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Abstract – In this paper, we present and compare three novel model‑cum‑data‑driven channel estimation procedures in a
millimeter‑wave Multi‑Input Multi‑Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) wireless communi‑
cation system. The transceivers employ a hybrid analog‑digital architecture. We adapt techniques fromawide range of signal
processing methods, such as detection and estimation theories, compressed sensing, and Bayesian inference, to learn the un‑
known virtual beamspace domain dictionary, as well as the delay‑and‑beamspace sparse channel. We train the model‑based
algorithmswith a site‑speciϔic training dataset generated using a realistic ray tracing‑basedwireless channel simulation tool.
We assess the performance of the proposed channel estimation algorithms with the same site’s test data. We benchmark the
performance of our novel procedures in terms of normalized mean squared error against an existing fast greedy method and
empirically show thatmodel‑based approaches combinedwith data‑driven customization unanimously outperform the state‑
of‑the‑art techniques by a large margin. The proposed algorithms were selected as the top three solutions in the “ML5G‑PHY
Channel Estimation Global Challenge 2020” organized by the International Telecommunication Union.
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1. INTRODUCTION

Millimeter‐Wave (mmWave) wireless communication is
one of the potential technologies proposed for the next
generation communication systems (5G and beyond) to
meet the ever‐increasing demand for high data rates. The
mmWave frequency spectrum, ranging from 30 GHz to
300 GHz, is attractive because it offers large bandwidths
(∼ 2GHz), resulting in very high data rates and low la‐
tency. These advantages come at a cost of higher path loss
due to several factors, such as blockages and oxygen ab‐
sorption at mmWave frequencies, which in turn bring sev‐
eral engineering challenges in adopting this technology in
commercial wireless communication systems.

A potential solution to overcome this problem is beam‐
forming, which leverages the availability of multiple an‐
tennas at the transmitter and receiver. In particular,
millimeter wavelengths enable one to accommodate a
larger number of antennas into the same physical space,
and thereby attain high beamforming gains. However,
a fully digital architecture in a Multi‐Input Multi‐Output
(MIMO) system, i.e., one Radio Frequency (RF) chain per
antenna, and one complex‐valued Analog‐to‐Digital Con‐
verter (ADC) per RF chain is less appealing both from
commercial and engineering perspectives due to its high
cost and energy requirements. Therefore, a hybrid MIMO
architecture is proposed in the literature as a potential so‐
lution to solve this problem [1].

In a hybrid MIMO system, multiple antennas are con‐
nected to an RF chain using a phase shifter network (RF 
precoder/combiner), and a digital precoder/combiner 
is employed in the complex baseband side of the 
transceiver. The RF and digital precoders/combiners are 
conϐigured by optimizing a system performance metric 
such as the sum rate or signal to interference noise ra‐
tio. Unlike a fully analog architecture, a hybrid architec‐
ture allows one to reduce the number of RF chains, while 
supporting multi‐stream and multi‐user transmissions. 
The major challenges then are in estimating the mmWave 
wireless channel and conϐiguring the RF and digital pre‐
coders/combiners based on the channel estimate. The 
problem is exacerbated by the fact that only the low di‐
mensional RF combined signals at the baseband are avail‐
able for estimating the channel. Since the system does not 
have any knowledge of the channel state during the chan‐
nel estimation phase, the baseband precoders/combiners 
are set to the identity matrix and random phase shifts are 
chosen for the RF precoders/combiners.

MmWave channel estimation in a hybrid MIMO architec‐
ture is a well studied problem, and we provide a brief 
overview of some of the key existing literature here. The 
simplest channel estimation method in hybrid MIMO sys‐
tems is the Least Squares (LS)‐based approach [2], which 
is inherited from conventional MIMO [3]. A more reϐined 
solution to channel estimation is to exploit both the delay
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and angular domain sparsity that mmWave channels ex‐
hibit. In this approach, the channel estimation problem is
formulated as a sparse recovery problem [4]. Such com‐
pressive sensing based estimation techniques were ϐirst
developed for frequency‐ϐlat hybrid mmWave MIMO sys‐
tems [5, 6]. Recently, frequency‐selective channels with
OFDM‐based communications leading to a more complex
estimation problem have also been considered, with dif‐
ferent approaches to exploit the sparse channel charac‐
teristics [4, 7, 8]. Several model‐based signal processing
techniques for mmWave channel estimation under vari‐
ous system settings can be found in [9–23].

Machine Learning andArtiϐicial Intelligence (ML/AI) have
been shown to be powerful tools in diverse areas such as
natural language processing, speech processing, and im‐
age recognition, where it is challenging to design speciϐic
model‐based algorithms. However, the impact of ML/AI
on the design and optimization of communication sys‐
tems is yet to be extensively studied, especially under re‐
alistic and practically meaningful settings. We aim to ad‐
dress some of the aspects of ML/AI in wireless communi‐
cations here.

In this paper, we study the potential advantage of us‐
ing data‐driven approaches for channel estimation in hy‐
brid MIMO systems. The model‐cum‐data driven algo‐
rithms we develop in this paper were selected as the top
three solutions in the “ML5G‑PHY Channel Estimation
Global Challenge 2020” organized by the International
Telecommunication Union (ITU)1. Our main goal in this
paper is to present and contrast these three algorithms
for estimating an mmWave channel in a hybrid MIMO
system. We compare the Normalized Mean Squared Er‐
ror (NMSE) performance of these approaches and discuss
the machine learning techniques relevant for the chal‐
lenge at hand. These approaches utilize the channel train‐
ing datasets generated using the Raymobtime tool to cus‐
tomize the algorithms so that they perform well for a test
dataset generated in a similar environment [24].

We provide a brief overview of the three solutions below:

1. We integrate a fast greedy search with a high‐
performing Bayesian inference method in the ϐirst 
approach.2 We use a Multi‐Level Greedy Search 
(MLGS) to learn the sparsifying virtual beamspace 
dictionary that reduces the dimensionality of the 
problem and use the learned dictionary to estimate 
the channel using a Sparse Bayesian Learning (SBL) 
method. We ϐinally exploit the delay‐domain sparsity 
to de‐noise the estimated channels. We name the al‐
gorithm as MLGS‐SBL.

2. As a second approach, we propose another SBL‐
based algorithm to exploit the sparsity of the chan‐
nel. We utilize the pattern-coupling concept to

1https://www.itu.int/en/ITU‐T/AI/challenge/2020/Pages/default.aspx
2The order in which the algorithms are presented is unrelated to their

ranking in the ITU ML5G‐PHY channel estimation challenge. The or‐
dering is based on ease of presentation and readability of the paper.

model possible block sparsity patterns among the 
consecutive Angle Of Arrivals (AoAs) and Angle Of 
Departures (AoDs). As a ϐirst step, we obtain the 
time‐domain channels from the provided training 
dataset via the inverse Discrete Fourier 
Transform (DFT) and remove the channel taps 
with small magnitude. Then, we apply the 
algorithm to the ground truth time‐domain 
channels to obtain the sparse representations. 
Using joint angular distribution learned from 
training data, we reϐine the grids and pattern‐
coupling relations in the testing stage to improve 
the channel estimation quality. This approach is 
called “Pattern‐Coupled Sparse Bayesian Learning 
for Channel Estimation with Dominating Delay Taps 
(PCSBL‐DDT)” in the paper.

3. The third approach, Projection Cuts Orthogonal
Matching Pursuit (PC‐OMP), is based on theOrthogo‐
nal Matching Pursuit (OMP) algorithm. This method
makes use of the sparsity of the mm‐wave channel
to extract channel components. At each iteration of
the OMP algorithm, a coarse estimate of the strongest
path parameters (AoA, AoD, and delay) is obtained
by a low resolution grid search. Then, each of the
three parameters is reϐined alternately, assuming the
other two to be known. In this way, we keep the algo‐
rithm’s complexity low without compromising on its
accuracy. At the end of each iteration, a path detec‐
tion hypothesis is tested, and, if successful, the path
is subtracted from the channel. This process is re‐
peated until no additional path is detected.

1.1 Notation
The operator (⋅)∗ represents the conjugate transpose or 
conjugate for a matrix or a scalar, respectively. Ā, A𝑇 , and 
A† denote the conjugate, transpose, and Moore‐Penrose 
pseudoinverse of a matrix A, respectively. The multivari‐
ate complex Gaussian distribution with mean vector 𝝁 
and covariance matrix C is denoted by 𝒞𝒩(𝝁, C) and its 
probability density function (pdf) of a random vector x is 
denoted by 𝒞𝒩(x|𝝁, C). blkdiag(⋅) represents the block‐
diagonal part of a matrix. diag(X) or diag(x) represents 
a vector obtained by the diagonal elements of the matrix 
X or the diagonal matrix obtained with the elements of 
x in the diagonal, respectively. A ⊗ B denotes the Kro‐
necker product of the matrices A and B. ||A||𝐹 denotes 
the Frobenius norm of a matrix A. ⟨a, b⟩ is the inner prod‐
uct of the two vectors a and b. The trace of a matrix A is 
denoted by tr(A). Tx and Rx denote the transmitter and 
receiver, respectively. We use 𝑣𝑒𝑐(A) to vectorize the ma‐
trix A column‐wise. 𝔼[⋅] denotes the expectation.

