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Abstract
End-to-end approaches to anti-spoofing, especially those which
operate directly upon the raw signal, are starting to be com-
petitive with their more traditional counterparts. Until recently,
all such approaches consider only the learning of network pa-
rameters; the network architecture is still hand crafted. This
too, however, can also be learned. Described in this paper is
our attempt to learn automatically the network architecture of a
speech deepfake and spoofing detection solution, while jointly
optimising other network components and parameters, such as
the first convolutional layer which operates on raw signal in-
puts. The resulting raw differentiable architecture search sys-
tem delivers a tandem detection cost function score of 0.0517
for the ASVspoof 2019 logical access database, a result which
is among the best single-system results reported to date.

1. Introduction
End-to-end (E2E) solutions are attracting growing attention
across a broad range of speech processing tasks [1, 2, 3]. In
contrast to the more common approach whereby front-end fea-
ture extraction and the back-end classifier or network are sep-
arately optimised, E2E solutions allow for pre-processing and
post-processing components to be combined within a single net-
work. With both components being encapsulated within a single
model, front-end and back-end components can be jointly op-
timised. In this case the front-end might have a better chance
of capturing more discriminative information for the task in
hand [4, 5, 6], whereas the back-end might be able to function
more effectively upon the information to produce more reliable
scores.

Many solutions to anti-spoofing for automatic speaker ver-
ification have focused upon the design of deep neural net-
work (DNN) based back-end classifiers. Most combine fixed,
hand-crafted features, usually in the form of some spectro-
temporal decomposition [7, 8], with a convolutional neural net-
work (CNN) to learn higher-level representations. The liter-
ature shows that the use of specially designed network mod-
ules [9, 10, 11] and loss functions [12, 13, 14] generally leads
to better performing models. Still, their potential is fundamen-
tally dependent upon the information captured in the initial fea-
tures; information lost in initial feature extraction cannot be re-
covered. Several works have also shown that the performance
of a given model can vary substantially when fed with differ-
ent features [9, 10, 12]. These observations point toward the
importance of learning and optimising not just the higher-level
representation, but also the initial features, in unison with the
classifier.

E2E solutions have been a focus of our research group for
some time [15]. Fundamental to this pursuit is operation upon

the raw signal. A recent attempt [5] adopted the RawNet2 ar-
chitecture [16, 17]. Using a bank of sinc-shaped filters, it oper-
ates directly upon the raw audio waveform through time-domain
convolution, with the remaining network components being op-
timised in the usual way. Results show that systems that use
automatically learned features are competitive and complemen-
tary to systems that use hand crafted features. While these find-
ings are encouraging, improvements to performance are perhaps
only modest. Despite the emphasis upon the E2E learning of
both features and classifier, one aspect of our model remains
hand-crafted [5]. This is also the case for every E2E solution
proposed thus far [4, 6, 16]; the network parameters are learned,
but the network architecture is still hand-crafted.

We have hence explored automatic approaches to learn the
network architecture as well. Our first attempt [18] was based
upon a specific variant of differentiable architecture search [19]
known as partially-connected differentiable architecture search
(PC-DARTS) [20]. Architecture search is performed using a
pair of core network components referred to as cells. Cells are
defined by both architecture parameters and network parame-
ters, both of which are jointly optimised during the first of two
stages referred to as the architecture search stage.

We showed [18] that PC-DARTS learns more compact
models that are nonetheless competitive with the state of the art.
As the very first attempt to harness the power of differentiable
architecture search for anti-spoofing, this work was performed
with hand-crafted features. Our latest work has hence sort to
combine architecture search with fully E2E learning. In this pa-
per, we present Raw PC-DARTS. It is the first E2E speech deep-
fake and spoofing detection solution which operates directly
upon the raw waveform while allowing for the joint optimisa-
tion of both the network architecture and network parameters.

The remainder of the paper is organised as follows. Sec-
tion 2 introduces the related works. The proposed system is
described in Section 3. Reported in Sections 4 and 5 are our
experiments and results. Our conclusions are reported in Sec-
tion 6.

