence of length 𝑁 consisting of four possible
characters (𝐴,𝐶,𝐺,𝑇). The output of the CGK embedding algorithm
is an embedded string of length 3𝑁 consisting of the four charac-
ters and possibly multiple repeats of a pad character (𝑃). In each
iteration, the algorithm appends a character from the input string,
or the pad if it runs out of the input string, to the output string.
Then, it uses a random binary bit string of length 3𝑁 to decide if
the input index should be advanced. The net effect of this algorithm
is that some input characters appear uniquely in the output string,
while others are randomly repeated multiple times. Using the the-
ory of simple random walks, Chakraborty et al.[5] established that
CGK embedding can embed strings such that Hamming distance
of embedded strings is at most square of the edit distance between
original strings.

2.2 LSH for Hamming Distance
An important benefit of edit-to-Hamming embedding is that algo-
rithmic tools, like Locality Sensitive Hashing (LSH), that are well
defined for Hamming distance but not edit distance, can now be
used to identify similar strings without doing an exhaustive pair-
wise search. Here, we only provide an overview of LSH [9] for
hamming distance.

Suppose we have ℎ𝑖 (𝑝) = 𝑝𝑖 , that is, our hash function is the
𝑖th bit of a bit string 𝑝 of length 𝑁 . Let 𝐷 (𝑝, 𝑞) be the Hamming
distance between bit strings 𝑝 and 𝑞, that is, the number of location-
wise different bits between 𝑝 and 𝑞. Then 1− 𝐷 (𝑝,𝑞)

𝑁
is the collision

probability, that is the probability that a randomly chosen bit po-
sition is the same between the two strings (ℎ𝑖 (𝑝) = ℎ𝑖 (𝑞)). Thus,
the bit-sampling LSH family for Hamming distance given as

HN = {ℎ𝑖 : ℎ𝑖 (𝑏1 ...𝑏𝑁) = 𝑏𝑖 | 𝑖 ∈ [𝑁]}

is
(
𝑑1, 𝑑2, 1 − 𝑑1

𝑁
, 1 − 𝑑2

𝑁

)
-sensitive for hamming distances 𝑑1 < 𝑑2.

What this effectively means is that by using random bit-sampling
hash functions, it is possible to group strings into buckets such that
strings within a bucket are similar to each other in terms of Ham-
ming distance than strings across buckets with a high probability.
Given the probabilistic nature of LSH, there will be false positives,
where dissimilar strings are grouped together, and false negatives,
where similar strings are not identified. The standard AND-OR
composition method can be used to reduce the rate of both false
positives and negatives. First,𝑚 hash functions are concatenated

OneJoin: Cross-Architecture, Scalable Edit Similarity Join for DNA Data Storage Using oneAPI

in an AND-construction to define

𝑓 = ℎ1 ◦ ℎ2 ◦ ... ◦ ℎ𝑚,𝑤ℎ𝑒𝑟𝑒 ∀𝑖 ∈ [𝑚] , ℎ𝑖 ∈𝑟 𝐻
such that for 𝑥 ∈ 𝑈 (where 𝑈 is the set of input strings), 𝑓 (𝑥) =
(ℎ1 (𝑥) ℎ2 (𝑥) ...ℎ𝑚 (𝑥)) is a vector of𝑚 bits. Let F (𝑚) be the set
of all hash functions 𝑓 . Then, 𝑧 such functions are grouped in an
OR-construction to define

𝑔 = 𝑓1 ∨ 𝑓2 ∨ ... ∨ 𝑓𝑧 ,𝑤ℎ𝑒𝑟𝑒 ∀𝑗 ∈ [𝑧] , 𝑓𝑗 ∈𝑟 F (𝑚)
such that for 𝑥,𝑦 ∈ 𝑈 ,𝑔 (𝑥) = 𝑔 (𝑦) if and only if there is at
least one 𝑗 ∈ [𝑧] for which 𝑓𝑗 (𝑥) = 𝑓𝑗 (𝑦). 𝑔 has been shown
to be

(
𝑑1, 𝑑2, 1 − (1 − (𝑑1/𝑁)𝑚)𝑧 , 1 − (1 − (𝑑2/𝑁)𝑚)𝑧

)
sensitive,

and carefully selecting𝑚 and 𝑧 can amplify the gap between 𝑝1
and 𝑝2 and reduce both false positives and false negatives.

2.3 EmbedJoin
EmbedJoin is a string similarity join algorithm that builds on CGK-
Embedding and LSH to find all pairs of strings whose edit distance
is within a given threshold 𝐾 . The core algorithm consists of two
phases, namely, filtering and verification.

During filtering, EmbedJoin first sorts the input strings based
on their length. Then, it processes one input string at a time by
first embedding the string 𝑠𝑖 into 𝑡𝑖 using CGK embedding. Then,
each hash function 𝑓𝑗 is used to hash the embedded string to a
bucket 𝐵 = 𝑓𝑗 (𝑡𝑖). For every other string 𝑠𝑏 found in 𝐵, a length
comparison is performed. If the difference in length is less than
edit threshold, < 𝑠𝑖 , 𝑠𝑏 > is considered a potential pair and added
to a candidate list C. However, if the difference is more than the
threshold, then it follows that 𝐸𝐷

(
𝑠𝑏 , 𝑠 𝑗

)
> 𝐾 ∀𝑗 > 𝑖 due to the

fact that input strings are sorted based on length. Thus, EmbedJoin
deletes 𝑠𝑏 from bucket 𝐵. 𝑠𝑖 is itself also stored in bucket 𝐵 for future
comparisons. As each pair < 𝑠𝑖 , 𝑠 𝑗 > can potentially be added into
C multiple times by different LSH hashes, a duplicate elimination is
performed. This process is repeated for each input string, and at the
end of filtering stage, EmbedJoin accumulates a list of all possible
candidate pairs. During the verification stage, it iterates over these
pairs, computes the exact edit distance, and adds pairs with edit
distance below the user-specified threshold 𝐾 to the output set.

So far, we presented the vanilla EmbedJoin algorithmwhere each
input string is embedded only once. However, the randomization
in CGK embedding can occasionally fail to provide a low-distortion
mapping from edit to hamming distance when certain bit patterns
are used in randomization. As a guard against potential errors that
can be introduced by such poor embedding, the authors extended
EmbedJoin by embedding each string multiple times using different
random seeds. The resulting algorithm was referred to as Embed-
Join+ [28]. We would like to point out here that we use EmbedJoin+
as the baseline for implementation and evaluation although we
refer to it as EmbedJoin in the rest of this paper.