2. SYSTEM MODEL
We consider a single cell mmWave hybrid MIMO‐OFDM 
system with 𝑁𝑡 antennas at the transmitter (Tx) and 𝑁𝑟 
antennas at the receiver (Rx), as shown in Fig. 1. 
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Fig. 1 – mmWave MIMO system based on a hybrid analog‐digital architecture.

The Tx and Rx are equipped with 𝐿𝑡 and 𝐿𝑟 RF chains, 
respectively. The training input signal s[𝑘] ∈ ℂ𝐿𝑡×1 on the 
𝑘t h subcarrier is OFDM modulated, up‐converted to RF, 
and analog precoded using Ftr ∈ ℂ𝑁𝑡×𝐿𝑡 , and transmitted 
over the air to the Rx via an mmWave channel denoted 
by H[𝑘] on the 𝑘t h subcarrier. The received signal is 
ϐiltered using an RF combining matrix Wtr ∈ ℂ𝑁𝑟×𝐿𝑟 , 
down‐converted to baseband, OFDM demodulated to 
obtain the 𝑘t h subcarrier’s complex baseband signal 
y[𝑘] ∈ ℂ𝐿𝑟×1.  We denote the total number of subcarriers 
by 𝐾.

In the initial access phase, the system has no prior 
knowledge of the channel, and therefore the precoder 
and combiner matrices cannot be designed to optimize 
any chosen performance metric. Hence, we choose 
random analog precoding and combining matrices (with 
unit modulus entries). In our system model, we adopt a 
fully connected phase shifter network for analog 
precoding/combining. The analog precoders and 
combiners are frequency‐ϐlat, and thus are the same for 
each subcarrier 𝑘 = 1, … , 𝐾.  The system operates with 
Uniform Linear Arrays (ULAs) at both the Tx and Rx with 
half wavelength spacing be‐tween consecutive antennas. 
The total number of training frames is denoted by 𝑀 .

After RF combining, down‐conversion, zero preϐix re‐
moval and DFT, the complex baseband signal received 
during the 𝑚t h training frame for the 𝑘t h subcarrier, de‐
noted by y(𝑚)[𝑘] ∈ ℂ𝐿𝑟×1 is given by

y(𝑚)[𝑘] = W(𝑚)
tr

∗
(H[𝑘]F(𝑚)

tr q(𝑚)𝑡(𝑚)[𝑘] + n(𝑚)[𝑘]), (1)

for 𝑚 = 1, … , 𝑀 where H[𝑘] ∈ ℂ𝑁𝑟×𝑁𝑡 represents the
frequency domain MIMO channel matrix for the 𝑘th sub‐
carrier. We choose the 𝑚th training signal as s(𝑚)[𝑘] =
q(𝑚)𝑡(𝑚)[𝑘], where 𝑡(𝑚)[𝑘] ∈ ℂ is a subcarrier‐dependent
pilot symbol, and q(𝑚) ∈ ℂ𝐿𝑡×1 is a frequency‐ϐlat vector
whose entries are chosen as 1

√2𝐿𝑡
(𝑎 + 𝑗𝑏), where 𝑎, 𝑏 ∈

{−1, 1} and are uniformly distributed. The noise vec‐
tor n(𝑚)[𝑘] is independently and identically distributed
across 𝐾 subcarriers as 𝒞𝒩(𝟎, 𝜎2I𝑁𝑟

). We deϐine the
transmit Signal‐to‐Noise Ratio (SNR) as 𝜌 = 1

𝜎2𝑛
. After

compensating for 𝑡(𝑚)[𝑘], and vectorizing (1), we use the

result 𝑣𝑒𝑐(AXB) = (B𝑇 ⊗ A)𝑣𝑒𝑐(X) to obtain

𝑣𝑒𝑐(y(𝑚)[𝑘]) = (q(𝑚) 𝑇F(𝑚) 𝑇
tr ⊗W(𝑚)

tr
∗
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝚽(𝑚)

𝑣𝑒𝑐(H[𝑘])

+W(𝑚)
tr

∗
n(𝑚)[𝑘]. (2)

Next, we describe the mmWave channel model.

2.1 Channel model
We consider a frequency‐selective geometric channel
model that is constant across 𝑀 training frames, and has
𝑁𝑐 delay taps [4, 25]. The 𝑑th delay tap is modeled as a
clustered channel with 𝐿 paths as

H𝑑 = √𝑁𝑡𝑁𝑟
𝐿𝜌𝐿

𝐿
∑
ℓ=1

𝛼ℓ𝑝(𝑑𝑇𝑠 − 𝜏ℓ)aR(𝜙ℓ)a∗
T(𝜃ℓ), (3)

where 𝜌𝐿 is the path loss between Tx and Rx, 𝛼ℓ repre‐
sents the complex path gain, 𝜙ℓ is the AoA, 𝜃ℓ is the AoD,
𝜏ℓ denotes the delay of the ℓth path. The corresponding
Rx and Tx array steering vectors are denoted by aR(𝜙ℓ) ∈
ℂ𝑁𝑟×1 and aT(𝜃ℓ) ∈ ℂ𝑁𝑡×1, respectively. The pulse shap‐
ing and other low pass ϐiltering evaluated at 𝜏 is repre‐
sented by 𝑝(𝜏), and 𝑇𝑠 is the sampling interval. We repre‐
sent the MIMO channel H𝑑 in a matrix form as

H𝑑 = AR𝚫𝑑A∗
T, (4)

whereAR ∈ ℂ𝑁𝑟×𝐿 andAT ∈ ℂ𝑁𝑡×𝐿 contain the Rx and Tx
array steering vectors aR(𝜙ℓ) and aT(𝜃ℓ) as their columns
for ℓ = 1, … , 𝐿, respectively. 𝚫𝑑 ∈ ℂ𝐿×𝐿 is a diagonal
matrix containing the complex channel gains. We take a
𝐾‐point DFT of the delay‐domain channel to get the fre‐
quency domain representation as

H[𝑘] =
𝑁𝑐−1
∑
𝑑=0

H𝑑 exp (−𝑗2𝜋𝑘𝑑
𝐾 ) = AR𝚫[𝑘]A∗

T, (5)

for 𝑘 = 0, … , 𝐾 − 1, and

𝚫[𝑘] =
𝑁𝑐−1
∑
𝑑=0

𝚫𝑑 exp (−𝑗2𝜋𝑘𝑑
𝐾 ) . (6)

We adopt the extended virtual channel model in [25] to
represent H𝑑 as

H𝑑 ≈ ÃR𝚫𝑣
𝑑Ã∗

T, (7)
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where the dictionary matrices ÃR ∈ ℂ𝑁𝑟×𝐺𝑟 and ÃT ∈
ℂ𝑁𝑡×𝐺𝑡 contain the Rx and Tx array steering vectors eval‐
uated on a grid of size 𝐺𝑟 for the AoA and a grid of size
𝐺𝑡 for the AoD, respectively. When 𝐺𝑟 and 𝐺𝑡 are cho‐
sen properly, i.e., much greater than 𝐿, 𝚫𝑣

𝑑 ∈ ℂ𝐺𝑟×𝐺𝑡 be‐
comes a sparse matrix containing the channel path gains
on the locations that match with the actual AoDs and
AoAs. We represent (7) in the frequency domain as

H[𝑘] ≈ ÃR𝚫𝑣[𝑘]Ã∗
T, (8)

for 𝑘 = 0, … , 𝐾 − 1, and

𝚫𝑣[𝑘] =
𝑁𝑐−1
∑
𝑑=0

𝚫𝑣
𝑑 exp (−𝑗2𝜋𝑘𝑑

𝐾 ) . (9)

Note that the dictionary matrices ÃR and ÃT are com‐
mon to all the subcarriers due to the frequency‐ϐlat ar‐
ray response vectors. Hence, the sparse matrices 𝚫𝑣[𝑘]
for 𝑘 = 1, … , 𝐾 have the non‐zero elements at the same
indices. This means that they share a common sparsity
pattern [4].

Now, we vectorize (8) to get

𝑣𝑒𝑐(H[𝑘]) = ( ̄ÃT ⊗ ÃR) 𝑣𝑒𝑐(𝚫v[𝑘]). (10)

We deϐine 𝚿 = ̄ÃT ⊗ ÃR ∈ ℂ𝑁𝑡𝑁𝑟×𝐺𝑡𝐺𝑟 and hv[𝑘] =
𝑣𝑒𝑐(𝚫v[𝑘]) ∈ ℂ𝐺𝑡𝐺𝑟 , and substitute 𝑣𝑒𝑐(H[𝑘]) in (2) to
get

𝑣𝑒𝑐(y(𝑚)[𝑘]) = 𝚽(𝑚)𝚿h[𝑘] + n(𝑚)
𝑐 [𝑘], (11)

where n(𝑚)
𝑐 [𝑘] = W(𝑚)

tr
∗
n(𝑚)[𝑘]. By concatenating the RF

combined signals of 𝑀 training frames, we get

⎡⎢
⎣

y(1)[𝑘]
⋮

y(𝑀)[𝑘]
⎤⎥
⎦⏟⏟⏟⏟⏟

y[𝑘]

= ⎡⎢
⎣

𝚽(1)

⋮
𝚽(𝑀)

⎤⎥
⎦⏟⏟⏟⏟⏟

𝚽

𝚿h
v[𝑘] + ⎡⎢

⎣

n
(1)
𝑐 [𝑘]

⋮
n

(𝑀)
𝑐 [𝑘]

⎤⎥
⎦⏟⏟⏟⏟⏟

n𝑐[𝑘]

.

