
Hierarchical Multi-Agent Deep Reinforcement
Learning for SFC Placement on Multiple Domains

Nassima Toumi1, Miloud Bagaa2, Adlen Ksentini1
1 EURECOM, Sophia-Antipolis, France

2 CSC, Espoo, Finland
Email: {nassima.toumi, adlen.ksentini}@eurecom.fr, miloud.bagaa@csc.fi

Abstract—Service Function Chaining (SFC) is the process
of decomposing a network service into multiple functions that
successively process packets to deliver the end-to-end service. In
a multi-domain context, SFC placement is a challenging problem
due to limited knowledge of the infrastructure of the local
domains, which complicates the process of finding the optimal
placement solutions. On the other hand, Reinforcement Learning
has gained momentum as a tool for decision-making, allowing
agents to construct and improve policies using feedback from
the environment. In this paper, we leverage Deep Reinforcement
Learning (DRL) to perform SFC placement on multiple domains.
We devise a hierarchical architecture where the local domain
agents and the multi-domain agent are trained using different
DRL models to perform SFC and sub-SFC placement while
satisfying the SLA requirements.

I. INTRODUCTION

The emerging use cases of 5G and beyond bring additional
heterogeneous requirements that need to be accommodated.
To achieve this, network operators leverage Network Function
Virtualization (NFV) and Software Defined Networking (SDN)
to allow increased flexibility and dynamic management of
services. Service Function Chaining (SFC) leverages both
aforementioned technologies to decompose services into mul-
tiple blocks that process data in an ordered manner.

In some cases, service operators deploy the functions of
the same SFC on different administrative domains for reasons
such as resource shortage, data aggregation for use cases
such as Edge Computing where data is processed on Edge
clouds closer to the clients to reduce bandwidth consumption
[1], or the Function-as-a-Service (FaaS) cloud service model
[2] where a client might compose its service using functions
provided by multiple vendors. However, in the multi-domain
context, multiple challenges arise for the SFC orchestration
and management operations. In the SFC placement process
in particular, it is difficult to determine the optimal Virtual
Network Function (VNF) placement and link mapping solution
considering that for security considerations, the domain opera-
tors disclose minimal information on their infrastructure. Fur-
thermore, SFC placement has been proven to be an NP-Hard
problem [3] [4]; indeed, it is subject to multiple constraints
such as resource availability and SLA-related requirements
and should improve multiple objectives. Classic optimization
methods such as Integer Linear Programming, Game Theory,
and different algorithms suffer from scalability issues for NP-
Hard problems as their computation time increases exponen-

tially, making them impractical for real-time usage.
This paper tackles the above-mentioned issues by applying

Deep Reinforcement Learning (DRL) methods to construct
decision policies based on the environment’s feedback and
provide placement decisions in significantly lower times. The
proposed solution for multi-domain SFC placement relies on
a hierarchical multi-agent architecture, where a centralized
Multi-Domain Orchestrator and the local domain orchestrators
each dispose of their DRL agents to perform placement on
their respective views on the network topology. The architec-
ture also includes an interface between the MDO and the local
domain orchestrators that provides an abstracted view of the
network to the MDO, performs SFC partitioning and sends
the sub-SFCs to each local domain, then collects the local
placement rewards to return the final placement reward to the
MDO. We train the agent models using Deep Q-Networks
(DQN) and evaluate their performance on a multi-domain
architecture.

The main contributions of this paper are two-fold: First, we
propose a hierarchical multi-agent Deep Reinforcement Learn-
ing framework for multi-domain SFC placement. Second, we
train the agents using different DRL algorithms to perform
the multi-domain SFC placement while optimizing cost and
latency, and discuss their results. The remainder of this paper
is organized as follows. Section II provides an overview on
the existing contributions. Section III describes our proposed
framework and IV details the DRL model’s states, actions and
rewards. The simulation settings and results are discussed in
Section V, and Section VI concludes the paper.