EmbedJoin demonstrated that embedding–LSH combination can
eliminate the need to perform𝑂

(
𝑁 2

)
pairwise edit distance compu-

tations. However, the current algorithm is designed to use sequen-
tial filtering to (i) simplify the logic of updating and searching hash
buckets during LSH, and (ii) incorporate the sort-based bucket-
trimming optimization described above. Due to this reason, the
filtering stage contributes to over 90% of overall execution time
(Figure 1).

3 DESIGN AND IMPLEMENTATION
Modern server hardware is increasingly heterogeneous with a di-
verse mix of scalar, vector, matrix, and spatial architectures de-
ployed in CPU, GPU, FPGA, and other accelerators. OneJoin is a
data-parallel redesign of the sequential EmbedJoin algorithm in
order to fully exploit such heterogeneous parallelism. Central to the
redesign is the use of oneAPI–a cross-industry effort for developing
an open, standards-based unified programming model to simplify
software development across diverse accelerator architectures.

Conceptually, OneJoin follows the same high-level approach as
EmbedJoin as it also consists of a filtering stage followed by a veri-
fication stage. However, unlike EmbedJoin, the OneJoin filtering
stage is internally organized as a collection of several data-parallel
kernels programmed in Data Parallel C++ (DPC++). In contrast
to other data-parallel languages that are proprietary (CUDA) or
low level in nature (OpenCL), DPC++ is an open-source implemen-
tation of SYCL–an industry-wide standardization effort to define
cross-platform data parallelism support for standard C++. DPC++
builds on Clang and LLVM compilers to support key data-parallel
constructs defined in the SYCL standard, and in doing so, provides
a cross-platform abstraction layer for data parallelism.

In the rest of this section, we first describe the various data-
parallel stages of OneJoin. Then, we detail the cross-architecture
fork–join execution model used by OneJoin to simultaneously ex-
ploit CPUs and GPUs. Finally, we describe the end-to-end DNA
data decoding pipeline using OneJoin. We will provide an overview
of key aspects of DPC++ when relevant. We refer the reader to
related resources for further details about DPC++, oneAPI and a
comparison to other accelerator programming models [19].

3.1 Data-Parallel Edit Similarity with OneJoin
3.1.1 Data-parallel Embedding. The embedding stage is the first
data-parallel stage in OneJoin. The data-parallel embedding in One-
Join is based on the observation that while embedding of a single
input string is not parallelizable due to data dependencies (each
embedded character depends on the previous one and the random
bit string), embeddings of different input strings, and even em-
beddings of even same input string but with different random bit
strings, are parallelizable. Thus, OneJoin implements embedding
as a data-parallel kernel such that each kernel instance performs
a CGK embedding for one specific {𝑖𝑛𝑝𝑢𝑡_𝑠𝑡𝑟𝑖𝑛𝑔, 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑟𝑖𝑛𝑔}
combination.

As accelerators often have on-board memory that is different
from the system memory attached to the CPU, DPC++ provides
the buffer abstraction to manage memory. Buffer objects can be
created from existing data on the host, and in such a case, data is
automatically copied from the host address into the buffer. When
the buffer is used in a kernel, the runtime automatically ensures that
the underlying data is made available to the kernel by coping it from
host memory to devicememory. OneJoin uses DPC++ buffer to store
both input strings and embedded output strings. Doing so ensures
that the runtime will automatically make the data available to the
embedding kernel irrespective of the device on which it is executed.
However the size of a single buffer can be limited depending on
the platform and processor used for kernel execution.

Eugenio Marinelli Raja Appuswamy

OneJoin overcomes this limitation by partitioning input strings
into batches, where the batch size is empirically chosen such that
all input and output data within a batch can fit in a buffer. Within
a batch, OneJoin uses a structure-of-arrays (SoA) organization for
its input and output data structures. The characters of the input
strings are stored in a flattened 1D input array that is used to create
an input buffer. The length of each string is stored separately in
an auxiliary array that is used to create an index buffer. With such
an organization, the first 𝑟 kernel instances embed the first input
string using different random strings. The next 𝑟 kernel instances
embed the second input string, and so on. Thus, multiple kernel
instances will be able to share the result of single memory fetch
operation and benefit from sequential prefetching and caching.

On the output front, recall that the embedded string is used
as input to LSH. In the AND construction of the𝑚-bit Hamming
LSH,𝑚 positions are sampled by each hash function, and the hash
bucket is determined using the characters at these positions. In the
OR construction, there are 𝑧 such hash functions. Therefore, for
each embedded string, OneJoin only generates the 𝑧 ×𝑚 characters
required for LSH and stores them in a flattened array that is used
to create an output buffer.

Once all the arrays and associated buffers required for processing
one batch of strings are allocated and initialized, OneJoin submits
the data-parallel embedding kernel for execution. As kernel sub-
mission is asynchronous, control is immediately returned back to
the host code which prepares the next batch of input strings and
submits it asynchronously. Thus, OneJoin overlaps I/O and input
processing with embedding.

3.1.2 Data-parallel LSH.. OneJoin decomposes the sequential LSH
filtering stage in EmbedJoin into two data-parallel stages, namely,
bucketization, and candidate generation.
Bucketization. The embedding stage converts each input string into
𝑟 embedded strings. The role of LSH filtering is to hash embedded
strings into buckets such that similar strings are grouped together
in a bucket. Two strings end up in the same bucket if they are
embedded using the same random bit string and have at least one
hash function produce identical hash ID. EmbedJoin computes the
hash ID using a standard two-level hashing implementation of
LSH [28]. First, the𝑚 characters corresponding to a hash function
are first converted into a vector 𝑢 of ASCII-equivalent integers.
Then a random vector 𝑣 ∈ 0, 1..., 𝑃 − 1 is used to compute the
hash ID as < 𝑢.𝑣 > 𝑚𝑜𝑑 𝑃 , where 𝑢.𝑣 denotes the inner product,
and 𝑃 denotes a large prime number. OneJoin implements hash ID
computation as a data-parallel kernel, where each kernel instance
performs one hash computation using𝑚 characters.