(12)
Now, by stacking the received signals of 𝐾 subcarriers, we
get the ϐinal system equation

Y = [y[1] … y[𝐾]]
= 𝚽𝚿 [hv[1] … hv[𝐾]] + [n𝑐[1] … n𝑐[𝐾]]
= 𝚽𝚿Hv + N𝑐. (13)

Our goal is to estimate H[𝑘], for 𝑘 = 0, … , 𝐾 − 1, given Y
and 𝚽. As the AoDs and AoAs are the same for all the sub‐
carriers, Hv ∈ ℂ𝐺𝑡𝐺𝑟×𝐾 has a joint row sparse structure,
i.e., the support set of each column of H𝑣 are the same.
Also, we do not have the knowledge of the sparsifying dic‐
tionary 𝚿 and the noise variance, which makes the chan‐
nel estimation problem more challenging. In the follow‐
ing sections, we present three different solutions to this
channel estimation problem.

3. MLGS‑SBL
In this section, we propose amodel‐based approach using
the framework of Compressed Sensing (CS), to estimate
the mmWave channel given the received pilot measure‐
ments and the frequency‐ϐlat transmit vector. We inte‐
grate a fast greedy search procedure and a high perform‐
ing statistical inference method to estimate the channel.
The algorithm consists of the following steps:

1. Preconditioning

2. Multi‐level greedy search for dictionary learning

3. Noise variance estimation

4. Sparse Bayesian learning for channel estimation

5. Channel de‐noising

We provide a detailed description of each step below.

3.1 Preconditioning
Sparse signal recovery using greedy algorithms, such as
OMP, are likely to choose the correct support set when
the noise covariance matrix is diagonal. In our mmWave
channel estimation problem, RF combining by Wtr at the
front end of the receiver results in correlated noise, which
needs to be whitened using a preconditioning ϐilter [4].

The scaled noise covariance matrix before whitening is

Cw =𝔼 [n𝑐[𝑘]n∗
𝑐[𝑘]]

𝜎2

=blkdiag{W(1)
tr

∗
W(1)

tr , … ,W(𝑀)
tr

∗
W(𝑀)

tr }. (14)

We get the above by noting that

𝔼 [n(𝑖)
𝑐 [𝑘]n(𝑗)

𝑐
∗
[𝑘]] = 𝜎2W(𝑖)

tr
∗
W(𝑗)

tr 𝛿[𝑖 − 𝑗]. (15)

We perform a Cholesky decomposition of Cw to obtain
Cw = D∗

wDw, where Dw ∈ ℂ𝑀𝐿𝑟×𝑀𝐿𝑟 is upper triangu‐
lar. Let us deϐine D−∗

w to denote the inverse of D∗
w. Now,

we multiply the RF combined received signal (12) by D−∗
w

to obtain the noise‐whitened received signal:

yw[𝑘] = D−∗
w y[𝑘] = D−∗

w 𝚽𝚿h
v[𝑘] + D−∗

w n𝑐[𝑘]
= 𝚼wh

v[𝑘] + D−∗
w n𝑐[𝑘], (16)

where 𝚼w = D−∗
w 𝚽𝚿 ∈ ℂ𝑀𝐿𝑟×𝐺𝑡𝐺𝑟 . Concatenating the

noise‐whitened received signals of all the 𝐾 subcarriers,
we get

Yw = [yw[1] … yw[𝐾]] = 𝚽w𝚿H
v + Nw , (17)

where Yw ∈ ℂ𝑀𝐿𝑟×𝐾 , 𝚽w = D−∗
w 𝚽 ∈ ℂ𝑀𝐿𝑟×𝑁𝑡𝑁𝑟 , and

Nw = D−∗
w [n[1] … n[𝐾]] ∈ ℂ𝑀𝐿𝑟×𝐾 . Thus, we need

to estimate the row sparse matrix Hv given Yw and 𝚽w.
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3.2 Multi‐level greedy search
We obtain an initial channel estimate using the MLGS
procedure with a coarsely quantized beamspace dictio‐
nary. We adopt the Simultaneously Weighted Orthogonal
Matching Pursuit (SW‐OMP) algorithm as our base algo‐
rithm to form an initial estimate of the channel [4]. As the
sparsifying dictionary 𝚿 is unknown a priori, we use row‐
truncated DFT matrices of size 𝑁𝑡 × 𝐺𝑡 and 𝑁𝑟 × 𝐺𝑟 as
the Tx and Rx array steering matrices, respectively. Let 𝚿̃
be the initial sparsifying dictionary.

In the ϐirst step of MLGS, we select a column from 𝚿̃ that
is maximally correlated with the received signal. Mathe‐
matically,

̂𝑖 = arg max
𝑖

𝐾
∑
𝑘=1

∣(𝚽w𝚿̃[∶, 𝑖])
∗
yw[𝑘]∣

2
, (18)

where | ⋅ | denotes an element‐wise modulus operation,
and 𝚿̃[∶, 𝑖] is the 𝑖th column of 𝚿̃. Once we select ̂𝑖, we ex‐
tract AoD 𝜃 ̂𝑖 and AoA 𝜙 ̂𝑖 using the structure of 𝚿̃, and form
a ϐinely spaced dictionary of range (𝜃 ̂𝑖 − Δ𝜃, 𝜃 ̂𝑖 + Δ𝜃) and
(𝜙 ̂𝑖 − Δ𝜙, 𝜙 ̂𝑖 + Δ𝜙), where Δ𝜃 and Δ𝜙 are appropriately
chosen based on the spatial quantization of the previously
chosen dictionary. We repeat (18) with 𝚿̃ replaced by the
newly formed dictionary, and choose a new {AoD, AoA}
pair. We repeat this process 𝑁 times and select one set of
AoD and AoA. Then, we compute

Ĥv = (𝚽w𝚿̂)
†
Yw, (19)

where 𝚿̂ is formed using the currently chosen AoD and
AoA. This whole procedure constitutes the ϐirst out of 𝑆
iterations of the MLGS algorithm in which we recover a
single tap.

In the 𝑠th iteration of MLGS, we recover 𝑠 channel taps by
following the same steps as above, but with the residual
Y′

w = Yw − 𝚽w𝚿̂Ĥv as observations, where 𝚿̂ comprises
the set of {AoD, AoA} pairs chosen in the ϐirst 𝑠 − 1 iter‐
ations. Therefore, after 𝑆 iterations, we recover 𝑆 virtual
beamspace channel taps. We summarize MLGS as a ϐlow
diagram in Fig. 2.

3.3 Noise variance estimation
We estimate the noise variance 𝜎̂2

𝑛 using the residual out‐
put from MLGS. The noise variance is computed as

𝜎̂2
𝑛 = 1

𝑀𝐾𝐿𝑟
||Y′

w||2𝐹 . (20)

3.4 Sparse Bayesian learning
In this step, our goal is to reϐine the channel estimatesout‐
put by the MLGS procedure. For convenience, we recall
the measurement equation:

Yw = 𝚽w𝚿̂H
v + Nw , (21)

Input: Yw, 𝚽w, 𝚿̃,
𝑁 , 𝑆, Δ𝜃, Δ𝜙

Initialize: ÂR = ∅, ÂT = ∅, Y′
w = Yw

Set 𝚿̂ = 𝚿̃

̂𝑖 = arg max𝑖 ∑𝐾
𝑘=1 ∣(𝚽w𝚿̂[∶, 𝑖])

∗
y′

w[𝑘]∣

Extract AoA 𝜙 ̂𝑖, AoD 𝜃 ̂𝑖
Update 𝚿̂ = 𝑓(𝜙 ̂𝑖, 𝜃 ̂𝑖, Δ𝜃, Δ𝜙)

ÂR = [ÂR aR(𝜙 ̂𝑖)], ÂT = [ÂT aT(𝜃 ̂𝑖)]
Compute 𝚿̂ = ( ̄̂AT ⊗ ÂR)

Channel Estimate: Ĥv = (𝚽w𝚿̂)
†
Yw,

Residual: Y′
w = Yw − 𝚽w𝚿̂Ĥv

Output: ÂR, ÂT, Y′
w

𝑁 times

𝑆 times

Fig. 2 – Flow diagram of MLGS.

where 𝚿̂ = ( ̄̂AT ⊗ ÂR) is the dictionary output by MLGS.
We adopt a statistical inference approach to infer the
posterior distribution of Hv given the measurements Yw,
measurement matrix 𝚽w𝚿̂, and noise variance 𝜎̂2

𝑛.

