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Abstract

This paper presents a novel view-based approach to quantify and re-
produce facial expressions, by systematically exploiting the degrees of free-
dom allowed by a realistic face model. This approach embeds e�cient
mesh morphing and texture animations to synthesize facial expressions.
We suggest using eigenfeatures, built from synthetic images, and design-
ing an estimator to interpret the responses of the eigenfeatures on a facial
expression in terms of animation parameters.

Keywords: Face cloning, facial expressions, eigenfeatures, animation,MPEG-4.

1 Introduction

Being able to analyze the facial expressions of a human face in a video se-
quence and reproduce them on a synthetic head model using a compact set of
Face Animation Parameters (FAP) is of tremendous importance for many mul-
timedia applications, like model-based coding, virtual actors, human-machine
communication, interactive environments, video-telephony and virtual telecon-
ferencing [1].

�this work is part of his Ph.D. research thesis at the Institut Eur�ecom
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In the literature, three general analysis and animation techniques can be
found to perform this task:

(i) feature-based techniques and animation rules: these methods are
based on parametric face models which are animated by a few parame-
ters directly controlling the properties of facial features, like the mouth
aperture and curvature, or the rotation of the eye-balls. The analysis
technique consists in measuring some quantities on the user's face, for in-
stance the size of the mouth area, by using blobs, snakes or dot tracking.
Some animation rules translate these measurements in terms of animation
parameters [2, 3, 4, 5]. These methods have the advantage of being fast
but they are not very precise given the rough nature of the analyzed in-
formation. Furthermore, most of them require some markers of makeup
to highlight the facial features of interest for the analysis algorithms;

(ii) motion-based techniques and wireframe adaptation: motion infor-
mation, computed on the user's face, is interpreted in terms of displace-
ments of the face model wireframe, via a feedback loop. The face model
can be either parametric or muscle-based [6, 7, 8]. These techniques have
proved to be very precise, especially when a realistic face model is used.
However, they are generally slow, as they are iterative: all degrees of
freedom in the 3D mesh induced by animation parameters have to be lin-
earized in the image plane to interpret the motion �eld, and this operation
is repeated several times for each analyzed image until some convergence
of the FAPs is obtained. Another limitation occurs when the face model
has no texture attached to the mesh. In this case, the analysis algorithm
is "blind", and has no way to ground the face model to the real face,
sometimes failing to track the user;

(iii) view-based techniques and key-frame interpolation: face anima-
tion is realized by interpolating the wireframe between several prede�ned
con�gurations (key-frames) that represent some extreme facial expressions.
The di�culty of this approach is to relate the performer's facial expressions
to the key-frames, and �nd the right interpolation coe�cients. This is gen-
erally done by view-based techniques, which use appearance models of the
distribution of pixel intensities around the facial features to characterize
the facial expressions: in [9, 6], template-matching algorithms compute
correlation scores with examples found in a database, and interpolation
networks (a generalization of neural networks) produce the interpolation
coe�cients from the correlation scores, whereas [10] directly uses neural
networks.

Although view-based techniques and key-frame interpolation are quite intu-
itive, they su�er from three di�culties implied by the training of the appearance
models of the real face. Firstly, the appearance models have to be carefully de-
signed to take into account the coupling between the head pose (the 3D position
and orientation of the user's face) and the facial expressions. (For instance, if
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the performer nods his head downward, his mouth will be curved, and this
could be interpreted as a smile). Another way to state this limitation is that
the training examples showing the user must be precisely geometrically regis-
tered. Secondly, the examples used to train the system must be closely related
to the corresponding key-frame; the user must carefully control the intensity of
his facial expressions according to the synthetic key-frames during the training
phase. This requirement is the most di�cult for the user to meet as the face
model often lacks realism and cannot be strictly mimicked by a human being.
And thirdly, the training database should contain a very large number of real
examples and key-frames to cover all degrees of freedom permitted by the syn-
thetic face model. This ideal database requires a user to perform thousands of
facial expressions, which is in fact impractical. Needless to say, implementing
these analysis and synthesis algorithms with a real person to train a cloning
system is a very empiric task.