Once all hash IDs have been computed, the next step is to group
strings into buckets. One way to achieve this, as done by the original
EmbedJoin, is to physically create 𝑟 ×𝑧 distinct hash tables, and use
the hash IDs generated earlier to identify buckets in each hash table.
Two strings would thus end up in the same bucket of a hash table
only if they are embedded using the same random bit string, and at
least one hash function produces identical hash ID. However, such
an approach complicates parallelization as multiple threads need
to synchronize their updates to the hash table. Instead, observe
that once a hash ID has been computed, any hash bucket can be
uniquely identified by a three-tuple < 𝑡, 𝑘, 𝑖𝑑 >, where 𝑡 ∈ [0, 𝑟] is

an index that represents the random string used, 𝑘 ∈ [0, 𝑧] is an
index that represents the hash function used, and 𝑖𝑑 is the hash
ID computed. Thus to bucketize strings, we first modify the hash
ID computation stage so that the output is organized as an array
of four-tuples < 𝑡, 𝑘, 𝑖𝑑, 𝑖 >, where 𝑡 , 𝑘 , 𝑖𝑑 are defined above, and
𝑖 ∈ [0, 𝑁] represents the index of the corresponding input string
whose embedded characters were used in the hash computation.
Once hash ID computation is done, buckets are identified by simply
sorting the output array of four-tuples, all identical < 𝑡, 𝑘, 𝑖𝑑 >

tuples identifying a bucket are adjacent after sorting.
Candidate generation. Due to the use of two-level LSH for hash
ID computation, a hash function can wrongly map two strings to
the same bucket in some cases even if all characters used by that
hash function do not match. Thus, it is necessary to perform a
validation to ensure that the embedded characters used for hash
computation from the two strings are indeed identical before mark-
ing them as candidates. There are several problems in parallelizing
this validation step with OneJoin.

First, in the original EmbedJoin, the use of physical hash tables
provided the benefit that once a bucket was identified for a given
string, all other strings found in that bucket can immediately be
identified as candidates for verification. However, in OneJoin, we
do not maintain an explicit hash table. Thus, we need first derive
the list of potential candidates from the array of five tuples. Second,
different buckets can produce a different number of candidates, and
there is no way to predict this a priori. This makes it difficult to
determine the amount of memory to allocate for storing candidate
pairs, and identify the optimal granularity of parallelization.

To solve these problems, we decompose this step into a series of
data-parallel computations. First, we determine the total number
of buckets 𝐵 and the number of strings per bucket in the five-tuple
array. Using the counts, we then compute the total number of all
possible candidate pairs 𝐶 = Σ𝐵

𝑏=1
𝑛𝑏×(𝑛𝑏−1)

2 , where 𝑛𝑏 denotes
the number of candidates per bucket, and preallocate memory to
hold 𝐶 candidate pairs. Finally, we implement the validation as
a data-parallel kernel such that each kernel instance performs a
comparison for one candidate pair. The outcome of these three
steps is an array that contains for each possible candidate pair the
status as to whether LSH filtering succeeded or failed. We finally
use this output array to deduplicate and extract unique candidates
that are passed along for exact edit distance-based verification.

3.1.3 Cross-architecture fork–join execution. Similar to other ac-
celerator programming approaches, the DPC++ platform model
makes the distinction between a host, which is typically a CPU, and
multiple devices, which are accelerators like GPU. The host code is
responsible for controlling and coordinating kernel execution on
devices. DPC++ provides the abstraction of a queue to enable host
code to command devices. A queue can be bound to a device of a
specific type using a device selector.

As described above, the OneJoin filtering stage is composed of
three key data parallel kernels that are responsible for embedding,
bucketization, and candidate generation. Each of the data-parallel
kernels can be executed on a CPU, GPU, or both, by simply us-
ing appropriate device selectors in DPC++. OneJoin exploits this
portable parallelism by using a cross-architecture fork–join execu-
tion method. Each data-parallel kernel is simultaneously launched

OneJoin: Cross-Architecture, Scalable Edit Similarity Join for DNA Data Storage Using oneAPI

on all available processor types, and thus, forms the fork stages of
execution. Steps between kernel invocations that handle memory
management and data structure reorganization are purely done on
the CPU and form the join stages of execution.

In order to facilitate cross-architecture forking, OneJoin uses
DPC++ buffers to wrap all kernel-accessible data structures to en-
sure that the runtime automatically makes the data available to
kernels irrespective of where they execute. However, the kernel
execution time varies depending on whether it is executed on a
CPU or GPU. As we wanted OneJoin to automatically determine
the list of available processors at runtime and divide work accord-
ingly, we adopted a simple sampling-based cost estimation strategy.
Before each fork stage, OneJoin launches the corresponding kernel
on all available devices using a small data sample (1% of the kernel’s
input data) and measures complete kernel execution time. OneJoin
then allocates buffers to each processor at a rate inversely propor-
tional to the profiled execution time, with faster processors being
assigned more buffers, so that all processors complete the fork stage
at roughly the same time. We found that this simple strategy pro-
vides a balanced division of work across CPUs and GPUs without
creating stragglers, thanks to the predictable, uniform execution
time of kernel instances in all our three kernels.

In addition to the kernels, the filtering stage also contains data-
parallel operations like sorting and duplicate elimination. These
operations are implemented by calling parallel algorithms in the
oneAPI DPC++ Library (oneDPL).

3.1.4 Edit distance verification. Once all the candidate pairs that
survive the LSH filtering have been generated, the final stage in
OneJoin is verification by means of the exact edit distance compu-
tation. Given that verification contributes to less than 5% of overall
processing time under EmbedJoin (Figure 1), we parallelize this
stage only on CPUs by simply partitioning the list of candidates
across several CPU threads, and having each thread independently
performs verification of a subset of candidate pairs.

3.2 Read Consensus with OneJoin
Having described OneJoin, we will now present the design of our
end-to-end DNA data restoration pipeline with OneJoin. The first
step in restoring data from DNA is sequencing the DNA to gener-
ate reads that are noisy copies of the original oligos. The second
step involves passing these reads to OneJoin which identifies all
possible pairs of similar reads. In the third step, the result from One-
Join is used as input to a clustering stage. We use the well-known
density-based DBSCAN [8] algorithm to cluster the reads. At the
core of DBSCAN is a range query responsible for retrieving the
𝜖-neighborhood of a point. Dynamically executing the range query
for each point would require a repeated edit similarity search to
identify all possible points that are similar to a given query point.
As OneJoin precisely provides this result for each point, we simply
use the precomputed output from OneJoin as a substitute for the
range query without having to actually execute the query. Once the
clusters are identified by DBSCAN, we iterate over each cluster and
perform a position-wise consensus to build a single representative
oligo from each cluster. Finally, these inferred oligos are passed to
the decoding algorithm that converts the quaternary code back into
binary data.