We use sparse Bayesian learning, a type‐II maximum like‐
lihood estimation procedure to obtain the channel esti‐
mate [26, 27]. In this method, we consider Hv as a hid‐
den variable, and obtain its posterior statistics given the
observations. We impose a parameterized complex Gaus‐
sian prior on each column of the channel as 𝒞𝒩(0, 𝚪),
where 𝚪 = diag(𝛾). Using a common hyper‐parameter
𝛾 across all the columns ofHv aids in promoting common
row sparsity in the solution. Now, we need to obtain the
posterior distribution of Hv, and the hyper‐parameter 𝛾.
Since the prior and the noise are both Gaussian, obtain‐
ing the posterior statistics of Hv is straightforward. But,
computing 𝛾 requires computing the marginal probabil‐
ity distribution 𝑝(Yw; 𝛾) and maximizing it w.r.t. 𝛾, which
is called evidence maximization or type‐II maximum like‐
lihood estimation.

To solve this, we use the Expectation Maximization (EM)
algorithm, which works by lower bounding the logarithm
of the evidence 𝑝(Yw; 𝛾), and maximizing it iteratively.
We treat Hv as a hidden variable. In the expectation (E)
step, we compute the expectation of the log likelihood of
(Yw,Hv) w.r.t. 𝑝(Hv|Yw, 𝛾). In the maximization (M) step,
we compute the hyper‐parameter 𝛾 by maximizing the
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Input: Yw, 𝚽w, 𝚿̂, 𝜎̂𝑛

Initialize: 𝛾1, … , 𝛾𝑆2 ,
𝚪 = diag(𝛾1, … , 𝛾𝑆2)

𝚼̂w = 𝚽w𝚿̂

𝚺Y = 𝜎̂2
𝑛I𝑀𝐿𝑟

+ 𝚼̂w𝚪𝚼̂∗
w

𝚺H = 𝚪 − 𝚪𝚼̂∗
w𝚺Y

−1𝚼̂w𝚪

Channel Estimate:
Ĥv = 1

𝜎̂2𝑛
𝚺H𝚼̂∗

wYw

Hyper‐parameter update: For 𝑛 = 1, … , 𝑆2,
𝛾𝑛 = 1

𝐾 ∑𝐾
𝑘=1 |Ĥv[𝑛, 𝑘]|2 + 𝚺H[𝑛, 𝑛],

𝚪 = diag(𝛾1, … , 𝛾𝑆2)

Converged?

Output: Ĥv, {𝛾1, … , 𝛾𝑆2}

No

Yes

Ĥv,

the of e 𝚿̂Ĥv.

Fig. 3 – Flow diagram of MSBL.

function obtained in the E step. More details of SBL and 
type‐II ML estimation can be found in [26, 28]. We pro‐
vide a ϐlow diagram of Multiple Measurement Vector SBL 
(MSBL) to compute the posterior mean and covariance of 
the channel, and the hyper‐parameters, in Fig. 3. Speciϐi‐
cally, in Fig. 3, the E‐step of the EM algorithm corresponds
to the computation of 𝚺Y, 𝚺H and Ĥv, and the M‐step cor‐
responds to the computation of 𝚪. We also elaborate on 
the E‐ and M‐steps, albeit in the slightly different context 
of pattern‐coupled sparse Bayesian learning, in Section 4.

Once we obtain the frequency domain channel estimate 
we estimate the support of the row sparse matrix and 

the channel coefϐicients using the hyper‐parameters ob‐
tained using SBL. We estimate the noise variance using

Frobenius norm th residual Ỹw = Yw − 𝚽w

3.5 Denoising
By analyzing the training dataset, we observed that the 
channel is sparse in both the virtual beamspace and de‐
lay domains. We exploited the beamspace sparsity and 
obtained the frequency domain channel estimates using 
MLGS and SBL. In this ϐinal step, we exploit the delay 

2
𝑛

domain sparsity to denoise the channel to further reduce 
the MSE between the original and estimated channels.

For each subcarrier 𝑘, we compute (Ā̂T ⊗ ÂR)Hv[∶, 𝑘], and 
reshape it to form 𝑘th subcarrier’s channel matrix of size 
𝑁𝑟 × 𝑁𝑡. Then, for each transmit and receive antenna 
pair, we compute a 𝐾‐point inverse DFT to obtain a delay‐
domain channel estimate. We retain the 𝑃 dominant taps 
in the delay‐domain channel estimate, and set the other 
𝐾 − 𝑃 taps to 0. We ϐix 𝑃 based on the estimated noise 
variance, and the number of training frames 𝑀 . The 
value of 𝑃 is inversely proportional to 𝜎̂ , and the train‐
ing dataset is used to choose an appropriate 𝑃 . From our 
experiments on the training dataset, we found that this 
denoising step leads to an approximately 2 dB reduction 
in NMSE.

This concludes the description of the MLGS‐SBL ap‐
proach, and we will describe the second approach in the 
next section.

4. PCSBL‑DDT
In this section, we present another SBL based approach 
to the site‐speciϐic hybrid MIMO channel estimation prob‐
lem. In this method, we adapt and extend the pattern‐
coupled SBL in [29] to our problem, by introducing spar‐
sity connections (or couplings) between the consecutive 
AoAs and AoDs. We also impose a common sparsity 
model on the hyper‐parameters such that all the delay 
taps share a common support. We will show that, to‐
gether, these two innovations result in accurate channel 
estimates.

Recall that, in (12), the matrix 𝚽 ∈ ℂ𝑀𝐿𝑟×𝑁𝑡𝑁𝑟 is known, 
and we are given the received signals y[𝑘] for 𝑘 = 1, … , 𝐾 . 
We use a ϐixed grid, although the grid points are different 
for training and testing stages. Hence, the dictionary ma‐
trix 𝚿 is also known in this method.

The lag‐domain representation of the channel is of length 
𝐾 , with 𝑁𝑐 ≪ 𝐾 nonzero taps, which makes the chan‐
nel sparse in the time‐domain. Furthermore, the nonzero 
taps occur in clusters. To exploit the sparsity in the time‐
domain, we apply the pattern‐coupled SBL algorithm on 
the time‐domain signals. As a ϐirst step, we take the in‐
verse DFT of the received signal sequence and scale it ap‐
propriately to keep the noise variance the same, i.e.,

ỹ[𝑑] = 1√
𝐾

(
𝐾−1
∑
𝑘=0

y[𝑘] exp (𝑗2𝜋𝑘𝑑
𝐾 ))

=𝚽𝚿h̃𝑣[𝑑] + ñ𝑐[𝑑], 𝑑 ∈ 𝒟, (22)

where h̃𝑣[𝑑] = 𝑣𝑒𝑐(𝚫𝑣
𝑑), and the noise ñ𝑐[𝑑] has the same

distribution as n𝑐[𝑘]. Here, 𝒟 ⊂ {0, … , 𝐾 − 1} denotes
the set of indices of the dominant delay taps. This set is
determined heuristically by a simple threshold on the to‐
tal energy of the received signals ỹ[𝑑], for 𝑑 = 0, … , 𝐾 −1.
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This operation is done to increase the SNR by eliminating
possibly all‐noise samples.

As a next step, we apply a whitening ϐilter as in the pre‐
vious approach. The whitened time‐domain signal is ob‐
tained similar to (16) as

ỹw[𝑑] = D−∗
w ỹ[𝑑] = D−∗

w 𝚽𝚿h̃𝑣[𝑑] + ñw[𝑑], (23)

where ñw[𝑑] = D−∗
w ñ𝑐[𝑑] ∼ 𝒞𝒩(0, 𝜎2I𝑀𝐿𝑟

).

Note that the following approach is ϐirst applied to the
true channels from the training data by regularizing it
with a very small variance white Gaussian noise and uni‐
form grids for AoAs and AoDs. Then, in the testing stage,
the grid points are reϐined based on the joint AoA/AoD
pattern that is extracted from the training data. Since the
sparse model and overall procedure is the same in the
training and testing phases except for the measurement
matrices (there is an additional matrix D−∗

w 𝚽 multiplying
the true channels from the left in testing stage in (23)),
we directly present the method used in the testing stage.
The channel estimator in both phases operates on the re‐
ceived signals ỹw[𝑑], for 𝑑 ∈ 𝒟.

The pattern‐coupled SBL method in [29] assumes noisy
measurements of the form of

y = Ax+ n, (24)

where y is the observed vector,A is the measurement ma‐
trix, and the x is the sparse signal with some unknown
block‐sparsity patterns. The vector n is the zero‐mean
Gaussian noise with scaled identity covariance matrix.
Hence, the model is in accordance with the one in (23).
Let us deϐine A = D−∗

w 𝚽𝚿, y𝑑 = ỹw[𝑑], x𝑑 = h̃𝑣[𝑑] and
n𝑑 = ñw[𝑑]. Then, we have all the measurements from
(23) for 𝑑 ∈ 𝒟 in the form

y𝑑 = Ax𝑑 + n𝑑, 𝑑 ∈ 𝒟. (25)

Let us express the sparse vector x𝑑 ∈ ℂ𝐺𝑡𝐺𝑟 in the follow‐
ing form with special indices:

x𝑑 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥𝑑
1,1
⋮

𝑥𝑑
𝐺𝑟,1
𝑥𝑑

1,2
⋮

𝑥𝑑
𝐺𝑟,2
⋮

𝑥𝑑
1,𝐺𝑡
⋮

𝑥𝑑
𝐺𝑟,𝐺𝑡

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑑 ∈ 𝒟. (26)

Note that the elements of n𝑑 are independent and iden‐
tically distributed zero‐mean complex Gaussian random
variables with variance 𝜎2.