2. Related works
In this section we introduce the two stages of DARTS-based
NAS solutions [19, 20, 21], namely the architecture search stage
using partial connections [20] and the train from scratch stage.

The architecture search stage aims to determine a base com-
ponent or building block upon which the full model is con-
structed. This base component is referred to as a cell. The term
architecture refers to the configuration of nodes and intercon-
nections within the cell.

As shown in Fig. 1, each cell has a pair of inputs: x(1) and
x(2). Cells have a single output, denoted by x(N) (N = 5 in
Fig. 1). Nodes in between the inputs and output are referred
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Figure 1: An illustration of architecture search: (a) a neural cell
with N = 5 nodes; (b) an illustration of the candidate opera-
tions performed on each edge that are optimised during archi-
tecture search; (c) resulting optimised cell with 2 inputs to each
intermediate node.

to as intermediate nodes (x(3) and x(4) in Fig. 1). Architec-
ture search involves the selection of candidate operations o from
search space O (solid coloured lines). Operations between in-
termediate nodes and the output are fixed to concatenation oper-
ations (solid black lines). Each intermediate node is calculated
according to:

x(j) =
∑

i<j

o(i,j)
(
x(i)
)

(1)

where o(i,j) is the operation performed on edge (i, j) connect-
ing x(i) to x(j). During the architecture search stage, the full
set of operation candidates are active, with each being assigned
a weight α(i,j)

o . The operation performed on edge (i, j) is then
defined as:

ō(i,j)
(
x(i)
)

=
∑

o∈O

exp
(
α
(i,j)
o

)

∑
o′∈O exp

(
α
(i,j)

o′

) o
(
x(i)
)

(2)

When architecture search is complete, only the single operation
with the highest weight α(i,j)

o is retained. All other operations
are discarded; their weights are set to zero.

Because the set of operation weights α = {α(i,j)} are
learnable, the search process is a bi-level optimisation problem.
We seek to determine the weight parameters α which minimise
the validation loss Lval, while the set of network parameters ω
is determined by minimising the training loss Ltrain(ω,α):

min
α
Lval(ω

∗,α)

s.t. ω∗ = argmin
ω

Ltrain(ω,α)
(3)

The bi-level optimisation process is demanding in terms
of GPU memory and computation. Partial channel connec-
tions [20] were proposed as a solution to improve efficiency,
reducing demands on both computation and memory. A bi-
nary masking operator S(i,j) is used in partially connected (PC)
DARTS in order to reduce the complexity of (2). The number
of active channels in x(i) is reduced through either selection
(marked as S(i,j) = 1) or masking (marked as S(i,j) = 0)
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Figure 2: An illustration of train from scratch stage: normal
cells (blue) and reduction cells (yellow) are stacked to form a
deeper network.
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where � indicates element wise multiplication. In practice,
only a number 1/KC of channels in x(i) are selected. The fac-
tor KC is set as a hyper-parameter and acts to trade off perfor-
mance (smaller KC ) for efficiency (larger KC ).

After architecture search, the cells are concatenated mul-
tiple times (Fig. 2) in similar fashion to a ResNet architecture
to produce a deeper, more complex model before being further
optimised.

3. Raw PC-DARTS

In this section, we describe the proposed Raw PC-DARTS ap-
proach. The model structure is detailed in Table 1. We describe
the bank of front-end sinc filters, the application of filter mask-
ing, the modifications made to the back-end classifier design
and base cell architecture, embedding extraction and the loss
function.

3.1. Sinc filters and masking

The input waveform is fixed to a duration of 4 seconds (16000×
4 samples) either by concatenation or truncation of source audio
data. Feature extraction is performed using a set of C sinc fil-
ters [1]. Each filter performs time-domain convolution upon the
input waveform. The impulse response of each filter is defined
according to:

g[n, f1, f2] = 2f2sinc(2πf2n)− 2f1sinc(2πf1n) (5)

where f1 and f2 are the cut in and cut off frequencies, and
sinc(x) = sin(x)/x is the sinc function. The cut in and cut off
frequencies can be initialised according to any given frequency
scale. Both f1 and f2 are learnable model parameters, though
we consider both learnable and fixed configurations.