Dataset 𝑛 Avg. Len |Σ|
Join datasets

TREC 233,435 1217 37
UNIREF 400,000 445 25

GEN-470KS 470,492 5000 4
DNA storage datasets

Synthetic 5M,10M,20M 209 4
Real 19M 91 4

Table 1: Parameters of datasets used in this work.

4 EVALUATION
In this section, we will present the experimental results. The evalu-
ation is structured as follows. First, we will demonstrate the ben-
efit of using oneAPI by demonstrating the portability of OneJoin
across multiple processor types (Sections 4.2–4.4). Then, we will
present benchmarks comparing OneJoin to EmbedJoin and other
popular join algorithms under several publicly available datasets
(Section 4.5). Finally, we will present results from an end-to-end
DNA data decoding experiment and demonstrate the benefit of
OneJoin for read consensus (Section 4.6).

4.1 Experimental Setup
Hardware Setup. All experiments are conducted on either the
Intel® DevCloud using a compute instance with a 6-core Xeon®
E-2176G CPU clocked at 3.7GHz, 64GB DRAM, and a Gen9 Intel®
iGPU, or on a local server equipped with a 12-core Intel® Core
i9-10920X CPU clocked at 3.5GHz, 128GB DRAM, and a NVIDIA
GeForce RTX 2080 Ti dGPU.
Software Setup. OneJoin is implemented in DPC++ and com-
piled using DPCPP (O3). We compare OneJoin with EmbedJoin,
AdaptJoin[25], and QChunk[17]. We choose these algorithms as
they have been demonstrated to be the best alternatives for edit
similarity joins [28]. We also compare the OneJoin-based DNA
read consensus approach with Starcode [23], a widely-used read
clustering program we used previously for consensus.
Datasets. For comparing OneJoin with other join algorithms, we
use three publicly-available, real-world datasets similar to the orig-
inal EmbedJoin paper [28]. Table 1 summarizes the key characteris-
tics of each dataset. Further details about the DNA storage dataset
are provided in Section 4.6.
UNIREF. A dataset of UniRef90 protein sequence data from UniProt
project. Each sequence is an array of amino acids in upper case.
We remove sequences whose lengths are smaller than 200, and
then extract the first 400,000 protein sequences similar to prior
studies [28].
TREC. A dataset of references from Medline database consisting of
titles and abstracts from 270 medical journals.
GENOMICS. Dataset with 470k strings based on Chromosome 20
of 50 individuals obtained from the personal genomes project. The
long DNA sequences are partitioned into shorter substrings of
length 5,000.

4.2 Portable Parallelism
In this section we demonstrate the utility of DPC++ in provid-
ing portable parallelism by providing a comparison between two
variants of OneJoin, namely, OneJoin-DPL-Xeon which uses only a

Eugenio Marinelli Raja Appuswamy
Ti

m
e

(s
)

10

100

1000

Threshold (K)

50 100 150 200

EmbedJoin OneJoin-DPL-Xeon
OneJoin-DPL-Gen9 OneJoin-TBB-Xeon
OneJoin-TBB-GEN9

Figure 2: Exec. time of EmbedJoin and OneJoin under GEN-
470KS dataset at various edit distance thresholds.

multicore CPU, and OneJoin-DPL-GEN9 which uses only an inte-
grated Intel® Gen9 GPU. The results in this section are obtained
from the Intel® DevCloud server. Figure 2 shows the execution
time of OneJoin and EmbedJoin for different edit distance thresh-
olds under GEN-470KS, our largest join dataset. We verified that
the result produced by OneJoin is identical to EmbedJoin in all
cases. The other join algorithms either failed to execute, or took
longer than 6 hours, as they were unable to handle the GEN-470KS
dataset. Results under TREC and UNIREF datasets are reported in
Section 4.5.

As shown in Figure 2, OneJoin-DPL-Xeon provides a 5.5 − 6.5×
speedup compared to EmbedJoin. Similarly, OneJoin-DPL-GEN9
uses the iGPU to provide a 4.5 − 5.5× speedup respectively com-
pared to EmbedJoin. The only difference in code between CPU and
GPU versions of OneJoin is the use of a different device selector
(gpu_selector versus cpu_selector), as the same kernel code is
compiled to different processor architectures. This result clearly
highlights the benefit of DPC++ in achieving portable parallelism
across different processor architectures.

Recall that both OneJoin and EmbedJoin consist of embedding,
LSH, and verification stages. In order to understand the relative
improvement in performance of each stage, we report the per-stage
execution time of EmbedJoin and OneJoin in Figure 3 while fixing
the edit distance value at 150. Recall that unlike embedding and
LSH, OneJoin always performs verification on the CPU in a multi-
threaded fashion. This is why Figure 3 has no GEN9 configuration
for the verification stage of OneJoin. It can be seen that there is
a big difference between the embedding and LSH stages. OneJoin
achieves a 12× reduction in embedding time using the iGPU, and a
20× reduction with the 6-core CPU over EmbedJoin. However, it
only achieves a 2.41× reduction in LSH time with the iGPU, and
2.79× reduction with the 6-core CPU.

Recall that the embedding stage in OneJoin is a single data-
parallel kernel, while the LSH stage is implemented using mul-
tiple kernels with intervening calls to oneDPL library. oneDPL
enables callers to pick the processor used for executing a library
call by changing a device-selection-policy parameter. Thus, the
OneJoin-DPL-GEN9 configuration invokes library implementations
optimized for the iGPU, while OneJoin-DPL-Xeon invokes CPU-
optimized implementations. Despite this, benchmarking revealed
that while the LSH kernels scaled well and contributed to only 10%

of total LSH execution time, calls to oneDPL accounting for the
remaining 90% under both CPU and GPU. On further investigation,
we found that oneDPL implementation of various tasks like sorting
and reduction were inferior to those provided by the purely-CPU-
based parallel algorithm library in Intel® Thread Building Blocks
(oneTBB). So we developed a new version of OneJoin by replacing
oneDPL with oneTBB. Note that by doing so, we lose the benefit
of being able to execute parallel algorithms on the GPU; the data-
parallel kernels written in DPC++ which form the “fork” stages of
OneJoin can still work on either CPU or GPU, but calls to oneTBB
during the “join” stages work only on the CPU.