4.1 Proposed pattern‐coupled hierarchical
model

To exploit both the block‐sparse structure along AoAs,
AoDs, and the common sparsity for all the delay taps, we
deϐine a prior over x ≜ {x𝑑 ∶ 𝑑 ∈ 𝒟} as

𝑝(x|𝜶) =
𝐺𝑟

∏
𝑔𝑟=1

𝐺𝑡

∏
𝑔𝑡=1

∏
𝑑∈𝒟

𝒞𝒩 (𝑥𝑑
𝑔𝑟,𝑔𝑡

|0, 𝜂−1
𝑔𝑟,𝑔𝑡

) . (27)

To model the pattern‐coupled block sparsity, we express
the common parameter 𝜂𝑔𝑟,𝑔𝑡

among the delay taps as

𝜂𝑔𝑟,𝑔𝑡
=𝛼𝑔𝑟,𝑔𝑡

+ 𝛽𝑟𝛼𝑔𝑟−1,𝑔𝑡
+ 𝛽𝑟𝛼𝑔𝑟+1,𝑔𝑡

+ 𝛽𝑡𝛼𝑔𝑟,𝑔𝑡−1 + 𝛽𝑡𝛼𝑔𝑟,𝑔𝑡+1, (28)

where 𝜶 = {𝛼𝑔𝑟,𝑔𝑡
} are the hyper‐parameters con‐

trolling the sparsity of x. The parameters 𝛽𝑟 ∈ [0, 1]
and 𝛽𝑡 ∈ [0, 1] indicate the pattern relevance be‐
tween 𝑥𝑑

𝑔𝑟,𝑔𝑡
and its neighboring coefϐicients and they

are taken as known constants in accordance with the re‐
lated works. Different from [29], we do not impose any
Gamma prior for the hyper‐parameters {𝛼𝑔𝑟,𝑔𝑡

}. Instead,
we consider these hyper‐parameters to be deterministic
and unknown, which is equivalent to assuming a non‐
informative prior. In our experiments, we ϐind that this
approach works better than imposing the Gamma prior.

Note that in the testing stage, the noise variance is not
given explicitly. Instead a range information is provided.
So, we assume that we do not know 𝛾 = 1/𝜎2, but we in‐
troduce a uniform prior on 𝛾, i.e., 𝛾 ∼ 𝒰[𝛾low, 𝛾upp] where
the bounds are provided along with the test data. This as‐
sumption also differs from the Gamma distribution that is
considered in [29].

We utilize an EM algorithm for learning the sparse signal
x and the hyper‐parameters Θ ≜ {𝜶, 𝛾}. In the EM for‐
mulation, the signal x is treated as a hidden variable, and
we iteratively maximize a lower bound on the posterior
probability 𝑝(Θ|y) (this lower bound is also referred to
as the Q‐function). The algorithm alternates between an
E‐step and an M‐step. We explain these two steps below.

4.2 E‐Step
In the E‐step, we need to compute the posterior distribu‐
tion of x conditioned on the observed data and the hyper‐
parameters estimated from the 𝑠th iteration, i.e.,

𝑝 (x|y, Θ(𝑠)) ∝ 𝑝 (x|𝜶(𝑠)) 𝑝 (y|x, 𝛾(𝑠)) . (29)

The posterior probability can be computed as a multivari‐
ate Gaussian distribution with mean and covariance ma‐
trix for x𝑑 as

𝝁𝑑(𝑠) = 𝛾(𝑠) (𝛾(𝑠)A∗A+ D(𝑠))−1
A∗y𝑑, 𝑑 ∈ 𝒟 (30)

𝝌𝑑(𝑠) = (𝛾(𝑠)A∗A+ D(𝑠))−1 , 𝑑 ∈ 𝒟 (31)

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 4, 14 July 2021



from [29] where D(𝑠) ∈ ℝ𝐺𝑟𝐺𝑡×𝐺𝑟𝐺𝑡 is a diagonal matrix
with the diagonal elements 𝜂(𝑠)

𝑔𝑟,𝑔𝑡 that are ordered accord‐
ing to the indexing in (26). Let 𝜇𝑑

𝑔𝑟,𝑔𝑡

(𝑠)
and 𝜒𝑑

𝑔𝑟,𝑔𝑡

(𝑠)
de‐

note the elements of 𝝁𝑑(𝑠)
and 𝝌𝑑(𝑠)

corresponding to the
index ordering in (26).

4.3 M‐Step
In the M‐step, the hyper‐parameters Θ = {𝜶, 𝛾} are es‐
timated by treating x as hidden variables and iteratively
maximizing the Q‐function, i.e.,

Θ(𝑠+1) = arg max
Θ

𝑄 (Θ|Θ(𝑠))

= arg max
Θ

𝔼x|y,Θ(𝑠) [ln 𝑝(Θ|x, y)] , (32)

where the expectation is with respect to the posterior dis‐
tribution 𝑝(x|y, Θ(𝑠)). We can express the above maxi‐
mization with respect to Θ as

maximize
Θ

𝔼x|y,Θ(𝑠) [ln 𝑝(𝜶)𝑝(x|𝜶)]

+ 𝔼x|y,Θ(𝑠) [ln 𝑝(y|x, 𝛾)𝑝(𝛾)] . (33)

We can implement the iterative updates in an alternating
manner as follows:

1) Update for 𝜶:
Following a similar approach in [29], we can obtain a sub‐
optimal update for 𝜶 as (the optimal update is not avail‐
able in closed form due to the coupled variables):

𝛼𝑑
𝑔𝑟,𝑔𝑡

(𝑠+1) = |𝒟|
𝜔(𝑠)

𝑔𝑟,𝑔𝑡

, 𝑑 ∈ 𝒟, 𝑔𝑟 = 1, … , 𝐺𝑟,

𝑔𝑡 = 1, … , 𝐺𝑡, (34)

where

𝜔(𝑠)
𝑔𝑟,𝑔𝑡 = ∑

𝑑∈𝒟
( ∣𝜇𝑑

𝑔𝑟,𝑔𝑡

(𝑠)∣
2

+ 𝜒𝑑
𝑔𝑟,𝑔𝑡

(𝑠)

+ 𝛽𝑟 (∣𝜇𝑑
𝑔𝑟−1,𝑔𝑡

(𝑠)∣
2

+ 𝜒𝑑
𝑔𝑟−1,𝑔𝑡

(𝑠))

+ 𝛽𝑟 (∣𝜇𝑑
𝑔𝑟+1,𝑔𝑡

(𝑠)∣
2

+ 𝜒𝑑
𝑔𝑟+1,𝑔𝑡

(𝑠))

+ 𝛽𝑡 (∣𝜇𝑑
𝑔𝑟,𝑔𝑡−1

(𝑠)∣
2

+ 𝜒𝑑
𝑔𝑟,𝑔𝑡−1

(𝑠))

+ 𝛽𝑡 (∣𝜇𝑑
𝑔𝑟,𝑔𝑡+1

(𝑠)∣
2

+ 𝜒𝑑
𝑔𝑟,𝑔𝑡+1

(𝑠)) ),

𝑔𝑟 = 1, … , 𝐺𝑟, 𝑔𝑡 = 1, … , 𝐺𝑡. (35)

2) Update for 𝛾:
The hyper‐parameter 𝛾, which is the inverse of the
noise variance and has a uniform prior distribution on
[𝛾low, 𝛾upp] can be updated by adapting the derivation in
[30] to the uniform prior considered here, as follows:

𝛾(𝑠+1) = arg max
𝛾

𝔼z|y,Θ(𝑠) [ln 𝑝(𝛾)𝑝(y|z, 𝛾)] . (36)

Algorithm1 EM Algorithm for the Sparse Estimation of x
Input: The set of indices of the dominating delay taps:
𝒟. The measurement matrix: A. The noisy measurement
vectors: y𝑑, 𝑑 ∈ 𝒟. The pattern relevance parameters:
𝛽𝑟 and 𝛽𝑡. The solution accuracy: 𝜖EM. The minimum and
maximum iteration numbers: 𝑠min and 𝑠max. Initial hyper‐
parameters: Θ(0) = {𝜶(0), 𝛾(0)}. The lower and upper
bounds for 𝛾: 𝛾low and 𝛾upp.
Initialize the iteration index 𝑠 ← 0.

1: repeat
2: Compute {𝜂(𝑠)

𝑔𝑟,𝑔𝑡} according to (28) using 𝜶(𝑠).

