
Data-Driven RAN Slicing Mechanisms for 5G and
Beyond

Sihem Bakri∗, Pantelis A. Frangoudis‡, Adlen Ksentini∗, and Maha Bouaziz§
∗EURECOM, Sophia Antipolis, France

‡Distributed Systems Group, TU Wien, Vienna, Austria
§University of Strasbourg, France

Email: ∗{name.surname}@eurecom.fr, ‡pantelis.frangoudis@tuwien.ac.at, §maha.bouaziz@unistra.fr

Abstract—One of the main challenges when it comes to
deploying Network Slices is slicing the Radio Access Network
(RAN). Indeed, managing RAN resources and sharing them
among network slices is an increasingly difficult task, which
needs to be properly designed. The goal is to improve network
performance and introduce flexibility and greater utilization of
network resources by accurately and dynamically provisioning
the activated network slices with the appropriate amounts of
resources to meet their diverse requirements. In this paper,
we propose a data-driven RAN slicing mechanism based on a
resource sharing algorithm running at the Slice Orchestrator (SO)
level. This algorithm computes the necessary radio resources to
be used by each deployed network slice. These resources are
adjusted periodically based on current estimates of achievable
throughput performance derived from channel quality informa-
tion, and in particular from the Channel Quality Indicator (CQI)
values of the users of each network slice retrieved from the
RAN. CQI information is reported to base stations by the User
Equipment (UE) following standard procedures, but extracting
and frequently reporting it from base stations to the SO may
result in significant communication overhead. To mitigate this
overhead while maintaining at the SO level an accurate view of
UE channel qualities, we propose a machine learning approach
to infer the stability of UE channel conditions, as well as
predictive schemes to reduce the CQI reporting intensity based
on the inferred channel status. Through extensive simulations,
we demonstrate the efficiency of our data-driven RAN slicing
framework, which allows to meet the stringent requirements
of two main classes of network slices in 5G, i.e., enhanced
Mobile Broadband (eMBB) and Ultra-Reliable and Low-Latency
Communication (URLLC).

Index Terms—Network slicing, radio resource sharing, RAN
monitoring, CQI, machine learning.

I. INTRODUCTION

The new generation of mobile networks, known as 5G,
is expected to be launched by the end of 2020, promising
the support of several novel use-cases coming from other
industry sectors (or vertical industries), such as Industry 4.0,
autonomous driving, entertainment, etc., in addition to the
classical broadband connectivity. Building on the concept of
network virtualization, Network Slicing is considered as one
of the main enablers of 5G. It allows sharing a common phys-

ical infrastructure through building virtual network instances
(network slices) tailored to meet specific service requirements.

5G supports three types of network slices [1], namely en-
hanced Mobile Broadband (eMBB), Ultra-Reliable and Low-
Latency Communication (URLLC), and massive IoT (MIoT).
Each network slice covers a set of services having the same re-
quirements in terms of Quality of Service (QoS). Generally, a
network slice is described and composed by a set of virtual and
physical resources, in the form of Network Functions (known
as VNF and PNF), deployed and interconnected together on
top of a shared infrastructure. Indeed, VNFs include Core
Network functions and slice-owner’s network services, while a
PNF is an already deployed entity, such as a base station (BS)
component. The network slice’s VNFs and PNF are deployed
over different technological domains: Radio Access Network
(RAN) and Cloud domain (including the Edge). Mostly, VNFs
are deployed on Cloud and Edge domains, while PNFs mainly
pertain to the RAN, e.g., gNodeB (gNB) baseband units. All
the running network slices are isolated from each other, even
though they share the same physical infrastructure.

Management and orchestration of network slices is a critical
task, involving making slice life-cycle management decisions
at run-time based on monitoring feedback from the service
and infrastructure levels. Different slice components at the
RAN, transport, and core network need to be coordinated in
such a way that target key performance indicators (KPIs) for
throughput, latency, availability, and other metrics are attained.
The increase in the number of coexisting slices and the number
of diverse slice components that need to be monitored already
come with significant overhead and the strain on the slice
management and control planes is only expected to grow in
beyond-5G settings. While the 5G network is maturing, the
discussion about how future generations will look like has
been kicked off [2], [3]. The general consensus is that the
5G network management architecture needs to evolve to meet
complexity and heterogeneity-related coordination challenges
by dealing with complex monitoring, analysis, and decision
making and becoming more intelligent by natively supporting
AI-driven operation. This need is a consequence of the ex-
pected increase in the dynamics of the network as a result
of extreme device mobility, massive densification, and the

potential for large numbers of short-lived personalized slices
with diverse requirements. This calls for a self-sustaining
network [4] that can autonomously maintain its KPIs under
the dynamicity and complexity brought about by a rich set of
new beyond-5G applications.

Our work aims to address the above challenges for RAN
slice orchestration, particularly focusing on providing intel-
ligent and adaptive RAN slicing mechanisms with reduced
monitoring overhead. We build on our prior work [5], [6]
to define a data-driven resource management mechanism to
support RAN slicing. For this reason, we follow the concept of
a two-level MAC scheduler, initially introduced in [7] and [5],
that shares the physical radio resources (i.e., Physical Resource
Blocks - PRBs) among slices by abstracting PRBs and us-
ing two scheduler levels: (i) the first level is slice-specific,
allowing each slice to use its own internal scheduler, and
schedules each User Equipment (UE) with Virtual Resource
Blocks (VRBs); (ii) the second level, considers the slice-
specific (virtual) resource assignment and maps it to actual
PRBs, where it controls the number of PRBs assigned to each
slice according to the recommendation of a Slice Orchestrator
(SO) since the number of PRBs (NPRB) is limited. The second
level indicates the maximum number of PRBs to be assigned
to each slice, which is derived by the SO. However, the authors
do not detail how the NPRB for each slice is computed.

This aspect in particular–namely, deriving and dynamically
adjusting slice resource shares appropriately in response to a
changing radio environment, is the main focus of this work.
In order to do so, we rely on monitoring information from
the RAN, and in particular on feedback about the slice users’
channel quality in the form of Channel Quality Indicators
(CQI) obtained from base stations, as we have shown in [6].
This information is directly related to the performance enjoyed
by slice UEs and is a critical input in order to calculate the
amount of physical resources to allocate per slice to meet its
target KPIs. A significant issue with such an approach is the
overhead induced by the frequent CQI information exchange
between base stations and the SO to tune NPRB . In this work,
we tackle these issues and make the following contributions:
• (§III) We provide mechanisms to derive the number of

PRBs needed by URLLC and eMBB slices to match
their latency and throughput requirements, respectively.
For URLLC, we apply tools from queuing theory and
devise a way to determine the service rate necessary to
attain specific latency targets. These mechanisms require
estimates of the achievable data rates of slice UEs,
which in turn depend on UE channel quality. For this,
we exploit per-user RAN-level information, namely CQI
reports collected from base stations [6].

• (§IV) We address the challenge of obtaining an accurate
view of channel conditions, which is crucial input for our
mechanisms, with reduced monitoring overhead. To this
end, we first propose a ML-based mechanism (introduced
in [8]) to detect UE channel stability. Our intuition is that
for UEs whose channel is not characterized by significant
quality fluctuations, savings in terms of monitoring traffic

Fig. 1: High-level view of our design and overview of our
contributions.

can be achieved by reducing monitoring frequency with-
out significant loss of information.

• (§V) Based on whether a UE is considered to have a
stable channel or not, we propose mechanisms to tune the
CQI reporting frequency among BSs and the SO, as well
as to predict future CQI values without actually retrieving
them; for the latter, our approach is based on Long Short-
Term Memory (LSTM) neural networks.

• (§VI) We evaluate our mechanisms extensively via sim-
ulation, and show them to: (i) detect channel stability
with more than 92% accuracy on simulated data, also
producing correct classification results on a publicly
available LTE measurement data set for different UE mo-
bility scenarios, (ii) outperform static per slice resource
sharing in terms of throughput and latency for coexisting
eMBB/URLLC slices, (iii) offer significant savings (up
to more than 95%) in terms of CQI monitoring overhead
for most reporting frequency configurations, at the cost
of an average estimation error of less than 7%, and (iv)
have low execution time, in the order of milliseconds.

Fig. 1 presents an overview of our work, focusing on the
different functional components of our slicing design and how
they interact towards providing data-driven RAN slicing.

The rest of this article is structured as follows. Section II
reviews the relevant literature. Section III presents our RAN
slicing framework, including our channel quality-aware algo-
rithms for slice resource allocation. To reduce the overhead
of channel quality reporting, a first step is to be able to
classify the status of each UE’s channel, for which we provide
ML-driven algorithms in Section IV. Then, in Section V, we
devise predictive techniques in order to minimize the reporting
frequency. The performance of our mechanisms is evaluated
in Section VI before we conclude the article in Section VII.

II. RELATED WORK

Resource allocation among slices has become a challenge
that requires efficient mechanisms allowing sharing resources
between slices in a (near-)optimal way, according to their

heterogeneous needs and to the limited bandwidth. Several
works in the literature address issues in this space.