Filter masking is applied to mask a number of the sinc fil-
ters. This is akin to channel drop-out [22, 23] and frequency
masking [13, 24, 25] and acts to encourage the learning of bet-
ter generalised representations. In practice, sinc filters in the
range of [C1, C2) are set to zero (masked), where C1 is the first
masked filter selected at random andC2 = C1+f . The number
of masked filters f is chosen from a uniform distribution [0, F ),
where F is a pre-defined maximum value. After f is generated,
C1 is then chosen from a uniform distribution [0, C − f).
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Table 1: The proposed network structure. Each cell receives
outputs of its two previous cells/layers. Conv(k, s, c) stands for
a convolutional operation with kernel size k, stride s and output
channel c. BN refers to batch normalisation.

Layer Input:64000 samples Output shape
Conv(128, 1, 64)

Sinc Filters Maxpooling(3) (21290, 64)
BN & LeakyReLU

Conv(3, 2, 64)
Conv 1 BN & LeakyReLU (10645, 64)

Normal Cells





BN & LeakyReLU
Operations

Maxpooling(2)



× 2 (2661,256)

BN & LeakyReLU
Expand Cell Operations (1330, 512)

Maxpooling(2)

Normal Cells





BN & LeakyReLU
Operations

Maxpooling(2)



× 2 (332, 512)

BN & LeakyReLU
Expand Cell Operations (166, 1024)

Maxpooling(2)

Normal Cells





BN & LeakyReLU
Operations

Maxpooling(2)



× 2 (41, 1024)

GRU GRU(1024) (1024)
Embedding FC(1024) (1024)

Output Score P2SActivationLayer(2) (2)

3.2. Search space and cell architectures

In contrast to the approach described in [18] where input fea-
tures can be seen as a 2D image, operations in Raw PC-DARTS
are performed directly upon the raw time-domain waveform.
Thus, the search spaceO is designed based on 1D convolutional
operations, which includes: standard convolution and dilated
convolution with kernel size {3, 5}; max pooling and average
pooling with kernel size {3}; skip connections; no connections.

The original DARTS approach searches for the architec-
tures of two types of cells, namely a normal cell and a reduction
cell. The model is formed by stacking these cells sequentially,
with the reduction cells being placed at 1

3
and 2

3
of the total net-

work depth. While the normal cell preserves the feature map
dimension, the reduction cell reduces the dimension by one-
half, while the number of channels is doubled. A global average
pooling layer is then used after the stacked network to extract
embeddings.

This stacked cell design works well for spectro-temporal
representations since their dimensions are close to those used
typically in image classification tasks to which DARTS was
first applied [26, 27]. For speech classification tasks and for
solutions that operate upon raw inputs, however, the feature di-
mension remains large at the stacked cell output and the use of
global pooling will result in the substantial loss of information.
While a larger number of reduction cells can be added manually
to help reduce the feature dimension, this would defeat the pur-
pose of searching the architecture automatically. The introduc-
tion of each additional reduction cell also doubles the number
of channels, which in turn increases prohibitively both compu-
tational complexity as well as demands upon GPU memory.

To address this problem in Raw PC-DARTS, we apply max-
pooling to each cell output to reduce the feature dimension by
one-half. This simple, yet efficient solution helps the model
to learn a more compact, high-level representation, without in-
creasing the number of channels, thereby reducing computa-
tional complexity and demands upon GPU memory. An added
benefit is that the same architecture depth and initial number
of channels can be used for both architecture search as well as
train from scratch stages. The so-called depth gap [21, 28] is
therefore avoided, where the searched operations may not fit the
deeper network in the second stage due to the depth mismatch
between architecture search and train from scratch stages. Thus,
the cells used in Raw PC-DARTS are referred to as a normal
cell and an expand cell. Both cells halve the input feature di-
mension, whereas only the expand cell doubles the number of
channels. Expand cells are placed at the same network depth as
reduction cells in the original DARTS approach.