3: Update 𝝁𝑑(𝑠)
and 𝝌𝑑(𝑠)

, for 𝑑 ∈ 𝒟 according to (30)‐
(31) using {𝜂(𝑠)

𝑔𝑟,𝑔𝑡} and 𝛾(𝑠).
4: Update 𝜶(𝑠+1) and 𝛾(𝑠+1) according to (34) and (37)

using 𝝁𝑑(𝑠)
and 𝝌𝑑(𝑠)

, for 𝑑 ∈ 𝒟.
5: Set 𝑠 ← 𝑠 + 1.
6: until 𝑠 = 𝑠max or 𝑠 ≥ 𝑠min with

∑𝑑∈𝒟 ∥𝝁𝑑(𝑠−1) − 𝝁𝑑(𝑠−2)∥
2

∑𝑑∈𝒟 ∥𝝁𝑑(𝑠−1)∥
2 ≤ 𝜖EM. (39)

Output: ̂x𝑑 = 𝝁𝑑(𝑠−1)
, for 𝑑 ∈ 𝒟.

Using the uniform prior, we can obtain 𝛾(𝑠+1) as (37) at
the top of the next page, where

Π𝛾(𝑥) =
⎧{
⎨{⎩

𝛾low if 𝑥 ≤ 𝛾low

𝑥 if 𝛾low < 𝑥 ≤ 𝛾upp

𝛾upp if 𝑥 > 𝛾upp

. (38)

The overall EM algorithm is implemented by applying the
updates iteratively until the difference between 𝝁𝑑(𝑠)

and
𝝁𝑑(𝑠−1)

is negligible. At the ϐinal iteration, the sparse vec‐
tor estimate ̂x𝑑 is set to 𝝁𝑑(𝑠)

, for 𝑑 ∈ 𝒟. The overall algo‐
rithm is summarized in Algorithm 1. After multiplying ̂x𝑑

with the dictionary matrix 𝚿, we obtain the time‐domain
channel estimates at the dominant delay taps in 𝒟. Then,
we take the 𝐾‐point DFT of the time channels and scale
them by 1/

√
𝐾 to obtain the ϐinal frequency channel esti‐

mates.

We describe the overall method in the next section in
more detail.

4.4 Learning the joint relations between AoAs
and AoDs

As a ϐirst step, we construct the dictionary matrix 𝚿 by 
𝐺𝑟 = 96 AoA and 𝐺𝑡 = 24 AoD grid points that are uni‐
formly selected from [0, 𝜋]. We only consider this angle 
range since the array steering vectors for the other angles 
are the same as those with the angles in [0, 𝜋]. Then using 
10, 000 true frequency channels provided in the training 
data set, we add a white Gaussian complex noise 
to the time-domain channels to obtain  the  sparse model
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𝛾(𝑠+1) = Π𝛾
⎛⎜⎜⎜⎜
⎝

𝑀𝐿𝑟|𝒟|
∑𝑑∈𝒟 (∥y𝑑 − A𝝁𝑑(𝑠)∥

2
+ (𝛾(𝑠))−1 (𝐺𝑟𝐺𝑡 − tr (𝝌𝑑(𝑠)D(𝑠))))

⎞⎟⎟⎟⎟
⎠

(37)

y𝑑
training = 𝚿x𝑑

training + n𝑑
training. (40)

Note that the variance of the noise is selected as a very
small value, e.g., 10−4. The motivation is to regularize
the model and apply the EM algorithm described previ‐
ously without any numerical issues. We apply the EM al‐
gorithm in the previous section by keeping the inverse
noise variance 𝛾 = 104 ϐixed in all the 10, 000 models
obtained from the training dataset. Then, using all the
sparse estimates ̂x𝑑

training, we estimate the power distri‐
bution along 2𝐺𝑟 = 192 AoA points and 2𝐺𝑡 = 48 AoD
points as in Fig. 4. Here, we apply a linear interpolation
to both the AoA and AoD axes since we will utilize this in
the grid construction algorithm in the testing stage. As
Fig. 4 shows, some AoA/AoD grid points are more proba‐
ble for the given simulation site. To exploit this learned in‐
formation, we propose a grid construction algorithm, i.e.,
Algorithm 2, to locate the grid points more densely in the
yellow regions compared to the blue regions.

We ϐirst start with a uniform grid for both AoA and AoD
in [0, 𝜋] with 96 ⋅ 24 points in total. Then, we assign ad‐
ditional 96 ⋅ 8 grid points to the most yellow regions in
Fig. 4 by sorting the power values in decreasing order. In
the next stage, we change the locations of the points to
move them to the places where the power of the sparse
vectors obtained from the training data is greater. At the
same time, we try to prevent the neighboring grid points
from being far away via judicious tuning and adjustments.
For this, we consider six different distance thresholds that
correspond to the maximum allowable distance between
two consecutive grid points in horizontal and vertical di‐
rections. If the logarithm of the mean power value at a
particular grid point is high, then a smaller (more restric‐
tive) distance threshold is used. The motivation behind
using logarithm is that the power differences across the
AoA/AoD grid points are observed to be more empha‐
sized after applying logarithm operation. In the end, the
constructed grid point map is shown in Fig. 5 where the
yellow points denote the selected 96 ⋅ 32 grid points to
be utilized in constructing the dictionary matrix in the
testing stage. Note that the minimum distance threshold
value in the vector d is two instead of one since there is
already an interpolation by a factor of two. The number
of power levels, i.e., six, is chosen heuristically.

In the testing stage, after constructing the dictionary ma‐
trix 𝚿 according to the pattern in Fig. 5, we also modify
the pattern‐coupling relations accordingly. For this new
grid structure, the AoA and AoD pattern‐coupled block
sparsity relations in (28) and (35) are modiϐied such that
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Fig. 4 – Heatmap for the power distribution of the sparse vector among
AoA and AoD grid points.

the consecutive AoA and AoD gird points in Fig. 5 are con‐
structed as coupled by keeping only the pairs with some
distance threshold, i.e., not being far away more than two
grid points. The updates in the EM algorithm are the same
except for the indices according to the pattern‐coupled
block sparsity pattern.

This concludes the description of the PCSBL‐DDT algo‐
rithm, and we will describe the third and last approach
in the next section.

5. PC‑OMP
In this section, we present the Projection Cuts Orthogonal
Matching Pursuit (PC‐OMP) approach for the site‐speciϐic
hybrid MIMO channel estimation problem. This method
makes use of the sparsity of the mm‐wave channel and
extracts paths parameters one by one using an OMP algo‐
rithm. A novel, custom detection method is used to detect
paths, which is optimized using training data.

We express the frequency‐domain channel at the 𝑘th sub‐
carrier in (5) as

𝐇[𝑘] =
𝐿

∑
ℓ=1

̃𝛼ℓ exp (−𝑗2𝜋𝜏ℓ𝑘) aR(𝜙ℓ)a∗
T(𝜃ℓ), (41)

where the effect of pulse shaping and other scaling factors
except the delay of the ℓth path, i.e., 𝜏ℓ in (3), are embed‐
ded into ̃𝛼ℓ. Using the identity 𝑣𝑒𝑐(𝐚𝐛𝑇 ) = 𝐛 ⊗ 𝐚, 𝐇[𝑘]
vectorizes into

𝐡𝑘 =
𝐿

∑
ℓ=1

̃𝛼ℓ exp (−𝑗2𝜋𝜏ℓ𝑘) āT(𝜃ℓ) ⊗ aR(𝜙ℓ) (42)
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Fig. 5 – Non‐uniform grid pattern for AoA and AoD in testing stage of
the algorithm. The yellow pixels correspond to the selected 96 ⋅ 32 grid
points.

and can be horizontally stacked into the matrix from (13)
as

𝐇̂ = 𝚿Hv =
𝐿

∑
ℓ=1

̃𝛼ℓ(āT(𝜃ℓ) ⊗ aR(𝜙ℓ))𝐚𝑇
F (𝜏ℓ) (43)

with [𝐚F(𝜏ℓ)]𝑘 = exp(−𝑗2𝜋𝜏ℓ𝑘). Then the stacked mea‐
surements in (13) can be expressed as

𝐘 = 𝚽𝐇̂ + 𝐍𝑐. (44)

To obtain independent and identically distributed noise
entries, we apply the whitening given in (17), i.e.,

Yw = 𝚽w𝐇̂ + Nw. (45)

To ease the notation, we willdeϐine the spatial component
of a path as

𝐚R−T(𝜙ℓ, 𝜃ℓ) = āT(𝜃ℓ) ⊗ aR(𝜙ℓ) (46)

and the channel component of a path as

𝐚R−T−F(𝜙ℓ, 𝜃ℓ, 𝜏ℓ) = 𝐚F(𝜏ℓ) ⊗ 𝐚R−T(𝜙ℓ, 𝜃ℓ). (47)

5.1 Approach

Our strategy capitalizes on the fact that 𝐇̂ is a very sparse
matrix in the sense that the number of paths 𝐿 is much
smaller than the maximum matrix rank min(𝑁r𝑁t, 𝐾).
Hence, the path components 𝐚F(𝜏ℓ) ⊗ āT(𝜃ℓ) ⊗ aR(𝜙ℓ) are
nearly orthogonal to each other, i.e.,

⟨𝐚R−T−F(𝜙ℓ, 𝜃ℓ, 𝜏ℓ), 𝐚R−T−F(𝜙ℓ′ , 𝜃ℓ′ , 𝜏ℓ′)⟩ ≈ 0, ∀ℓ ≠ ℓ′.
(48)

Our algorithm consists of extracting the path parameters
(𝜙ℓ, 𝜃ℓ, 𝜏ℓ) one by one and then subtracting their contri‐
bution in an OMP algorithm. Two key aspects here are

Algorithm 2 Grid Construction Algorithm Using the
Power Distribution of the Sparse Vectors
Input: The interpolated power distribution of { ̂x𝑑

training}
along 2𝐺𝑟 = 192 AoA points and 2𝐺𝑡 = 48 AoD
points. Set 𝒫min = 0 and 𝒫max = ∞. Construct the
vector of logarithms of the six power levels that
are equally spaced between the logarithms of min‐
imum and maximum power value in the AoA/AoD
power distribution. Denote this vector by p. Con‐
struct the corresponding distance threshold vector
d = [7 6 5 4 3 2]𝑇 .