In this article we describe a new view-based approach where, by using image
analysis techniques, we represent facial expressions in terms of animation param-
eters. To overcome the previously stated limitations for view-based techniques,
we suggest using a highly realistic 3D head model (i.e. speaker dependent)
to generate both the training images and the key-frames [11]. The bene�ts
of replacing a real person by his/her clone during the training phase is that
the synthezised database is automatically calibrated, in terms of that geometry
and intensity of the facial expressions. The available number of examples and
key-frames is also virtually unlimited for sampling the visual space of face ex-
pressions across various poses, via the face animation parameters. In Sections
2 and 3 respectively, we explain how our system synthesizes these poses, and
how a principal component analysis is performed over the set of training images
to extract a small amount of vectors which optimally span the training space.
This latter task saves computing time and memory resources for the overall
process. The user's facial expression is characterized in the optimally spanned
space through a simple correlation mechanism. In Section 4, we deal with de-
coupling the pose and the expressions in the correlation scores and relating the
analysis to the face animation parameters. Since all degrees of freedom permit-
ted by the synthetic face are systematically exploited by the training strategy,
our approach is not limited by the amount of available keyframes. Section 5
shows how this is put into practice. Finally, in Section 6 we describe our work
within the framework of the MPEG-4 standard.

During the next discussion we assume that we know the precise location of
the facial features, and the global head pose: in [12] we presented an e�cient
analysis-synthesis feedbak loop solving this issue for a video sequence.

2 Synthesis of Facial Expressions

To achieve a higher level of realism for facial expression synthesis we use realistic
models and well-designed animation techniques. We build our face models from
CyberwareTM range data to obtain a realistic representation of the user [12].
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Our models are made of a triangular wireframe, onto which a cylindrical texture
is mapped, and they preserve a level of complexity compatible with real-time
manipulations. We prefer using a static and unique model and de�ning its
animation for a given person instead of utilizing a generic adapted model which
is ready to be animated but is less accurate.

We apply di�erent animation techniques to generate 
exible facial expres-
sions [13]. The originality of our approach lies in the use of texture data to
synthesize some of the expressions.

� Mesh morphing: the animation is obtained by direct manipulations of
the mesh vertices (see �g. 1(b)). This technique consists of interpolating
the location of the 3D primitives between several key-gestures; this can
be a straightforward implementation of key-frame animation;

� Animation of texture coordinates: we also directly manipulate the
texture coordinates associated to the mesh vertices. Unlike mesh mor-
phing, this method animates without physically moving the 3D model
vertices or altering the shape of the face. This technique can therefore
simulate the motion of the face skin over the underlaying bones, and is
applied to the eyebrow animation (�g. 1(d));

� Texture displacements:we apply di�erent transformations to the cylin-
drical texture. In most face models, eye movements are synthesized by
rotating the two spheres inserted behind the eyelids. We control the
gaze direction by drawing the pupils into the texture image. We per-
form two openings to the original cylindrical texture through its alpha
channel (transparency channel) and we insert new textures representing
the pupils. By doing so, we can move the pupils without modifying the
contour of the eyelids (�g. 1(c));

� Texture blending: using the image alpha channel we alter the image
texture at rendition time. This technique allows us to easily implement
the appearance of wrinkles or face blushing. It is very 
exible because the
location of the wrinkles can be precisely controlled, instead of embedding
them into heavy spline-based meshes. It can easily complement the other
techniques by following their animation: on �g. 1(e), the shapes of the
forehead wrinkles and the mouth furrows are actually modi�ed by the
motion of the left eyebrow (implemented by the interpolation of texture
coordinates) and the animation of the mouth (by mesh morphing).