II. BACKGROUND

In a multi-domain scenario, the SFC is partitioned between
multiple domains, which implies that the placement of the
VNFs is performed in two steps: first, a domain is selected
for each VNF, then, a physical node is selected within that
domain. However, due to limited knowledge of the network
infrastructure of each domain, the first step is challenging.
Indeed, for security reasons, the domains disclose as little
information as possible on their infrastructure, therefore, it
is difficult to determine the optimal solution. Note that in this
work, we consider a single domain as an autonomous network
infrastructure; therefore, different administrative entities and
independent divisions of the same administrative entity are
considered as separate domains.

Multiple mathematical models and algorithms have been
used to optimize SFC placement, such as Integer Linear
Programming, different heuristics, or Game Theory [5]. In
particular, in the multi-domain setting, two approaches have
been applied: a distributed one, where the domains exchange
messages until the convergence to an optimal solution, and
a hierarchical approach, where a logically centralized entity
is entrusted by the domains to partial information on their
infrastructure and performs a preliminary placement and par-
titioning of the SFC request. However, most of these proposals
fall short on scaling to bigger problem instances. Indeed, the
processing time exponentially increases with the size of the
problem. Recently, DRL methods have gained momentum as a
tool for decision-making. They rely on Deep Neural Networks
(DNN) that are trained using feedback from the environment,
where the agent gradually adjusts its policy depending on
the perceived rewards and penalties. Once the agents have
been trained, they can provide near-optimal solutions in a
short time. This makes them particularly suitable for real-time
service orchestration and management. Multiple works have
applied DRL for adaptive SFC placement, traffic prediction,
and resource allocation [6]–[9].

The contributions in [10] and [11] proposed solutions for
Network Slice orchestration on multiple domains using DRL
models, but supposed that the agent had access to complete
information on the domains’ infrastructure, therefore ignoring
the limited visibility aspect. Tang et al. [12] devise on a
DRL model for SFC placement on geo-distributed data-centers
with separate decentralized algorithms for routing optimization
and task routing, however, the authors suppose that the agent
disposes of full knowledge on the network infrastructure of the
data-centers. In [13], DRL is employed for VNF Forwarding
Graph (VNFFG) embedding on multiple non-cooperative do-
mains, where the domains compete for the SFC requests and
update their pricing policies accordingly to get the client to
place more VNFs on their network, thus increasing their profit,
while the client trains its own model by evaluating the different
domains using the observed QoS metrics of the deployed SFCs
to assess whether the SLAs have been breached. However, the
model is only tested on a small network setup of 3 domains.

In this contribution, we propose a multi-agent DRL-based
framework for the placement of multi-domain SFCs while
jointly optimizing cost and latency. Our proposal takes into
account the limited visibility aspect, and allows the agents to
communicate through an interface that acts as an intermediary.

III. PROPOSED ARCHITECTURE

In the following, we describe our proposed architecture
as depicted in Figure 1, and detail the learning process of
the different agents and their interactions to perform end-
to-end SFC placement. SSimilar to the work in [14], the
proposed architecture adopts a hierarchical approach. It is
composed of multiple orchestrators that employ separate DRL
agents and exchange requests and rewards through a Multi-
Domain Interface (MDI). Our framework supports the use of
different DRL methods for each agent of the architecture,

Fig. 1: Multi-domain SFC Embedding Framework

which allows increased flexibility in combining algorithms.
The Multi-Domain Orchestrator (MDO) uses its DRL agent
to perform an initial domain placement of the VNFs using
the partial view on the network that has been provided by the
MDI. Once each VNF has been mapped to a domain, the MDI
partitions the SFC accordingly and sends the sub-SFCs to the
domain orchestrators for a local placement using their own
DRL agents. We provide details on the main components of
our framework in the following:

A. Multi-Domain Orchestrator

The MDO is in charge of performing the initial placement
of the multi-domain SFC, by selecting the domains where
each VNF is placed. The MDO is composed of an agent
that uses the abstract network state and the rewards from the
environment to construct a policy that maximizes the SFC
rewards. Through an exploitation/exploration trade-off, the
agent creates associations between states, actions, and rewards
and selects the best actions for each state. Note that the MDI
plays the role of the environment for the MDO, since it feeds
the states and rewards to the DRL agent. Furthermore, due to
the limited knowledge of the local domain infrastructure, the
MDO agent’s environment is Partially Observable.