Vo et al. [9] focus on RAN slicing and slice coordination
by formulating a bi-convex problem, which accounts for de-
pendencies between radio, base station caching, and backhaul
resource allocation. They present two alternative minimization
algorithms to solve the proposed bi-convex problem. Even
though their alternative minimization approaches have no
global convergence guarantees, their simulation results show
that they can achieve a global optimal solution. Unlike our
work, the proposed mechanism does not consider slice latency
requirements at the RAN and thus cannot directly support
URLLC. Moreover, to derive the ratio of radio resources to
allocate per slice, information on each user’s downlink rate is
necessary by the slicing algorithm, which is calculated from
each user’s SNR. It is this type of channel quality-related
feedback that our mechanisms aim to minimize.

Zhang et al. [10] present a resource allocation mechanism
for a two-tier (macro-cell vs. small cell) sliced system, adapted
to the QoS requirements and interference constraints of
URLLC, eMBB, and IoT slices. They address the problem of
allocating resources to maximize the uplink capacity on each
sub-channel for small cells, taking into account constraints on
the transmit power of each cell user, the data rate required
by the (URLLC) users, and the interference among cells. The
authors transform the problem to a relaxed, continuous convex
version, which they solve using the Lagrangian dual decom-
position method. Apart from the different problem settings
and architectural assumptions, their mechanisms operate at the
sub-channel and transmission interval levels. In our design,
these allocation decisions map to the lower scheduler level.
Our mechanisms, on the other hand, aim at estimating and
dedicating the physical resources necessary per slice in a
channel quality and latency-aware manner, which is part of
the input for the aforementioned decisions.

Arand et al. [11] study joint eMBB and URLLC schedulers
by designing optimization algorithms for common schedul-
ing between the traffic of the two considered traffic types,
where the objectives are dual: maximizing utility for eMBB
traffic while satisfying instantaneous URLLC requests. This
is achieved by dynamically multiplexing the URLLC traf-
fic through puncturing/superposition through/over the eMBB
traffic. The theoretical and simulation results show that the
structural properties of the joint optimization problem allow
for clean decomposition, which validates the characteristics
and benefits of their proposed schedulers. Since our decisions
take place at the slice orchestrator level, our mechanisms are
to an extent complementary and could be considered jointly.
At the orchestrator level, we decide on a (minimum) amount
of resources per slice, and then the scheduler at the gNB
can multiplex them either via puncturing or superposition, as
Arand et al. describe, or by dedicating an amount of resources
per slice according to the decision of the slice orchestrator
and having two independent slice-dedicated schedulers. These
mechanisms pertain to resource partitioning within a slice. In
this article, we do not use channel state information for (intra-

slice) per user resource allocation and transmission scheduling
decisions, but, rather, for per slice resource allocation.

In a non-cooperative network slicing setting, Caballero et
al. [12] adopt a game-theoretic approach, and propose and
analyze dynamic resource sharing mechanisms, which allow
slices to unilaterally customize resource allocations to their
users. The proposed network slicing framework combines
admission control with resource allocation and user dropping
within a slice so that each slice maximizes its utility subject to
its share of network resources. Our work assumes a different
slicing framework, where it is the task of the slice orchestrator
to dynamically tune slice resource shares based on RAN
monitoring data. Distributing the resource share of a slice to
its individual users, a task of the slice-specific scheduler level
of our design, as well as admission control, are not in the
scope of this article.

Sciancalepore et al. [13] present slice resource allocation
algorithms consisting in: i) prediction and traffic analysis per
network slice using the Holt-Winters forecasting procedure,
to analyze and predict future traffic requests associated with
a particular network slice, ii) a heuristic scheme in order to
make admission control decisions for network slice requests,
and iii) multi-class traffic scheduling and adaptive correction
of the previous forecasting solution according to measured
deviations. Their work is similar in spirit to ours, in the sense
that they apply forecasting schemes for slice-level resource
management. However, while they aim at forecasting slice
traffic demands to perform admission control and resource
allocation, we address a different problem: We assume fixed
traffic requirements at the application level and apply predic-
tion mechanisms to estimate the necessary slice resources in a
channel-quality aware manner. Furthermore, their algorithms
are executed less frequently, i.e., in the order of hours (at slice
admission), and thus their running time, which can reach hun-
dreds of seconds, does not pose a problem. Our mechanisms
are designed to be executed at much finer timescales and have
lower run-time complexity.

Finally, Salvat et al. [14] propose a joint slice admis-
sion control and resource reservation framework, including a
hierarchical control plane for end-to-end slice orchestration
and adopting revenue management models already used in
other contexts, such as the airline industry. In particular,
they introduce the concept of slice resource overbooking to
maximize the revenues of mobile operators and proposed exact
and heuristic algorithms to solve the respective optimization
problems. Their approach also makes use of runtime mon-
itoring information from the RAN to map signal quality to
achievable rates and to perform predictions (for the latter, an
approach similar to [13] is used). However, aspects related to
optimizing this monitoring frequency, which are central to our
work, are not discussed.

In conclusion, the state-of-the-art techniques and mecha-
nisms proposed for dynamic slice resource sharing are based
on the formulation and solution of optimization problems con-
sidering individual or combined objectives related to several
constraints imposed by users, operators, etc. These problems

are typically NP-hard, and thus, solving them in real-time
brings up significant practical challenges. The mechanisms
we present in this article have low complexity, are based
on simple channel status estimation models that rely only
on RAN-level data directly available to the mobile network
operator and are thus suitable for run-time operation. Our
system is supported by predictive mechanisms, which are
shown to precisely estimate the amount of resources needed by
each slice while reducing the associated monitoring overhead.
Notably, reducing the monitoring intensity for RAN slicing is
an understudied topic in the related literature.

III. RAN SLICING FRAMEWORK

A. Architecture and assumptions

In this work, we assume a 5G network that includes a set
of deployed base stations (gNBs, in 5G terminology) covering
an area, and a Slice Orchestrator (SO) that is responsible for
deploying and managing the life cycle of network slices in the
mobile network (RAN and core network). Thus, we consider
the same type of network architecture adopted in [7] and [5].
Besides, we assume that a SO is responsible for a region
covered by a set of gNBs. The communication between the SO
and the gNBs is realized using a southbound communication
protocol, such as FlexRAN [15], which allows to interact and
remotely manage the gNBs. The gNB management process
consists of obtaining information on the status of the RAN and
configuring the gNBs in an appropriate way, for example, by
determining the number of PRBs allocated to each slice. Then,
we assume that a set of UEs is served by (or associated with)
a network slice spanning a set of gNBs (i.e., different physical
locations). The SO receives a request from a tenant (slice
owner) to instantiate a slice in the form of a slice template,
which may indicate the slice duration, its type (e.g., eMBB,
URLLC, MIoT), the list of involved UEs, the application
requirements (for example the maximum tolerated latency) and
the application data rate (denoted by λ) of the service used in
this slice. Based on this information, the SO determines the
appropriate number of PRBs that meets the requirements of the
slice, which will be communicated later to the concerned base
stations via the southbound control protocol (e.g., FlexRAN).

We focus on network slices that belong to either the URLLC
or the eMBB service class and propose two corresponding
mechanisms to estimate the required NPRB for each slice type.
The principal difference between URLLC and eMBB is that
URLLC requires low latency, while the eMBB is aimed at
high data throughput. For MIoT, we assume semi-persistent
scheduling as indicated in [5].

B. Proposed algorithms

Since URLLC and eMBB pose different performance re-
quirements (guaranteed latency vs. data rate) for each slice
type, we propose a different mechanism to estimate the amount
of radio resources necessary to meet these requirements. In
both cases, we begin with an initial estimate of the required
number of PRBs (NPRB) solely based on information that is
provided at instantiation time by the slice tenant in the slice

template (e.g., UEs in a slice, application bitrate). This takes
place under an optimistic assumption about each UE’s rate
capabilities and in a manner unaware of their actual channel
conditions, which we initially assume to be ideal. However,
it is these conditions, combined with the amount of radio
resources allotted to each UE, that actually determine the
achievable latency and throughput performance. Therefore, we
provide algorithms that continue by dynamically improving
this estimate, periodically tuning NPRB based on the CQI
feedback obtained from gNBs.

1) URLLC slice: The proposed algorithm aims to derive
the necessary service rate per gNB to maintain the latency
requirements of a URLLC slice (Latmax) and translates it
into an initial PRB allocation. This mechanism relies only on
information obtained from a slice template provided by the
slice tenant and is agnostic to the channel conditions of each
UE.

Since each slice has its own downlink queue at the gNB [5],
all packets belonging to the slice share the same queue.
Therefore, we propose to model the slice queue at the gNB
as an M/M/1/K [16, Chapter 3.6] one in order to estimate
the latency of the packets. We should note that the M/M/1/K
model has been recently applied by Kozat et al. [17] in the
context of slice availability, while Castagno et al. [18] evaluate
it as one of various candidate models to approximate the
throughput and blocking probability in general cellular radio
systems.