The facial expressions of our model are controlled by face animation param-
eters (FAP), which can gradually generate a given facial expression [14]. These
FAPs are based on the MPEG-4 standard paradigm [15], although they do not
directly follow the standard guidelines in terms of compliance (see Section 6).

We de�ne an animation vector,

V = (P T�T )T = (tx; ty; tz; rx; ry; rz; �1; � � � ; �n)
T
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(e)

Figure 1: Various animations: (a) neutral face model, resulting from the
CyberwareTM acquisition; (b) mesh displacements; (c) texture sliding; (d) tex-
ture displacements; (e) texture blending.

which contains the head pose P and facial expression � parameters. This
compact vector approach, where head pose and facial expressions are jointly
represented, allows us to re
ect the possible inter-correlation between these
di�ering parameters.

The space of all possible facial expressions and head rotations is sampled
by generating a set of V vectors, denoted fV igi=1;::;m, and the corresponding
images are synthesized. Image patches for the facial features of interest (like the
eyes, eyebrows, and the mouth) are extracted, to produce p datasets of training
examples, denoted ffDi;jgi=1;::;mgj=1;::;p where p is the number of considered
facial features.

3 Visual Modeling of Facial Expressions

If we perform an eigendecomposition to reduce the number of images fromm to q
(m >> q) for each of the p datasets ffDi;jgi=1;::;mgj=1;::;p, we will obtain p sets

of eigenfeatures fei;jgi=1;��� ;q which are optimal for decomposing any image of
fDg with the minimum square error between the image and its reconstruction.
That is to say, for any facial expression for a given feature represented by image
I , there exists a vector � = (�1; � � � ; �q)

T such as I � D + (e1j � � � jeq)� =
D +E�, where D is the mean of the corresponding dataset.

The bases ffei;jgi=1;��� ;qgj=1;��� ;p are ideal for characterizing a new facial
expression in the sense that they exploit the visual redundancy of the train-
ing datasets to extract some compact and decorrelated parameters to represent
facial expressions. As the eigenvectors are constructed for the model facial fea-
tures, we can refer to them as eigenfeatures; they capture the pixel distribution
in image patches resulting from both the face pose and facial expression.

To generate the image database from which we extract the eigenfeatures we
use the 3D head model. Its high realism ensures the correct decomposition of
the images obtained from a real face. However, the lighting di�erence between
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the synthetic model at the training stage and the cloned person �lmed under
unknown conditions at the analysis stage is a di�culty that we have to be
aware of. To minimize this di�erence we include a pre-processing step before
the eigendecomposition is performed.

At present we are using optical 
ow based pre-processing techniques. The
�rst one compares the image of the current facial feature with the image of the
face in a neutral state. We compare with a reference image to be coherent with
the training process, because the number of eigenfeatures in a database gener-
ated from optical 
ow data obtained from frame to frame would be too large.
Our approach is somewhat unstable with regard to lighting changes during the
analysis because it is not feasible to ensure the same lighting conditions from
the �rst image (face in its neutral position) to the images obtained from frames
several seconds away. We are improving this technique by studying the opti-
cal 
ow information from previously analysized frames, without penalizing the
training step. We are also including the information obtained from the optical

ow between adjacent frames. Other pre-processings, like the use of normal-
ized images image gradients or normalized color images are also candidates as
possible improvements for our approach.

4 Analysis and Reproduction of Facial Expres-

sions

Once the facial expressions are visually modeled by the previous eigendecom-
position, a facial expression performed by the user, represented by image I , is
processed as follows (assuming the head pose has already been estimated): the
facial features are correlated with the p bases of eigenfeatures, leading to the
scores ff�i;jgi=1;��� ;qgj=1;��� ;p, which, together with the head rotation parame-
ters, form the vector