1: Select the points in the uniform grid for both AoA and
AoD in [0, 𝜋] with 96 ⋅ 24 points in total.

2: Select additional 96 ⋅ 8 grid points with the greatest
power values.

3: repeat
4: For each grid point, compute the mean power

of the three consecutive vertical and horizontal
points with the considered point being at the cen‐
ter. Denote this mean power by 𝑝𝑔𝑟,𝑔𝑡

for grid point
(𝑔𝑟, 𝑔𝑡).

5: Count the number of entries in p which are less
than or equal to the logarithm of 𝑝𝑔𝑟,𝑔𝑡

for each
grid point (𝑔𝑟, 𝑔𝑡). Set the corresponding distance
threshold 𝑑𝑔𝑟,𝑔𝑡

as the element of d at this index,
i.e., the number of entries.

6: Update 𝒫max by the maximum of the mean val‐
ues computed above among the non‐selected grid
points. Set the corresponding grid point as a candi‐
date for inclusion.

7: Update 𝒫min by the minimum of the mean values
computed above among the selected grid points
whose removal will not alter the maximum allow‐
able distance 𝑑𝑔𝑟,𝑔𝑡

between consecutive horizon‐
tal and vertical selected points. Set the correspond‐
ing grid point as a candidate for removal.

8: Remove the grid point found in Step 7 from the grid
pattern and add the grid point found in Step 6 to the
grid pattern.

9: until𝒫min > 𝒫max
Output: The updated non‐uniform grid pattern

(a) how to set the dictionary for determining the path pa‐
rameters and (b) how to know when to stop the OMP it‐
erations. Key to the success of our algorithm lies in the
way we address these two aspects, i.e., how we search for
path parameters by using projections and how we detect
the presence of a new path. We describe these in the se‐
quel.

At each step of OMP, we want to obtain the best matching
channel component, i.e., we want to solve

max
𝜙ℓ,𝜃ℓ,𝜏ℓ

∣⟨𝑣𝑒𝑐(𝚽𝐚R−T(𝜙ℓ, 𝜃ℓ)𝐚𝑇
F (𝜏ℓ)), 𝑣𝑒𝑐(𝐘w)⟩∣ (49)

which can be simpliϐied into

max
𝜙ℓ,𝜃ℓ,𝜏ℓ

|𝐚∗
R−T(𝜙ℓ, 𝜃ℓ)𝚽∗𝐘w 𝐚̄F(𝜏ℓ))|, (50)
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where we have used ⟨𝑣𝑒𝑐(A), 𝑣𝑒𝑐(B)⟩ = 𝑡𝑟(A∗B) and the
cyclic shift property of the trace.

The above maximization problem can be solved by
searching over a discretized set of values of the path pa‐
rameters, (𝜙ℓ, 𝜃ℓ, 𝜏ℓ). We start by considering a small set
of values for the path parameters equally spaced in their
domains. We choose a resolution of 4𝐾 values for 𝜏ℓ
and of 𝑁r/2 (𝑁t/2) values for 𝜙ℓ (𝜃ℓ). Since we are con‐
sidering a smaller resolution for the angles than that re‐
quired for them to cover the entire angular spectrum, we
substitute each 𝐚R(𝜙ℓ) by a sector beam‐pattern 𝐚̂R(𝜙ℓ)
of width 4𝜋/𝑁r. The same manipulation applies to the
phase angles at the transmitter, and thus we can deϐine
𝐚̂R−T(𝜙ℓ, 𝜃ℓ) = ̄𝐚̂T(𝜃ℓ) ⊗ 𝐚̂R(𝜙ℓ). The sector beam‐pattern
we consider is the same as the one deϐined in [31]. With
this deϐinition, we can extract a coarse version of the path
parameters (𝜙ℓ, 𝜃ℓ, 𝜏ℓ) by maximizing

𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ
= |𝐚̂∗

R−T(𝜙ℓ, 𝜃ℓ)𝚽∗𝐘w 𝐚̄F(𝜏ℓ)|. (51)

5.2 Detection

∗
R

Now we want to know if those parameters can be con‐
sidered as a path detection. To this end, we take into 
account the null hypothesis of 𝐇 = 0, in that case all 
elements of 𝐘w are independent white noise and thus
𝐚̂ −T(𝜙ℓ, 𝜃ℓ)𝚽∗𝐘w 𝐚̄F(𝜏ℓ) is also comprised of white noise 
components. Consequently, 𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ 

follows a Rayleigh 
distribution, which has the cumulative distribution 
funtion

𝐹(𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ
) = 1 − exp (−

𝑑2
𝜙ℓ,𝜃ℓ,𝜏ℓ

2𝜎2 ) . (52)

Since there is a channel contribution only for a smallnum‐
ber of path parameters, we have that the median of all
computed values of 𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ

should be close to that of the
Rayleigh distribution 𝜎√2 ln(2). This insight is key to our
algorithm. Then, 𝜎 can be approximated as

𝜎 ≃ 𝜇(𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ
)/√2 ln(2). (53)

In this case, the cumulative function of max 𝑥𝑘 can be com‐
puted as 𝐹max(𝑥) = ∏ 𝐹𝑘(𝑥). Explicitly, it is given by

𝐹max(max(𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ
)) =

(1 − exp (−
max(𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ

)2

2𝜎2 ))
𝑁r𝑁t𝐾

.

(54)

Using this, we can compute a detection threshold corre‐
sponding to a conϐidence level of 𝛿 as

𝜇(𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ
)√− log2(1 − (𝛿) 1

𝑁r𝑁t𝐾 ). (55)

We compare the optimal value of 𝑑𝜙ℓ,𝜃ℓ,𝜏ℓ
obtained by

solving (51) with the above threshold to decide whether

the path is sufϐiciently signiϐicant to be included in the
model, or whether to stop the OMP iterations. The value
of 𝛿 is optimized using the dataset information as de‐
scribed later in Section 6.3.

5.3 Reϐinement
Once a path has been detected, we proceed to reϐine the
path components by iterative projections. We do this by
freezing two of the variables and increasing the resolution
of the third, in an alternating fashion.

First steps: First, we adapt our estimation to handle a
higher resolution due to the manipulation we did with the
angular resolution.

We start by increasing the time resolution by comput‐
ing the maximum of |𝐚̂∗

R−T(𝜙ℓ, 𝜃ℓ)𝚽∗𝐘w 𝐚̄F(𝜏ℓ))| for ϐixed
(𝜙ℓ, 𝜃ℓ) and 𝜏ℓ with a resolution of 32𝐾 equally spaced
points.

Then, by ϐixing 𝜏ℓ and using the identity 𝑣𝑒𝑐(𝐀∗𝐁𝐂) =
( ̄𝐂 ⊗ 𝐀)∗𝑣𝑒𝑐(𝐁),we can simplify the expression to

∣𝐚̂∗
R(𝜙ℓ)𝐇(𝜏ℓ)𝐚̂T(𝜃ℓ)∣ (56)

with 𝐇(𝜏ℓ) such that 𝑣𝑒𝑐(𝐇(𝜏ℓ)) = 𝚽∗𝐘w 𝐚̄F(𝜏ℓ).

We then proceed to reϐine the angle components with the 
highest number of antennas. For simplicity, let us as‐
sume that 𝑁t > 𝑁r. By increasing the resolution of 𝜃ℓ to 
32𝑁t  equally spaced points, we do not need to use the 
sec‐tor beam‐pattern manipulation, thus we can simply 
maximize

∣𝐚̂∗
R(𝜙ℓ)𝐇(𝜏ℓ)𝐚T(𝜃ℓ)∣ (57)

over 𝜃ℓ while the other path parameters are ϐixed.
Finally, we reϐine the expression with respect to the re‐
maining angle. Again, the manipulation is not required,
and we can maximize

∣𝐚∗
R(𝜙ℓ)𝐇(𝜏ℓ)𝐚T(𝜃ℓ)∣ (58)

over 𝜃ℓ while the other path parameters are ϐixed.

Iteration steps: Now that with the ϐirst steps we re‐
moved the angle uncertainty caused by the sector beam‐
pattern, we can proceed to repeat the same steps itera‐
tively by substituting all sector beam‐patterns 𝐚̂ by array 
responses 𝐚.