3.3. Embedding extraction and loss function

Frame-level representations produced by the final cell are fed
to a gated recurrent unit (GRU) layer to obtain utterance-level
representations. These representations are then fed to a fully
connected layer which extracts the embedding. We use mean-
square error (MSE) for P2SGrad [12] as the loss function. An
activation layer is first applied to calculate the cosine distance
cos θ between the input embedding and the class weight. As
in [29], this step is hyper-parameter-free, which reduces the sen-
sitivity of margin-based softmax towards its scale and angular
margin parameter settings, thus giving relatively consistent re-
sults. The network loss is the MSE between cos θ and the target
class label. Scores used for performance evaluation are cos θ
for the bona fide class.

4. Experiments
4.1. Database and metrics

All experiments were performed using the ASVspoof 2019
Logical Access (LA) database [30] which comprises three in-
dependent partitions: train, development and evaluation. Each
partition is used in the same way reported in [18]. During ar-
chitecture search, network parameters are updated using 50%
of the bona fide utterances and 50% of the spoofed utterances
in the training partition. Remaining data is used to update ar-
chitecture parameters. The cell architectures are selected from
those which give the best classification accuracy for the full de-
velopment partition. During the train from scratch stage, all net-
work parameters, except those of the first convolutional layer,
are updated using the full training partition and the best model
is selected according to that which gives the best classification
accuracy for the full development partition. We report results
according to two different metrics: the pooled minimum nor-
malised tandem detection cost function (min-tDCF) [31]; the
pooled equal error rate (EER).

4.2. Implementation details

We experimented with 3 different sinc filter frequency scales:
Mel, inverse-Mel and linear [5]. We tested two settings in each
case, namely fixed and learnable. Fixed scales are set and left
unchanged for both architecture search and train from scratch
stages. Learnable scales are initialised in the same way, but
the configuration is updated during architecture search. They
are then fixed and left unchanged during the train from scratch
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stage. We also tested a randomly initialised, learnable convolu-
tion block denoted Conv 0, in place of sinc filters. The kernel
size, stride and the number of output channels for the Conv 0
system are set to the same as that of systems that use sinc fil-
ters. The maximum number of masked filters is set to F = 16.

Following [18], the number of nodes in each cell is fixed
to N = 7 and the number of intermediate node inputs is fixed
to 2. Models comprise 8 cells (6 normal cells and 2 expand
cells) with C = 64 initial channels in both stages. During ar-
chitecture search, we perform 30 epochs of training. In the first
10 designated warm-up epochs, only network parameters are
updated. Both architecture parameters and network parameters
are updated in the subsequent 20 epochs. In all cases, the batch
size is set to 14 and learning is performed using Adam optimisa-
tion. Architecture parameters are updated using a learning rate
of 6e-4 and a weight decay of 0.001. Network parameters are
updated using a learning rate of 5e-5. Partial channel selection
is performed with a value of KC = 2. During the train from
scratch stage, all models are trained for 100 epochs with a batch
size of 32. The initial learning rate of 5e-5 is annealed down to
2e-5 following a cosine schedule.

All models reported in this paper are trained once with
the same random seed on a single NVIDIA GeForce RTX
3090 GPU. Architecture search takes approximately 21.5 hours,
whereas the train from scratch process takes approximately 9.5
hours. Results are reproducible with the same random seed and
GPU environment using the implementation available online1.

5. Results
First we report a set of experiments which assess the perfor-
mance of Raw PC-DARTS when using different first layer sinc
filter scales. Next, we present a comparison of performance to
existing state-of-the-art solutions. Finally, we present an anal-
ysis of generalisability in terms of performance stability across
different spoofing attacks.