� = (rx; ry; rz; �1;1; �2;1; � � � ; �q�1;p; �q;p)
T

Once again we include the rotation information along with the expression
components �i;j to denote the possible inter-correlation between these two kinds
of parameters. This proves to be of great help when trying to relate the vector
� to some vector � while decoupling the head pose from the facial expression.
To establish such a relationship we have envisaged two possible estimators that
are built during the training process:

(i) Linear estimator:
We construct the linear estimator L, which best satis�es the relation � =
L:� on the training database in the least mean square sense. One can
readily verify that this linear estimator is given by

L =M�T (��T )�1

where M = (�
1
j � � � j�d) and � = (�1j � � � j�d) are the matrices obtained

by concatenating all � and � vectors from the training dataset.
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(ii) Radial Basis Function (RBF) based:
RBF networks were primarily investigated in the literature to appraximate
multidimensional surfaces[16]. In our application, they are used to model
the relationship between the � vectors, which are observed on the syn-
thetic face, and a given FAP in the training database. Within our analysis
framework, one RBF network is built per FAP, that is one per each of the
components of �:

�i =
NX
i=1

cihi (Gi (�;�i)) . (1)

The relationship is modeled in equation (1) by adding the contributions of
real-valued functions hi (Gi (:)) based on the distance between � and each
example vector �i in the training database (hence the name of Radial Basis
Function, where �i acts as the center of the radial distance symilarity).
Its matrix representation is

HC =M . (2)

where,

M = (�1; � � � ; �N )
T

and

H =

0
B@

h1(G1(�1)) � � � hN (GN (�1))
...

. . .
...

h1(G1(�N )) � � � hN (GN (�N ))

1
CA .

During the training process we determine the coe�cientsC = (c1; � � � ; cN )
T

by solving (2) using Least Square Inversion,

C =
�
H

T
H

�
�1

H
T
M . (3)

Our RBF network takes the correlation (4) and the normalized correlation
(5) between the image being analysed and the training eigenfeatures as a
likeness measurement. We apply the interpolation function h(r)=r,

� =
NX
i=1

ci

0
@

rX
j=1

�j :�j;i

1
A , (4)
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� =
NX
i=1

ci

�Pr

j=1 �j :�j;i

�
qPr

j=1 �
2

j

. (5)

Logically, the denominator of Eq. (5) should be

vuut
rX

j=1

�2j :

vuut
rX

j=1

�2j;i,

but since the energy of �i is constant, this term is automatically compen-
sated by the estimation of ci.

It can be shown [17] that physically, the correlation and normalized cor-
relation of � and �i vectors correspond to the correlation between the
analyzed image and the training image approximated by �i, in a compu-
tationally e�cient manner.

The main advantage of our highly realistic approach is that during the train-
ing process, when the estimator is de�ned, we do not require speaker partici-
pation. Its 3D head model is used to generate the video images which �nally
train the complete system. The use of a realistic clone ensures a correct corre-
spondance between analysis and synthesis (�, �). The main drawback is that
although � is speaker independent (FAPs can be synthesized in any clone no
matter how we have obtained them), the estimator is completely speaker de-
pendent; the use of the speaker model during the training forces the system to
de�ne a dedicated estimator and database per user.

5 System Evaluation

We �rst experimented our approach on synthetic images to validate the analysis
framework. Training datasets were created using the following simple sampling
strategy: each FAP was altered one by one, taking the values f�1;�0:5; 0; 0:5;1g,
and for each obtained facial expression, we synthesized the face model under 9
di�erent orientations, by setting the X and Y rotations to f�3; 0; 3g degrees.
We tested our pre-processing techniques and estimators on several sets of eigen-
features. The size of the sets varied depending on the amount of energy stored
from the initial database.

The results we obtained showed that the linear estimator and the RBF es-
timators have similar performance in equal conditions (same percentage of en-
ergy and same pre-processing). Once the number of eigenfeatures in our dataset
reaches a certain level of energy (99%, corresponding to 22 eigenfeatures for the
eyes out of 729 images [17]) all estimators give good results; they estimate the
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FAP with an accuracy of around 5%. Pre-processings (for the feature extraction
in real images) are di�cult to compare because they capture energy di�erently
and they lead to linear systems that have di�erent degrees of freedom. The op-
tical 
ow pre-processing is comparable to others in terms of size order although
it needs more computing.