In our model, the service rate (µ) is exponential, the traffic
arrival rate follows a Poisson distribution with intensity λ, and
the queue has a size of K. Here, the service rate µ depends
on the scheduling process at the MAC layer, while the value
of λ corresponds to the traffic rate of the application running
on top of the slice. To derive µ and λ, we use the following
formulas:

λ =
NusersdApp/user

L
(1)

µ =
NPRBdPRB

L
(2)

where:
• Nusers is the number of UEs belonging to the slice and

connected to the gNB.
• L denotes the average packet size of the URLLC appli-

cation.
• dApp/user is the data rate per user required by the appli-

cation running on top of the URLLC slice, considering
the same value for all slice users.

• dPRB is the maximum data rate provided by one PRB.
We apply Little’s law to estimate the latency experienced

by URLLC packets. This law assumes that the average time a
user spends in a queue depends on the number of active users
and the traffic intensity, whatever the distribution of the arrival
rate. Since, in our case, the number of users corresponds to the
number of packets (Npacket) of the URLLC service waiting

in the queue, Little’s law is used as follows to derive the time
a packet spends in the queue:

Tw =
Npacket
λ

(3)

Npacket can be derived as follows, as we assumed that the
URLLC queue is modeled as M/M/1/K:

Npacket =
1− ρ

1− ρK+1

K∑
k=0

kρk (4)

where, ρ = λ
µ .

Since µ depends on the number of resources dedicated to
the URLLC slice and corresponds to the service rate of the
URLLC queue, it can be derived using (2). By assuming that
Latmax is the maximum tolerated latency by a URLLC slice,
Tw should be less than or equal to Latmax which is assumed
to be the maximum tolerated latency by a URLLC slice:

Tw ≤ Latmax. (5)

We substitute Tw by its value given by (3), obtaining the
following expression:

Npacket
λ

=

1−λµ
1−(λµ)K+1

∑K
k=0 k(λµ)k

λ
≤ Latmax (6)

Therefore, we need to find a value of µ, noted µopt, that
ensures condition (5). According to (2), we can extract the
number of PRBs (noted NPRBopt) to dedicate to a URLLC
slice as follows:

NPRBopt =
µopt L

dPRB
. (7)

At this step, to derive µopt we aim to solve (6) for µ, by
taking into account the assumption that L is constant and
the value of dPRB is the same for all UEs. Deriving µopt
analytically is hard; hence, we numerically estimate it using
the following simple algorithm.1

The steps of Algorithm 1 are detailed as follows: First, we
generate n candidate values for µ and keep them in a vector
Mu. These values for µ can be generated for each possible
number of PRBs defined by the available bandwidth for the
given radio technology using (2). Then, we check if condi-
tion (5) is respected, by calculating Npacket corresponding to
each value of µ and then comparing the resulting value Tw
with Latmax.

Note that during the comparison of Tw with Latmax to
accept or reject a µ value, we use a latency margin ε to ensure
that Tw is adequately lower than the latency threshold Latmax,
and also close enough to it in order to respect condition (5)
without wasting a lot of radio resources.

Among all the µ values that lead to an acceptable latency,
we select as the optimal the one which minimizes the differ-
ence between Latmax and Tw, i.e., the smallest value of Mopt.

1Adaptations of standard numerical techniques such as the Newton-Raphson
and the bisection algorithms are also applicable.

Result: µopt
initialization: Mu = [µ1, µ2, ..µn], Mopt = []

for i ← 1:n do

ρ(i) = λ
Mu(i)

Npacket(i) = 1−ρ(i)
1−ρ(i)K+1

∑K
k=0 kρ(i)k

Tw(i) =
Npacket(i)

λ

if latmax − Tw(i) ≥ ε then
Mopt.append(Mu(i))

else
reject Mu(i)

end if
end
µopt = minMopt

Algorithm 1: Calculation of µopt that allows to respect
the latency requirement of a URLLC slice.

Finally, we use (7) to derive the corresponding NPRB to be
assigned to a URLLC slice, once µopt is obtained.

2) eMBB slice: The main constraint of estimating NPRB
is that an eMBB slice requires a high data rate. To satisfy it,
the number of PRBs NPRBmax to dedicate for an eMBB slice
periodically at each gNB should be equal to (or greater than)
the aggregate data rate needed by the slice application for all
slice UEs connected to it. This is captured in (8).

dPRB NPRBmax = dApp/userNusers, (8)

where,
• Nusers is the number of UEs of the eMBB slice con-

nected to the gNB.
• dApp/user is the data rate per user required by the

application running on top of the eMBB slice.
This equation indicates that the NPRBmax allowed to a slice

on a given gNB should cover the required slice’s applications
(i.e., the data rate required by the application multiplied by
the number of active users Nusers).

We assume that dApp/user is the same for all users, dPRB
is the maximum data rate provided by one PRB, and that
it is the same for all UEs. In addition, we consider PRB
rate as the maximum achievable by the radio system for
ideal channel conditions, i.e., the maximum possible Channel
Quality Indicator (CQI) value of 15, and the corresponding
MCS and transport block size. Once each NPRBmax value
is calculated using (8), it is communicated by the SO to the
corresponding gNBs via the southbound protocol.

3) A channel quality-driven algorithm for dynamic NPRB
estimation: In the previous step, the calculation of the initial
number of resource blocks per slice (URLLC and eMBB) is
based on the assumption that dPRB is fixed for all users.
However, users have different channel conditions and, thus,
different data rates. In order to correct the estimation of the
dPRB , we propose to use information from per-UE channel

quality reports obtained from gNBs. In 4G and 5G, the
CQI reports are transmitted from UEs to eNBs and gNBs,
respectively, via a standard procedure in order to be used in
the scheduling process, and they include the CQI and MCS
values of each UE belonging to a cell. This information should
be made available to the SO and be used as input to our
algorithms. While there is no standardized procedure to do
so, solutions tailored to specific base station implementations
exist, such as FlexRAN, which is integrated into the OpenAir-
Interface2 open-source platform and has been the southbound
protocol we have used in prior work [19].

Based on the CQI, we can estimate dPRB per UE and per
cell (gNB). Indeed, dPRB can be obtained based on the same
tables used by the gNB to translate a CQI to a data rate [20]
(translation table). Therefore, we organize these CQI values in
a matrix v(j, k), where k is the id of the UE and j is the id of
the slice. Then, using the translation table, we transform the
matrix v to a matrix of data rates noted dPRB(j, k), where j
and k have the same meaning as for matrix v.

Afterward, a dynamic slicing algorithm is introduced, for
both eMBB and URLLC slices, to exploit the RAN-level
information per user to more accurately translate the service
rate derived into an appropriate PRB allocation.

The different steps of the dynamic slice resource alloca-
tion procedure are presented in Algorithm 2. We note that
NPRBopt(i, j) is a matrix that gives for each cell i the
necessary number of PRBs for slice j, Slice(j) gives the type
of the deployed slice, dApp user(j) is the data rate required
by an application (per user) running on top of a slice j, and
Nusers(i, j) is a vector indicating the number of users of
a slice j in cell i. This algorithm allows a more accurate
estimation of the NPRB allocated to each slice and for each
network cell: For URLLC, it applies equation (7), using the
optimal service rate as determined by Algorithm 1 to meet the
latency requirements, and the mean achievable dPRB across
all slice users per gNB considering each user’s channel quality,
instead of a fixed optimistic value for all. For an eMBB slice,
it sums up the resources required per UE by considering the
individual radio capacity of each user reflected in dPRB(j, k).

Note that this algorithm is run by the SO periodically, and
it relies on periodically transmitted CQI reports from gNBs.
The periodicity of these algorithms is independent of the
scheduling period TTI used at the MAC layer of gNBs.

C. Limitations of the proposed solution

The previously proposed algorithm is based on the periodic
CQI reports sent by gNBs to the SO (refer to Fig. 1), in order
to correctly update dPRB .

However, this CQI reporting may involve significant traffic
overhead and can become an issue with a high number of slices
or UEs. Hence, optimizing this signaling process is crucial
and represents a challenge that we are addressing in the next
sections.

2https://www.openairinterface.org/

Result: NPRBopt(i, j)

for each cell i do
for each slice j do

if Slice (j) == eMBB then

NPRBopt(i, j) =
Nusers(i,j)∑

k=1

dApp/user(j,k)

dPRB(j,k)

else
if Slice (j) == URLLC then
NPRBopt(i, j) =

µoptL

1
Nusers(i,j)

Nusers(i,j)∑
k=1

dPRB(j,k)

end if
end if

end
end

Algorithm 2: Calculation of NPRB for eMBB and
URLLC slices for multiple cells

IV. CHANNEL STABILITY PREDICTION USING MACHINE

LEARNING

A. Problem and objectives

As indicated earlier, the main issue of the precedent algo-
rithm is the potential traffic overload due to frequent signaling
messages (CQI reports between gNBs and the SO). Therefore,
a key challenge consists in proposing mechanisms to optimize
this procedure, reducing the frequency of CQI report trans-
missions.