Figure 3b presents a comparison of the execution time of the
LSH stage for both versions of OneJoin (oneDPL and oneTBB).
Clearly, OneJoin performs better with oneTBB than oneDPL, as
OneJoin-TBB-Xeon provides a 9× speedup, and OneJoin-TBB-GEN9
provides a 8× speedup over EmbedJoin for the LSH stage. Now,
returning back to Figure 2, we see that this improvement directly
translates into a reduction in overall execution time, as OneJoin-
TBB-GEN9 achieves a 10.5× speedup over EmbedJoin (versus 4.5×
with OneJoin-DPL-GEN9), and OneJoin-TBB-Xeon achieves a 12.5×
speedup over EmbedJoin (versus 5.5× with OneJoin-DPL-Xeon).
Given this difference, all the results reported henceforth for OneJoin
are based on oneTBB.

4.3 Cross-architecture Fork
One of the design aspects of OneJoin we described in Section 3.1.3
is cross-architecture fork, or its ability to run data-parallel kernels
simultaneously on multiple processors. Figure 4a shows the isolated
execution time of just the embedding kernel in four configurations
of OneJoin under the GEN-470KS dataset while fixing the edit
distance threshold at 150. Xeon-1C performs embedding on a single
CPU core. Xeon uses all 6 CPU cores. GEN9 performs embedding
on the iGPU. The results for Xeon and GEN9 are similar to those
shown in Figure 2. Finally, in Xeon+GEN9, the embedding kernel is
executed on both 6-core-CPU and iGPU, with work allocation being
performed on the fly using our sampling-based cost estimation
method.

Comparing single-threaded Xeon-1C in Figure 4a with equiva-
lent EmbedJoin in Figure 3a, we see that our optimized code base
accounts for a 3× reduction in embedding time. Comparing one-
core (Xeon-1C)with 6-core (Xeon) andGEN9 results in Figure 4a, we
see that oneAPI effectively parallelizes the embedding kernel across
multicore CPUs and iGPU. Finally, looking at Xeon+GEN9 result, we
see the benefit of cross-architecture fork, as OneJoin-Xeon+GEN9
is 1.3×/2× faster than its CPU-only/GPU-only counterparts.

Figure 4b shows the total execution time of EmbedJoin and One-
Join under the same four configurations and benchmark. Similar to
Figure 4a, we see that utilizing both devices simultaneously widens
the gap between OneJoin and EmbedJoin, as OneJoin-Xeon+GEN9
provides a 14× speedup over EmbedJoin compared to the 11×
speedup achieved by OneJoin-GEN9, and 13× speedup achieved by
OneJoin-Xeon. However, comparing Figure 4a and Figure 4b, we
see that improvements obtained for the embedding kernel do not
get translated into a corresponding reduction in overall execution
time. There are two reasons for this. First, cross-architecture fork
only optimizes the fork stages of OneJoin (kernels in embedding

OneJoin: Cross-Architecture, Scalable Edit Similarity Join for DNA Data Storage Using oneAPI
Ti

m
e

(s
)

0

75

150

225

300

Embedjoin OneJoin-GEN9 OneJoin-Xeon

12.319.1

287.3

(a) Embedding Phase

Ti
m

e
(s

)

0

55

110

165

220

Embedjoin OneJoin-GEN9 OneJoin-Xeon

2325

212

69
87

212

LSH DPL LSH TBB

(b) LSH Phase

Ti
m

e
(s

)

0

5

10

15

20

Embedjoin OneJoin-Xeon

4.3

17.7

(c) Verification Phase

Figure 3: Execution time breakdown of the three phases of OneJoin/EmbedJoin

Ti
m

e
(s

)

1

10

100

Xeon-1C GEN9 Xeon Xeon + GEN9

9,5
12,3

19,1

94,12

(a) Cross-arch. fork: Embedding time.

Ti
m

e
(s

)

1

10

100

1000

EmbedJoin Xeon-1C GEN9 Xeon Xeon + GEN9

38,941,549,6

180,5

519,8

(b) Cross-arch. fork: Total time.

Ti
m

e
(s

ec
)

0

5

10

15

20

25

Workload for CPU (%)

10 20 30 40 50 60 70 80 90

OneJoin-Xeon-GEN9 Automatic selection

(c) Sensitivity to workload division.

Figure 4: Cross-architecture fork evaluation.

and LSH). The join stages between data-parallel kernels based on
oneTBB, and the verification phases of OneJoin run entirely on the
CPU and do not benefit from cross-architecture fork. Second, the
Intel® Xeon CPU is much faster than the GEN9 iGPU as shown by
Figure 4a. As a result, data-parallel kernels running on the CPU
are assigned more data by our sampling-based work allocator to
ensure that the CPU and GPU are kept fully utilized.

To isolate the impact of work allocator, Figure 4c shows the
execution time of the embedding stage where we manually vary
work allocation. The dark circle shows the allocation automatically
picked up our allocator. Clearly, a balanced work allocation can
provide up to 50% reduction in time and our sampling-based alloca-
tor provides an optimal division of work. These cross-architecture
fork experiments demonstrate that DPC++ enables the execution
of a single-source data parallel kernel simultaneously on multiple
processor types.

4.4 Cross-Platform Parallelism
So far, we demonstrated the performance of OneJoin using Intel®
iGPU and CPU. In this section, we will present results from our lo-
cal server that is equipped with a 12-core CPU and a PCIe-atached,
NVIDIA dGPU. In order to run oneAPI on NVIDIA GPU, we used
CodePlay’s SYCL-for-CUDA extension that allows compiling ap-
plications written in DPC++ to run on NVIDIA dGPUs. In terms
of code, the main change required is the recompilation of OneJoin
with a modified Clang++–LLVM compilation infrastructure that
supports a CUDA backend.

Figure 5a shows the execution time of EmbedJoin and OneJoin
using the 12-core CPU or the NVIDIA dGPU for executing kernels
under the GEN-470KS dataset. While data-parallel kernels run on

the CPU or dGPU depending on the configuration in the fork stages,
note that we use the CPU-based Intel oneTBB in both cases for
executing various parallel algorithms in the join stages. Due to
limitations in the compilation infrastructure, it is not possible to
achieve cross-architecture fork across Intel® CPUs and NVIDIA
discrete GPUs as on date. Thus, we are unable to report results for
a mixed execution.