Figure 2 show the resynthesis of some facial expressions using the linear
estimator. The analysis-synthesis approach works quite well for the animation
of the eyes and eyebrows, and for expressions that are close to the training
dataset in general, suggesting that the analysis strategy makes sense. However,
it may have di�culties for some complicated expressions of the mouth, because
many FAPs interact altogether in this area of the face, and the obtained facial
expressions are too far from the training dataset, which is too simple for complex
expressions.

Quantify

Interpret

Eigenfeatures

�

�

Linear Estimator

                                                

                                                

Figure 2: Some analyses of facial expressions: each image of the upper
row (which does not belong to the training dataset) was quanti�ed by some
eigenfeatures, giving a � vector. A linear estimator mapped � to the animation
parameters �, which are rendered into the images of the lower row.

Some other tests were carried out over real images (see Figure 3). It is
di�cult to determine which estimator and pre-processing technique gives the
best results for images obtained under a di�erent illumination than the training
set because the di�erent techniques do not equally in
uence all FAPs. Never-
theless, the linear estimator could be considered the best due to its simplicity.
And, although the gradient pre-processing is slightly more appropriate over the
synthetic data, we prefer the optical 
ow technique because it can be greatly
improved to become more lighting independant: in our current implementation,
the optical 
ow computation is carried out with a basic algorithm, which is
expected to be more sophisticated in future experiments.

The use of the clone during the complete process proved to be a great ad-
vantage. The clone gives more 
exibility and freedom for building the complete
system. Nevertheless our system continues to be speaker dependent and training
the system by synthesizing expressions with the clone prevents us from knowing
exact speaker behavior.
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Figure 3: Some facial expression analysis performed over real images

6 The analysis-synthesis scheme under MPEG-4

compliance

Our system has been designed to ensure the maximum synthesis cooperation
during face expression analysis, but our animation parameters � have been
designed without following any guidelines so far.

The main reason for developing communicating clones is to decrease the
data to be transported over the network and to o�er 3D facilities (change of
scene, free displacement of the model inside the scene, etc.). With clone com-
munication, video frame data is substituted by sequences of FAPs. The scheme
of communication is as follows (Fig. 4): at one end the system analyzes the
expressions of the user, translates them into FAPs and encodes them. Then,
these FAPs are streamed over the network and �nally, a decoder synthesizes the
remote clone with the incoming FAPs. MPEG-4 speci�es the decoding of FAP
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streams and several visual requirements for the face object to ensure the proper
interpretation of FAPs in all decoders.

                        
            

      

CODING
FAPEXPRESSION

DECODING
FAP

SYNTHESIS
EXPRESSION

ANALYSIS

Image extraction 

correlation
Model rendition

λ
Estimation

µ
interpretation

Parameterand eigenfeature 

NETWORK

FAP stream

Figure 4: Face animation diagram. The user is recorded by a camera, and an
expression analysis system generates the face animation parameters (FAP, �)
which are sent over the network. A decoder interprets them and synthesizes the
expressions on the clone.

If we want our FAPs to be become MPEG-4 compliant there are two possible
paths to follow. On the one hand, we could de�ne a correspondance S between
� and �0, where �0 will comply with the norm,

�
L
! �

S
! �0.

This correspondance would decompose our FAPs, which are currently more
complete than MPEG-4's FAPs, in smaller units. On the other hand, we could
rede�ne our FAPs so they are MPEG-4 compliant; this way we would directly
synthesize �0. In such a case, the complete system would have to be retrained
and a new estimator, L', would have to be built,

�
L

0

! �0.