The idea focuses on limiting the amount of CQI reports
and avoiding unnecessarily transmitted ones while ensuring
that the SO maintains an accurate view of the state of the
channel. To this end, we apply ML mechanisms in order to
predict channel stability/mobility, as this can be used to decide
if a CQI value is necessary to be reported, and in turn, to
control the reporting frequency. For instance, if the channel is
stable, it is not necessary to frequently retrieve the CQI report
since it does not vary during this time period. In this context,
we introduce two algorithms: the first one allows to estimate
the appropriate frequency of reports while minimizing the
dPRB estimation error as much as possible, i.e., by reducing
the CQI collection frequency; the second is based on a ML-
based prediction method, namely Long Short-Term Memory
(LSTM), and has the purpose of forecasting a sequence of
CQI or dPRB values during a time interval based on past CQI
or dPRB values respectively, without the need to retrieve the
actual ones from the gNB.

B. Channel stability prediction

1) Overview: In order to provide the information about
the channel quality, CQI messages of each slice UE are sent
periodically from the gNB to the SO, allowing to appropriately
drive the number of resource blocks NPRB for each slice.
However, when the channel quality is relatively stable, the
CQI values do not vary much in time. Therefore, frequent
CQI reports will not contribute to improving the view of the

Collecting of
CQIs values

ML

Prediction of
channel
mobility

Overhead
optimized

M
o

n
ito

rin
g p

h
ase

If: Channel
Static

No
need to send the CQI values

Forecasting mechanism of the next
CQIs is required

Else

Fig. 2: Concept and methodology to reduce CQI monitoring
overhead.

SO on the actual radio conditions of UEs, and hence it does
not affect the quality of the per-slice radio resource allocation.

Our approach consists of monitoring the channel state for a
period of duration of T . If the channel is identified as “mobile”
by the predictor, a forecasting mechanism of the next CQI
values will be needed, or a new CQI value is required to
be retrieved from the gNB in order to adjust the resource
allocation. Otherwise (i.e., the channel is identified as stable),
there is no need to receive (or forecast) new CQI values.
Thus, the SO considers the last received CQI value as accurate
to allocate radio resources, which reduces the CQI reporting
frequency. The different steps of this concept are illustrated in
Fig. 2.

The proposed monitoring phase is based on a ML algorithm,
which helps to classify the channel state as mobile or stable.
In [8], after testing some ML algorithms, we selected Support
Vector Machines (SVM) and Neural Networks (NN), as they
were found to offer better accuracy.

2) Machine learning architecture: This phase consists of
collecting data and then processing them to extract specific
features and create feature vectors (also called characteristic
vectors), which will be used to train a classifier. Raw data is
collected into vectors for different channels during a period
τ of duration T. Then, for each data vector (i.e., for each
channel), a feature vector is created. In order to represent the
state of the channel using ML algorithms, several types of
data (such as SNIR, CQI, and others) can be used. However,
the collection of different types of data may not always be
available or easy due to several constraints, such as confiden-
tiality, security, financial, and others. To this end, and to avoid
using several data types, we use only a single type (the CQI
value). We collect CQI values, and then, in order to extract the
appropriate feature vector, we perform a pre-processing step
on this vector to obtain the relevant data for the predictive
system to be used, to identify the state of the channel (mobile
or stable).

Pre-processing is performed on the data vector CQIτ =
[cqi1, cqi2...cqin] of n CQI values gathered during period τ
in order to extract the characteristic vector C= [C1 C2 C3].
The extracted features (or characteristics) are as follows:
• C1: The difference between the maximum and minimum

values of collected CQIs in the data vector CQIτ .

C1 = cqimax − cqimin (9)

If C1 is small or zero, the channel may be static, which
means that the environment is stable because there are
no significant effects causing a drastic change in the CQI
value. This feature can give an idea of the channel state.

• C2: Variance.

C2 =
1

n

n∑
i=1

(cqii − CQIτ) (10)

This feature measures the dispersion of CQI values rela-
tively to their average CQIτ .

• C3: The vertical change of the CQI curve slope, repre-
senting the CQI change in different samples in period
τ .

C3 =| CQI(ti+∆)− CQI(ti) | (11)

where, CQI(ti) and CQI(ti+∆) are the CQIs collected
at time instances ti and ti+∆ respectively, and ∆=5 in our
case. Multiple C3 values are extracted for each sample.
Thus, the size of C depends on the number of C3 values.

It is worth noting that, our feature modeling approach
follows common practice in research areas such as pattern,
image and voice recognition, where recognition is most often
based on statistical features such as the Mean Absolute Value
(MAV), Zero Crossing (ZC), Slope Sign Changes (SSC), and
Root Mean Square (RMS) [21], [22], [23].

After the creation of vector C, a known label (stable or
mobile) is assigned to it in order to be used for the training
phase.

In this ML system, we have used 70% of the feature vectors
with their labels to train the classifier; the rest of the feature
vectors (30%) are used during the test and validation phase.
Fig. 3 presents the different steps involved in the channel state
prediction process.

As mentioned above, this method aims at predicting the
channel mobility over an interval τ . The next step is to
estimate the frequency of the CQI reports over the following
interval τ + 1, for which we propose in the next section
two methods to reduce the frequency of CQI reports while
minimizing errors between real and predicted dPRB .

V. ALGORITHMS FOR REDUCING THE CQI REPORTING

FREQUENCY

This section presents two methods to reduce the number of
CQI report exchanges, noted Nr, and expressed as follows:

CQI dataset

Class labels
Predictive

Model
Test & validation

phase

• Static

• Mobile

Vector Features
creation and

labeling

Predictive system
(ML Algorithms: SVM & NN)

70% of data
for training

Training phase

30% of data
for test

Predicted
class

Fe
at

u
re

 v
e

ct
o

rs

Fig. 3: ML-driven channel stability prediction.

Nr =
T

frep
, (12)

where T is the duration of the test time period, and frep is the
time interval between two successive CQI reports. This means
that reducing Nr is equivalent to increasing frep.

Our objective here consists in reducing Nr (or increasing
frep) of CQI report message exchanges as much as possible,
while reducing the error between the real dPRB (using CQI
reports) and the predicted one (when CQI is predicted).

Our system alternates between monitoring and prediction
periods. For this purpose, we consider a (fixed-duration) time
interval (τ) when a monitoring phase takes place by collecting
a fixed number of CQI samples to evaluate the stability of
the channel. On the one hand, if the channel is stable, there
is no need to recover the CQI report for the next interval
τ + 1, which helps reduce the frequency of the CQI report
exchange. On the other hand, if the channel is classified as
mobile, we apply one of the proposed methods to either (i)
predict the optimal number of CQI reports required for the next
interval of equal duration or (ii) forecast a sequence of CQI
values without actually retrieving them. These two methods
are called Optimal Difference and Long Short-Term Memory
(LSTM), respectively, and are described in the following.

It is worth noting that for LSTM the duration of each
prediction period depends on the system QoS required. For
example, the operator may decide to shorten a prediction
period to sacrifice monitoring load gains in order to achieve a
more accurate view of the actual UE channel conditions.

A. Optimal Difference method

This method is based on estimating the stability of the
channel over a period τ and then selecting the appropriate
number of CQI report exchanges Nr for the next period τ+1,
while minimizing the error (E) between real and estimated
dPRB corresponding to actual and predicted CQI values.

The challenge here consists in minimizing Nr and E, which
cannot be solved by an optimization algorithm, as we do
not have exact constraints on the error. Hence, we need to
find a relation between E and Nr that allows to define the

optimal Nr and E. Obviously, if Nr decreases (frep increases),
the error E either remains the same or increases. Indeed,
when Nr decreases, the frequency update of the dPRB values
decreases and consequently causes errors mainly for high-
mobility channel cases.

For this reason, we first generate the vector Nr which
consists of a set of m values for Nr, each representing a
different CQI report exchange rate. The first Nr value in
the vector corresponds to a value noted N

(1)
r = n, which is

the maximum number of CQI samples that may be collected
during the prediction period.

To generate the rest of the values, we use the geometric
progression method with ratio q as follows:

N (i+1)
r = qN (i)

r (13)

In order to obtain decreasing Nr values, we assume that
0 < q < 1 and select q = 1/2, which allows to observe
the impact of decreasing Nr on E. Next, after creating the
vector Nr = (N

(1)
r , N

(2)
r , . . . , N

(m)
r), we can deduce the

corresponding error of each Nr value and consequently deduce
the error vector E = (E1, E2, . . . , En).

We proceed as follows: At the end of monitoring pe-
riod τ , we have collected vector CQIτ , which we trans-
late to the corresponding sequence of dPRB values noted
as Pτ = [p1, p2, . . . , pn]. Then, out of this sequence of
actual dPRB values, for each N

(i)
r we generate a sequence

P̂
(i)
τ = [p̂

(i)
1 , p̂

(i)
2 , . . . , p̂

(i)
n] of estimated ones by keeping only

every i−th value from Pτ , and replacing the rest with their
preceding real dPRB value. For example, for i = 2 we have
that N (2)

r =
N(1)
r

2 , thus P̂ (2)
τ will be composed by keeping

every second actual value from Pτ and setting every other
value to its precedent, i.e., P̂ (i)

τ = [p1, p1, p3, p3, p5, p5, . . .].
Finally, the error Ei is given by:

Ei =
1

n

n∑
j=1

|pj − p̂(i)
j |. (14)

The idea behind the creation of Nr and E is to normalize
them by their maximum, and to calculate the difference
between their normalized values ∆i =| Ñ (i)

r − Ẽi |. Then,
we select the Nr that corresponds to the minimum difference
∆min between E and Nr, allowing to estimate the optimal
Nr (Nopt

r) and consequently the optimal error. The steps of
this method are illustrated in Figure 4.