As can be seen in Figure 5a, OneJoin-dGPU provides a 21×
speedup over EmbedJoin. We can also see that OneJoin-dGPU pro-
vides performance comparable with the OneJoin-i9 despite the fact
that the CPU has 12 cores. Comparing this with the results from
Figure 4b, we see that dGPUs are much more effective than iGPUs
despite added overheads, like PCIe data transfers. To understand
the per-stage contribution to overall improvement, Figure 5b,5c
show the breakdown across embedding and LSH stages. We do
not show verification stage as it is executed entirely on the CPU
and provides a linear 12× speedup as expected. As shown by the
breakdown, the majority of the 21× improvement stems from the
reduction in embedding time, as OneJoin executes embedding 94×
faster than EmbedJoin with the NVIDIA dGPU, and 45× faster with
the 12-core CPU. In contrast, the LSH stage only benefits from
11–12× improvement due to the use of CPU-based oneTBB library
for parallel algorithms. Given that no code change was required to
get OneJoin to run on the NVIDIA dGPU, this result demonstrates
the cross-platform portability of DPC++.

4.5 Comparison with State-of-the-art Joins
In this section, we will present macrobenchmarks to compare
OneJoin to other state-of-the-art join algorithms under other join
datasets. All results reported in this section are obtained using our

Eugenio Marinelli Raja Appuswamy
Ti

m
e

(s
)

1

10

100

1000

EmbedJoin OneJoin-dGPU OneJoin-i9

21.821

490.9

(a) Total execution time.

Ti
m

e
(s

)

1

10

100

1000

EmbedJoin OneJoin-dGPU OneJoin-i9

5.7
2.8

238.7

(b) Embedding execution time.

Ti
m

e
(s

)

1

10

100

1000

EmbedJoin OneJoin-dGPU OneJoin-i9

14.416.5

237.1

(c) LSH Execution time.

Figure 5: Execution time of OneJoin with discrete GPUs.

Ti
m

e
(s

)

1

10

100

1000

Threshold (K)

10 20 30 40

embedjoin onejoin qchunk adaptjoin

(a) TREC

Ti
m

e
(s

)

1

10

100

1000

Threshold (K)

5 10 15 20 25

embedjoin onejoin qchunk adaptjoin

(b) UNIREF

Ti
m

e
(m

in
)

1

10

100

1000

10000

Dataset Size (Millions)

5 10 20

OneJoin-dGPU Starcode
OneJoin-Xeon

(c) OneJoin-based clustering vs Starcode.

Figure 6: (a,b) Execution time of join algorithms at various distance thresholds (K); (c) Onejoin versus starcode

local server and we use OneJoin configured to use the NVIDIA GPU
as the comparison target. Figures 6a,6b show the execution time of
various join algorithms under the other two join datasets described
in Section 4.1 as we vary the edit distance threshold. There are
two important observations to be made. First, there is clear differ-
ence between embedding-based (EmbedJoin, OneJoin) and exact
edit distance approaches (QChunk, AdaptJoin), especially at high
edit distance thresholds, as EmbedJoin and OneJoin consistently
outperform other algorithms under all benchmarks. This demon-
strates the potential of embedding and LSH to reduce the overhead
of exact edit distance computation, and validates the results ob-
tained by prior work on EmbedJoin [28]. Second, OneJoin provides
up to a 3.5×/5.3× speedup over EmbedJoin under TREC/UNIREF.
This improvement is lower than those reported under GEN-470KS
dataset due to the fact that although these datasets push other join
implementations to their scalability limits, they are not intensive
enough for OneJoin as the execution time of OneJoin under these
datasets is very short. OneJoin can handle much larger datasets and
we only report these results for completeness.

4.6 OneJoin for DNA Data Storage
Having separately evaluated OneJoin, we will now demonstrate
its utility for the task of read consensus in DNA data storage. We
will use two datasets, one simulated, and one obtained from real
DNA sequencing, to evaluate our OneJoin-driven read consensus
solution.

We generated the simulated dataset by loading 1MB TPC-H data
into a postgreSQL database. We used a data archival tool developed
in prior work to archive the database and encode it to generate
505,783 oligos, each with a length of 209 nucleotides. We then used

BBMap, a read simulator, to generate 5M, 10M, and 20M reads from
these original oligos using the Illumina error model that inserts
various substitution, insertion, and deletion errors in the reads.

Data OneJoin(%) Starcode(%)
OneJoin 5M 98.2 97.8
Starcode 10M 99.7 99.9
Starcode 20M 99.9 99.9

Table 2: Clustering accuracy of OneJoin and Starcode.

Figures 6c reports wall-clock execution time for our solution and
Starcode on our local server, with Starcode running on all 12 cores,
and OneJoin using the NVIDIA GPU for the fork stages and 12-core
CPU for oneTBB-based join stages. OneJoin-accelerated clustering
is 28×–46× faster than Starcode as dataset size increases from 5M to
20M. As the read coverage or the number of original oligos increases,
the overhead of edit distance computation in Starcode also increases
rapidly. Our solution, in contrast, substantially reduces the number
of edit-distance comparisons to identify similar reads due to em-
bedding and LSH, and is capable of exploiting cross-architecture
parallelism due to the use of oneAPI. The accuracy shown in Table 2
computed as 𝑛𝑢𝑚𝑏𝑒𝑟−𝑜 𝑓 −𝑜𝑙𝑖𝑔𝑜𝑠−𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑−𝑣𝑖𝑎−𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠

𝑛𝑢𝑚𝑏𝑒𝑟−𝑜 𝑓 −𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙−𝑜𝑙𝑖𝑔𝑜𝑠 , shows that
OneJoin is competitive with state-of-the-art in terms of accuracy.

In order to show that our solution is capable of fully recovering
data in a real-world setting, we use a dataset obtained from a previ-
ous published experimental study that encoded a 12KB postgreSQL
database to generate 404 oligos, synthesized DNA, and sequenced it
back using Illumina Novoseq 500 sequencer generating 19 million
reads, each of which is 91 nucleotides long. We used the Onejoin-
based read consensus solution to recover 403 oligos from the noisy

OneJoin: Cross-Architecture, Scalable Edit Similarity Join for DNA Data Storage Using oneAPI

reads. These recovered oligos matched the original oligos exactly.
On further inspection we found that the one missing oligo was cov-
ered by only one read. As a result the clustering algorithm classified
it as a noise point and dropped it. In spite of this, the decoder was
able to recover back the original database successfully due to the
use of repetition code during encoding. In terms of the execution
time, OneJoin dominated overall execution time, as it took 9 min-
utes to compute all similar pairs. Compared to this, the consensus
stage and the decoding stage complete in a few seconds, thanks to
the precomputed range query results produced by OneJoin.