5.1. Raw PC-DARTS with different sinc scales

Table 2 shows results in terms of both the min t-DCF and EER
for the ASVspoof 2019 LA evaluation partition. Results are
shown for four different sinc scale configurations: Mel; inverse-
Mel; linear and with randomly initialised, learnable convolution
blocks — Conv 0. With the exception of Conv 0, results in each
case are shown for both fixed and learnable configurations.

The lowest min t-DCF of 0.0517 (EER of 1.77%) is ob-
tained using fixed Mel scale sinc filters. For both inverse-Mel
and linear scales, learnable configurations give better results
than fixed configurations, with the second best result with a min
t-DCF of 0.0583 (2.1%) being achieved using a linear scale.
While the Conv 0 system achieves a respectable EER of 2.49%,
the min t-DCF of 0.0733 is notably worse than that of the better
performing configurations.

The cell architectures for the best configuration (Mel-
Fixed) is illustrated in Fig. 3. We observed that, even though
architecture parameters are randomly initialised, after several
warm-up epochs, those for dilated convolution operations tend
to dominate. This may indicated that, compared to other can-
didate operations within the search space, dilated convolutions
contribute more to representation learning when applied to raw
waveforms. Dilated convolutions act to increase the receptive
field [6, 32, 33]. The use of greater contextual information then
helps to improve performance.

1https://github.com/eurecom-asp/raw-pc-darts-anti-spoofing

Table 2: EER results for the ASVspoof 2019 LA database, eval-
uation partition. Results shown for different Raw PC-DARTS
setups using different first layer sinc scale initialisations.

Fixed Learnable
Type min-tDCF EER min-tDCF EER
Mel 0.0517 1.77 0.0899 3.62
Inverse-Mel 0.0700 3.25 0.0655 2.80
Linear 0.0926 3.29 0.0583 2.10
Conv 0 × × 0.0733 2.49
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Figure 3: An illustration of the normal (a) and expand (b) cells
produced by the architecture search stage for the Mel-Fixed
Raw PC-DARTS configuration.

5.2. Comparison to competing systems

Table 3 shows a comparison of results for the two best perform-
ing Raw PC-DARTS systems to that of the top-performing sys-
tems reported in the literature2. Among the illustrated systems,
four operate upon raw inputs, including the top two systems, the
first of which is the Res-TSSDNet system reported in [6] and the
second of which is the proposed Raw PC-DARTS. The fourth
system which operates on the raw waveform is the RawNet2
system reported in [5]. It also uses a first layer of sinc filters,
GRU and fully connected layer for embedding extraction.

These results point toward the competitiveness of solutions
that operate upon the raw waveform but also show that solutions
whose cell architectures are learned automatically can perform
almost as well or better that those that are hand-crafted.

2Number of learnable parameters and the decomposed EER results
for Res-TSSDNet and LCNN-LSTM-sum were obtained using open-
source codes available online. Those for Capsule Network were pro-
vided by the authors of [34], those for ResNet18-GAT and RawNet2
were provided by the authors of [5, 11].
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Table 3: A performance comparison between proposed models and competing state-of-the-art systems reported in the literature. Results
for the ASVspoof LA evaluation partition.

Systems Features min-tDCF EER Params Worst attack Worst EER

Res-TSSDNet [6] waveform 0.0482 1.64 0.35M A17 6.01
Raw PC-DARTS Mel-F waveform 0.0517 1.77 24.48M A08 4.96
ResNet18-LCML-FM [13] LFB 0.0520 1.81 - A17 6.19
LCNN-LSTM-sum [12] LFCC 0.0524 1.92 0.28M A17 9.24
Capsule Network [34] LFCC 0.0538 1.97 0.30M A17 3.76
Raw PC-DARTS Linear-L waveform 0.0583 2.10 24.40M A08 6.23
ResNet18-OC-Softmax [14] LFCC 0.0590 2.19 - A17 9.22
Res2Net [10] CQT 0.0743 2.50 0.96M - -
ResNet18-AM-Softmax [14] LFCC 0.0820 3.26 - A17 13.45
ResNet18-GAT-T [11] LFB 0.0894 4.71 - A17 28.02
ResNet18-GAT-S [11] LFB 0.0914 4.48 - A17 21.74
PC-DARTS [18] LFCC 0.0914 4.96 7.51M A17 30.20
RawNet2 [5] waveform 0.1294 4.66 25.43M A18 16.30