B. Long Short-Term Memory method

Our second approach to reduce the reporting frequency is
based on using the Long Short-Term Memory (LSTM) method
to forecast dPRB values for period τ+1, i.e., without actually
collecting any CQI values during τ + 1.

LSTM is a deep learning method (a type of Recurrent
Neural Network (RNN)), which can learn the long term depen-
dencies between time steps in time series, and sequence data.
Its purpose consists in predicting the values of the future time
steps of a sequence. LSTM has good performance in predicting
long-interval events and processing long-term dependencies

Fig. 4: Steps to estimate the optimal number of CQI reports
Nopt
r .

of time series data [24]. Besides, it presents advantages in
terms of classification accuracy, where it outperforms several
traditional time series classification models.

In our case, the data sequence is constituted by the values of
CQI or dPRB , where we use LSTM to predict CQI or dPRB
values for period τ+1 based on the respective values collected
during period τ .

C. Comparison between methods

After a monitoring period τ where a sequence of CQI
reports is collected and the channel status is characterized,
one of the two alternative strategies that we propose to reduce
reporting frequency may be applied. The Optimal Difference
method consists in estimating the appropriate number of CQI
reports (Nr) to be collected during the next prediction period
τ + 1 which we consider here to have a fixed duration equal
to that of τ , while the LSTM method consists in predicting
a sequence of dPRB values for τ + 1 whose duration may
vary according to the operator preferences, based only on
the dPRB values corresponding to the CQI reports collected
during τ . Given the qualitative difference of the two methods,
here we introduce appropriate metrics to compare them. First,
we focus on the performance of each method in terms of CQI
collection-related traffic savings. For this, we introduce two
metrics representing the (normalized) CQI reporting rate gain
for both methods following equations (15) and (16).

GOptDif =
CQIratedefault − CQIrateOpt

CQIratedefault
(15)

GLSTM =
CQIratePred
CQIratedefault

(16)

• CQIratedefault refers to the number of CQI reports
during period τ + 1 with duration T without any opti-
mizations (representing the maximum Nr).

• CQIrateOpt refers to the optimized number of CQI
reports Nr in the same period.

• CQIratePred refers to the number of CQI values pre-
dicted during the LSTM forecasting period.

Second, we characterize the dPRB estimation error for each
strategy. In particular, for each case, the estimation error E
during period τ+1 is defined as the mean (absolute) difference
between a dPRB value estimated and the actual one (if the
corresponding CQI value were actually retrieved). We further
normalize this error as follows:

ENorm =
E

dPRBmax − dPRBmin
, (17)

where (dPRBmax − dPRBmin) represents the difference be-
tween the maximum and minimum dPRB , in order to express
the maximum error that a method can detect in its prediction.

The purpose of these metrics is to capture the trade-off
between gains in terms of CQI monitoring traffic reduction and
dPRB estimation accuracy, and help to identify via our quan-
titative evaluation the conditions under which each method is
more appropriate.

VI. PERFORMANCE EVALUATION

This section focuses on evaluating the performance of the
different methods and techniques proposed in this paper. First,
we will evaluate the performance of the proposed algorithms
for reducing the frequency of CQI reporting presented in
Section V, while keeping the dPRB estimation error low.
Then, we will assess the efficiency of the data-driven RAN
slicing algorithm introduced in Section III, followed by a study
on the impact of our mechanisms for reducing the reporting
frequency on meeting RAN slice performance requirements.

A. CQI prediction and reporting frequency optimization

1) Channel mobility/stability prediction: In [8], we eval-
uated the performance of the channel stability predictive
system using two ML algorithms (NN and SVM) based
on a data set we generated from simulations using ns-3.
(For a validation of our models on a publicly available data
set with measurements from an LTE network testbed, see
Section VI-A2.) In this context, we simulated an LTE cell,
considering UEs moving with different constant velocities and
different distances from the eNB, in order to create a data set
with realistic CQI values corresponding to different degrees
of user mobility. We generated approximately 15500 vectors
of CQI values, and each vector contains around 10000 CQI
values for different channel mobility states. Therefore, we

extracted a feature vector for each CQI vector as described
in Section IV-B, which we labelled either as static or mobile,
depending on the level of channel mobility.

We used MATLAB to train and validate ML algorithms
based on the provided CQI data set. Note that, the considered
NN algorithm has a single hidden layer. For both ML algo-
rithms, we used 70% of our data for training and the remaining
30% for test and validation. It is worth noting that the training
processing time (i.e., training phase duration) of the SVM and
NN algorithm considered are respectively 1.15 s, and 2.2620 s.
However, the test phase duration is much shorter, in the order
of milliseconds.

Table I presents the results of the validation phase in
terms of accuracy and F1-score for the two candidate ML
mechanisms.

TABLE I: Accuracy and F1-score of NN and SVM algorithm

NN SVM
Accuracy 96.43% 92.86%

F1-score 96.29% 92.30%

As shown in Table I, both algorithms (i.e., SVM and
NN) are able to learn and classify the channel state with
high performance. They guarantee an accuracy and F1-score
of more than 90%. However, we note that the NN system
outperforms the SVM in terms of accuracy and F1-score by
only about 4%. Note that accuracy and F1-score are defined
as follows:
• Accuracy, i.e., the ratio of the number of correctly pre-

dicted vectors to the total number of vectors.

Accuracy =
correctly predicted

feature vectors
(18)

• F1-score, which is defined by the weighted average of
precision and recall, where, precision is the ratio of the
number of correctly predicted mobile class instances to
the total number of predicted mobile class ones (i.e.,
false and correct), and recall, also called sensitivity, is
the ratio of the number of correctly predicted instances
of the mobile class to the number of all true mobile class
ones.

F1.score =
2 ∗ (Recall ∗ Precision)

(Recall + Precision)
(19)

The channel stability/mobility prediction results, shown in
Table I, were tested and evaluated using a dataset generated
via ns-3 simulations. We next validate our channel stability
prediction mechanisms on real traces from an operating mobile
network testbed.

2) Model validation with real data: In this test, we used
a data set publicly available from CRAWDAD [25], which
contains statistics and monitoring data of 4G/5G MAC, RRC
and PDCP layers.

The considered data are raw and recorded for one eNB and
a single mobile UE in five different mobility scenarios by

following different motion and distance patterns relative to
the eNB. All raw data have been recorded without including
Tx power amplification on the RF front end (0 dBm transmit
power), which implies an approximately 10 m maximum range
of coverage. From these data, we have extracted the CQI mea-
surements for each one of the following mobility scenarios:
• Moving Away (MA): the UE moves away from the eNB

to a maximum distance of 10 m.
• Moving Closer-Far-Closer (MC): the UE moves back

and forth relative to the eNB, from a 0 distance up to
approximately 10 m.

• Stable Long Distance (SLD): the UE stands still in a long
distance (approximately 5-10 m) away from the eNB.

• Stable Mid Distance (SMD): the UE stands still in a mid
distance (approximately 1-5 m) away from the eNB.

• Stable Short Distance (SSD): the UE stands still in a short
distance (approximately 0-1 m) away from the eNB.

Then, we use CQI data that correspond to actual UE
mobility scenarios to validate the channel stability results
deduced previously using the ns-3 dataset.

The average duration of the test phase of all the considered
scenarios using SVM and NN algorithms are: (i) 5.7 ms using
SVM and (ii) 210.4 ms using NN. We conclude that our
algorithms are fast, and their execution time is acceptable in
this kind of analysis. However, when response time matters
most, it would be better to use the SVM algorithm.

Table II shows the confusion matrix results in a simplified
way,3 which indicates for each mobility scenario (MA, MC,
SLD, SMD, and SSD), the results of the classification, i.e.,
mobile or static, obtained using NN and SVM.

TABLE II: Mobility and stability results of the considered
mobility scenarios using NN and SVM.

NN SVM
MA Static Mobile

MC Mobile Mobile

SLD Mobile Mobile

SMD Mobile Mobile

SSD Static Static

The obtained results indicate that both SVM and NN have
correctly classified the channel of the MC scenarios as mobile.
We argue this by the fact that the UE, in this case, is moving
closer and away from the eNB, so the CQI values change with
it. Also, for the SSD scenario, the channel was well classified
as static since the UE remained static and close to the eNB.

For the SLD and SMD scenarios, both classification al-
gorithms classified the channel as mobile, although the UE
remained static. We explain this by the fact that for SLD and
SMD scenarios, the distance between UE and eNB is long
and medium respectively, which strongly affects the channel,

3A confusion matrix indicates the number of true and false classifications
across the whole validation dataset. As we have only 5 mobility scenarios,
we have directly given the classification results obtained at the output of the
ML algorithms used for each scenario.