To summarize, these results indicate that our OneJoin-based
read consensus solution enables end-to-end data decoding for DNA
storage inminutes instead of several hours on a single server, thanks
to the portable, cross-architecture parallelism provided by DPC++.

5 RELATEDWORK
Edit similarity join is a well-known and computationally intensive
problem. Several solutions have been designed based on a signature-
based approach to perform edit similarity join. AdaptJoin [25],
QChunk [17], VChunk [26], GramCount [10], PassJoin [15], ED-
Join [27], AllPair [3], FastSS [4], ListMerger [14] are examples of
this approach that consists of generating all substrings of a cer-
tain length and filtering them based on frequencies, positions and
contents. All these algorithms suffer from fundamental design limi-
tations that prevent their scalability under large edit distance thresh-
olds. Alternative approaches are represented by the tree-based al-
gorithm such as M-Tree [6], enumeration-based algorithm such
as PartEnum [1], and trie-based algorithm such as TrieJoin [24].
The main issue related to these algorithms is the fact that these are
not efficient for large datasets [13]. The DNA read consensus task
amplifies the scalability issues faced by these algorithms due to the
sheer scale of the dataset.

The closest to our work is the solution developed by Rashtchain
et al. [18] that proposes a new clustering algorithm specifically for
DNA storage. We are unable to directly compare our solution with
this work as this work is closed source. In addition to being open
source, our solution also has broader applicability, as OneJoin in
itself can be used for further research on edit similarity joins, and
our oneAPI implementation can be used for further research on
portable parallelism across heterogeneous hardware.

6 CONCLUSION
In this work, we highlighted the scalability issues in computing edit
similarity joins over large datasets in the context of DNA data stor-
age. We present OneJoin, a data-parallel join algorithm built using
DPC++ and oneAPI. We demonstrated that OneJoin can efficiently
exploit heterogeneous parallelism available on modern hardware
to provide up to 21× reduction in execution time compared to
EmbedJoin (Section 4.4). Using synthetic and real-world DNA stor-
age datasets, we also demonstrated that a OneJoin-enabled read
consensus solution can provide up to 46× reduction in execution
time, and thus, enable end-to-end data decoding in minutes using a
commodity server. We are making OneJoin source code 2 publicly
available to encourage further work on using oneAPI and DPC++

2https://github.com/Eug9/oneoligo.git

for developing cross-platform, cross-architecture operators for data
analytics engines.

We are exploring several avenues of future work. On the imple-
mentation front, we are investigating the use of more advanced
DPC++ features like Unified Shared Memory and nd_ranges for
further optimizing performance. We are also investigating the use
of CUDA interop to invoke CUDA library calls from DPC++. Doing
so will make it possible to move execution of parallel algorithms
in the join stages of OneJoin from CPU to NVIDIA dGPUs. On
the hardware front, we are extending our evaluation to cover new
GPUs, like the recently announced Intel® DG1, and our design to
cover spatial architectures (FPGA). On the application front, we are
investigating the utility of OneJoin in achieving read consensus
with long-read sequencers, like Oxford Nanopore.

7 ACKNOWLEDGMENTS
This work was partially funded by the European Union’s Horizon
2020 research and innovation programme, project OligoArchive,
under grant agreement No 863320.

REFERENCES
[1] A. Arasu, V. Ganti, and R. Kaushik. 2006. Efficient exact set-similarity joins. In

VLDB.
[2] Arturs Backurs and Piotr Indyk. 2015. Edit Distance Cannot Be Computed in

Strongly Subquadratic Time (Unless SETH is False). In Proceedings of the Forty-
Seventh Annual ACM Symposium on Theory of Computing. 51–58.

[3] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up
All Pairs Similarity Search. In Proceedings of the 16th International Conference on
World Wide Web (Banff, Alberta, Canada) (WWW ’07). Association for Comput-
ing Machinery, New York, NY, USA, 131–140. https://doi.org/10.1145/1242572.
1242591

[4] T. Bocek. 2007. Fast Similarity Search in Large Dictionaries.
[5] Diptarka Chakraborty, Elazar Goldenberg, and Michal Kouckỳ. 2016. Streaming

algorithms for embedding and computing edit distance in the low distance regime.
In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing.
712–725.

[6] P. Ciaccia, M. Patella, and P. Zezula. 1997. M-tree: An Efficient Access Method
for Similarity Search in Metric Spaces. In VLDB.

[7] Semiconductor Research Corporation. 2018. 2018 Semiconductor Synthetic Biol-
ogy Roadmap. https://www.src.org/program/grc/semisynbio/ssb-roadmap-2018-
1st-edition_e1004.pdf.

[8] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD’96). AAAI Press, 226–231.

[9] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In Proceedings of the 25th International Conference
on Very Large Data Bases (VLDB ’99). 518–529.

[10] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukr-
ishnan, and Divesh Srivastava. 2001. Approximate string joins in a database
(almost) for free. In VLDB 2001 - Proceedings of 27th International Conference on
Very Large Data Bases (VLDB 2001 - Proceedings of 27th International Conference
on Very Large Data Bases), Peter M. G. Apers, Paolo Atzeni, Richard T. Snodgrass,
Stefano Ceri, Kotagiri Ramamohanarao, and Stefano Paraboschi (Eds.). Morgan
Kaufmann, 491–500. 27th International Conference on Very Large Data Bases,
VLDB 2001 ; Conference date: 11-09-2001 Through 14-09-2001.

[11] IDC. 2013. Technology Assessment: Cold Storage Is Hot Again — Finding the
Frost Point. http://www.idc.com/getdoc.jsp?containerId=246732.

[12] Intel. [n.d.]. Cold Storage in the Cloud: Trends, Challenges, and Solu-
tions. http://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/cold-storage-atom-xeon-paper.pdf.

[13] Yu Jiang, Guoliang Li, Jianhua Feng, and Wen-Syan Li. 2014. String Similarity
Joins: An Experimental Evaluation. Proc. VLDB Endow. 7, 8 (April 2014), 625–636.
https://doi.org/10.14778/2732296.2732299

[14] Chen Li, Jiaheng Lu, and Yiming Lu. 2008. Efficient Merging and Filtering Algo-
rithms for Approximate String Searches. 2008 IEEE 24th International Conference
on Data Engineering (2008), 257–266.