B. Multi-Domain Interface

The MDI presents to the MDO a partial view of the global
network constructed using information disclosed by the local
domains such as the available resources, their unit price,
and the inter-domain vertices [15]. In this work, the DRL
agents perform placement one VNF at a time. For each VNF
placement decision, the MDI is in charge of updating the total

SFC placement and the abstract network topology accordingly.
It returns that updated network state along with the partial
reward for that VNF. Once the domain placement of the whole
SFC has been performed, the MDI partitions the SFC into
sub-SFCs by grouping the VNFs that have been mapped to
the same domain and sends the sub-SFC requests to their
associated domain orchestrators. The MDI then collects the
sub-SFC rewards from each agent, and returns the total SFC
reward and the updated network state to the MDO DRL agent.

C. Local Domain Orchestrators
Each local domain orchestrator performs a local placement

of the incoming sub-SFCs with a full view of the environment
and uses the rewards to update its policy. The rewards are also
sent back to the MDI to compute the complete SFC placement
reward. Note that for each local orchestrator, the environment
is composed of the local topology that provides the network
state and rewards, as well as the MDI that provides the sub-
SFCs used to complete the state fed to the agent. Note that
the agents of each level of the architecture are trained sepa-
rately. First, the local orchestrator’s DRL agents are trained
using randomly generated sub-SFCs, then switched to the full
exploitation mode to train the MDO DRL agent. This choice is
due to the fact that the local orchestrator’s placement efficiency
has an impact on the placement that is performed by the
MDO. Indeed, a local orchestrator performing an exploration
action might cause a decreased reward for the MDO agent,
which would lead this latter to under-evaluate the value of
that specific state-action pair.

IV. SYSTEM MODEL

This section describes the environment’s states, actions, and
rewards for the local domain agents and the MDO agent. We
also formulate the constraints of the SFC placement problem.

A. States
At each time step, the state observation for the DRL agents

is composed of information on the VNF that should be placed
by the next action, the placement of the previous VNFs, the
available resources of the network topology, and their unit
price, and the link latency. For each physical node or domain
n, the remaining available capacity for each resource type r of
the network topology is denoted by Rr,n, and the unit price
is expressed using ζr,n. For each domain or inter-domain link
l from the set L, we denote by Rω,l, ζl and φl the bandwidth
capacity, the unit price and latency respectively. Each VNF
i from the set of VNFs Vi of an SFC i is characterized by
its resource requirements ∇r,i,j for each resource type r from
the set R, the required amount of bandwidthWi, the maximal
latency φ+i and Ci,paid, which is the price that has been paid
by the tenant to deploy the SFC. For the MDO agent, the state
of a VNF also includes a set of authorized domains Mi,j on
which the VNF can be placed, while for the local domain
agents, no such restriction applies. If a domain isn’t allowed
for a certain VNF, the state for that time step is updated to
set the resource capacity of that domain and its connecting
inter-domain links to 0.

B. Actions

The actions of each agent determine the domain or physical
node where the current VNF should be placed. For the sake
of simplicity and to reduce the action space of our model,
we assume that the shortest paths between the domains and
physical nodes have been computed before the placement
process. Therefore, the link capacity, cost, and latency from
the previous VNF can be directly computed. For a VNF j, for
the MDO agent, the number of actions would correspond to
the number of its allowed domains |Mi,j |, while for a local
domain orchestrator, the number of actions is the number of
physical nodes of the domain d topology |Nd|. We use the
boolean Xni,j as a decision variable which takes the value 1
if the VNF j of SFC i has been mapped to the domain or
physical node n, and 0 otherwise. The placement of an SFC
or sub-SFC i must satisfy the following constraints that apply
on both levels of the architecture, unless stated otherwise:

1) Mapping Constraints: Each VNF i must be placed on
only one domain or physical node from its set of allowed
placements. For the sake of simplicity, in this formulation, we
denote by Mi,j the set of allowed nodes for both the MDO
agent and the local domain orchestrators. Two successive
VNFs can be mapped to two domains or nodes n and m if
and only if they are connected by an available physical path,
which is expressed using the boolean ρn,m:∑

n∈Mi,j

Xni,j = 1, ∀j ∈ Vi (1)

∀j ∈ Vi,∀n ∈Mi,j ,∀m ∈Mi,j+1:

Xni,j · Xmi,j+1 ≤ ρn,m, (2)

2) Capacity Constraints: To place a VNF j on a certain
node or domain n, sufficient amounts of all of the resource
types r (CPU, RAM, disk space...) must be available on that
node. This constraint is expressed as follows:∑
j∈Vi
∇r,i,j · Xni,j ≤ Rr,n, ∀n ∈Mi,j+1,∀r ∈ < (3)

For each pair of successive VNFs j and j+1, each link l that
is part of the path between their selected placements must
dispose of sufficient remaining bandwidth capacity. Denoting
by the boolean τn,ml whether a link is part of the physical path
between domains n and m, the constraint can be expressed as
follows: ∀l ∈ L :∑

j∈Vi

∑
n∈Mj

∑
m∈Mj+1

Wi · Xni,j · Xmi,j+1 · τ
n,m
l ≤ Rω,l (4)

3) Latency Constraint: To provide a satisfactory Quality of
Service (QoS) depending on the SLA selected by the client,
the end-to-end latency for an SFC i cannot exceed a certain
limit φ+i .

φi ≤ φ+i (5)

The latency φa for each agent a is computed as follows:

φa =
∑
j∈Vi

∑
l∈L

∑
n∈Mi,j

∑
m∈Mi,j+1

φl · Xni,j · Xmi,j+1 · τ
n,m
l (6)

Note that the end-to-end latency can be obtained by sum-
ming the φa values from each local domain orchestrator d
from the set D which are collected by the MDI, and the inter-
domain latency value from the MDO.

φi = φMDO +
∑
d∈D

φd (7)

4) Cost Constraint: The total deployment cost Ci should
remain below a certain amount to guarantee a profit percentage
of at least 5% for the SFC provider:

Ci ≤ 0.95 · Ci,paid (8)

Where Ccomp and Clink the computing and link costs for each
domain d are computed as follows:

Ccomp =
∑
n∈Nd

∑
r∈<

∑
j∈Vi

ζr,n · ∇r,i,j · Xni,j (9)

Clink =
∑
j∈Vi

∑
l∈L

∑
n∈Mj

∑
m∈Mj+1

ζl · Wi · Xni,j · Xmi,j+1 · τ
n,m
l (10)

This latter equation can also be used to compute the inter-
domain link cost. The total cost is computed by summing the
link and node costs for each domain, and adding the inter-
domain link costs.

Ci = Clink,MDO +
∑
d∈D

(Clink,d + Ccomp,d) (11)

C. Rewards

The goal of this model is to perform multi-domain SFC
placement while minimizing deployment cost Ci, the end-to-
end latency φi, and satisfying the aforementioned constraints
to minimize the request rejection rate. The reward function
for an SFC is a fixed placement reward minus a penalty
which depends on the quality of the solution, expressed as the
difference with the optimal value. This difference is weighted
by the importance of each objective depending on the selected
SLA (e.g., Best Effort, Ultra-Low Latency...). To formulate the
reward function, we first formulate the penalties related to cost
and latency separately, expressed as PC and Pφ, respectively.
Their values are normalized using the maximal values for each
objective for the selected SLA.

PC = αC · Ci−0.95·Ci,paid

0.95·Ci,paid
(12)

Pφ = αφ ·
φi−φ+

i

φ+
i

(13)

With αC and αφ being the weights associated to cost and
latency which depend on the selected SLA. The final reward
function that the agent aims to maximize can be formulated
as follows:

reward = Ai · (RS − PC − Pφ)− (1−Ai) · PF (14)

With RS being the reward obtained for successfully placing
the SFC, and PF the penalty for failing to place that SFC.
And the boolean Ai expresses whether a complete SFC has
been placed, its value can be computed using the following
equation:

Ai =
∏
j∈Vi

∑
n∈Mi,j

Xni,j (15)

V. EVALUATION

To evaluate our solution, we deploy an implementation on
a physical machine with 12 Intel Core i7-10710U 1.10GHz
CPU Cores and 32GB of memory, hosting an Ubuntu 20.04
x64 Operating System. The simulation environment is im-
plemented using Python. To learn the optimal policy π∗, we
use PyTorch [16] to implement fully connected Deep Neural
Networks (DNN) for the DRL agents.