5.3. Complexity

The number of network parameters for the systems illustrated
in Table 3 is shown in column 5 (where such numbers are
available). The two best Raw PC-DARTS architectures have
in excess of 24M parameters. For the Mel-Fixed configura-
tion, 77% (18.89M) of the learnable network parameters cor-
respond to GRU layers wereas only 18% (4.52M) correspond
to the stacked cells. The RawNet2 system, which also uses a
GRU, has over 25M parameters. Other systems have far fewer
parameters, including the top Res-TSSDNet system which has
0.35M parameters. It uses ResNet-style 1D convolution blocks
and 3 FC layers, without GRUs. The use of dilated convolutions
helps to control network complexity while increasing the recep-
tive field [6]. Though the LCNN-LSTM-sum system uses two
bidirectional LSTM layers, which is normally computationally
expensive, use of a hidden size of 48 nonetheless means that
the complexity is the lowest of all illustrated systems. The ad-
ditional complexity of the Raw PC-DARTS architecture is cur-
rently a limitation in the approach, yet a compromise that might
be acceptable given that learning and optimisation is a one-step
process requiring comparatively little human effort.

5.4. Worst case scenario

Generalisation has been focus of anti-spoofing research since
the inception of the ASVspoof initiative. It is well known
that even top-performing systems can struggle to detect the full
range of spoofing attacks [35]. There is hence interest in min-
imising not just pooled performance, but also that for the so-
called worst case scenario which, for the ASVspoof 2019 LA
database, is generally the infamous A17 attack.

The worst case attack and corresponding EER for each sys-
tem is shown in columns 6 and 7 of Table 3. Here we see
a distinct advantage of systems that operate upon raw inputs.
The Res-TSSDNet [6] and both Raw PC-DARTS systems have
among the lowest worse case EERs. This observation indi-
cates that the waveform based systems can capture discrimina-
tive artefacts that are missed by systems that use hand-crafted
inputs. Were an adversary to discover the attacks to which a
system is most vulnerable and exploit only attacks of this na-
ture, then the Raw PC-DARTS countermeasures would offer the
second-best protection among all competing systems.

6. Conclusion
In this paper, we proposed an end-to-end differentiable archi-
tecture search approach to speech deepfake and spoofing detec-
tion, named Raw PC-DARTS. We show that the components
of a deep network model, including pre-processing operations,
network architecture and parameters, can all be learned auto-
matically from raw waveform inputs and that the resulting sys-
tem is competitive with the state of the art.

While the best performance is obtained using a fixed front-
end, rather than with a learnable configuration, the latter is only
marginally behind, while both systems give among the best per-
formance reported to date for the ASVspoof 2019 logical ac-
cess database. The use of gated recurrent units means that the
resulting models are, however, substantially more complex than
competing systems and may exhibit some redundancies. While
it may be possible to reduce redundancy, and while the results
reported in the paper are the first to show the genuine poten-
tial of learned architectures, further work to tackle complexity
is required if they are to be competitive when computational
capacity is limited and a design criteria, e.g. for embedded ap-
plications. One avenue for future research in this direction is to
evaluate the replacement of gated recurrent units, with a number
of parameters in the millions, with concatenated fully connected
layers with orders of magnitude fewer parameters.

We also observe that the Raw PC-DARTS solution gen-
eralises better to unseen forms of spoofing attacks than their
hand-crafted counterparts. Performance for the worst case A17
attack is notably better than that for competing systems. We
are currently working to understand what information or cues
missed by handcrafted solutions are captured successfully by
fully learned solutions. With answers to these questions, we
may be able to combine the benefits of both in order to improve
reliability further while also protecting complexity.
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