[15] Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. 2011. Pass-Join: A
Partition-Based Method for Similarity Joins. Proc. VLDB Endow. 5, 3 (Nov. 2011),
253–264. https://doi.org/10.14778/2078331.2078340

https://doi.org/10.1145/1242572.1242591
https://doi.org/10.1145/1242572.1242591
https://www.src.org/program/grc/semisynbio/ssb-roadmap-2018-1st-edition_e1004.pdf
https://www.src.org/program/grc/semisynbio/ssb-roadmap-2018-1st-edition_e1004.pdf
http://www.idc.com/getdoc.jsp?containerId=246732
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cold-storage-atom-xeon-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cold-storage-atom-xeon-paper.pdf
https://doi.org/10.14778/2732296.2732299
https://doi.org/10.14778/2078331.2078340

Eugenio Marinelli Raja Appuswamy

[16] Eugenio Marinelli and Raja Appuswamy. 2021. XJoin: Portable, Parallel Hash
Join across Diverse XPU Architectures with OneAPI. In Proceedings of the 17th
International Workshop on Data Management on New Hardware (DaMoN). Article
11, 5 pages. https://doi.org/10.1145/3465998.3466012

[17] Jianbin Qin, Wei Wang, Yifei Lu, Chuan Xiao, and Xuemin Lin. 2011. Efficient
Exact Edit Similarity Query Processing with the Asymmetric Signature Scheme.
In Proceedings of the 2011 ACM SIGMOD International Conference on Management
of Data (Athens, Greece) (SIGMOD ’11). Association for Computing Machinery,
New York, NY, USA, 1033–1044. https://doi.org/10.1145/1989323.1989431

[18] Cyrus Rashtchian, Konstantin Makarychev, Miklos Racz, Siena Ang, Djordje
Jevdjic, Sergey Yekhanin, Luis Ceze, and Karin Strauss. 2017. Cluster-
ing Billions of Reads for DNA Data Storage. In Advances in Neural In-
formation Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran
Associates, Inc., 3360–3371. https://proceedings.neurips.cc/paper/2017/file/
ab7314887865c4265e896c6e209d1cd6-Paper.pdf

[19] James Reinders, Ben Ashbaugh, James Brodman, Michael Kinsner, John Penny-
cook, and Xinmin Tian. 2020. Data Parallel C++ (1st ed.). Apress Open.

[20] David Reinsel, John Gantz, and John Rydning. 2017. Data Age 2025: The Evolution
of Data to Life-Critical. https://www.seagate.com/files/www-content/our-story/
trends/files/Seagate-WP-DataAge2025-March-2017.pdf. (2017).

[21] SNIA. 2017. 100 Year Archive Requirements Survey 10 Years Later.
https://www.snia.org/sites/default/files/SDC/2018/presentations/etc/Rivera_

Thomas_SNIA_100-Year_Archive_Survey_2017.pdf.
[22] Horison Information Strategies. 2015. Tiered Storage Takes Center Stage. http:

//horison.com/publications/tiered-storage-takes-center-stage/.
[23] Eduard Valera Zorita, Pol Cuscó, and Guillaume Filion. 2015. Starcode: Sequence

clustering based on all-pairs search. Bioinformatics (Oxford, England) 31 (01 2015).
https://doi.org/10.1093/bioinformatics/btv053

[24] Jiannan Wang, G. Li, and Jianhua Feng. 2010. Trie-join. Proceedings of the VLDB
Endowment 3 (2010), 1219 – 1230.

[25] Jiannan Wang, Guoliang Li, and Jianhua Feng. 2012. Can we beat the prefix
filtering?: an adaptive framework for similarity join and search. In Proceedings
of International Conference on Management of Data (SIGMOD). 85–96. http:
//doi.acm.org/10.1145/2213836.2213847

[26] Wei Wang, Jianbin Qin, Chuan Xiao, Xuemin Lin, and Heng Tao Shen. 2013.
VChunkJoin: An Efficient Algorithm for Edit Similarity Joins. IEEE Transactions
on Knowledge and Data Engineering 25, 8 (Aug. 2013), 1916–1929. https://doi.
org/10.1109/TKDE.2012.79

[27] Chuan Xiao, Yi Wang, and Xuemin Lin. 2008. Ed-Join: An Efficient Algorithm
for Similarity Joins With Edit Distance Constraints. PVLDB 1 (08 2008), 933–944.
https://doi.org/10.14778/1453856.1453957

[28] Haoyu Zhang and Qin Zhang. 2017. Embedjoin: Efficient edit similarity joins via
embeddings. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 585–594.

https://doi.org/10.1145/3465998.3466012
https://doi.org/10.1145/1989323.1989431
https://proceedings.neurips.cc/paper/2017/file/ab7314887865c4265e896c6e209d1cd6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/ab7314887865c4265e896c6e209d1cd6-Paper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.snia.org/sites/default/files/SDC/2018/presentations/etc/Rivera_Thomas_SNIA_100-Year_Archive_Survey_2017.pdf
https://www.snia.org/sites/default/files/SDC/2018/presentations/etc/Rivera_Thomas_SNIA_100-Year_Archive_Survey_2017.pdf
http://horison.com/publications/tiered-storage-takes-center-stage/
http://horison.com/publications/tiered-storage-takes-center-stage/
https://doi.org/10.1093/bioinformatics/btv053
http://doi.acm.org/10.1145/2213836.2213847
http://doi.acm.org/10.1145/2213836.2213847
https://doi.org/10.1109/TKDE.2012.79
https://doi.org/10.1109/TKDE.2012.79
https://doi.org/10.14778/1453856.1453957

	Abstract
	1 Introduction
	2 Background
	2.1 Embedding
	2.2 LSH for Hamming Distance
	2.3 EmbedJoin

	3 Design and Implementation
	3.1 Data-Parallel Edit Similarity with OneJoin
	3.2 Read Consensus with OneJoin

	4 Evaluation
	4.1 Experimental Setup
	4.2 Portable Parallelism
	4.3 Cross-architecture Fork
	4.4 Cross-Platform Parallelism
	4.5 Comparison with State-of-the-art Joins
	4.6 OneJoin for DNA Data Storage

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