In the rest of this section, we evaluate the nature of our clones and our
synthesis techniques in terms of MPEG-4 compliance:

(a) Geometric modeling: MPEG-4 does not provide a speci�c 3D model
to be used. It only speci�es a face model in its neutral state, a number
of vertices on it as reference points (Face Description Parameters { FDP),
and a set of FAPs. It also provides the means to tell a decoder how a face
object should be animated with Face Animation Tables (FAT) and Face
Interpolation Tables (FIT). MPEG-4 speci�es 84 FDPs located in speci�c
vertices of the head mesh. FAPs animate taking as reference those positions
and the FAP Units (FAPU). FAPUs are distances between certain vertices
of the 3D model in its neutral state.

Due to these requirements, our head models are not yet MPEG-4 compli-
ant. Despite this, the great number of primitives the models have makes
it relatively easy to arrange the vertices so they comply with the FDPs;
FAPUs can be directly computed from the FDPs.
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(b) Synthesis of expressions: MPEG-4 conceives animation of expressions
as a combination of vertix movements (mesh morphing) although there is
no obligation to use this kind of animation. Using other techniques (tex-
ture displacements, interpolation of texture coordinates or texture blending)
would restrict us to proprietary MPEG-4 decoders that are capable of such
animations.

For instance, we are using the texture displacement technique to implement
the model teeth and tongue by overlapping several texture portions on a
plane just behind the model lips. This procedure is not suitable for artic-
ulating the tongue out of the mouth in the way that MPEG-4 allows. On
the other hand, this solution has the advantage of being more realistic than
using generic primitives as it takes the teeth and the tongue of an individual
into account.

To use our synthesis techniques and still be MPEG-4 compliant, the sys-
tem should be able to translate all techniques in terms of mesh movements
and to interprete mesh movements, characterized by FATs, in terms of tex-
ture displacements. A well-established bijective relationship would allow
our head models to be used by other decoders. It would also let our system
animate unknown clones. The use of these synthesis techniques for ana-
lyzing expressions does not prevent the system from generating completely
compatible FAPs. In fact, the FAP encoding and decoding is independent
of the expression analysis.

An MPEG-4 terminal that is able to decode FAP streams can animate its
own proprietary model. To use non-proprietary head models the decoder inter-
prets an unknown model and its animation behavior before starting the move-
ment synthesis. The models and the animation rules should be de�ned following
MPEG-4 syntax which is based on VRML. Our head models are VRML com-
pliant and we consider that it should be straightforward to build an MPEG-4
scene graph from them.

7 Conclusions

A wide range of applications such as teleconferencing, e-commerce, mobile video
communications, etc. will enrich their human-computer interface by integrating
realistic clones. The use of realistic clones allows us to build a new algorith-
mic framework based on image analysis-synthesis techniques. A view-based ap-
proach to quantify and reproduce facial expressions on a synthetic head model,
by systematically exploiting the degrees of freedom allowed by a realistic face
model proves to be a good alternative for obtaining face animation. We propose
to use eigenfeatures, built from synthetic images, and to design an estimator to
interpret the responses of the eigenfeatures on a facial expression in terms of
animation parameters.

Although there are many issues to be resolved, this article contributes to
the reproduction of realistic facial expressions by 3D face models. Our auto-
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matic framework has the great advantage of giving highly realistic results, and,
above all, is able to interpret reality and translate it in a set of compact ani-
mation parameters while using e�cient non-iterative analysis algorithms. Our
current work focuses on the improvement of the pre-processings necessary to
overcome the changes of lighting between the training and analysis stages. In
the near future, it could become a viable alternative to real{time avatar ani-
mation techniques, generally animated from textual commands or video input
with markers.

Our face analysis-synthesis techniques are suitable for integration into an
MPEG-4 face animation system. Our algorithms can be easily used following
the standard. A complete integration will provide a well de�ned means for re-
alistic clone communication. It will also allow our system to interact with other
di�erent animation systems.
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