Once the parameters of the path have been estimated,
(𝜙ℓ, 𝜃ℓ, 𝜏ℓ), we use them to reconstruct the path and sub‐
tract it from the received pilots, thereby altering the resid‐
ual. Then, the residual is updated, and the next path is ob‐
tained following the same steps. The residual is updated 
until a stopping condition is reached, as discussed in 
Section 5.2. How to obtain the best stopping condition for 
our algorithm is discussed in Section 6.3.
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Fig. 6 – NMSE behavior over the decision threshold of the 3 training datasets.

Table 1 – NMSE table for training data

SNR (dB) Algorithm −15 −10 −5

Pilot Frames: 20
SW‐OMP −1.45 dB −5.70 dB −9.68 dB
MLGS‐SBL −4.29 dB −9.13 dB −12.34 dB
PCSBL‐DDT −8.16 dB −10.62 dB −11.07 dB
PC‐OMP −8.34 dB −12.36 dB −16.15 dB

Pilot Frames: 40
SW‐OMP −3.95 dB −7.95 dB −11.87 dB
MLGS‐SBL −7.55 dB −11.19 dB −14.15 dB
PCSBL‐DDT −10.56 dB −12.14 dB −12.62 dB
PC‐OMP −12.66 dB −16.33 dB −19.78 dB

Pilot Frames: 80
SW‐OMP −7.33 dB −11.60 dB −15.63 dB
MLGS‐SBL −13.02 dB −16.37 dB −18.94 dB
PCSBL‐DDT −11.90 dB −13.10 dB −13.63 dB
PC‐OMP −18.70 dB −21.49 dB −24.48 dB

Table 2 – NMSE table for test data

SNR (dB) Algorithm [−20, −11) [−11, −6) [−6, 0]

Pilot Frames: 20
MLGS‐SBL −7.66 dB −10.97 dB −12.34 dB
PCSBL‐DDT −8.94 dB −9.99 dB −10.31 dB
PC‐OMP −9.09 dB −12.45 dB −14.22 dB

Pilot Frames: 40
MLGS‐SBL −11.87 dB −12.79 dB −14.20 dB
PCSBL‐DDT −10.82 dB −11.33 dB −11.89 dB
PC‐OMP −13.79 dB −15.24 dB −16.79 dB

Pilot Frames: 80
MLGS‐SBL −13.62 dB −16.23 dB −20.08 dB
PCSBL‐DDT −11.74 dB −12.47 dB −12.98 dB
PC‐OMP −16.32 dB −19.07 dB −23.91 dB

6. NUMERICAL RESULTS

In this section, we discuss the NMSE performance of 
our proposed algorithms with the training and testing 
data generated using Raymobtime, a ray tracing based 
mmWave channel generation tool. We train the mmWave 
channel estimation algorithms using 10, 000 independent 
channel realizations, each consisting of 100 paths be‐
tween the Tx and Rx. More details about the channel 
generation methodology can be found in [24]. We used 
20, 40, and 80 pilot frames during both the training and 
testing phases of the proposed algorithms. For the train‐
ing phase, we used SNR values of {−15, −10, −5} dB. We 
benchmark the NMSE performance of our proposed al‐
gorithms with a reference state‐of‐the‐art model‐based
greedy search algorithm called SW-OMP [4].

We note that while the three new algorithms presented 
in this paper have been ϐine‐tuned based on the training 
dataset, the baseline algorithm, SW‐OMP, has been imple‐
mented as‐is from the literature. On the other hand, in our 
implementation of SW‐OMP, we consider the case where 
the true AoDs and AoAs are contained in the sparsifying 
dictionary. While the proposed algorithms do suffer from 
the off‐grid effects, the SW‐OMP algorithm is insulated 
from the performance degradation caused by them.
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6.1 MLGS‐SBL
Upon analyzing the training channels, we set the maxi‐
mum number of paths obtained from MLGS to 𝑆 = 10, 
and the number of levels in MLGS to 𝑁 = 5. We set the 
number of columns in the initial AoD/AoA steering ma‐
trices to 256. We use the estimated noise variance after 
SBL to threshold the number of dominant delay taps of the 
channel denoiser. As this approach is primarily a model‐
based method, and uses few statistics from the training 
data, it is suitable for general mmWave channel estima‐
tion problems also. Further, the thresholds are set keep‐
ing in mind the computational complexity of the MLGS‐
SBL algorithm. By increasing the number of paths out‐
put by MLGS, we can potentially improve the performance 
of the algorithm, but at the cost of higher computational 
complexity. We include the NMSE values obtained for the 
training and testing datasets in Table 1 and Table 2, re‐
spectively. The ϐinal performance score achieved, which 
is a weighted combination of the NMSE performance in 
Table 2 when the number of pilot frames is 20, using our 
proposed algorithm in the mmWave channel estimation 
challenge is −9.16 dB.

6.2 PCSBL‐DDT
In this approach, we adopted an EM‐based sparse 
Bayesian learning method to exploit the shared sparsity 
between different delay taps and possible sparsity pat‐
tern couplings between consecutive AoAs and AoDs. We 
applied the algorithm to the time‐domain received signals 
by only retaining the dominant delay taps to increase ef‐
fective SNR in the signal used to form the channel esti‐
mate. First, we used the pattern‐coupled Sparse Bayesian 
learning algorithm to the ground‐truth channels in the 
training dataset by adding a small noise to regularize the 
data. In this way, we obtained the sparse representations 
for all the channels in the provided dataset. Then, using 
the respective sparse vectors and exploiting the density 
map of joint AoA/AoD grids, we selected a non‐uniform 
grid and reϐined the pattern couplings between hyper‐
parameters. The algorithm is applied to the test dataset 
to obtain the channel estimates. The ϐinal performance 
score in the channel estimation challenge is −9.49 dB. 
The NMSE values for the speciϐic scenarios are shown 
in Table 2 for the testing dataset.

6.3 PC‐OMP

Before evaluating the performance of PC‐OMP we opti‐
mize the value of the detection threshold value 𝛿, de‐
scribed in Section 5.2, in order to improve the results. 
We create a speciϐic optimization method for the struc‐
tured problem that arises in our approach. This optimiza‐
tion method is focused on reducing the optimization time 
while being able to perform a high‐resolution grid search 
for the parameter values. We base our training algorithm 
on the fact that our approach is a greedy algorithm with 
a carefully chosen stopping condition. This means that

we can predict when a change in the solution will happen
based on the selected threshold. Knowing this, we create
a modiϐied version of our approach that saves all chan‐
nel iterations together with the computed threshold re‐
quired for them to pass up to a minimum threshold value,
in our case 0.7. Once outside the function, we can evalu‐
ate these channel estimations and compute the error as
a step‐wise function of the threshold. Then, we apply the
average operation to the error step‐wise functions for dif‐
ferent scenarios to get a better and smoother result of
the error behavior over different threshold values. Fig. 6
shows the smoothed step‐wise error function for the dif‐
ferent datasets. The selected threshold value is 𝛿 ≈ 0.98.
The algorithm with the custom detection method is ap‐
plied to the test data and the obtained results are shown
in Table 2. The PC‐OMP algorithm outperforms the other
two algorithms for the different data sets, as can be ob‐
served from the table. Specially, in lower SNRs where
the channel estimation performance is lower due to noise,
the PC‐OMP algorithm achieves gains of up to 3 dB com‐
pared with the other two algorithms. At higher SNRs, e.g.,
[−6, 0] dB,PC‐OMP outperforms the other two algorithms
by up to 4 dB.

The ϐinal performance score on the test dataset in the
channel estimation challenge of the PC‐OMP algorithm is
−10.64 dB, outperforming the MLGS‐SBL and the PCSBL‐
DDT methods by 1.48 dB and 1.15 dB, respectively. Also,
from Table 1, we can see that the PCSBL‐DDT and the
PC‐OMP algorithms are tuned better than the MLGS‐SBL
method for the training dataset that result in their bet‐
ter NMSE performances at SNR −15 dB and pilot frames
{20, 40}. But the performance gap between MLGS‐SBL
and PCSBL‐DDT reduces for the testing data for SNR
[−20, −11) dB and 20 pilot frames. Moreover, MLGS‐SBL
performs better than PCSBL‐DDT at SNR [−20, −11) dB
and 40 pilot frames. This can be attributed to the fact
that extracting more features from a training dataset may
result in an excellent performance during training but
slightly inferior performance while testing. This shows
that a goodmodel‐based signal processing solution has to
be combined with appropriate training, while taking into
account the training and testing performance trade‐off.

7. CONCLUSION

We have presented three novel signal processing ap‐
proaches to estimate an mmWave channel in a hybrid 
analog‐digital MIMO setup. We have adapted model‐
driven procedures to utilize the AoD, AoA, and channel 
gain information from a training dataset, and ϐine‐tuned 
the algorithms to reduce the NMSE in the testing dataset. 
We empirically showed that our algorithms unanimously 
performed better than a purely model‐based approach 
by a large margin on a given training data set. Hence, 
machine learning approaches can be potentially used 
in conjunction with model‐driven based approaches to 
ϐine‐tune them and thereby obtain better performance in
physical layer wireless communication problems in real-
istic channel environments.
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