0 50 100 150 200

Nr

0

10

20

30

40

50

60

70
d

P
R

B
 E

rr
o

r
[k

b
p

s
]

Moving closer

Moving Away

Stable long dist

Stable mid dist

Stable short dist

Fig. 5: dPRB error vs. Nr.

for instance due to multi-path effects, leading to significant
variations in the channel quality. Regarding the MA scenario,
the SVM correctly classified the channel as mobile, but the
NN considered it as static. We conclude that both SVM and
NN algorithms perform well, as they have well detected the
channel status of the majority of the considered scenarios.
However, regarding the response time constraint, it would be
better to use SVM because it is much faster than NN.

3) Reducing the CQI reporting frequency:
a) Optimal Difference method results: As elaborated in

Section V-A, the Optimal Difference method is a technique
that calculates the estimation error of dPRB for different CQI
reporting frequencies, i.e., different numbers Nr of messages
exchanged and, correspondingly, different inter-report times
fr, over time intervals of length τ . Then, it selects the Nr
value that minimizes the difference between the (normalized)
values of Nr and the PRB estimation error. In the time interval
that follows, the optimal CQI reporting frequency, calculated
as described above, is applied. An increase in Nr is equivalent
to a decrease in frep according to Eq. (12).

Fig. 5 shows the errors of the dPRB values obtained for
different Nr, in an interval of τ = 200ms. The curves
show that when Nr increases, the error decreases. They also
demonstrate that the dPRB estimation error for a UE in the
MC scenario is the highest compared to the other scenarios
for most CQI reporting frequencies. This error is higher than
the MA scenario, followed by SLD, SMD, and SSD scenarios.

Once we have obtained the measures on the error according
to Nr, we apply the minimum difference method presented in
Section V-A to choose Nopt

r , i.e., the optimal value of Nr.
Fig. 6 shows the Nopt

r value obtained for each scenario.
We notice that when the UE is mobile (scenarios MC

and MA), our algorithm estimates that a significantly larger
number/frequency of CQI reports is needed compared with
the static scenarios (SLD, SMD, and SSD). For the latter, the
error reduces as the distance decreases, and thus the optimal
Nr decreases as well.

MC MA SLD SMD SSD

Mobility case

0

10

20

30

40

50

60

O
p

ti
m

a
l

N
r

Fig. 6: Optimal number of CQI reports (Nopt
r) over periods

of τ = 200ms vs. mobility scenario.

b) LSTM method results: Here we present the results of
the application of the forecasting method based on LSTM,
which we have implemented in MATLAB [26]. After several
tests, we selected in this LSTM network the Adam [27] solver
for training, using 200 epochs. We argue for this choice by
the fact that this configuration gave more precision at the
output. We trained the model on sequences of dPRB values
that correspond to 200 collected CQI samples during 200 ms
periods. Then, following a monitoring period τ of τ = 200 ms
where an input sequence is collected, we perform forecasting
of the dPRB values for the next period τ + 1. The considered
forecasting period durations are: 5, 10, 20, 50, 100 and 200 ms,
where for each duration we calculate the corresponding dPRB
errors, as shown in Fig. 7.

Similarly to the previous results, we notice that the error
of the MC and MA and sometimes the SLD scenarios are
the highest, followed by the SMD and SSD. In addition, we
observe that the longer the prediction period, the higher the
error. We attribute this to the fact that the prediction time goes
far beyond the actual values recorded to make the prediction.

c) Comparison between the Optimal Difference method
and LSTM: We recall that the methodology and metrics
used to compare between the two methods are detailed in
Section V-C. For the optimal difference method, a higher gain
means fewer retrieved CQI reports during a prediction period
of the same fixed duration as a monitoring period; the rest
of the CQI values are generated as described in Section V-A.
For LSTM, this means a longer prediction period where we
generate a sequence of dPRB values using the learned model
and with the sequence of values of the last monitoring period
as input; the duration of this prediction period is left to the
system operator.

In Fig. 8, we draw the average normalized dPRB error
of the five considered scenarios against the normalized re-
porting gain. The latter is an expression of the number of

5 10 20 50 100 200

Prediction Time [ms]

0

5

10

15

20

25

30

35

40

45

50
d

P
R

B
 a

v
e

ra
g

e
 e

rr
o

r
[k

b
p

s
]

MC

MA

SLD

SMD

SSD

Fig. 7: dPRB error vs. mobility state using LSTM.

CQI reports that are predicted (i.e., not actually retrieved)
and thus represents the savings in terms of CQI monitoring
traffic compared to the case where the default CQI collection
takes place without any optimizations or prediction (as, e.g.,
in [9] and [14]). As per the definitions of Section V-C, for
the LSTM method, when the number of predicted values
equals the default number of CQI reports that would normally
be collected during the period in question (in other words,
when the prediction period has the maximum duration), the
LSTM gain reaches 100%. On the other hand, for the optimal
difference method, the gain depends on the optimal Nr value
selected; the lower this value, the higher the gain.

We can observe that the optimal difference method performs
better than LSTM in terms of error (up to 95% of gain).
The error of the optimal difference method is smaller until
reaching 95% of the gain; beyond this percentage, LSTM
performs better. A dPRB value predicted by the optimal
difference method is always the same as the last actual value
that corresponds to a real collected CQI sample. As the
gain increases, the number of such samples decreases, which
drives the estimation error up. In such high-gain conditions,
the values predicted by the LSTM model can better capture
the actual variation of real dPRB ones. We should note that
contrary to the LSTM method, which does not need to retrieve
any actual CQI values during a forecasting period and can thus
reach a gain of 100%, the optimal difference one, by design,
always needs to retrieve at least one CQI value during its
testing period (i.e., the number of CQI reports Nr cannot be
zero) in order to consider it as the predicted CQI value for the
rest of the interval when no CQI report will be collected.

B. RAN slicing with optimization

1) Data driven RAN slicing: First, we study the perfor-
mance of the RAN slicing methods without the CQI reporting
optimization (proposed in Section III). The proposed algorithm
runs at the SO level. In this simulation, we considered two
types of slices, i.e., URLLC and eMBB. Each slice is defined

0 0.2 0.4 0.6 0.8 1

CQI Reports Exchange Gain

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

d
P

R
B

 E
rr

o
r

Error vs Gain OD method

Error vs Gain LSTM method

Fig. 8: dPRB normalized error vs. gain.

by the number of users, the required application data rate, the
maximum latency (Latmax) for URLLC, etc.

We simulated different scenarios, where we fixed the num-
ber of users of the eMBB slice (NeMBBusers) to 5, while
varying this number for the URLLC slice (NuRLLCusers).
We considered different channel qualities: (i) medium quality
where the CQI varies from 7 to 9; (ii) good quality where the
CQI varies from 13 to 15. Note that we simulated the case
of only one BS and one SO. Table III presents the simulation
parameter set in all scenarios.

TABLE III: Simulation parameters

Parameter Values
Slices [URLLC, eMBB]

Average Packet Size [20, 125] bytes
Data rate [160, 1000] kbit/s

TTI 1 ms

In order to see the effectiveness of our solution, we com-
pared it with the adopted method in [5], which uses a statically
chosen percentage of PRBs corresponding to a fixed slice-
dedicated bandwidth (SDB), and distributes it among the
different slice users; in our tests, we considered a percentage
of 50% of SDB per slice. This static radio resource partitioning
corresponds to one of the approaches for network sharing
considered by the 3GPP [28]. It is worth noting that the
number of PRBs available is limited by the channel bandwidth.
In our simulation, we selected to use a bandwidth of 5 Mhz,
where 25 PRBs are available, in order to quickly saturate the
channel and show the efficiency of our proposed solution. The
only difference for higher bandwidths is the threshold beyond
which our solution does not perform well.

Note that the combined number of PRBs to be allocated to
both URLLC and eMBB slices may exceed the capacity of
the channel; hence, in this implementation, we applied a fair
share of resources between slices, which has been calculated

0 2 4 6 8 10 12 14 16 18 20

URLLC Nusers

-60

-40

-20

0

20

40

60

80

U
R

L
L

C
 l

a
te

n
c

y
 d

if
fe

re
n

c
e

 [
m

s
]

Lat Diff using our method: latmax=1

Lat Diff using our method: latmax=10

Lat Diff using our method: latmax=50

Lat Diff using static method:latmax=1

Lat Diff using static method:latmax=10

Lat Diff using static method:latmax=50

(a) Medium channel quality.

0 5 10 15 20 25 30

URLLC Nusers

-60

-40

-20

0

20

40

60

80

U
R

L
L

C
 l

a
te

n
c

y
 d

if
fe

re
n

c
e

 [
m

s
]

Lat Diff using our method: latmax=1

Lat Diff using our method: latmax=10

Lat Diff using our method: latmax=50

Lat Diff using static method:latmax=1

Lat Diff using static method:latmax=10

Lat Diff using static method:latmax=50

(b) Good channel quality.

Fig. 9: (Lat-Latmax) vs. the number of URLLC users.