A. DRL Model

Tabular RL methods, such as Q-learning [17] and SARSA
[18], update the action-value function estimates to converge
to the optimal policy. While their convergences have been
proven, they are limited to the small problem of limited states
and actions. Therefore, to enlarge the scope of RL problems,
the DQN Algorithm has been introduced [19]. DQN leverages
neural networks to estimate the Q-values and hence considers
continuous state spaces. A considerable enhancement that has
been introduced to the original DQN algorithm in [20] is the
use of a separate Q-network referred to as target network,
which is used to approximate the state-action values for the
TD-error computation in the loss function. The target network
is a clone of the original Q-Network with a delayed weight
vector that is updated (copied from the original Q-network)
periodically after a certain number of time steps.

For our simulation, we employ Deep Q-Networks on the
MDO level and on the local domains. For both levels, the size
of the input and output layers are similar to the size of the
state observation and action space, respectively. Therefore, for
the MDO agent, the output layer size would be the number of
domains in the topology, while for the local domains, it would
correspond to the number of physical nodes in the network.
Note that our framework can be extended to support multiple
combinations of additional DRL algorithms.

For the local domain agents, we implement the main DQN
and target network DNNs with three hidden layers of 512, 256,
and 128 nodes for our simulation. While for the DQN agent
of the MDO, we implement two hidden layers of 256 and 128
nodes. For both levels, we apply the Rectified Linear Unit
(ReLU) activation function to the hidden and output layers.
We apply a discount factor γ of 0.99, and the learning rate is
set to 10−2 for both the main and target networks. We also
implement experience replay with a batch size of 256, and
the target network is updated every eight episodes. The neural
network parameters are updated using the ADAM optimizer
[21]. The decayed epsilon-greedy policy is used to determine
whether an action is chosen randomly or according to the
current policy, where the epsilon value is gradually decreased
as the episodes are processed by the agent.

B. Model Training

As stated earlier, we train the MDO and domain agents
separately. We first train the local domain model by running
30000 independent episodes. For each episode, we randomly
generate local domain topologies with a 3-level Fat-Tree
structure composed of 16 servers using the networkx library.

We also generate sub-SFC requests of 1-10 VNFs, where each
VNF is characterized by a type (small, medium, large) that
defines the amounts of required resources for each resource
type. Each request specifies the number of users and the
SLA that the SFC must satisfy. Table I shows the maximum
latency limit, the bandwidth per user requirement, the cost per
user, and the weights associated to cost and latency for the
reward function for each SLA. The first two SLAs have a
low latency requirement with a high latency weight. The first
one has a high bandwidth per user requirement, while SLA 2
seeks a trade-off between cost and latency. In contrast, SLA 3
favors reducing cost over latency. The last SLA corresponds
to best-effort services; hence it doesn’t have a maximum
latency requirement and gives a higher weight to cost. For
each episode, a set of 1-10 sub-SFCs is randomly generated,
as the number of sub-SFCs that the local orchestrator receives
might vary depending on the MDO placement. To obtain the
full reward for the episode (10 minus cost and latency-related
penalties), the agent must successfully place all of the sub-
SFCs; otherwise, the episode is terminated, the resources of
the topology are freed, and the agent receives a penalty of
-100. Figure 2 illustrates the rewards in blue and 100 episode
average in orange for the DQN model of the local domains,
where the x-axis represents the number of episodes, and the y-
axis represents the perceived rewards. It can be observed that
the model progressively starts converging to higher reward val-
ues after 15000 episodes, with an average oscillating between
40 and 80 depending on the quality of the solutions, meaning
that most of the placement actions succeed with occasional
placement failures that can be imputed to the exploration
actions that are performed by the agent. Furthermore, early
SFC placement failures terminate the episode and cause higher
penalties. It can be noticed that after 17000 episodes, the
maximum observed penalties decrease, which indicates that
SFC placement failures occur later in the episode, meaning
that a higher number of SFCs are placed by episode.

Once the models of the local agents have been trained,
we switch them to a full exploitation mode and train the
MDO agent using 8 local domain agents with their ran-
domly generated Fat-Tree topologies and the corresponding
abstracted network view. For this training, we generate SFC
requests of 4-10 VNFs, adding the allowed domain sets in
their characteristics. For each episode, 10 SFCs must be placed
successfully by the MDO and all of the selected local domain
orchestrators in order to get the full placement reward collected
by the MDI, otherwise, if the placement of an SFC fails,
the episode is terminated, and the agent receives a penalty.
To train our MDO model, since the observation space and
number of possible actions is smaller than for the local domain
agent, we run 5000 independent episodes. Figure 3 shows the
rewards and 100 episodes running average for the DQN model
of the MDO, which is also composed of the local domain
model rewards. It can be seen that the 100 episode running
average of the rewards slowly increases as the SFC requests
are placed. The agent converges after 3000 episodes, reaching
an average reward value between 70 and 90, meaning that

SLA 0 1 2 3 4
Cost/user 8000 6000 4000 3000 1000

Max Latency (ms) 100 100 200 300 -
Bw/user (Mb/s) 500 50 200 50 20

Cost Weight 0.1 0.25 0.5 0.75 0.9
Latency Weight 0.9 0.75 0.5 0.25 0.1

TABLE I: SLA Characteristics

despite the partial observability of the environment, the model
successfully captured the environment’s dynamics. Indeed,
most of the episodes completed successfully with all of the
SFCs being placed, which is confirmed by the rewards plot
where a small number of episodes produced penalties.

Fig. 2: Local Domain DQN Model Training Reward

Fig. 3: MDO DQN Model Training Reward

C. Model Evaluation

After training the DQN model, we switch it to the full
exploitation mode and observe three key metrics: the ac-
ceptance rate of the SFC requests, to assess the model’s
ability to identify the problem’s constraints and adapt its
parameters, and the relative cost and latency compared to
the SLA objectives, to evaluate the quality of the provided

Fig. 4: Multi-Domain SFC Placement Metrics

solutions. For this second part of the experiment, we generate
5000 new episodes. Figure 4 displays the obtained results for
the selected evaluation metrics.

The first sub-figure in blue represents the running average of
the individual SFC request rejection rate, where it can be seen
that the rejection rates oscillate between 4 and 5%.The sub-
figures in red and purple display the 100 episodes, showing the
average difference between the obtained latency and cost, for
each successful episode, and their optimal values, respectively.
We set the optimal value for latency at 60% under the
maximum limit of the SLA, and the optimal cost value at 50%
of the value paid by the customer to deploy that SFC. The
obtained results show that the latency values are on average
around 20 − 40% over the optimal value for that SFC, but
remain largely below the maximum SLA limit, and the cost
values are on average 0.47% below (thus better than) the
optimal value of 95% of the SFC’s revenue. Therefore, it
can be concluded that our proposal’s SFC placement results
achieve latency values that satisfy the SLA requirements while
maximizing the profit margin of the SFC providers.

VI. CONCLUSION

In this contribution, we designed a multi-agent framework
for multi-domain SFC placement using Deep Reinforcement
Learning. We formulated the problem’s constraints and defined
the states, action space, and rewards for the MDO and local
domain agents. Our proposal was validated on a simulation
testbed using the DQN algorithm, and the results showed that
despite the limited visibility on the network infrastructure,
the agents were able to capture the environment’s dynamics
and learn efficient policies, where 94% of the SFCs were
successfully placed while minimizing cost and latency. In
future works, we aim to enhance this framework to support
post-deployment orchestration operations such as migration
or scaling. Further, we aim to experiment additional DRL
algorithms such as actor-critic methods to reduce the learning
time and improve performance.