0 2 4 6 8 10 12 14 16 18 20

URLLC Nusers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
M

B
B

 T
h

ro
u

g
h

p
u

t
P

ro
p

o
rt

io
n

For URLLC latmax=1

For URLLC latmax=10

For URLLC latmax=50

Statically 50% of resources

(a) Medium channel quality.

0 5 10 15 20 25 30

URLLC Nusers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
M

B
B

 T
h

ro
u

g
h

p
u

t
P

ro
p

o
rt

io
n

For URLLC latmax=1

For URLLC latmax=10

For URLLC latmax=50

Statically 50% of resources

(b) Good channel quality.

Fig. 10: Throughput proportion vs. the number of URLLC users.

as follows. In order to see the effectiveness of our solution,
we compared it with the adopted method in [5], which uses a
statically chosen percentage of PRBs corresponding to a fixed
slice-dedicated bandwidth (SDB), and distributes it among
the different slice users; We first calculate the difference
between the number of PRBs available and the number of
PRBs requested for both slices as shown below:

∆ = NPRBmax − (NPRBuRLLC +NPRBeMBB).

Then, we reduce the same amount of PRBs (|∆|2) from each
slice in order to adapt it to the capacity of the channel.

Finally, we compute (a) for the URLLC slice: the difference
Latmax-Lat between (i) the latency obtained by allocating
the number of resources obtained (Lat) using our method
and the static method of 50% SDB, and (ii) the required
latency Latmax, as shown in Fig. 9a and 9b; and (b) for
the eMBB slice: the proportion of the allocated throughput
(using our method of resource sharing, and the static of 50%
SDB) relative to the throughput required by this slice (Fig. 10a
and 10b), in order to evaluate the accuracy of the proposed

methods of estimating the radio resource dPRB values required
by each slice type dynamically.

Afterwards, we simulate the URLLC slice latency dif-
ference between Lat and Latmax, for different numbers
of NuRLLCusers, and for two channel qualities, good and
medium, as shown Fig. 9a and 9b respectively. We considered
three service-level requirements (SLR) for the URLLC slice,
which are three values of Latmax: 1 ms, 10 ms and 50 ms.

Note that when Lat-Latmax < 0, the latency required by
the URLLC slice is respected. Otherwise, when this difference
is positive, the obtained latency Lat no longer respects the
slice requirements.

The simulation results here show that whatever the value of
Latmax, and for both channel qualities, our algorithm allows
to keep the latency around Latmax (the latency difference is
negative), for up to a certain number of users. Therefore, we
remark that there is a threshold on the number of URLLC users
beyond which the latency exceeds Latmax. These thresholds
are: 2, 5 and 14 for the medium channel quality when
Latmax = 1 ms, 5 ms and 50 ms respectively, and 15, 22 and
29 for the good channel quality when Latmax =1 ms, 5 ms

and 50 ms respectively. We explain the difference between
these values by the fact that good channel quality allows
to have higher NPRB compared to medium channel quality,
supporting more users in the URLLC slice.

Regarding the static PRB allocation method, where 50%
of SDB is allocated to the slice (whatever the SLR of this
slice), we remark that the differences between the latency
obtained using the static method and the three Latmax values
considered, are always larger than the differences obtained
using our method for each Latmax respectively. Therefore,
the static method is not optimal.

Furthermore, the throughput proportion obtained for the
eMBB slice according to the number of the URLLC slice’s
users, for both considered channel qualities is shown in
Fig. 10a and 10b. Here also, we note that there is a threshold
on the number of users beyond which the performance of the
slice degrades.

Our solution cannot guarantee 100% of the requested band-
width for the medium channel quality. However, it guar-
antees the needed bandwidth until 10 and 25 users when
Latmax =1 ms and 50 ms, respectively, for the good channel
quality. This is expected, as the URLLC users need more
PRBs in the case of Latmax =1 ms, which strongly affects
the eMBB users. In addition, we observe that using a fixed
number of PRBs, always ensures the same throughput (less
than 100% of the total required), which is not optimal.

To summarize, the simulation results of the NPRB esti-
mation for the URLLC and eMBB slices clearly indicate the
ability of our solution to slice the RAN resources and satisfy
the heterogeneous requirements of both types of network slices
when not exceeding a certain threshold on the number of users,
due to the bandwidth limitations.

One of the main weaknesses of the encountered solution is
the overhead that arises due to the frequent exchange of CQI
values between the SO and eNBs.

2) Data-driven RAN slicing with optimization: To evaluate
the efficiency and the impact of the optimized RAN slicing
solution on the slice requirements, we have integrated the CQI
reporting frequency reduction algorithms to our mechanisms.

In this simulation, we considered the same parameters, as
shown in Table III. However, here each user has the real
channel quality during the test period, using the real CQI
measurements obtained from the CRAWDAD data set.

The simulated results in this part are based on the calcula-
tion of the throughput of the eMBB slice before and after the
application of the CQI report reduction algorithms. Note that
we have computed only the throughput of the eMBB slice, as
the throughput assigned to each slice depends directly on the
number of PRBs allocated to each slice. Thus we can show
the optimization impact easily.

Fig. 11 illustrates the default throughput assigned to the
eMBB slice before applying any mechanisms to reduce the
frequency of CQI reporting and after applying the Optimal
Difference method. The CQI report reduction algorithm was
applied as follows: For each scenario, we calculated the
optimal number of reports Nopt

r over a monitoring period,

MC MA SLD SMD SSD

Mobility scenarios

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

T
h
ro

u
g
h

p
u
t

[k
b
p
s
]

Default throughput before CQIs reduction

 Throughput after CQIs reduction

Fig. 11: Throughput before and after applying the Optimal
Difference method to reduce the CQI reporting frequency, for
different user mobility scenarios.

and then we applied it over the period that follows. Finally,
we calculated the throughput corresponding to this Nopt

r .
The results show that for the stable scenarios (SLD, SMD,

and SSD), the throughput assigned to each slice was not
impacted by reducing the CQI reporting frequency considering
Nopt
r . A small change is noticed in the two mobile cases

MC and MA. In the MC case, less throughput was assigned
after reduction, while in the MA case, more throughput was
assigned. This error of assigning less throughput to MC and
more to MA depends on the CQI values (high, medium, or
low) retrieved using Nopt

r .
The results of the CQI reporting rate reduction using LSTM

are shown in Fig. 12. Here, as there is no optimal number or
interval reduction that would show the impact of LSTM, we
calculate the average percentage of the throughput error by
report to the real throughput. The latter is calculated for each
scenario and using all of the previously considered prediction
intervals, which are: 200, 100, 50, 20 and 5 ms (i.e., the
average error between these time intervals). The obtained
results show that when user mobility increases, the LSTM
cannot correctly predict CQI values. This has an impact on
the slice requirements in terms of throughput since the error
decreases when mobility decreases.

VII. CONCLUSION

In this paper, we devised a data-driven algorithm for sharing
RAN resources among heterogeneous slices. The proposed
algorithm computes and adjusts the radio resources needed by
each running slice, using feedback on users’ CQI. The pro-
posed algorithm runs at the slice orchestrator level with very
low complexity. Our results indicate the ability of the proposed
algorithm to dynamically guarantee constraints of eMBB and
URLLC slices when the number of active users stays below
a certain threshold. In addition, to mitigate the overheads

MC MA SLD SMD SSD

Mobility scenarios

0

5

10

15

20

25
A

v
e
ra

g
e
 t

h
ro

u
g
h

p
u
t

e
rr

o
r

o
f

a
ll

fo
re

c
a
s
t
ti
m

e
s
 u

s
in

g
 L

S
T

M
 [
%

]

Fig. 12: Average throughput error across all considered fore-
casting period durations using LSTM, for different user mo-
bility scenarios.

associated with frequent CQI monitoring, we proposed two
predictive methods, i.e., Optimal Difference and LSTM-based
forecasting. Our objective was to reduce the frequency of
CQI report exchanges between base stations and the slice
orchestrator while minimizing the error of our estimates of
the achievable throughput when the CQI reporting frequency
is reduced. Again, our simulation results demonstrate the
positive impact of our CQI reporting optimizations by reducing
the overhead while maintaining a precise prediction of RAN
resources for the running network slices.

ACKNOWLEDGMENT

This work was partially supported by the European Union’s
Horizon 2020 Research and Innovation Program under the
5G!Drones project (Grant No. 857031).

REFERENCES

[1] 3GPP, TS 23.501, “5G; System Architecture for the 5G System,”
v15.3.0, Release 15, Sept. 2018.

[2] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. A. Zhang, “The
Roadmap to 6G: AI Empowered Wireless Networks,” in IEEE Com-
munications Magazine, vol. 57(8), pp. 84–90, Aug. 2019.

[3] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi,
“Toward 6G Networks: Use Cases and Technologies,” in IEEE Com-
munications Magazine, vol. 58(3), pp. 55–61, Mar. 2020.

[4] W. Saad, M. Bennis, and M. Chen, “A Vision of 6G Wireless Systems:
Applications, Trends, Technologies, and Open Research Problems,” in
IEEE Network, vol. 34(3), pp. 134–142, May/Jun. 2020.