REFERENCES

[1] K. Cao, Y. Liu, G. Meng, and Q. Sun, “An overview on edge computing
research,” IEEE Access, vol. 8, pp. 85 714–85 728, 2020.

[2] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter,
Serverless Computing: Current Trends and Open Problems. Singapore:
Springer Singapore, 2017, pp. 1–20.

[3] M. Ghaznavi, N. Shahriar, S. Kamali, R. Ahmed, and R. Boutaba,
“Distributed service function chaining,” IEEE J. Sel. Areas Commun.,
vol. PP, no. 99, pp. 1–1, 2017.

[4] L. Yala, P. A. Frangoudis, and A. Ksentini, “Latency and availability
driven VNF placement in a MEC-NFV environment,” in IEEE Global
Communications Conference, GLOBECOM 2018, Abu Dhabi, United
Arab Emirates, December 9-13, 2018. IEEE, 2018, pp. 1–7.

[5] J. G. Herrera and J. F. Botero, “Resource allocation in nfv: A com-
prehensive survey,” IEEE Trans. on Netw. and Serv. Manage., vol. 13,
no. 3, pp. 518–532, Sept 2016.

[6] N. Jalodia, S. Henna, and A. Davy, “Deep reinforcement learning for
topology-aware vnf resource prediction in nfv environments,” in 2019
IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), 2019, pp. 1–5.

[7] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang,
“Nfvdeep: Adaptive online service function chain deployment with
deep reinforcement learning,” in 2019 IEEE/ACM 27th International
Symposium on Quality of Service (IWQoS), 2019, pp. 1–10.

[8] H. A. Shah and L. Zhao, “Multi-agent deep reinforcement learning based
virtual resource allocation through network function virtualization in
internet of things,” IEEE Internet of Things Journal, pp. 1–1, 2020.

[9] S. Troia, R. Alvizu, and G. Maier, “Reinforcement learning for service
function chain reconfiguration in nfv-sdn metro-core optical networks,”
IEEE Access, vol. 7, pp. 167 944–167 957, 2019.

[10] G. Kibalya, J. Serrat, J. Gorricho, R. Pasquini, H. Yao, and P. Zhang,
“A reinforcement learning based approach for 5g network slicing across
multiple domains,” in 2019 15th International Conference on Network
and Service Management (CNSM), 2019, pp. 1–5.

[11] A. I. Swapna et al., “Policy controlled multi-domain cloud-network slice
orchestration strategy based on reinforcement learning,” in 2020 IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), 2020, pp. 167–173.

[12] T. Tang, B. Wu, and G. Hu, “A hybrid learning framework for service
function chaining across geo-distributed data centers,” IEEE Access,
vol. 8, pp. 170 225–170 236, 2020.

[13] P. T. A. Quang, A. Bradai, K. D. Singh, and Y. Hadjadj-Aoul, “Multi-
domain non-cooperative vnf-fg embedding: A deep reinforcement learn-
ing approach,” in IEEE INFOCOM 2019 - IEEE Conference on Com-
puter Communications Workshops, 2019, pp. 886–891.

[14] N. Toumi, O. Bernier, D.-E. Meddour, and A. Ksentini, “On cross-
domain service function chain orchestration: An architectural frame-
work,” Computer Networks, vol. 187, p. 107806, 2021.

[15] M. Shen, K. Xu, K. Yang, and H. H. Chen, “Towards efficient virtual
network embedding across multiple network domains,” in 2014 IEEE
22nd Int. Symp. of Quality of Serv. (IWQoS), May 2014, pp. 61–70.

[16] P. Adam et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.

[17] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, 2nd ed. The MIT Press, 2018. [Online]. Available:
http://incompleteideas.net/book/the-book-2nd.html

[18] G. Rummery and M. Niranjan, “On-line q-learning using connectionist
systems,” Technical Report CUED/F-INFENG/TR 166, 11 1994.

[19] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” 2016.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis, “Human-level control through deep reinforce-
ment learning,” Nature, vol. 518, pp. 529–33, 02 2015.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