[5] A. Ksentini, P. A. Frangoudis, A. PC, and N. Nikaein, “Providing low
latency guarantees for slicing-ready 5G systems via two-level MAC
scheduling,” in IEEE Network, vol. 32(6), pp. 116–123, Nov./Dec. 2018.

[6] S. Bakri, P. A. Frangoudis, and A. Ksentini, “Dynamic slicing of RAN
resources for heterogeneous coexisting 5G services,” in Proc. IEEE
GLOBECOM, 2019.

[7] A. Ksentini and N. Nikaein, “Toward enforcing Network Slicing on
RAN: Flexibility and Resources abstraction,” in IEEE Communications
Magazine, vol. 55(6), pp. 102–108, Jun. 2017.

[8] S. Bakri, M. Bouaziz, P. A. Frangoudis, and A. Ksentini, “Channel
stability prediction to optimize signaling overhead in 5G networks
using machine learning,” in Proc. IEEE International Conference on
Communications (ICC), 2020.

[9] P. L. Vo, M. N. H. Nguyen, T. A. Le, and N. H. Tran, “Slicing the
Edge: Resource Allocation for RAN Network Slicing,” in IEEE Wireless
Communications Letters, vol. 7(6), Dec. 2018.

[10] H. Zhang, N. Liu, X. Chu, K. Long, A. Aghvami, and V. C. M. Leung,
“Network Slicing Based 5G and Future Mobile Networks: Mobility,
Resource Management, and Challenges,” in IEEE Communications
Magazine, vo. 55(8), Aug. 2017.

[11] A. Anand, G. de Veciana, and S. Shakkottai, “Joint Scheduling of
URLLC and eMBB Traffic in 5G Wireless Networks,” in IEEE/ACM
Trans. Netw., vol. 28(2), pp. 477–490, 2020.

[12] P. Caballero, A. Banchs, G. de Veciana, X. Costa-Pérez, and A. Azcorra,
“Network Slicing for Guaranteed Rate Services: Admission Control
and Resource Allocation Games,” in IEEE Transactions on Wireless
Communications, vol. 17(10), Oct. 2018.

[13] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia,
and A. Banchs, “Mobile Traffic Forecasting for Maximizing 5G Network
Slicing Resource Utilization,” in Proc. IEEE INFOCOM, 2017.

[14] J. Salvat, L. Zanzi, A. G.Saavedra, V. Sciancalepore, and X. Costa-
Pérez, “Overbooking Network Slices through Yield-driven End-to-End
Orchestration,” in Proc. ACM CoNEXT, 2018.

[15] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Konto-
vasilis, “FlexRAN: A Flexible and Programmable Platform for Software-
Defined Radio Access Networks,” in Proc. ACM CoNEXT, 2016.

[16] L. Kleinrock, Queueing Systems, Volume I: Theory. New York, NY,
USA: Wiley, 1975.

[17] U. C. Kozat and A. C. K. Soong, “On the Impact of Slicing Granularity
on the Availability and Scalability of 5G Networks,” in Proc. IEEE ICC,
2019.

[18] P. Castagno, V. Mancuso, M. Sereno, and M. Ajmone Marsan, “Closed
form Expressions for the Performance Metrics of Data Services in
Cellular Networks,” in Proc. IEEE INFOCOM, 2018.

[19] I. Afolabi, T. Taleb, P. A. Frangoudis, M. Bagaa, and A. Ksentini,
“Network Slicing-Based Customization of 5G Mobile Services,” in IEEE
Network, vol. 33(5), pp. 134–141, 2019.

[20] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical
layer procedures, 3GPP TS 36.213, v. 15.2.0, Release 15, Oct. 2018.

[21] Latif, S., Rana, R., Younis, S., Qadir, J., Epps, J. (2018) Transfer
Learning for Improving Speech Emotion Classification Accuracy. Proc.
Interspeech 2018, 257-261, DOI: 10.21437/Interspeech.

[22] U. Cote-Allard, C. Latyr Fall, A. Drouin, A. Campeau-Lecours, C.
Gosselin, K. Glette, F. Laviolette and B. Gosselin, Deep Learning for
Electromyographic Hand Gesture Signal Classification by Leveraging
Transfer Learning, ArXiv eprints, Jan. 2018.

[23] A. Phinyomark, S. Hirunviriya, C. Limsakul and P. Phukpattaranont,
”Evaluation of EMG feature extraction for hand movement recog-
nition based on Euclidean distance and standard deviation,” ECTI-
CON2010: The 2010 ECTI International Conference on Electrical En-
gineering/Electronics, Computer, Telecommunications and Information
Technology, Chiang Mai, Thailand, 2010.

[24] H. Cheng, Z. Xie, L. Wu, Z. Yu, and R. Li, “Data prediction model in
wireless sensor networks based on bidirectional LSTM,” in EURASIP
J. Wireless Com. Network, 203, 2019.

[25] B. Koksal, R. Schmidt, X. Vasilakos, N. Nikaien, CRAWDAD dataset
eurecom/elasticmon5G2019 (v. 2019-08-29).

[26] Long Short-Term Memory (LSTM) in Time Series Forecasting Using
Deep Learning MATLAB, Deep Learning Toolbox.

[27] D.P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in Proc. ICLR, 2015.

[28] Universal Mobile Telecommunications System (UMTS); LTE; Service
aspects; Service principles, 3GPP TS 22.101, v14.8.0, Release 14, Oct.
2017.

Sihem Bakri was a PhD student at the De-
partment of Communication Systems, EURECOM,
France (2017-2021), and received her PhD degree in
Telecommunications from the Sorbonne University
in 2021. Her doctoral thesis was an excellence grant
from Institut Mines-Télécom, France. She received
a Master’s degree in Intelligent Telecommunica-
tion Systems from the University of Science and
Technology Houari Boumediene (Algiers), in 2016.
In 2017, she received another Master’s degree in

Telecommunications Techniques and Technologies from the University of
Paris-Est Marne la Vallée. She is currently a postdoctoral researcher at
Telecom Sud Paris of the Institut Mines Telecom. Her research interests
include 5G networks, network slicing, network resource optimization, AI,
reinforcement learning and mathematical modeling.

Pantelis A. Frangoudis is a post-doctoral re-
searcher with the Distributed Systems Group, TU
Wien, Austria. He has been a researcher with the
Communication Systems Department, EURECOM,
France (2017-2019), and with team DIONYSOS at
IRISA/INRIA Rennes, France (2012-2017), which
he originally joined under an ERCIM “Alain Ben-
soussan” post-doctoral fellowship. He has a Ph.D.
(2012) in Computer Science from AUEB, Greece.
His interests include mobile and wireless network-

ing, network softwarization, edge computing, and Internet multimedia.

Adlen Ksentini Adlen Ksentini is a COMSOC
distinguished lecturer. He obtained his Ph.D. degree
in computer science from the University of Cergy-
Pontoise in 2005, with a dissertation on QoS provi-
sioning in IEEE 802.11-based networks. From 2006
to 2016, he worked at the University of Rennes 1 as
an assistant professor. During this period, he was a
member of the Dionysos Team with INRIA, Rennes.
Since March 2016, he has been working as a pro-
fessor in the Communication Systems Department of

EURECOM. He has been involved in several national and European projects
on QoS and QoE support in future wireless, network virtualization, cloud
networking, mobile networks, and more recently on Network Slicing and 5G
in the context of H2020 projects 5G!Pagoda, 5GTransformer, 5G!Drones and
MonB5G. He has co-authored over 120 technical journal and international
conference papers. He received the best paper award from IEEE IWCMC
2016, IEEE ICC 2012, and ACM MSWiM 2005. He has been awarded the
2017 IEEE Comsoc Fred W. Ellersick (best IEEE communications Magazine’s
paper). Adlen Ksentini has given several tutorials in IEEE international
conferences, IEEE Globecom 2015, IEEEE CCNC 2017, IEEE ICC 2017,
IEEE/IFIP IM 2017. Adlen Ksentini has been acting as TPC Symposium Chair
for IEEE ICC 2016/2017, IEEE GLOBECOM 2017, IEEE Cloudnet 2017 and
IEEE 5G Forum 2018. He has been acting as Guest Editor for IEEE Journal of
Selected Area on Communication (JSAC) Series on Network Softwerization,
IEEE Wireless Communications, IEEE Communications Magazine, and two
issues of ComSoc MMTC Letters. He has been on the Technical Program
Committees of major IEEE ComSoc, ICC/GLOBECOM, ICME, WCNC, and
PIMRC conferences. He acted as the Director of IEEE ComSoc EMEA region
and member of the IEEE Comsoc Board of Governor (2019-2020). He is the
chair of the IEEE ComSoc Technical Committee on Software (TCS).

Maha Bouaziz has a PhD in Computer Science.
Currently, she is working as a Teacher-Researcher
at University of Strasbourg from september 2020.
Before, she was in a postdoctoral position at EU-
RECOM. Her current research focuses on wireless
networks and innovation such as IoT, 5G, Network
slicing, mobility management, Machine Learning,...

